Newton分形的原理及Matlab实现

Newton分形的原理及Matlab实现
Newton分形的原理及Matlab实现

龙源期刊网 https://www.360docs.net/doc/309687843.html,

Newton分形的原理及Matlab实现

作者:张健徐聪全付勇智

来源:《电脑知识与技术》2009年第24期

摘要:详细推导了复平面上Newton迭代法的原理和计算公式,用MATLAB编制程序实现了Newton迭代算法,得到了一些奇异、绚丽的分形图形。对《数学实验》课程有一定的参考价值。

关键词:Newton迭代法;分形;Matlab;数学实验

中图分类号:TP312文献标识码:A文章编号:1009-3044(2009)24-6997-03

The Principles of Newton Fractal and it's Realization Using MATLAB

ZHANG Jian, XU Cong-quan, FU Yong-zhi

(Department of Basic Courses, Southwest Forestry College, Kunming 650224, China)

Abstract: The Principles and formulas of Newton fractal was explained,fractal graphics of Newton iteration was created using Matlab.

Key words: newton iteration; fractal; Matlab; mathematical experimental

分形是非线性科学的一个重要分支,应用于自然科学和社会科学的众多领域。其中,分形图形以其奇异、绚丽多彩的特点,广泛应用于纺织印染、广告设计、装潢设计、计算机美术教学

等领域[1]。

很多分形图形都是用迭代的方式实现的,Newton迭代法就是其中的一种。由Newton迭代

法产生的分形图形称为Newton分形[2]。很多文献都对Newton分形进行了介绍,但都没有详细的计算公式和算法说明,读者很难编制相应程序。本文详细介绍了复平面上Newton迭代法的原理和计算公式,设计了相应的实现算法,并用Matlab编制程序实现了Newton分形的绘制,生成了一些奇异、瑰丽的分形图形。

几个分形的matlab实现

几个分形得matlab实现 摘要:给出几个分形得实例,并用matlab编程实现方便更好得理解分形,欣赏其带来得数学美感 关键字:Koch曲线实验图像 一、问题描述: 从一条直线段开始,将线段中间得三分之一部分用一个等边三角形得两边代替,形成山丘形图形如下 ?图1 在新得图形中,又将图中每一直线段中间得三分之一部分都用一个等边三角形得两条边代替,再次形成新得图形如此迭代,形成Koch分形曲线。 二、算法分析: 考虑由直线段(2个点)产生第一个图形(5个点)得过程。图1中,设与分别为原始直线段得两个端点,现需要在直线段得中间依次插入三个点,,。显然位于线段三分之一处,位于线段三分 之二处,点得位置可瞧成就是由点以点为轴心,逆时针旋转600而得。旋转由正交矩阵 实现。 算法根据初始数据(与点得坐标),产生图1中5个结点得坐标、结点得坐标数组形成一个矩阵,矩阵得第一行为得坐标,第二行为得坐标……,第五行为得坐标。矩阵得第一列元素分别为5个结点得坐标,第二列元素分别为5个结点得坐标。 进一步考虑Koch曲线形成过程中结点数目得变化规律。设第次迭代产生得结点数为,第次迭代产生得结点数为,则与中间得递推关系为。 三、实验程序及注释: p=[0 0;10 0]; %P为初始两个点得坐标,第一列为x坐标,第二列为y坐标 n=2; %n为结点数 A=[cos(pi/3) —sin(pi/3);sin(pi/3) cos(pi/3)]; %旋转矩阵 for k=1:4 d=diff(p)/3; %diff计算相邻两个点得坐标之差,得到相邻两点确定得向量 %则d就计算出每个向量长度得三分之一,与题中将线段三等分对应 m=4*n-3; %迭代公式 q=p(1:n—1,:); %以原点为起点,前n—1个点得坐标为终点形成向量 p(5:4:m,:)=p(2:n,:); %迭代后处于4k+1位置上得点得坐标为迭代前得相应坐标 p(2:4:m,:)=q+d; %用向量方法计算迭代后处于4k+2位置上得点得坐标 p(3:4:m,:)=q+d+d*A'; %用向量方法计算迭代后处于4k+3位置上得点得坐标 p(4:4:m,:)=q+2*d; %用向量方法计算迭代后处于4k位置上得点得坐标 n=m; %迭代后新得结点数目 end plot(p(:,1),p(:,2)) %绘出每相邻两个点得连线 axis([0 10 0 10]) 四、实验数据记录: 由第三部分得程序,可得到如下得Koch分形曲线:

