日本(日立)HAP40含钴co粉末高速钢.

日本(日立)HAP40含钴co粉末高速钢.
日本(日立)HAP40含钴co粉末高速钢.

日本(日立)HAP40含钴co粉末高速钢

1.概述

日立金属HAP40是日立研发生产的含钴CO粉末高速钢。该钢具有极高的硬度,耐磨性与韧性兼备的泛用型高速钢。适合制造所有的切削工具,适合大量生产的冲压模具用钢。优于其他高合金的冷作钢。

出厂状态︰hb250

2.HAP40的主要特性:

a) 良好的磨削性能

b) 良好的热处理尺寸稳定性

c) 良好的韧性

d) 良好的红硬性

e) 良好的耐磨性

3.HAP40的主要用途:

适合制作多刀刃的刀具,例如:麻花钻,铰刀、丝锥、铣刀,拉刀、滚刀及成型刀具等;单刃刀具如刀具、切断车刀和成形刀具等。

HAP40也适用于制作一般要求的单刃刀具。HAP40也适合作为对耐磨性有严格要求的冷作模具。例如:冲孔,成形,冲压模等。

相当瑞典标准︰asp60

4.化学成分(%)

C:2.03

Si:4.0

Mn:7.0

Cr:6.5

Mo:10.5

V:6.5

Co:4.8

5.钴高速钢的热处理特点

( 1 ) 钴在高速钢中增加了碳的活度,因而使含钴高速钢的脱碳趋势较大,在热处理时应加以重视,在高温去应力退火、淬火加热等工序中要注意防止发生严重的脱碳,如果是在盐浴炉中进行淬火加热,要注意对盐浴炉的充分脱氧,对丝具等应进行涂层保护。在最终的淬火加热时,并不能因为要发挥钴促进二次硬化的作用,就要采用较高的加热温度,以增大碳和合金元素在奥氏体中的溶解量,从而来达到增大合金碳化物的弥散析出效果。反而是因为要注意防止奥氏晶粒长大,而不能采用较高的加热温度。一般而言,含钴高速钢的淬火加热温度较成份类似的不含钴的高速钢低一些。为充分发挥钴在高温回火中提高二次硬化作用的效果,充分保证回火时问,防止回火不足,每次回火的时问应较一般高速钢延长一些。

此材料经淬回火后硬度可达到 6 4 ~6 6 H R C,回火的硬度峰值约在5 4 0 ~ C 左右。其

热处理工艺为:

( 1 )软化退火:7 7 0 —8 4 0 o c N热保温,炉内缓慢冷却,其退火后最高硬度约为2 8 0 HB 。

( 2 )经多道机加工形状复杂工件的去应力退火:6 0 0 —6 5 0 ~ C ~ I 热,在保护气氛中保温1 - 2小时,随炉缓慢冷却。

一次预热:5 5 0 ℃;二次预热:8 5 0 ℃;三次预热:1 0 5 0 ℃( 形状不复杂的工件可不必经过此工序) 。

淬火加热:1 1 8 0 —1 2 3 0 ℃;形状简单的工件采用较高的加热温度,形状复杂的工件采用较低的加热温度,如果工件要求较高的韧性,也应采用较低的加热温度。

淬火冷却:可采用油冷淬火;盐浴分级

淬火;干燥风冷淬火。

回火:第一次回火至硬度峰值温度( 约 5 4 0 ℃) ;第二次回火至所要求的工作硬度;

第三次回火用于消除应力( 温度比前两次最高的回火温度低3 O 一5 O ℃) 。

回火保温时间:工件厚度每2 0 r a m一小时,但不少于2小时。

粉末高速工具钢

粉末高速工具钢 杨秋 ((辽宁工程技术大学材料科学与工程学院阜新123000) 摘要:粉末高速钢是通过特殊方法把高速钢微细粉末成形并烧结而制成的高速钢材产品,简称PM HSS。粉末高速钢具有碳化物颗粒细小、夹杂物含量少、分布均匀等的显微组织特点,使高速钢的抗弯强度、硬度和切削性能得到了显著提高。 关键词:综述;粉末高速钢;研究趋势;进展 1 PM HSS钢种开发 2.1第一代PM HSs 上世纪70年代工业化生产的PM Hss由美国Crucible厂和瑞典Stora厂(现属法国Erasteel公司)相继投产,此为第一代的PM粉末高速工具钢HSS。第一代PM HSS生产者使用1-2 t的中间钢包,其钢材夹杂物含量相当电弧炉+U'钢包精炼钢的水平,但是第一代PMHSS的抗弯强度较普通熔炼高速钢提高了约1倍。 2.2第二代PM HSS 继第一代PM HSS之后,各生产厂对设备和生产工艺进行了改进和更新,谓ESH技术就是带有电渣加热和吹Ar设备的中间钢包系统,2个石墨电极浸入碱性电渣内。电流通过钢水表面的活性渣产生热量,可保证3 h内高速钢钢水雾化过程中温度稳定,又可使钢水脱硫、脱氧。同时自钢包底吹Ar搅拌,使中间钢包钢水温度均匀化,又促进钢水净化反应。采用ESH方法生产的PM HSS称为第二代PMHSS,其产品商标也改为ASP2000系列(如ASP 2030,以前第一代称ASP 30),它比第一代的PM HSS钢材更为纯净,非金属夹杂物含量可减少90%,淬回火后的钢材韧性可提高20%。钢材的质量和性能对化学成分的波动非常敏感,通常要求成分的波动范围愈小愈好。第二代钢较第一代钢达到了更高的技术水平,成分波动范围比第一代缩小近50%。此外,第二代PMHSS ASP 2000系列钢材的纵向与横向抗弯强度相差较小约为22%-32%,而普通熔炼HSS(M2、M42)的相应值达200%以上,并随钢材直径而变化,直径愈大,纵向和横向抗弯强度相差值也愈大。这一点正是大尺寸、高应力刀具使用PM HSS的理由之一。 2.3第三代PM HSS

