04 输电线路纵联保护

线路纵联保护

输电线路纵联保护 2009.06 钟应贵 1、纵联保护的构成 图1输电线路纵联保护结构框图 2、两端功率方向的故障特征 当线路发生区内故障和区外故障时输电线路两端功率方向特征也有很大区别,发生区内故障时两端功率方向为由母线流向线路,两端功率方向相同,同为正方向。发生区外故障时,远故障点端功率由母线流向线路,功率方向为正,近故障点端功率由线路流向母线,功率方向为负两端功率方向相反。 图2双端电源线路区内、区外故障功率方向

3、纵联保护分类 1)按信息通道不同分 a、导引线纵联保护 b、电力线载波纵联保护 c、微波纵联保护 d、光纤纵联保护 2)按保护动作原理分 (1)方向比较式纵联保护。两侧保护装置将本侧的功率方向、测量阻抗是否在规定的方向、区段内的判别结果传送到对侧,每侧保护装置根据两侧的判别结果,区分 是区内故障还是区外故障。这类保护在通道中传送的是逻辑信号,而不是电气量 本身。按照保护判别方向所用的原理可将方向比较式纵联保护分为方向纵联保护 和距离纵联保护。 (2)纵联电流差动保护。这类保护在通道中传送的是电气量,如电流的波形或代表电流相位的信号传送到对侧,每侧保护根据对两侧电流的幅值和相位比较的结果区 分市区内故障还是区外故障。这类故障在每侧都直接比较两侧的电气量。 4、电力线载波通信的构成 图3载波通信示意图 1—阻波器2—耦合电容器3—连接滤波器4—电缆 5—载波收发信机6—接地刀闸 阻波器:阻挡载波电波(高频电波)控制在本线路内,工频电流畅通。 耦合电容器:阻挡工频电流,允许高频电流通过。 连接滤波器:通过所需频带电波,隔离高压电,提高收发信机安全性。 载波收发信机:由继电保护控制发出预定频率的高频信号。通常是在电力系统发生故障保护动作后发出信号。也有采用长期发信,故障时保护动作后停信,或改变信号频率的工作方式。 接地刀闸:当检修连接滤波器时,接通接地刀闸,使耦合电容下端可靠接地。 5、载波通道的工作方式

纵联保护原理

纵联保护原理 线路的纵联保护是指反应线路两侧电量的保护,它可以实现全线路速动。而普通的反应线路一侧电量的保护不能做到全线速动。纵联差动是直接将对侧电流的相位信息传送到本侧,本侧的电流相位信息也传送到对侧,每侧保护对两侧电流相位就行比较,从而判断出区内外故障。是属于直接比较两侧电量对纵联保护。目前电力系统中运行对这类保护有:高频相差保护、导引线差动保护、光纤纵差保护、微波电流分相差动保护。纵联方向保护:反应线路故障的测量元件为各种不同原理的方向元件,属于间接比较两侧电量的纵联保护。包括高频距离保护、高频负序方向保护、高频零序方向保护、高频突变量方向保护。 先了解一下纵联差动保护: 为实现线路全长范围内故障无时限切除所以必须采用纵联保护原理作为输电线保护。 输电线路的纵联差动保护(习惯简称纵差保护)就是用某种通信通道将输电线两端的保护装置纵向连

接起来,将各端的电气量(电流、功率的方向等)传送到对端,将两端的电气量比较,以判断故障在本线路范围内还是在线路外,从而决定是否切断被保护回路. 纵联差动保护的基本原理是基于比较被保护线路始端和末端电流的大小和相位原理构成的。 高频保护的工作原理:将线路两端的电流相位或功率方向转化为高频信号,然后,利用输电线路本身构成高频电流通道,将此信号送至对端,以比较两端电流的相位或功率方向的一总保护装置。安工作原理的不同可分为两大类:方向高频保护和相差高频保护。 光纤保护也是高频保护的一总原理是一样的只是高频的通道不一样一个事利用输电线路的载波构成通道一个是利用光纤的高频电缆构成光纤通道。光纤通信广泛采用PCM调制方式。这总保护发展很快现在一般的变电站全是光纤的了经济又安全。