matlab实现牛顿迭代法求解非线性方程组教学文稿

matlab实现牛顿迭代法求解非线性方程组 已知非线性方程组如下 3*x1-cos(x2*x3)-1/2=0 x1^2-81*(x2+0.1)^2+sin(x3)+1.06=0 exp(-x1*x2)+20*x3+(10*pi-3)/3=0 求解要求精度达到0.00001 ———————————————————————————————— 首先建立函数fun 储存方程组编程如下将fun.m保存到工作路径中: function f=fun(x); %定义非线性方程组如下 %变量x1 x2 x3 %函数f1 f2 f3 syms x1 x2 x3 f1=3*x1-cos(x2*x3)-1/2; f2=x1^2-81*(x2+0.1)^2+sin(x3)+1.06; f3=exp(-x1*x2)+20*x3+(10*pi-3)/3; f=[f1 f2 f3]; ———————————————————————————————— 建立函数dfun 用来求方程组的雅克比矩阵将dfun.m保存到工作路径中: function df=dfun(x); %用来求解方程组的雅克比矩阵储存在dfun中 f=fun(x); df=[diff(f,'x1');diff(f,'x2');diff(f,'x3')]; df=conj(df'); ———————————————————————————————— 编程牛顿法求解非线性方程组将newton.m保存到工作路径中: function x=newton(x0,eps,N); con=0; %其中x0为迭代初值eps为精度要求N为最大迭代步数con用来记录结果是否收敛for i=1:N; f=subs(fun(x0),{'x1' 'x2' 'x3'},{x0(1) x0(2) x0(3)}); df=subs(dfun(x0),{'x1' 'x2' 'x3'},{x0(1) x0(2) x0(3)}); x=x0-f/df; for j=1: length(x0); il(i,j)=x(j); end if norm(x-x0)

Matlab实验报告:分形迭代

数学实验报告:分形迭代 练习1 1.实验目的:绘制分形图案并分析其特点。 2.实验内容:绘制Koch曲线、Sierpinski三角形和树木花草图形,观察这些图形的局部和原来分形图形的关系。 3.实验思路:利用函数反复调用自己来模拟分形构造时的迭代过程,当迭代指标n为0时运行作图操作,否则继续迭代。 4.实验步骤: (1)Koch曲线 function koch(p,q,n) % p、q分别为koch曲线的始末复坐标,n为迭代次数 if (n==0) plot([real(p);real(q)],[imag(p);imag(q)]); hold on; axis equal else a=(2*p+q)/3; % 求出从p 到q 的1/3 处端点a b=(p+2*q)/3; % 求出从p 到q 的2/3 处端点b c=a+(b-a)*exp(pi*i/3);% koch(p, a, n-1); % 对pa 线段做下一回合 koch(a, c, n-1); % 对ac 线段做下一回合 koch(c, b, n-1); % 对cb 线段做下一回合 koch(b, q, n-1); % 对bq 线段做下一回合 end (2)Sierpinski三角形 function sierpinski(a,b,c,n) % a、b、c为三角形顶点,n为迭代次数 if (n==0) fill([real(a) real(b) real(c)],[imag(a) imag(b) imag(c)],'b');% 填充三角形abc hold on; axis equal else a1=(b+c)/2; b1=(a+c)/2; c1=(a+b)/2; sierpinski(a,b1,c1,n-1); sierpinski(a1,b,c1,n-1); sierpinski(a1,b1,c,n-1); end (3)树木花草 function grasstree(p,q,n) % p、q分别为树木花草始末复坐标,n为迭代次数

牛顿迭代法解元方程组以及误差分析matlab实现

.0],;,[0 ),()(),()(),(0),()(),()(),(,.**,0],;,[),()()(),()()(,0),(),(),(])()[(),(),(),(),(),(])()[(),(),(2,),(])()[(21),(])()[(),(),()(2 )(''))((')()(: 1n 1n 110101010100000000000000000000000000200000000000 00 000fg g f y y g f g f g f fg x x g g f f y x g y y y x g x x y x g y x f y y y x f x x y x f y x y x y x g f g f fg g f y y g f g f g f fg x x g f g f fg g f y y g f g f g f fg x x g g f f y x g y x g y y y x g x x y x f y x f y y y x f x x y x g y x f y x g y y y x x x y x g y x g y x f y x g y x f y y y x x x y x f y x f y x y x f y y y x x x y x f y y y x x x y x f y x f x x f x x x f x f x f x x n n x y y x y y y x y x n n y n n n x n n n n n y n n n x n n n n n x y y x x x x y y x y y x y y x x x x y y x y y y x y x y x y x y y x x y y x x y x y y x x ,则其解可记为: 的行列式不为若系数矩阵: 附近的线性化方程组为在一元方程牛顿迭代法,类似 ,的新近似值于是就得到了根,则可得解: 的行列式不为若系数矩阵),(),( ),(),( 则两式构成方程组: 令可得: 构成二元方程组,同样与若另有一方程: 阶小项,得到线性方程忽略在方程根附近取值时,当二元函数的展开为: 开类似一元函数的泰勒展?????+-+=-+-+=?????=-+-+=-+-+??? ????-+-+=-+-+=????????-+-=--+-=-?????-=-+--=-+-==??-+??-+=??-+??-+=??-+??-+??-+??-+=-+ -+=++========η ξξ

MATLAB程序(牛顿法及线形方程组)