粉末冶金材料标准表

公司制造的铁基粉末冶金零件执行标准与成分性能<一>G B/

590 66 < 690 35 60 烧结铁和烧结碳钢的化学成分(%). 材料牌号Fe C F-0000 注: 用差减法求出的其它元素(包括为了特殊目的而添加的其它元素)总量的最大值为%。▲ 注: 用差减法求出的其它元素(包括为了特殊目的而添加的其它元素)总量的最大值烧结铁-铜合金和 烧结铜钢的化学 成分(%). 材料牌号 Fe Cu C FC-0200 烧结铁-镍合金和烧结镍 钢的化学成分(%). 材料牌号Fe Ni Cu C FN-0200 注: 用差减法求出的其它 元素(包括为了特殊目的 而添加的其它元素)总量 的最大值为% ⊙ 铁-铜合金和铜钢粉末冶金材料性能(MPIF-35) 材料编号最小强 度 (A)(E) 拉伸性能 横 向 断 裂 压缩 屈服 强度 %) 硬度 密度屈 服 极 限 极限 强度 屈服强 度 %) 伸 长 率 宏观 (表 现) 微观 (换算 的) MPa MPa MPa % MPa MPa 络氏g/cm3 FC-0200-15 -18 -21 -24 100 170 140 310 120 11HR B N/A 120 190 160 350140 18 140 210 180 390 160 26 170 230 200 430 180 36 FC-0205-30 -35 -40 -45 210 240 240 < 410 340 37HR B N/A 240 280 280 < 520 370 48 280 340 310 < 660 390 60 310 410 340 < 790 410 72 FC-0205-60HT -70HT -80HT -90HT 410 480 < 660 390 19HR C 58HRC 480 550< 760 490 25 58 550620 (D) < 830 590 31 58 620 690 < 930 660 36 58 FC-0208-30 -40 210 240 240 < 410 390 50HR B N/A

各元素在高速钢中的作用

高速工具钢主要用于制造高效率的切削刀具。由于其具有红硬性高、耐磨性好、强度高等特性,也用于制造性能要求高的模具、轧辊、高温轴承和高温弹簧等。高速工具钢经热处理后的使用硬度可达HRC63以上,在600℃左右的工作温度下仍能保持高的硬度,而且其韧性、耐磨性和耐热性均较好。退火状态的高速工具钢的主要合金元素有多、钼、铬、钒,还有一些高速工具钢中加入了钴、铝等元素。这类钢属于高碳高合金莱氏体钢,其主要的组织特征之一是含有大量的碳化物。铸态高速工具钢中的碳化物是共晶碳化物,经热压力加工后破碎成颗粒状分布在钢中,称为一次碳化物;从奥氏体和马氏体基体中析出的碳化物称为二次碳化物。这些碳化物对高速工具钢的性能影响很大,特别是二次碳化物,其对钢的奥氏本晶粒度和二次硬化等性能有很大影响。碳化物的数量、类型与钢的化学成分有关,而碳化物的颗粒度和分布则与钢的变形量有关。钨、钼是高速工具钢的主要合金元素,对钢的二次硬化和其他性能起重要作用。铬对钢的淬透性、抗氧化性和耐磨性起重要作用,对二次硬化也有一定的作用。钒对钢的二次硬化和耐磨性起重要作用,但降低可磨削性能。 高速工个钢的淬火温度很高,接近熔点,其目的是使合金碳化物更多的溶入基体中,使钢具有更好的二次硬化能力。高速工具钢淬火后硬度升高,此为第一次硬化,但淬火温度越高,则回火后的强度和韧性越低。淬火后在350℃以下低温回火硬度下降在350℃以上温度回火硬度逐渐提高,至520~580℃范围内回火(化学成分不同,回火温度不同)出现第二次硬度高峰,并超过淬火硬度,此为二次硬化。这是高速工具钢的重要特性。 高速工个钢除了具有高的硬度、耐磨性、红硬性等使用性能外,还具有一定的热塑性、可磨削性等工艺性能。 多系高速工具钢主要合金元素是钨,不含钼或含少量钼。其主要特性是过热敏感性小,脱碳敏感性小、热处理和热加工温度范围较宽,但碳化物颗粒粗大,分布均匀性差,影响钢的韧性和塑性。 钨钼系高速工具钢的主要合金元素是钨和钼。其主要特性是碳化物的颗粒度和分布均优于钨系高速工具钢,脱碳敏感性和过热敏感性低于钼系高速工具钢,使用性能和工艺性能均较好。钼系高速工具钢的主要合金元素是钼,不含钨或含少量钨。其主要特性是碳化物颗粒细,分布均匀、韧性好,但脱碳敏感性和过热敏感性大、热加工和热处理范围窄。 含钻高速工具钢是在通用高速工具钢的基础上加入一定量的钴,可显著提高钢的硬度、耐磨性和韧性。 粉末高速工具钢是用粉末冶金方法产生的。首先用雾化法制取低氧高速工具钢预合金粉末,然后用冷、热静压机将粉末压实成全致密的钢坯,再经锻、轧成材。粉末高速工具钢的碳化物细小、分布均匀,韧性、可磨削性和尺寸稳定性等均很好,可生产用铸锭法个可能产生更高合金元素含量的超硬高速工具钢。粉末高速工具钢可分为3类,第一类是含钴高速工具钢,其特点是具有接近硬质合金的硬度,而且还具有良好的可锻性、可加工性、可磨性和强韧性。第二类是无钴高钨、钼、钒超硬高速工具钢。第三类是超级耐磨高速工具钢。其硬度不太高,但耐磨性极好,主要用于要求高耐磨并承受冲击负荷的工作条件。 Mn 1、在低含量范围内,对钢具有很大的强化作用,提高强度、硬度和耐磨性 2、降低钢的临界冷却速度,提高钢的淬透性 3、稍稍改善钢的低温韧性 4、在高含量范围内,作为主要的奥氏体化元素 Si 1、强化铁素体,提高钢的强度和硬度 2、降低钢的临界冷却速度,提高钢的淬透性 3、提高钢的氧化性腐蚀介质中的耐蚀性,提高钢的耐热性