线路纵联保护

输电线纵联保护 §4-1 输电线纵联差动保护 一、基本原理: 1.反应单侧电气量保护的缺陷: ∵无法区分本线路末端短路与相邻线路出口短路。∴无法实现全线速动。 原因:(1)电气距离接近相等。(2)继电器本身测量误差。 (3)线路参数不准确。 (4)LH、YH有误差。 (5)短路类型不同。(6)运行方式变化等。 2. 输电线路纵联差动保护: (1)输电线路的纵联保护:(P129 第二自然段)。 (2)导引线纵联差动保护: 用导引线传送电流(大小或方向),根据电流在导引线中的流动情况, 可分为环流式和均压式两种。(P131 图4-2)自学。 (注意图中隔离变压器GB的极性) 例:环流法构成了导引线纵联保护: 线路两侧装有相同变比的LH 正常或区外短路:Im1=-In1 ∴Im2=-In2 I J=Im2+In2=0 J不动 区内短路:I J=Im2+In2=(Im1+ In1)/n LH = I d/ n LH > I d z ( 同时跳两侧DL)←J动作 可见纵联差动保护的范围是两侧LH之间,理论上具有绝对选择性可实现全线速动。但它只适用于< 5~7公里的短线路。若用于长线路技术上有困难且经济上不合理。 (P136 标题2) 它在发电机、变压器、母线保护中应用得更广泛(后述) 3. 纵联保护信号传输方式: (1)辅助导引线(2)电力线载波:高频保护(3)微波:微波保护(4)光纤:光纤保护 1

2 §4-2 输电线的高频保护 一、 高频保护概述: 高频保护的定义:(P136) 分类:按照工作原理分两大类,方向高频保护和相差高频保护。 方向高频保护:比较被保护线路两侧的功率方向。 相差高频保护:比较被保护线路两侧的电流相位。 二、 高频通道的构成: 有“相-相”和“相-地”两种连接方式 ∨ “我国广泛运用” 构成示意图P137 图4-7 1. 阻波器:L 、C 并联谐振回路,谐振于载波频率。 对载波电流:Z>1000Ω——————限制在本线路。 对工频电流:Z<0.04Ω——————畅流无阻。 2.结合电容器 带通滤波器 ①通高频、阻工频 3.连接滤波器 ②阻抗匹配 4.高频电缆:将位于主控制室的高频收、发信机与户外变电站的带通滤波器连接起来。 5.高频收、发信机 三、 高频通道工作方式及高频信号的应用: 无高频电流是信号 1. 高频通道的工作方式 两种: 长期发信方式:正常运行时,始终收发信(经常有高频电流) 故障时发信方式:正常运行时,收发信机不工作。当系统故障时,发信机由启动元件启动通 道中才有高频电流(经常无高频电流) 另:改变频率也是一种信号。 2.高频信号的分类及应用 有高频电流是信号 按高频信号的应用分三类:跳闸信号、允许信号、闭锁信号 (1) 跳闸信号 (2) 允许信号 “与”门:高频信号是跳闸的必要条件 (3) 闭锁信号:

继电保护第4章课后习题参考答案

4.7 图4—30所示系统,线路全部配置闭锁式方向比较纵联保护,分析在K点短 路时各端保护方向元件的动作情况,各线路保护的工作过程及结果。 ?? 答:当短路发生在B—C线路的K处时,保护2、5的功率方向为负,闭锁信号 持续存在,线路A—B上保护1、2被保护2的闭锁信号闭锁,线路A—B两侧 均不跳闸;保护5的闭锁信号将C—D线路上保护5、6闭锁,非故障线路保护不跳闸。故障线路B—C上保护3、4功率方向全为正,均停发闭锁信号,它们 判定有正方向故障且没有收到闭锁信号,所以会立即动作跳闸,线路B—C被切除。 答:根据闭锁式方向纵联保护,功率方向为负的一侧发闭锁信号,跳闸条件是本 端保护元件动作,同时无闭锁信号。1保护本端元件动作,但有闭锁信号,故不 动作;2保护本端元件不动作,收到本端闭锁信号,故不动作;3保护本端元件 动作,无闭锁信号,故动作;4保护本端元件动作,无闭锁信号,故动作;5保 护本端元件不动作,收到本端闭锁信号,故不动作;6保护本端元件动作,但有 闭锁信号,故不动作。 4.10 图4—30所示系统,线路全部配置闭锁式方向比较纵联保护,在K点短路时,若A—B和B—C线路通道同时故障,保护将会出现何种情况?靠什么保护 动作切除故障? ?? 答:在图4—30所示系统中K点短路时,保护2、5的功率方向为负,其余保护的功率方向全为正。3、4之间停发闭锁信号,5处保护向6处发闭锁信号,2处 保护向1处发闭锁信号。由于3、4停发闭锁信号且功率方向为正,满足跳闸条件,因此B—C通道的故障将不会阻止保护3、4的跳闸,这正是采用闭锁式保 护的优点。C—D通道正常,其线路上保护5发出的闭锁信号将保护6闭锁,非 故障线路C—D上保护不跳闸。2处保护判定为反方向不满足跳闸条件,并且发 闭锁信号,由于A—B通道故障,2处保护发出的闭锁信号可能无法传到1处, 而保护1功率方向为正,将会导致1处的保护误动作;不过非故障线路的载波通 道故障率远远低于故障线路,这也是广泛采用闭锁式载波纵联保护的原因。 4.12 输电线路纵联电流差动保护在系统振荡、非全相运行期间,会否误动,为 什么? 答:系统振荡时,线路两侧通过同一个电流,与正常运行及外部故障时的 情况一样,差动电流为量值较小的不平衡电流,制动电流较大,选取适当的制动 特性,就会保证不误动作。非全相运行时,线路两侧的电流也为同一个电流,电 流纵联差动保护也不误动作。