MATLAB 程序 1、图示牛顿迭代法(M 文件)文件名:newt_g function x = new_g(f_name,x0,xmin,xmax,n_points) clf,hold off % newton_method with graphic illustration del_x = 0.001; wid_x = xmax - xmin; dx = (xmax - xmin)/n_points; xp = xmin:dx:xmax; yp = feval(f_name,xp); plot(xp,yp);xlabel('x');ylabel('f(x)'); title('newton iteration'),hold on ymin = min(yp); ymax = max(yp); wid_y = ymax-ymin; yp = 0. * xp; plot(xp,yp) x = x0; xb = x+999; n=0; while abs(x-xb) > 0.000001 if n > 300 break; end y=feval(f_name,x); plot([x,x],[y,0]);plot(x,0,'o') fprintf(' n = % 3.0f, x = % 12.5e, y = % 12.5e \ n', n, x, y); xsc = (x-xmin)/wid_x; if n < 4, text(x,wid_y/20,[num2str(n)]), end y_driv = (feval(f_name,x + del_x) - y)/del_x; xb = x; x = xb - y/y_driv; n = n+1; plot([xb,x],[y,0]) end plot([x x],[0.05 * wid_y 0.2 * wid_y]) text( x, 0.2 * wid_y, 'final solution') plot([ x ( x - wid_x * 0.004)], [0.01 * wid_y 0.09 * wid_y]) plot([ x ( x + wid_x * 0.004)], [0.01 * wid_y 0.09 * wid_y]) 传热问题 假设一个火炉是用厚度为0.05m 的砖单层砌成的。炉内壁温度为T 0=625K, 外壁温度为T 1(未知)。由于对流和辐射造成了外壁的热量损失,温度T 1由下式决定: 44111()()()()0f k f T T T T T h T T x εσ∞=-+-+-=? 其中: k :炉壁的热传导系数,1.2W/mK ε: 发射率,0.8 T 0:内壁温度,625K T 1:外壁温度(未知),K T ∞:环境温度,298K T f :空气温度,298K H :热交换系数,20W/m 2K

分形树__Matlab

%这是一个生成树的主函数,它的输入分别为每叉树枝的缩短比、树枝的偏角、生长次数. %注意:把这些程序全部保存在名为tree的M文件中再运行!!!!!!!! %注意:把这些程序全部保存在名为tree的M文件中再运行!!!!!!!! %注意:把这些程序全部保存在名为tree的M文件中再运行!!!!!!!! %注意:把这些程序全部保存在名为tree的M文件中再运行!!!!!!!! %注意:把这些程序全部保存在名为tree的M文件中再运行!!!!!!!! %注意:把这些程序全部保存在名为tree的M文件中再运行!!!!!!!! %注意:把这些程序全部保存在名为tree的M文件中再运行!!!!!!!! %%小提示:若用做函数,请将虚线框内语句删去。 function f=tree(w,dtheata,NN) %%%--------------------虚线框--------------------%%% clear;clc;clf;w=0.8;dtheata=pi/6;NN=8;%建议生长次数NN不要超过10 %%%--------------------虚线框--------------------%%% n=2^NN;%从主枝算起,共需生成2^NN个树枝 for NNK=1:n x1=0; y1=0; r1=1; theata1=pi/2; dataway=ten2twoN(NNK,NN); %把每一个树枝的编号转化为一个NN位的二进制数 for NNL=1:NN if dataway(NNL)==0 [x2,y2,r2,theata2]=antmoveleft(x1,y1,r1,theata1,w,dtheata);%若路径数组上对应的数字为0,则向左生长 x1=x2; y1=y2; r1=r2; theata1=theata2; hold on %pause(eps) else [x2,y2,r2,theata2]=antmoveright(x1,y1,r1,theata1,w,dtheata);%否则,数字为1,向右生长 x1=x2; y1=y2; r1=r2; theata1=theata2; hold on %pause(eps) end end end hold off %--------------------------------------------------------------------------

分形插值算法和MATLAB实验

一,分形插值算法 ——分形图的递归算法1,分形的定义 分形(Fractal)一词,是法国人B.B.Mandelbrot 创造出来的,其原意包含了不规则、支离破碎等意思。Mandelbrot 基于对不规则的几何对象长期地、系统地研究,于1973 年提出了分维数和分形几何的设想。分形几何是一门以非规则几何形状为研究对象的几何学,用以描述自然界中普遍存在着的不规则对象。分形几何有其显明的特征,一是自相似性;分形作为一个数学集合, 其内部具有精细结构, 即在所有比例尺度上其组成部分应包含整体, 而且彼此是相似的。其定义有如下两种描述: 定义 1如果一个集合在欧式空间中的 Hausdorff 维数H D 恒大于其拓扑维数 r D ,则称该集合为分形集,简称分形。 定义 2组成部分以某种方式与整体相似的形体叫分形。 对于定义 1 的理解需要一定的数学基础,不仅要知道什么是Hausdorff 维数,而且要知道什么是拓扑维数,看起来很抽象,也不容易推广。定义 2 比较笼统的说明了自然界中的物质只要局部和局部或者局部和整体之间存在自相似性,那么这个物质就是分形。正是这一比较“模糊”的概念被人们普遍接受,同时也促进了分形的发展。 根据自相似性的程度,分形可分为有规分形和无规分形。有规分形是指具有严格的自相似的分形,比如,三分康托集,Koch 曲线。无规分形是指具有统计意义上的自相似性的分形,比如,曲折的海岸线,漂浮的云等。本文主要研究有规分形。