粉末冶金材料标准表

公司制造的铁基粉末冶金零件执行标准与成分性能<一> GB/T14667.1-93 <二> MPIF-35

烧结铁和烧结碳钢的化学成分(%). 材料牌号Fe C F-0000 97.7-100 0.0-0.3 F-0005 97.4-99.7 0.3-0.6 F-0008 97.1-99.4 0.6-0.9 注: 用差减法求出的其它元素(包括为了特殊目的而添加的其它元素)总量的最大值为2.0%。▲烧结铁-铜合金和烧结铜钢的化学成分(%). 材料牌号Fe Cu C FC-0200 83.8-98.5 1.5-3.9 0.0-0.3 FC-0205 93.5-98.2 1.5-3.9 0.3-0.6 FC-020893.2-97.9 1.5-3.9 0.6-0.9 FC-0505 91.4-95.7 4.0-6.0 0.3-0.6 FC-0508 91.1-95.4 4.0-6.0 0.6-0.9 FC-0808 88.1-92.4 7.0-9.0 0.6-0.9 FC-1000 87.2-90.5 9.5-10.5 0.0-0.3 烧结铁-镍合金和烧结镍钢的化学成分(%). 材料牌 号 Fe Ni Cu C FN-0200 92.2-99.0 1.0-3.0 0.0-2.5 0.0-0.3 FN-0205 91.9-98.7 1.0-3.0 0.0-2.5 0.3-0.6 FN-0208 91.6-98.4 1.0-3.0 0.0-2.5 0.6-0.9 FN-0405 89.9-96.7 3.0-5.5 0.2-2.0 0.3-0.6 FN-0408 89.6-96.4 3.0-5.5 0.0-2.0 0.6-0.9 注: 用差减法求出的其它元素(包括为了特殊

高速钢工具

高速钢是加入了钨(W)、钼(Mo)、铬(Cr)、钒(V)等合金元素的高合金工具钢。按重量计,钨和钼占10—20%,铬约占4%,钒占1%以上,它们都是强烈的碳化物形成元素,在熔炼与热处理过程中与碳形成了高硬度的碳化物,从而提高了钢的耐磨性。另外,高速铜采用了接近熔点的淬火温度,得到细晶粒的合金化的马氏体组织,它在低温回火(约560℃)时又使合金碳化物析出,从而进一步提高了硬度与耐磨性。在高速钢中,钼和钨的作用基本相同,1%的钼可代替2%的钨。钼并能减少钢中碳化物的不均匀性,细化碳化物晶粒,提高韧性。 另外,在某些高速钢中,为了提高高温硬度,添加钴、铝、硅、铌等元素;为了提高耐磨性,可适当增加含钒量。但是,随着含钒量的增加,可磨削性变差,因此钒的含量不宜超过3%。表2—1、2—2分别列出了主要高速钢的成分和性能。从表中可见,高速钢在600℃时,仍能保持切削加工所要求的硬度,切削中碳钢时,切削速度可0.5m/s(30m/min)左右。 高速钢的强度、韧性和工艺性能均较好,能进行锻造,磨出的切削刃比较锋利,熔炼质量稳定,使用比较可靠。各种刀具都可用高速钢制造;尤其是形状复杂的刀具和小型刀

具,均大量使用着高速钢。目前,高速钢占刀具材料总使用量的60%以上。 按基本化学成分,高速钢可分为钨系、钨钼系和钼钨系。按切削性能分,则有普通高速钢和高性能高速钢。按制造方法分,则有熔炼高速钢和粉末冶金高速钢。 通高速钢的特点是工艺性好,切削性能可满足一般工程材料的常规加工,常用品种有: 1.W18Cr4V 属钨系高速钢。它的历史悠久,至今尚在普遍使用。其综合机械(力学)性能和可磨削性好,可用以制造包括复杂刀具在内的各类刀具. 2.W6Mo5Cr4V2 属钨铝系高速钢;其碳化物分布的均匀性、韧性和高温塑性均超过W18Cr4V,但是,可磨性比W18Cr4V略差,切削性能则大致相同。国外由于资源关系,已淘汰所谓传谓传统高速钢W18Cr4V而以W6Mo5Cr4V2代替。这一钢种目前我国主要用于热轧刀具(如麻花钻),也可用于制作大尺寸刀具。 3.W14Cr4VMn-RE

粉末冶金材料标准表完整版本

公司制造的铁基粉末冶金零件执行标准与成分性能 <一> GB/T14667.1-93 <二> MPIF-35 编辑版word

烧结铁和烧结碳钢的化学成分(%). 材料牌号Fe C F-0000 97.7-100 0.0-0.3 F-0005 97.4-99.7 0.3-0.6 F-0008 97.1-99.4 0.6-0.9 注: 用差减法求出的其它元素(包括为了特殊目的而添加的其它元素)总量的最大值为2.0%。▲烧结铁-铜合金和烧结铜钢的化学成分(%). 材料牌号Fe Cu C FC-0200 83.8-98.5 1.5-3.9 0.0-0.3 FC-0205 93.5-98.2 1.5-3.9 0.3-0.6 FC-020893.2-97.9 1.5-3.9 0.6-0.9 FC-0505 91.4-95.7 4.0-6.0 0.3-0.6 FC-0508 91.1-95.4 4.0-6.0 0.6-0.9 FC-0808 88.1-92.4 7.0-9.0 0.6-0.9 FC-1000 87.2-90.5 9.5-10.5 0.0-0.3 烧结铁-镍合金和烧结镍钢的化学成分(%). 材料牌 号 Fe Ni Cu C FN-0200 92.2-99.0 1.0-3.0 0.0-2.5 0.0-0.3 FN-0205 91.9-98.7 1.0-3.0 0.0-2.5 0.3-0.6 FN-0208 91.6-98.4 1.0-3.0 0.0-2.5 0.6-0.9 FN-0405 89.9-96.7 3.0-5.5 0.2-2.0 0.3-0.6 FN-0408 89.6-96.4 3.0-5.5 0.0-2.0 0.6-0.9 注: 用差减法求出的其它元素(包括为了特殊 编辑版word