高压线路纵联保护基本原理

概述输电线的纵联保护,就是用某种通信通道(简称通道)将输电线两端或 各端(对于多端线路)的保护装置纵向连接起来,将各端的电气量(电流、功率的方向等)传送到对端,将各端的电气量进行比较,以判断故障在个线路范围内还是在线路范围之外,从而决定是否切断被保护线路。因此,理论上这种纵联保护具有绝对的选择性。 基本原理利用比较两侧的电流相位或功率方向判断故障是否在区内按照纵联保护构成原理分类 单元式纵联保护 将输电线看作一个被保护单元如同变压器和发电机一样。 这种保护方式是从输电线的每一端采集电气量的测量值,通过通信通道传送到其他各端。在各端将这些测量值进行直接比较,以决定保护装置是否应该动作跳闸。如比较 电流相位的相位差动保护、比较电流波形(幅值和相位)的电流差动保护 非单元式保护 也是在输电线各端对某种或某几种电气量进行测量,但并下将测量值直接传送到其他各端,直接进行比较。而是传送根据这些测量值得到的对故障性质(如故障方向、故障位置等)的判断结果。如方向比较式纵联保护、距离纵联保护等 按照传送的通信信号分类 任何纵联保护都是依靠通信通道传送的某种信号来判断故障的位置是否在被保线路内。因此信号的性质和功能在很大程度上决定了保护的性能。 信号按其性质可分为三种; 闭锁信号、允许信号和跳闸信号。 这三种信号可用任一种通信通道产生和传送。 闭锁信号 以两端线路为例,所谓闭锁信号就是指:“收不到这种信号是保护动作跳闸的必要条件”。就是当发生外部故障时,由判定为外部故障的一端保护装置发出闭锁信号,将两端的保护闭锁。而当内部故障时,两端均不发、因而也收不到闭锁信号,保护即可动作于跳闸。 允许信号 所谓允许信号是指:“收到这种信号是保护动作跳闸的必要条件”。因此,当内部故障是,两端保护应同时向对端发出允许信号,使保护装置能够动作于跳闸。而当外部故障时,则因接近故障点端判出故障在反方向而不发允许信号,对端保护不能跳闸,本端则因判出故障在反方向也不能跳闸。 跳闸信号 跳闸信号是指:“收到这种信号是保护动作于跳闸的充要条件”。实现这种保护时,实际上是利用装设在每一端的瞬时电流速断、距离I段或零序电流瞬时速断等保护,当其保护范围内部故障而动作十跳闸的同时,还向对端发出跳

华北电力大学精品课程-电力系统继电保护(黄少锋教授)—纵联(4)

第四章 输电线路纵联保护

4.1.1 输电线纵联保护概述 仅利用线路一侧的电气量所构成的继电保护(单端电气量),无法区分本线路末端与相邻线路(或元件)的出口故障,如:电流保护、阻抗保护。 为此,设法将被保护元件两端(或多端)的电气量进行同时比较,以便判断故障在区内?还是区外? 将两端保护装置的信号纵向联结起来,构成纵联保护。——与横向故障的称谓进行对应比较(后面再用图例说明“纵、横”的区别)。

单端电气量保护: 仅利用被保护元件的一侧电气量,无法区分线路末端和相邻线路的出口短路,可以作为后备保护或出口故障的第二种保护。 (通常设计为:三段式)。 纵联保护: 利用被保护元件的各侧电气量,可以识别:内部和外部的故障,但是,不能作为后备保护。

输电线路纵联保护结构框图 在设备的“纵向”之间,进行信号交换 横向关系通信设备通信设备 通信通道 继电保护装置 继电保护装置 TA TA TV TV (如:横向故障)

纵联保护有多种分类方法,可以按照通道类型或动作原理进行分类。1)通道类型: 导引线电力线载波微波光纤 ? ???? 2)动作原理: 比较方向比较相位基尔霍夫电流定律(差电流) ?? ?? ?还可以将通道类型与动作原理结合起来进行称呼。如:光纤电流差动(简称:光差),高频距离。 通道(信号交换手段)

4.1.2 两侧电气量的特征 分析、讨论特征的目的: 寻找内部故障与其他工况(正常运行、外部故障)的特征区别和差异——>提取判据,构成继电保护原理。 当然,构成原理后,再分析影响因素;并研究消除影响因素的对策、措施(需要权衡利弊)。