2. 分形图的递归算法 2.1 三分康托集 1883 年,德国数学家康托(G.Cantor)提出了如今广为人知的三分康托集。三分康托集是很容易构造的,然而,它却显示出许多最典型的分形特征。它是从单位区间出发,再由这个区间不断地去掉部分子区间的过程构造出来的(如图2.1)。 其详细构造过程是:第一步,把闭区间[0,1]平均分为三段,去掉中间的 1/3 部分段,则只剩下两个闭区间[0,1/3]和[2/3,1]。第二步,再将剩下的两个闭区间各自平均分为三段,同样去掉中间的区间段,这时剩下四段闭区间:[0,1/9],[2/9,1/3],[2/3,7/9]和[8/9,1]。第三步,重复删除每个小区间中间的 1/3 段。如此不断的分割下去,最后剩下的各个小区间段就构成了三分康托集。三分康托集的 Hausdorff 维数是0.6309。 图2.2 三分康托集的构造过程

非线性方程组求解的牛顿迭代法用MATLAB实现

1. 二元函数的newton 迭代法理论分析 设),(y x f z =在点),(00y x 的某一邻域内连续且有直到2阶的连续偏导数,),(00h y h x ++为该邻域内任意一点,则有 ?? ? ????? +??+≈++==00) ,(),(),(),(0000y y x x y x f y k y x f x h y x f k y h x f 其中 0x x h -=,0y -=y k 于是方程0),(=y x f 可近似表示为 0) ,(),(),(k =?? ? ????? +??+==k k y y x x k y x f y k y x f x h y x f 即 0),()(),()(),(y k =-+-+k k k k k x k k y x f y y y x f x x y x f 同理,设y)g(x,z =在点),(00y x 的某一邻域内连续且有直到2阶的连续偏导数,),(00h y h x ++为该邻域内任意一点,亦有 ?? ?????? +??+≈++==00),(),(),(),(0000y y x x y x g y k y x g x h y x g k y h x g 其中0x x h -=,0y -=y k 于是方程0),(g =y x 可近似表示为 0) ,(),(),(k =?? ? ????? +??+==k k y y x x k y x g y k y x g x h y x g 即 0),(g )(),()(),(y k =-+-+k k k k k x k k y x y y y x g x x y x g 于是得到方程组 ? ??=-+-+=-+-+0),(g )(),()(),(0),()(),()(),(y k y k k k k k k x k k k k k k k x k k y x y y y x g x x y x g y x f y y y x f x x y x f

Newton分形的原理及Matlab实现

龙源期刊网 https://www.360docs.net/doc/309687843.html, Newton分形的原理及Matlab实现 作者:张健徐聪全付勇智 来源:《电脑知识与技术》2009年第24期 摘要:详细推导了复平面上Newton迭代法的原理和计算公式,用MATLAB编制程序实现了Newton迭代算法,得到了一些奇异、绚丽的分形图形。对《数学实验》课程有一定的参考价值。 关键词:Newton迭代法;分形;Matlab;数学实验 中图分类号:TP312文献标识码:A文章编号:1009-3044(2009)24-6997-03 The Principles of Newton Fractal and it's Realization Using MATLAB ZHANG Jian, XU Cong-quan, FU Yong-zhi (Department of Basic Courses, Southwest Forestry College, Kunming 650224, China) Abstract: The Principles and formulas of Newton fractal was explained,fractal graphics of Newton iteration was created using Matlab. Key words: newton iteration; fractal; Matlab; mathematical experimental 分形是非线性科学的一个重要分支,应用于自然科学和社会科学的众多领域。其中,分形图形以其奇异、绚丽多彩的特点,广泛应用于纺织印染、广告设计、装潢设计、计算机美术教学 等领域[1]。 很多分形图形都是用迭代的方式实现的,Newton迭代法就是其中的一种。由Newton迭代 法产生的分形图形称为Newton分形[2]。很多文献都对Newton分形进行了介绍,但都没有详细的计算公式和算法说明,读者很难编制相应程序。本文详细介绍了复平面上Newton迭代法的原理和计算公式,设计了相应的实现算法,并用Matlab编制程序实现了Newton分形的绘制,生成了一些奇异、瑰丽的分形图形。

2-8牛顿迭代法matlab

实验七 牛顿迭代法 【实验目的】 1.了解牛顿迭代法的基本概念。 2.了解牛顿迭代法的收敛性和收敛速度。 3.学习掌握MATLAB 软件有关的命令。 【实验内容】 用牛顿迭代法求方程0123=-++x x x 的近似根,误差不超过310-。 【实验准备】 1.牛顿迭代法原理 设已知方程0)(=x f 的近似根0x ,则在0x 附近)(x f 可用一阶泰勒多项式))((')()(000x x x f x f x p -+=近似代替.因此, 方程0)(=x f 可近似地表示为0)(=x p .用1x 表示0)(=x p 的根,它与0)(=x f 的根差异不大. 设0)('0≠x f ,由于1x 满足,0))((')(0100=-+x x x f x f 解得 ) (')(0001x f x f x x -= 重复这一过程,得到迭代格式 ) (')(1n n n n x f x f x x -=+ 这就是著名的牛顿迭代公式,它相应的不动点方程为 ) (')()(x f x f x x g -=. 2. 牛顿迭代法的几何解析 在0x 处作曲线的切线,切线方程为))((')(000x x x f x f y -+=。令 0=y ,可得切线与x 轴的交点坐标) (')(0001x f x f x x -=,这就是牛顿法的迭代公式。因此,牛顿法又称“切线法”。