粉末冶金原理

1.粉末冶金:制取金属或用金属粉末(或金属粉末与非金属粉末的混合物)作为原料, 经过成形和烧结制造金属材料、复合材料以及各种类型制品的工艺过程。 2.二次颗粒:单颗粒以某种方式聚集就构成二次颗粒 3.松装密度:粉末在规定条件下自然充填容器时,单位体积内自由松装粉末体的质量 g/cm3。 4.孔隙率:孔隙体积与粉末体的表观体积之比的百分数称为孔隙度(θ)。 5.中位径:将各种粒级粉末个数或百分数逐一相加累积并做图,可以得到累积分布曲线, 分布曲线对应50%处称为中位径 弹性后效:在压制过程中,粉末由于受力而发生弹性变形和塑性变形,压坯内存在着很大的内应力,当外力停止作用后,压坯便出现膨胀现象 6.合批:将成分相同而粒度不同的粉末进行混合,称为合批 7.烧结机构:研究烧结过程中各种可能的物质迁移方式及速率。 8.热压:热压又称为加压烧结,是把粉末装在模腔内,在加压的同时使粉末加热到正常 烧结温度或更低一些的温度,经过较短时间烧结成致密而均匀的制品。 9.活化烧结:是指采用化学或物理的措施,使烧结温度降低、烧结过程加快,或使烧结 体的密度和其它性能得到提高的方法。 10.单颗粒:粉末中能分开并独立存在的最小实体称为单颗粒。 11.振实密度:粉末装于振动容器,规定条件下,经振动敲打后测得的粉末密度。 12.粒度:以mm或μm的表示的颗粒的大小称颗粒直径,简称粒径或粒度。 13.混合:将两种或两种以上不同成分的粉末混合均匀。分为机械法和化学法。 14.搭桥:粉末在松装堆集时,由于表面不规则,彼此之间有摩擦,颗粒相互搭架而形成 拱桥孔洞的现象。 15.快速冷凝技术的特点:(1)急冷可大幅度地减小合金成分的偏析;(2)急冷可增加合 金的固溶能力;(3)急冷可消除相偏聚和形成非平衡相;(4)某些有害相可能由于急冷而受到抑制甚至消除;(5)由于晶粒细化达微晶程度,在适当应变速度下可能出现超塑性等。 16.粉末颗粒的聚集形式:聚合体、团粒、絮凝体;区别:通过聚集方式得到的二次颗 粒被称为聚合体或聚集颗粒;团粒是由单颗粒或二次颗粒靠范德华力粘接而成的,其结合强度不大,用研磨。擦碎等方法在液体介质中容易分散成更小的团粒或二次颗粒或单颗粒;絮凝体则是在粉磨悬浊液中,由单颗粒或二次颗粒结合成的更松软的聚集颗粒。 17.减少因摩擦出现的压力损失的措施:1)添加润滑剂、2)提高模具光洁度和硬度、3) 改进成形方式,如采用双面压制等。 18.粉末冶金技术的优点:1. 能生产用普通熔炼方法无法生产的具有特殊性能的材料:① 能控制制品的孔隙度(多孔材料、多孔含油轴承等);②能利用金属和金属、金属和非金属的组合效果,生产各种特殊性能的材料(钨-铜假合金型的电触头材料、金属和非金属组成的摩擦材料等);③能生产各种复合材料。 2.粉末冶金方法生产的某些材料,与普通熔炼法相比,性能优越:①高合金粉末冶金材料的性能比熔铸法生产的好(粉末高速钢可避免成分的偏析);②生产难熔金属材料或制品,一般要依靠粉末冶金法(钨、钼、铌等难熔金属)。缺点:1、粉末成本高;2、制品的大小和形状受到一定限制;3、烧结零件的韧性较差。 19.粉末料预处理的方式及作用:1、退火:还原氧化物,消除杂质,提高纯度;消除加工 硬化,稳定粉末的晶体结构;钝化金属,防止自燃。2、混合:使不同成分的粉末混合均匀,便于压制成形和后续处理。3、筛分:筛分的目的在于把颗粒大小不匀的原始粉

ASP-60粉末高速钢

ASP-60特性简介: ASP-60跟ASP60是同义词,产自瑞典,是一种超高合金粉末高速钢,其钴与钒的含量非常高,且经粉末冶金的技术制造出来。如此能让钢材是非常均一且拥有一致的特性。通过奥氏体化也可以得到非常高的硬度和抗压强度,它拥有同其他ASP系列材料一样好的热处理尺寸稳定性,其特点: ★极高的耐磨性 ★极高的抗压强度 ★良好的淬透性 ★良好的韧性 ★良好的热处理稳定性 ★非常好的回火稳定性 ASP-60化学成分: C 2.3 ; Cr 4.0 ; W 6.5 ; Mo 7.0 ; V 6.5 ; Co 10.5 ASP-60出厂状态: 软性退火最高至HB340 ASP-60常用硬度:

HRC:67~69℃ ASP-60典型运用: ASP60是一种含钴高性能粉末冶金高速钢。10.5%的含钴量提升了材料的高温性能(如红硬性和抗回火性),抗压强度和弹性模量。ASP60含大量非常小、非常硬,分布均一的碳化物,是由高含量的碳与大量的碳化物形成元素(如铬,钼,钨和钒)结合形成的。ASP60中的小颗粒碳化物不利于萌生裂纹,并且提高了材料的耐磨损性能。 ASP60特别适合用于需要同时满足极高耐磨损性和抗压强度的冷作模具。 ★冲切薄的、具有磨损性的材料,例如电子封装材料,这是取代易发生开裂和崩角的硬质合金一个很好的选择★切边工具 ★冷作冲压工具 ASP60加工方式: ★机械加工(粗铣、研磨、车铣) ★塑性变形 ★放电加工、线切割 ★焊接(要预热及注意焊条的成份) ★抛光,在研磨时,一定要避免表面局部过热的现象产生,东莞市冠鼎金属材料有限公司工程师建议研磨砂轮选用CBN 砂轮。