线路的纵联保护

第六章 线路的纵联保护 第一节 纵联保护的基本原理 根据电流、电压和阻抗原理构成的系统保护,都是从线路靠近电源的一侧测量各种状态下的电气量,由于测量误差等原因,它们不能准确判断发生在本线路末端和下一线路出口的故障,为了保证选择性,只能缩小保护范围,在此范围内,保护可以瞬时动作,如电流和距离Ⅰ段。为了切除全线范围内的故障,必须另外增设保护,如电流和距离Ⅱ段,同样由于误差的原因,保护范围必然延伸到下一线路,与下一线路保护的保护范围交叉重叠,为了保证选择性,只有延时保护动作,使切除全线路范围内故障的时间延长。对于电力系统的重要线路和大容量高电压以及超高压线路,为了保证系统并列运行的稳定性和减小故障的损害程度,对保护的速动性提出了更高的要求,必须瞬时切除全线路范围内的故障。线路的纵联保护可以满足要求。 纵联保护是同时比较线路两侧电气量的变化而进行工作的。因此,在被保护范围内任何地点发生短路时,纵联保护都能瞬时动作。 根据两侧电气量传输方式的不同,纵联保护主要分为导引线纵联保护(简称导引线保护)、电力线载波保护(简称高频保护)、微波纵联保护(简称微波保护)、光纤纵联保护(简称光纤保护)。 第二节 线路的导引线保护 一、 导引线保护的基本原理 导引线保护是通过比较被保护线路始端和末端电流幅值、相位进行工作的。为此,应在线路两侧装设变比、特性完全相同的差动保护专用电流互感器TA ,将两侧电流互感器二次绕组的同极性端子用辅助导引线纵向相连构成导引线保护的电流回路,差动继电器KD 并接在电流互感器的二次端子上,使正常运行时电流互感器二次侧电流在该回路中环流,根据基 尔霍夫电流定律,流入差动继电器KD 的电流KD I 等于零,如图6-1(a )所示。通常称此连接方法为环流法,将环流法接线构成的保护称为导引线保护。 根据以上接线原理,对图6-1所示导引线保护原理进行分析。 当线路正常运行或外部k 点短路时,通过差动继电器KD 的电流为 022 TA TA ..KD n I n I I I I ⅠⅠⅠⅠ (6-1)

纵联保护原理

纵联保护原理 我们先来看一下反映一侧电气量变化的保护有什么不足? 对于反映单侧电气量变化的M侧保护来说,它无法区分是本侧线路末端故障还是下级线路始端故障。所以在保护整定上要将它瞬时段的保护范围限制在全线的70%~80%左右,也即反映单侧电气量变化的保护不能瞬时切除本线路全长内的故障。 因此,引入了纵联保护,纵联保护是综合反映线路两侧电气量变化的保护,对本线路全长范围内的故障均能瞬时切除。 为了使保护能够做到全线速动,有效的办法是让线路两端的保护都能够测量到对端保护的动作信号,再与本侧带方向的保护动作信号比较、判定,以确定是否为区内故障,若为区内故障,则瞬时跳闸。这样无论在线路的任何一处发生故障,线路两侧的保护都能瞬时动作跳闸。快速性、选择性都得到了保证。 在构成保护上,是将对侧对故障的判断量传送到本侧,本侧保护经过综合判断,来决定保护是否应该动作。有将对侧电气量转化为数字信号通过微波通道或光纤传送到本侧进行直接计算(如纵联差动保护),有将对侧对故障是否在本线路正方向的判断量通过高频(载波、微波)通道传送到本侧,本侧保护进行综合判别(如纵联方向保护、纵联距离保护等等) 一、实现纵联保护的方式: 1、闭锁式:也就是说收不到高频信号是保护动作和跳闸的必要条件。一般应用于超范围式纵联保护(所谓超范围即两侧保护的正方向保护范围均超出本线路全长);高频信号采用收发同频,即单频制。 2、允许式:也就是说收到高频信号是保护动作和跳闸的必要条件。一般应用于超范围式纵联保护(所谓欠范围即两侧保护的正方向保护范围均超过本线路全长的50%以上,但没有超出本线路全长);高频信号

采用收发不同频率,即双频制。 3、直跳式:也就是说收到高频信号是保护跳闸的充分必要条件。一般应用于欠范围式纵联保护。 4、差动式:也就是说将对侧电气量转化为数字信号传送到本侧进行直接计算 二、故障时允许式信号、闭锁式信号的特点 闭锁式信号主要在非故障线路上传输 允许式信号主要在故障线路上传输 所以说,对于闭锁信号可以利用电力线路相-地通道构成闭锁式保护;而允许信号由于主要在故障线路上传输,则只能采用相-相通道或者是复用载波、复用微波、专用光纤通道。 三、闭锁式纵联保护原理

相关文档
最新文档