3.牛顿迭代法的收敛性 计算可得2)] ('[)(")()('x f x f x f x g -=,设*x 是0)(=x f 的单根,有0)(',0)(**≠=x f x f ,则 0)]('[)(")()('2**** =-=x f x f x f x g , 故在*x 附近,有1)('>clear; >>x=0.5; >>for i=1:3 >>x=x-(x^3+x^2+x-1)/(3*x^2+2*x+1) >>end 可算得迭代数列的前3项0.5455, 0.5437, 0.5437.近三次迭代,就大大超过了精度要求. 练习2用牛顿迭代法求方程)0(2>=a a x .的近似正实根,由此建立一种求平方根的计算方法. 由计算可知,迭代格式为)(21)(x a x x g += .,在实验12的练习4种已经进行了讨论. 练习3用牛顿迭代法求方程1=x xe 的正根. 牛顿迭代法的迭代函数为

几个分形matlab实现

几个分形的matlab实现 摘要:给出几个分形的实例,并用matlab编程实现方便更好的理解分形,欣赏其带来的数学美感 关键字:Koch曲线实验图像 一、问题描述: 从一条直线段开始,将线段中间的三分之一部分用一个等边三角形的两边代替,形成山丘形图形如下 图1 在新的图形中,又将图中每一直线段中间的三分之一部分都用一个等边三角形的两条边代替,再次形成新的图形如此迭代,形成Koch分形曲线。 二、算法分析: 考虑由直线段(2个点)产生第一个图形(5个点)的过程。图1中,设 1 P和 5 P分别为 原始直线段的两个端点,现需要在直线段的中间依次插入三个点 2 P, 3 P, 4 P。显然 2 P位 于线段三分之一处, 4 P位于线段三分之二处, 3 P点的位置可看成是由 4 P点以 2 P点为轴心,逆时针旋转600而得。旋转由正交矩阵 ?? ? ? ? ? ? ? - = ) 3 cos( ) 3 sin( ) 3 sin( ) 3 cos( π π π π A 实现。 算法根据初始数据( 1 P和 5 P点的坐标),产生图1中5个结点的坐标。结点的坐标数组形成一个2 5?矩阵,矩阵的第一行为 1 P的坐标,第二行为 2 P的坐标……,第五行为 5 P的坐标。矩阵的第一列元素分别为5个结点的x坐标,第二列元素分别为5个结点的y坐标。 进一步考虑Koch曲线形成过程中结点数目的变化规律。设第k次迭代产生的结点数为k n,第1 + k次迭代产生的结点数为 1+ k n,则 k n和 1+ k n中间的递推关系为3 4 1 - = +k k n n。

三、实验程序及注释: p=[0 0;10 0]; %P为初始两个点的坐标,第一列为x坐标,第二列为y坐标 n=2; %n为结点数 A=[cos(pi/3) -sin(pi/3);sin(pi/3) cos(pi/3)]; %旋转矩阵 for k=1:4 d=diff(p)/3; %diff计算相邻两个点的坐标之差,得到相邻两点确定的向量 %则d就计算出每个向量长度的三分之一,与题中将线段三等分对应 m=4*n-3; %迭代公式 q=p(1:n-1,:); %以原点为起点,前n-1个点的坐标为终点形成向量 p(5:4:m,:)=p(2:n,:); %迭代后处于4k+1位置上的点的坐标为迭代前的相应坐标 p(2:4:m,:)=q+d; %用向量方法计算迭代后处于4k+2位置上的点的坐标 p(3:4:m,:)=q+d+d*A'; %用向量方法计算迭代后处于4k+3位置上的点的坐标 p(4:4:m,:)=q+2*d; %用向量方法计算迭代后处于4k位置上的点的坐标 n=m; %迭代后新的结点数目 end plot(p(:,1),p(:,2)) %绘出每相邻两个点的连线 axis([0 10 0 10]) 四、实验数据记录: 由第三部分的程序,可得到如下的Koch分形曲线: 图2 五、注记: 1.参照实验方法,可绘制如下生成元的Koch 分形曲线:

几个分形的matlab实现资料

几个分形的matlab 实现 摘要:给出几个分形的实例,并用matlab 编程实现方便更好的理解分形,欣赏其带来的 数学美感 关键字:Koch 曲线 实验 图像 一、问题描述: 从一条直线段开始,将线段中间的三分之一部分用一个等边三角形的两边代替,形成山丘形图形如下 图1 在新的图形中,又将图中每一直线段中间的三分之一部分都用一个等边三角形的两条边代替,再次形成新的图形如此迭代,形成Koch 分形曲线。 二、算法分析: 考虑由直线段(2个点)产生第一个图形(5个点)的过程。图1中,设1P 和5P 分别为原始直线段的两个端点,现需要在直线段的中间依次插入三个点2P ,3P ,4P 。显然2P 位于线段三分之一处,4P 位于线段三分之二处,3P 点的位置可看成是由4P 点以2P 点为轴心,逆时针旋转600 而得。旋转由正交矩阵 ?????? ? ?-=)3cos()3sin()3sin()3cos(ππππA 实现。 算法根据初始数据(1P 和5P 点的坐标),产生图1中5个结点的坐标。结点的坐标数组形成一个25?矩阵,矩阵的第一行为1P 的坐标,第二行为2P 的坐标……,第五行为5P 的坐标。矩阵的第一列元素分别为5个结点的x 坐标,第二列元素分别为5个结点的y 坐标。 进一步考虑Koch 曲线形成过程中结点数目的变化规律。设第k 次迭代产生的结点数为k n ,第1+k 次迭代产生的结点数为1+k n ,则k n 和1+k n 中间的递推关系为341-=+k k n n 。 三、实验程序及注释:

p=[0 0;10 0]; %P为初始两个点的坐标,第一列为x坐标,第二列为y坐标 n=2; %n为结点数 A=[cos(pi/3) -sin(pi/3);sin(pi/3) cos(pi/3)]; %旋转矩阵 for k=1:4 d=diff(p)/3; %diff计算相邻两个点的坐标之差,得到相邻两点确定的向量 %则d就计算出每个向量长度的三分之一,与题中将线段三等分对应 m=4*n-3; %迭代公式 q=p(1:n-1,:); %以原点为起点,前n-1个点的坐标为终点形成向量 p(5:4:m,:)=p(2:n,:); %迭代后处于4k+1位置上的点的坐标为迭代前的相应坐标 p(2:4:m,:)=q+d; %用向量方法计算迭代后处于4k+2位置上的点的坐标 p(3:4:m,:)=q+d+d*A'; %用向量方法计算迭代后处于4k+3位置上的点的坐标 p(4:4:m,:)=q+2*d; %用向量方法计算迭代后处于4k位置上的点的坐标 n=m; %迭代后新的结点数目 end plot(p(:,1),p(:,2)) %绘出每相邻两个点的连线 axis([0 10 0 10]) 四、实验数据记录: 由第三部分的程序,可得到如下的Koch分形曲线: 图2 五、注记: 1.参照实验方法,可绘制如下生成元的Koch 分形曲线: 图3

基于Matlab的牛顿迭代法解非线性方程组

基于Matlab 实现牛顿迭代法解非线性方程组 已知非线性方程组如下 2211221212 10801080x x x x x x x ?-++=??+-+=?? 给定初值0(0,0)T x =,要求求解精度达到0.00001 首先建立函数F(x),方程组编程如下,将F.m 保存到工作路径中: function f=F(x) f(1)=x(1)^2-10*x(1)+x(2)^2+8; f(2)=x(1)*x(2)^2+x(1)-10*x(2)+8; f=[f(1) f(2)]; 建立函数DF(x),用于求方程组的Jacobi 矩阵,将DF.m 保存到工作路径中: function df=DF(x) df=[2*x(1)-10,2*x(2);x(2)^2+1,2*x(1)*x(2)-10]; 编程牛顿迭代法解非线性方程组,将newton.m 保存到工作路径中: clear; clc x=[0,0]'; f=F(x); df=DF(x); fprintf('%d %.7f %.7f\n',0,x(1),x(2)); N=4; for i=1:N y=df\f'; x=x-y; f=F(x); df=DF(x); fprintf('%d %.7f %.7f\n',i,x(1),x(2)); if norm(y)<0.0000001 break ; else end end

运行结果如下: 0 0.0000000 0.0000000 1 0.8000000 0.8800000 2 0.9917872 0.9917117 3 0.9999752 0.9999685 4 1.0000000 1.0000000

matlab实验十七__牛顿迭代法

实验十七牛顿迭代法 【实验目的】 1.了解牛顿迭代法的基本概念。 2.了解牛顿迭代法的收敛性和收敛速度。 3.学习、掌握MATLAB软件的有关命令。 【实验内容】 用牛顿迭代法求方程3210 x x x 10-。 ++-=的近似根,误差不超过3【实验准备】 1.牛顿迭代法原理 2.牛顿迭代法的几何解析 3.牛顿迭代法的收敛性 4.牛顿迭代法的收敛速度 5.迭代过程的加速 6.迭代的MATLAB命令 MATLAB中主要用for,while等控制流命令实现迭代。 【实验重点】 1.牛顿迭代法的算法实现 2.牛顿迭代法收敛性和收敛速度 【实验难点】 1.牛顿迭代法收敛性和收敛速度 【实验方法与步骤】 练习1用牛顿迭代法求方程3210 ++-=在x=0.5附近的近似 x x x