什么是高速钢

高速钢种类详解 简介:高速钢又名风钢或锋钢,意思是淬火时即使在空气中冷却也能硬化,并且很锋利。它是一种成分复杂的合金钢,含有钨、钼、铬、钒等碳化物形成元素。合金元素总量达10~25%左右。它在高速切削产生高热情况下(约500℃)仍能保持高的硬度,HRC能在60以上。这就是高速钢最主要的特性——红硬性。而碳素工具钢经淬火和低温回火后,在室温下虽有很高的硬度,但当温度高于200℃时,硬度便急剧下降,在500℃硬度已降到与退火状态相似的程度,完全丧失了切削金属的能力,这就限制了碳素工具钢制作切削工具用。而高速钢由于红硬性好,弥补了碳素工具钢的致命缺点,可以用来制造切削工具。 高速钢的热处理工:艺较为复杂,必须经过退火、淬火、回火等一系列过程。退火的目的是消除应力,降低硬度,使显微组织均匀,便于淬火。退火温度一般为860~880℃。淬火时由于它的导热性差一般分两阶段进行。先在800~850℃预热(以免引起大的热应力),然后迅速加热到淬火温度1220~1250℃,后油冷。工厂均采用盐炉加热。淬火后因内部组织还保留一部分(约30%)残余奥氏体没有转变成马氏体,影响了高速钢的性能。为使残余奥氏体转变,进一步提高硬度和耐磨性,一般要进行2~3次回火,回火温度560℃,每次保温1小时。 高速钢种类: 有钨系高速钢和钼系高速钢两大类。钨系高速钢有W18Cr4V,钼系高速钢有W6Mo5Cr4V等。规格主要有圆钢和方钢。钢材的表面要加工良好,不得有肉眼可见的裂纹、折叠、结疤和发纹。冷拔钢材表面应洁净、光滑、无夹杂和氧化皮等。 高速钢是一种含多量碳(C)、钨(W)、钼(Mo)、铬(Cr)、钒(V)等元素的高合金钢,热处理后具有高热硬性。当切削温度高达600℃以上时,硬度仍无明显下降,用其制造的刀具切削速度可达每分钟60米以上,而得其名。高速钢按化学成分可分为普通高速钢及高性能高速钢,按制造工艺可分为熔炼高速钢及粉末冶金高速钢。 普通高速钢 图一:高速钢是制造形状复杂、磨削困难的刀具的主要材料。

粉末冶金原理

课程名称:粉末冶金学 Powder Metallurgy Science 第一章导论 1粉末冶金技术的发展史History of powder metallurgy 粉末冶金是采用金属粉末(或非金属粉末混合物)为原料,经成形和烧结操作制造金属材料、复合材料及其零部件的加工方法。 粉末冶金既是一项新型材料加工技术,又是一项古老的技术。 .早在五千年前就出现了粉末冶金技术雏形,古埃及人用此法制造铁器件; .1700年前,印度人采用类似方法制造了重达6.5T的“DELI柱”(含硅Fe合金,耐蚀性好)。 .19世纪初,由于化学实验用铂(如坩埚)的需要,俄罗斯人、英国人采用粉末压制、烧结和热锻的方法制造致密铂,成为现代粉末冶金技术的基础。 .20世纪初,现代粉末冶金的发展起因于爱迪生的长寿命白炽灯丝的需要。钨灯丝的生产标志着粉末冶金技术的迅速发展。 .1923年硬质合金的出现导致机加工的革命。 .20世纪30年代铜基含油轴承的制造成功,并在汽车、纺织、航空、食品等工业部门的广泛应用。随后,铁基粉末冶金零部件的生产,发挥了粉末冶金以低的制造成本生产高性能零部件的技术优点。 .20世纪40年代,二战期间,促使人们开发研制高级的新材料(高温材料),如金属陶瓷、弥散强化合金作为飞机发动机的关键零部件。 .战后,迫使人们开发研制更高性能的新材料,如粉末高速钢、粉末超合金、高强度铁基粉末冶金零部件(热锻)。大大扩大了粉末冶金零部件及其材料的应用领域。 .粉末冶金在新材料的研制开发过程中发挥其独特的技术优势。 2粉末冶金工艺 粉末冶金技术的大致工艺过程如下: 原料粉末+添加剂(合金元素粉末、润滑剂、成形剂) ↓ 成形(模压、CIP、粉浆浇注、轧制、挤压、温压、注射成形等) ↓ 烧结(加压烧结、热压、HIP等) ↓ 粉末冶金材料或粉末冶金零部件—后续处理 Fig.1-1 Typical Processing flowchart for Powder Metallurgy Technique 3粉末冶金技术的特点 .低的生产成本: 能耗小,生产率高,材料利用率高,设备投资少。 ↑↑↑ 工艺流程短和加工温度低加工工序少少切削、无切削

日本(日立)HAP40含钴co粉末高速钢.

日本(日立)HAP40含钴co粉末高速钢 1.概述 日立金属HAP40是日立研发生产的含钴CO粉末高速钢。该钢具有极高的硬度,耐磨性与韧性兼备的泛用型高速钢。适合制造所有的切削工具,适合大量生产的冲压模具用钢。优于其他高合金的冷作钢。 出厂状态︰hb250 2.HAP40的主要特性: a) 良好的磨削性能 b) 良好的热处理尺寸稳定性 c) 良好的韧性 d) 良好的红硬性 e) 良好的耐磨性 3.HAP40的主要用途: 适合制作多刀刃的刀具,例如:麻花钻,铰刀、丝锥、铣刀,拉刀、滚刀及成型刀具等;单刃刀具如刀具、切断车刀和成形刀具等。 HAP40也适用于制作一般要求的单刃刀具。HAP40也适合作为对耐磨性有严格要求的冷作模具。例如:冲孔,成形,冲压模等。 相当瑞典标准︰asp60 4.化学成分(%) C:2.03 Si:4.0 Mn:7.0 Cr:6.5 Mo:10.5 V:6.5 Co:4.8 5.钴高速钢的热处理特点