根,误差不超过310-。 牛顿迭代法的迭代函数为 322()1()()321 f x x x x g x x x f x x x ++-=-=-'++ 相应的MATLAB 代码为 >>clear; >>x=0.5; >>for i=1:3 >>x=x-(x^3+x^2+x-1)/(3*x^2+2*x+1) >>end 可算的迭代数列的前3项0.5455,0.5437,0.5437。经三次迭代,就大大超过了精度要求。 练习2 用牛顿迭代法求方程2(0)x a a =>的近似正实根,由此建立一种求平方根的计算方法。 由计算可知,迭代格式为1()()2a g x x x =+,在实验12的练习4中已经进行了讨论。 【练习与思考】 1.用牛顿迭代法求方程ln 1x x =的近似根。 2.为求出方程310x x --=的根,在区间[1,2]内使用迭代函数进行迭代,纪录迭代数据,问迭代是否收敛?对迭代进行加速,对比加速前的数据,比较加速效果。 3.使用在不动点*x 的泰勒公式,证明牛顿迭代法收敛原理。

几个分形的matlab实现教学文案

几个分形的m a t l a b 实现

几个分形的matlab实现 摘要:给出几个分形的实例,并用matlab编程实现方便更好的理解分形,欣赏其带来的数学美感 关键字:Koch曲线实验图像 一、问题描述: 从一条直线段开始,将线段中间的三分之一部分用一个等边三角形的两边代替,形成山丘形图形如下 图1 在新的图形中,又将图中每一直线段中间的三分之一部分都用一个等边三角形的两条边代替,再次形成新的图形如此迭代,形成Koch分形曲线。 二、算法分析: 考虑由直线段(2个点)产生第一个图形(5个点)的过程。图1中,设 1 P和5 P分别为原始直线段的两个端点,现需要在直线段的中间依次插入三个点 2 P,3 P, 4 P。显然 2 P位于线段三分之一处, 4 P位于线段三分之二处, 3 P点的位置可 看成是由 4 P点以 2 P点为轴心,逆时针旋转600而得。旋转由正交矩阵 ?? ? ? ? ? ? ? - = ) 3 cos( ) 3 sin( ) 3 sin( ) 3 cos( π π π π A 实现。

算法根据初始数据(1P 和5P 点的坐标),产生图1中5个结点的坐标。结点的坐标数组形成一个25?矩阵,矩阵的第一行为1P 的坐标,第二行为2P 的坐标……,第五行为5P 的坐标。矩阵的第一列元素分别为5个结点的x 坐标,第二列元素分别为5个结点的y 坐标。 进一步考虑Koch 曲线形成过程中结点数目的变化规律。设第k 次迭代产生的结点数为k n ,第1+k 次迭代产生的结点数为1+k n ,则k n 和1+k n 中间的递推关系为341-=+k k n n 。 三、实验程序及注释: p=[0 0;10 0]; %P 为初始两个点的坐标,第一列为x 坐标,第二列为y 坐标 n=2; %n 为结点数 A=[cos(pi/3) -sin(pi/3);sin(pi/3) cos(pi/3)]; %旋转矩阵 for k=1:4 d=diff(p)/3; %diff 计算相邻两个点的坐标之差,得到相邻两点确定的向量 %则d 就计算出每个向量长度的三分之一,与题中将线段三等分对应 m=4*n-3; %迭代公式 q=p(1:n-1,:); %以原点为起点,前n-1个点的坐标为终点形成向量 p(5:4:m,:)=p(2:n,:); %迭代后处于4k+1位置上的点的坐标为迭代前的相应坐标 p(2:4:m,:)=q+d; %用向量方法计算迭代后处于4k+2位置上的点的坐标 p(3:4:m,:)=q+d+d*A'; %用向量方法计算迭代后处于4k+3位置上的点的坐标 p(4:4:m,:)=q+2*d; %用向量方法计算迭代后处于4k 位置上的点的坐标 n=m; %迭代后新的结点数目 end plot(p(:,1),p(:,2)) %绘出每相邻两个点的连线 axis([0 10 0 10]) 四、实验数据记录: 由第三部分的程序,可得到如下的Koch 分形曲线:

matlab实现牛顿迭代法求解非线性方程组

已知非线性方程组如下 3*x1-cos(x2*x3)-1/2=0 x1^2-81*(x2+^2+sin(x3)+=0 exp(-x1*x2)+20*x3+(10*pi-3)/3=0 求解要求精度达到————————————————————————————————首先建立函数fun 储存方程组编程如下将保存到工作路径中: function f=fun(x); %定义非线性方程组如下 %变量x1 x2 x3 %函数f1 f2 f3 syms x1 x2 x3 f1=3*x1-cos(x2*x3)-1/2; f2=x1^2-81*(x2+^2+sin(x3)+; f3=exp(-x1*x2)+20*x3+(10*pi-3)/3; f=[f1 f2 f3]; ————————————————————————————————建立函数dfun 用来求方程组的雅克比矩阵将保存到工作路径中: function df=dfun(x); %用来求解方程组的雅克比矩阵储存在dfun中 f=fun(x); df=[diff(f,'x1');diff(f,'x2');diff(f,'x3')]; df=conj(df');————————————————————————————————编程牛顿法求解非线性方程组将保存到工作路径中:

function x=newton(x0,eps,N); con=0; %其中x0为迭代初值eps为精度要求N为最大迭代步数con用来记录结果是否收敛for i=1:N; f=subs(fun(x0),{'x1' 'x2' 'x3'},{x0(1) x0(2) x0(3)}); df=subs(dfun(x0),{'x1' 'x2' 'x3'},{x0(1) x0(2) x0(3)}); x=x0-f/df; for j=1: length(x0); il(i,j)=x(j); end if norm(x-x0)

MATLAB计算方法迭代法牛顿法二分法实验报告

姓名 ______________ 实验报告成绩___________________________ 评语: 指导教师(签名) ____________________ 年月日 说明:指导教师评分后,实验报告交院(系)办公室保存。 实验一方程求根 一、实验目的 用各种方法求任意实函数方程f(x) =0在自变量区间[a,b]上,或某一点附近的实 根。并比较方法的优劣。 二、实验原理 (1)、二分法 b「a 对方程f(x)"在[a,b]内求根。将所给区间二分,在分点 -2判断是否 b —a x = ------- f(x)=0;若是,则有根 2 。否则,继续判断是否f(a)?f(x)”0,若是,则令b二X, 否则令a = x。否则令a = x。重复此过程直至求出方程f(x) =0在[a,b]中的近似根为止。 (2)、迭代法 将方程f(x)等价变换为x=? ( x)形式,并建立相应的迭代公式xk1二? (X )。 (3)、牛顿法 若已知方程的一个近似根X。,则函数在点X。附近可用一阶泰勒多项式 Pl(x) "(x。厂f'(X0)(x-X0)来近似,因此方程f(x)=0可近似表示为 f (X o) f(X o厂f'(Xo)(X—X ) =0设f'(X o)",则x = X o—f'(X o)。取X作为原方程新的近似根

f (X k) X1,然后将X1作为X o代入上式。迭代公式为:X k 1 = X o _ f'(X k)。 三、实验设备:MATLAB 7.0软件 四、结果预测 (1)X ii=o.O9O33 (2)X5=0.09052(3)X2=0,09052 五、实验内容 (1)、在区间[0,1]上用二分法求方程e X 10^^0的近似根,要求误差不超过 0.5 10 彳 。 f (X k) (2)、取初值X0 ",用迭代公式I =x。- f'(Xk),求方程e x 10x-2=0的近似根。要求误差不超过0.5 10 "。 (3)、取初值X0 = 0,用牛顿迭代法求方程e一10x - 2 = 0的近似根。要求误差不超过°,5 10“。 六、实验步骤与实验程序 (1)二分法 第一步:在MATLAB 7.0软件,建立一个实现二分法的MATLAB函数文件agui_bisect.m 女口下: fun cti on x=agui_bisect(f name,a,b,e) %fname为函数名,a,b为区间端点,e为精度 fa=feval(fname,a); % 把a端点代入函数,求fa fb=feval(fname,b); % 把b端点代入函数,求fb if fa*fb>0 error(' 两端函数值为同号');

Mandelbrot集和Julia集的分形图之matlab实现

Mandelbrot集和Julia集的分形图之matlab实现 基于逃逸时间算法 1. Mandelbrot集 function Mandelbrot(res,iter,xc,yc,xoom) %Mandelbrot % res是目标分辨率,iter是循环次数,(xc,yc)是图像中心,xoom是放大倍数 x0=xc-2/xoom;x1=xc+2/xoom; y0=yc-2/xoom;y1=yc+2/xoom; x=linspace(x0,x1,res); y=linspace(y0,y1,res); [xx,yy]=meshgrid(x,y); z=xx+yy*1i; C=z; N=zeros(res,res); %初始化N,最终根据N,对各点进行染色 tic %显示tic和toc间的程序运行时间 for k=1:iter z=z.^2+C; %对空间上每点都进行迭代 N(abs(z)>4)=k; %逃逸半径为4,诺某点逃逸,记录逃逸时间k,未逃逸则时间为0 z(abs(z)>4)=0; C(abs(z)>4)=0; end imshow(N,[]); toc end >>Mandelbrot(512,100,0,0,1)

>>Mandelbrot(512,128,-1.478,0,300) 2.Julia集 function Julia(c,res,iter,xc,yc,xoom) %Julia集 %c为参数, res是目标分辨率,iter是循环次数,(xc,yc)是图像中心,xoom是放大倍数x0=xc-2/xoom;x1=xc+2/xoom; y0=yc-2/xoom;y1=yc+2/xoom; x=linspace(x0,x1,res); y=linspace(y0,y1,res); [xx,yy]=meshgrid(x,y); z=xx+yy*1i; N=zeros(res,res); C=c*ones(res,res); for k=1:iter z=z.^2+C; N(abs(z)>2)=k; C(abs(z)>2)=0;

相关文档
最新文档