( 1 ) 钴在高速钢中增加了碳的活度,因而使含钴高速钢的脱碳趋势较大,在热处理时应加以重视,在高温去应力退火、淬火加热等工序中要注意防止发生严重的脱碳,如果是在盐浴炉中进行淬火加热,要注意对盐浴炉的充分脱氧,对丝具等应进行涂层保护。在最终的淬火加热时,并不能因为要发挥钴促进二次硬化的作用,就要采用较高的加热温度,以增大碳和合金元素在奥氏体中的溶解量,从而来达到增大合金碳化物的弥散析出效果。反而是因为要注意防止奥氏晶粒长大,而不能采用较高的加热温度。一般而言,含钴高速钢的淬火加热温度较成份类似的不含钴的高速钢低一些。为充分发挥钴在高温回火中提高二次硬化作用的效果,充分保证回火时问,防止回火不足,每次回火的时问应较一般高速钢延长一些。 此材料经淬回火后硬度可达到 6 4 ~6 6 H R C,回火的硬度峰值约在5 4 0 ~ C 左右。其 热处理工艺为: ( 1 )软化退火:7 7 0 —8 4 0 o c N热保温,炉内缓慢冷却,其退火后最高硬度约为2 8 0 HB 。 ( 2 )经多道机加工形状复杂工件的去应力退火:6 0 0 —6 5 0 ~ C ~ I 热,在保护气氛中保温1 - 2小时,随炉缓慢冷却。 一次预热:5 5 0 ℃;二次预热:8 5 0 ℃;三次预热:1 0 5 0 ℃( 形状不复杂的工件可不必经过此工序) 。 淬火加热:1 1 8 0 —1 2 3 0 ℃;形状简单的工件采用较高的加热温度,形状复杂的工件采用较低的加热温度,如果工件要求较高的韧性,也应采用较低的加热温度。 淬火冷却:可采用油冷淬火;盐浴分级 淬火;干燥风冷淬火。 回火:第一次回火至硬度峰值温度( 约 5 4 0 ℃) ;第二次回火至所要求的工作硬度; 第三次回火用于消除应力( 温度比前两次最高的回火温度低3 O 一5 O ℃) 。 回火保温时间:工件厚度每2 0 r a m一小时,但不少于2小时。

粉末高速钢的应用与推广

粉末高速钢的应用与推广 一、粉末高速钢的制程与优点 高速钢的制造方法有两种,一为传统的钢锭浇铸,另一种则为利用粉末冶金方法制造。传统冶炼制造通常又分为二次精炼(EAF+LF+VD)或电渣重熔(ESR)制程两类,上述方法中由于金属液缓慢冷却,会造成合金的不均匀偏析和合金碳化物的生长粗大化,而影响到高速钢的性能。虽然后续的热作制程,可将钢锭的铸造组织加以改变及细化,使不良影响减低,但是却无法消除原先的铸造组织,因而对物理及机械性质有负面的影响。由于人们希望能改善传统高速钢的质量,特别是希望大直径高速钢碳化物颗粒尺寸能够细小且分布均匀,巨观的偏析产生,使得横向及纵向的机械性质没有差别。因而在1965年于美国开始发展合金粉末制程。生产出组织均匀无方向性钢种。发展至今,粉末冶金制程正成为当今制造高性能工具钢的主要方法。此制程主要原理是将已调配合合金成份的高温熔融钢液,流出时加以高压氮体雾化,使其快速凝固成均匀组成之粉末颗料,再经过筛选并充镇至已抽真空且密封的圆柱形钢瓶中,进行热均压(HIP),使钢瓶内的颗粒成为完全密实的材料,再直接经由传统锻造,辊轧成不同形状之产品,如:圆棒、板材、片材和线材料来供应工业界使用。 粉末高速钢在实际使用上的主要优点有: 1.磨削性好 2.热处理变形小及硬度均匀性佳 3.韧性高 4.耐磨耗性佳 5.使用寿命长且稳定 由于生产粉末高速钢具有一定之技术门槛,目前在全世界粉末高速钢的生产厂家并不多,主要集中在欧洲、日本及美国,代表厂有美国Crucible,欧洲(ASSAB、Soderfors、Erasteel、Bohler、DSS、Carpenter),日本(Hitachi、Daido、Nachi、Kobe)。中国目前并没有实际商业化生产粉末高速钢,全部由国外进口。因此在多数中国使用者印象中对粉末高速钢只存有模糊的概念,只知它代表一种性能优良且价格很贵的高级高速钢。其它的了解及如何应用并不清楚。由于粉末高速钢品种牌号相当多,笔者仅就几种本公司经常库存同时较常用到的四类钢种做说明,提供广大使用客户参考及选择。 二、高速钢工具钢的分类与性质比较 选择合适的高速钢作为切削工具及模具时,有三项重要的性质是必须慎重的考虑。分别是耐磨性、韧性及高温硬度,以传统M2为基础,从合金元素的角度来看,三个主要发展方向是: (1)提高钒(V)含量,以增加耐磨耗性 (2)提高钴(Co)含量,以增加热间硬度 (3)同时提高钒及钴的含量,而兼顾耐磨耗性及热间硬度 (A) PM-A23 PM-A23是目前使用上最多的粉末高速钢,它相当于ASP23 是目前所有高速钢中韧性最好材料,同时又有极佳之耐磨耗性钢种。一般来说高速钢中耐磨性会随总合金成份和最高硬度增加而提高,而韧性则会随合金量的增加而降低,因此才会在传统高速钢M2的基础上

粉末冶金材料标准表

粉末冶金材料标准表 WTD standardization office【WTD 5AB- WTDK 08- WTD 2C】

公司制造的铁基粉末冶金零件执行标准与成分性能<一>G B/

590 66 < 690 35 60 烧结铁和烧结碳钢的化学成分 (%). 材料牌号Fe C F-0000 注: 用差减法求出的其它元素 (包括为了特殊目的而添 加的其它元素)总量的最大值 为%。▲ 注: 用差减法求出的其它元素 (包括为了特殊目的而添 加的其它元素)总量的最大值 烧结铁-铜合金和 烧结铜钢的化学 成分(%). 材料牌号Fe Cu C FC-0200 烧结铁-镍合金和烧结镍 钢的化学成分(%). 材料牌号Fe Ni Cu C FN-0200 注: 用差减法求出的其它 元素(包括为了特殊目的 而添加的其它元素)总量 的最大值为% ⊙ 铁-铜合金和铜钢粉末冶金材料性能(MPIF-35) 材料编号 最小强 度 (A)(E) 拉伸性能 横 向 断 裂 压缩 屈服 强度 %) 硬度 密度 屈 服 极 限 极限 强度 屈服强 度 %) 伸 长 率 宏观 (表 现) 微观 (换算 的) MPa MPa MPa % MPa MPa 络氏g/cm3 FC-0200-15 -18 -21 -24 100 170 140 310 120 11HR B N/A 120 190 160 350140 18 140 210 180 390 160 26 170 230 200 430 180 36 FC-0205-30 -35 -40 -45 210 240 240 < 410 340 37HR B N/A 240 280 280 < 520 370 48 280 340 310 < 660 390 60 310 410 340 < 790 410 72 FC-0205-60HT -70HT -80HT -90HT 410 480 < 660 390 19HR C 58HRC 480 550< 760 490 25 58 550620 (D) < 830 590 31 58 620 690 < 930 660 36 58

JIS Z2550-2000标准日本粉末冶金

JIS 烧结金属材料——规格 JIS Z 2550:2000 平成12年(2000)3月20日修正 日本工业标准调查会审议 (日本标准协会发行)

Z 2550:2000 前言 本标准是以工业标准化法为基础,经过日本工业标准调查会审查,由通商产业大臣修改的日本工业标准。根据本标准,对JIS Z 2550:1989(机械构造部件用烧结材料)修改置换。 JIS Z 2550附属书如下所示。 附属书(规定)机械构造部件用烧结材料 主管大臣:通商产业大臣制订:昭和58(1983).11.1 修改:平成12(2000).3.20 公示:平成12(2000).3.21 拟订原案合作者:日本粉末冶金工业协会 审议部会:日本工业标准调查会非铁金属部会(部会长神尾彰彦) 如对此标准有意见或者疑问,请联系工业技术院标准部标准业务科产业基盘标准化推进室(100-8921东京都千代田区霞关1条3-1) 并且,日本工业标准根据工业标准化法第15条规定,以5年为最大期限,必须在此期限内附日本工业标准调查会审议,并及时确认、修改或废止。

日本工业标准 烧结金属材料——规格 Sintered metal materials—Specification 序本标准是以1996年第一版发行的ISO 5755,Sintered metal materials—Specification为基础,制订的日本工业标准,但日本工业标准与ISO标准值的规定项目不一样,不可能直接对比统一。这次修改,在附属书中对采用ISO的材料的日本工业标准材料进行了规定,使两者可以并用。不过,因ISO开始了原国际标准的修改工作,需要注意ISO材料记号的使用。此外,本标准中有侧线或者点线的部分,为附属书材料特性试验的相关部分,是国际标准中没有的事项。 1. 适用范围此标准规定了轴承与机械部件使用的烧结金属材料的化学成分、机械特性 及物理特性。 备注1 选择粉末冶金材料时,材料的特性不单是化学成分及密度,还要考虑到制造方 法。已经适用于制品、用途的材料特性,锻造品和铸造品或许不同。因此,在确认特性 时,最好与生产者联系。 2.此标准对应的国际标准如下所示 ISO 5755,Sintered metal materials—Specification 2. 引用标准以下的标准因被本标准引用,构成了本标准规定的一部分。这些引用标准, 适用其最新版本。 JIS Z 2202 金属材料冲击试验片 JIS Z 2241 金属材料拉伸试验方法 备注ISO 6892,Metallic materials—Tensile testing at ambient temperature与本标准 同等。 JIS Z 2242 金属材料冲击试验方法 JIS Z 2244 维氏硬度试验—试验方法 JIS Z 2245 洛氏硬度试验—试验方法 备注ISO-4498-1,Sintered metal materials(excluding hardmetal)—Determination of apparent hardness—Part1:虽然限定了烧结材料的规格,但试验方法同等。 JIS Z 2501 烧结金属材料密度、含油率及开放气孔率试验方法 备注ISO 2738,Permeable sintered metal materials—Determination of density,oil content and open porosity与此标准一致。 JIS Z 2507 烧结轴承—径向压碎强度试验方法 备注ISO 2739,Sintered metal bushes—Determination of radial crushing strength与 此标准一致。 3. 选取样本选取样本遵循相关的日本工业标准。 4. 试验方法为了评价附表1到附表9及附属书的指示特性,适用以下的试验方法。4.1 化学成分成分分析尽量按日本工业标准规定的方法进行。没有合适的标准时,根据 和受试者的协议进行试验。 4.2 开放气孔率开放气孔率遵从JIS Z 2501进行试验。 4.3 含油率含油率遵从JIS Z 2501进行试验。 4.4 拉伸强度拉伸强度使用附图1.所示试验片,遵从JIS Z 2241进行试验。 4.5 外观硬度外观硬度遵从JIS Z 2244或JIS Z 2202进行试验。

分析粉末冶金高速钢制造工艺

分析粉末冶金高速钢制造工艺 20世纪60年代后期在瑞典开发成功,并于70年代初期进入市场。该工艺可在高速钢中加入较多合金元素而不会损害材料的强韧性或易磨性,从而可制成具有高硬度、高耐磨性、可吸收切削冲击、适合高切除率加工和断续切削加工的刀具。 高速钢刀具材料主要由两种基本成分构成:一种是金属碳化物(碳化钨、碳化钼或碳化钒),它赋予刀具较好的耐磨性;二是分布在周围的钢基体,它使刀具具有较好的韧性和吸收冲击、防止碎裂的能力。制备普通高速钢时,是将熔化的钢水从钢水包中注入铸模,使其缓慢冷却凝固。此时,金属碳化物从溶液中析出,并形成较大的团块。高速钢中添加的合金含量越多,碳化物团块就越大。达到某一临界点时,可形成尺寸极大的碳化物团块(直径可达40mm)。出现大的碳化物团块的临界点根据钢锭的尺寸以及其它因素而略有不同,但一般是在碳化钒含量达到约4%时发生。通过对钢锭进行锻造、轧制等后续加工,可以粉碎其中一部分碳化物团块,但不可能将其完全消除。虽然增加钢材中金属碳化物颗粒的数量可以改善材料的耐磨性,但随着合金含量的增加,碳化物的尺寸及团块数量也会随之增加,这对于钢材的韧性会产生极其不利的影响,因为大的碳化物团快可能成为产生裂纹的起始点。 粉末冶金高速钢的制备工艺与普通高速钢的制备工艺不同,熔化的钢水不是直接注入铸模,而是通过一个小喷嘴将其吹入氮气流中进行雾

化,喷出的雾状钢水迅速冷却为细小的钢粒(直径小于1mm)。由于钢水溶液中的碳化物在快速冷却过程中来不及沉淀和形成团快,因此获得的钢粒中碳化物颗粒细小且分布均匀。将这些钢粉过筛后置入一个钢桶中,并将钢粉中间的空气抽净形成真空状态,然后在高温、高压下将钢桶中的钢粉压制成型,即可得到致密度为100%的粉末冶金高速钢毛坯。这一制备工艺被称为热等静压(hotisostaticpressing,HIPing)成型。然后可对毛坯进行锻造、轧制等后续加工。 利用热等静压成型工艺制备的粉末冶金高速钢中的碳化物颗粒非常细小,而且不管其合金含量为多少,这些碳化物颗粒都可均匀分布于整个高速钢基体中。

粉末冶金工艺及材料基础知识介绍

粉末冶金工艺及材料基础知识介绍 粉末冶金是制取金属粉末并通过成形和烧结等工艺将金属粉末或与非金属粉末的混合物制成制品的加工方法,既可制取用普通熔炼方法难以制取的特殊材料,又可制造各种精密的机械零件,省工省料。但其模具和金属粉末成本较高,批量小或制品尺寸过大时不宜采用。粉末冶金材料和工艺与传统材料工艺相比,具有以下特点: 1.粉末冶金工艺是在低于基体金属的熔点下进行的,因此可以获得熔点、密度相差悬殊的多种金属、金属与陶瓷、金属与塑料等多相不均质的特殊功能复合材料和制品。 2.提高材料性能。用特殊方法制取的细小金属或合金粉末,凝固速度极快、晶粒细小均匀,保证了材料的组织均匀,性能稳定,以及良好的冷、热加工性能,且粉末颗粒不受合金元素和含量的限制,可提高强化相含量,从而发展新的材料体系。 3.利用各种成形工艺,可以将粉末原料直接成形为少余量、无余量的毛坯或净形零件,大量减少机加工量。提高材料利用率,降低成本。 粉末冶金的品种繁多,主要有:钨等难熔金属及合金制品;用Co、Ni等作粘结剂的碳化钨(WC)、碳化钛(TiC)、碳化钽(TaC)等硬质合金,用于制造切削刀具和耐磨刀具中的钻头、车刀、铣刀,还可制造模具等;Cu合金、不锈钢及Ni等多孔材料,用于制造烧结含油轴承、烧结金属过滤器及纺织环等。

1 粉末冶金基础知识 ⒈1 粉末的化学成分及性能 尺寸小于1mm的离散颗粒的集合体通常称为粉末,其计量单位一般是以微米(μm)或纳米(nm)。 1.粉末的化学成分 常用的金属粉末有铁、铜、铝等及其合金的粉末,要求其杂质和气体含量不超过1%~2%,否则会影响制品的质量。 2.粉末的物理性能 ⑴粒度及粒度分布

粉末冶金高速钢的选择与应用

粉末冶金高速钢的选择与应用 粉末冶金高速钢的选择与应用 作者:哈尔滨第一工具有限公司宋学全 切削技术的发展依靠刀具技术和高 速机床技术的进步,刀具与机床的正确选用常起着决定性作用。采用耐热性更好的新型刀具材料及涂层、公道设计刀具结构与几何参数、选择最佳的切削速度是实现切削加工优化的重要保障。在目前高性能刀具材料如硬质合金、金属陶瓷、金刚石、立方氮化硼等超硬材料不断发展的同时,高速钢尤其是粉末冶金高速钢,凭借其在强韧性、工艺性及可加工性等方面优良的综合性能,在复杂刀具特别是切齿刀具、拉刀和各类铣刀制造中仍占有明显上风,应用相当广泛。 1 高速钢发展及粉末高速钢冶炼工艺特点 以切削刀具为主要用途的高速钢已经历了百年的发展历程。1900 年法国巴黎世界展览会上,美国人Taylor和White成功进行的高速切削演示标志着高速钢的应用拉开了序幕。多年来,高速钢刀具一直占据着机械加工领域的主导地位,其发展简史见表1。 表1 高速钢发展简史

冶炼,钢水容量大,成分均匀,可通过炉外精炼、真空脱气等进步钢水质量;但由于钢锭浇铸尺寸较大,钢水冷却缓慢,且高速钢化学成分复杂,合金元素含量高,使其莱氏体组织粗大,碳化物偏析严重。碳化物偏析程度反映了高速钢质量的优劣,严重的偏析降低了高速钢的性能,使钢的锻、轧加工困难,高合金、高性能高速钢的发展受限。 粉末冶金高速钢改变了传统的高速钢浇铸与成锭工艺,采用了雾化制粉及压力加工成形。国际上较先进的粉末高速钢制造基本工艺是将冶炼完、符合化学成分要求的钢水经强力高压氮气雾化,细小液滴瞬间迅速凝固成合金粉末颗粒,其粒度相当于一般铸锭亿万分之一的“超细小钢锭”,形成了极快冷凝固制粉。雾化制粉完成后,合金粉末颗粒经筛分、装包套、摇实、抽真空脱气等工序,再经冷、热等压力加工成锭。粉末冶金高速钢的优点为成分均匀、碳化物无偏析,易实现高合金化;与电炉钢比较,其强韧性大幅度进步,热处理变形小,尺寸稳定性高,可磨削性能好。 2 粉末冶金高速钢主要牌号及成分 传统冶炼生产的高速钢牌号均可运用粉末冶金方法生产,而高钒、高钴等高合金高性能高速钢却是粉末冶金高速钢所独占的牌号(如ASP2060、ASP2080等)。表2为粉末冶金高速钢主要牌号及成分范围。 表2 粉末冶金高速钢主要牌号及成分(wt%)

ASP2053 钢-粉末高速钢的使用特性和工艺特性

ASP2053钢-粉末高速钢的使用特性和工艺特性 (1)模具钢特性粉末高速钢,无方向性,结晶颗粒细致均匀,热处理能提高硬度,热处理变形减少,没有偏析现象,没有非金属夹杂物,耐磨性、韧性较佳,具备更高的硬度、红硬性。 东莞弘超模具商城高速工具钢经热处理后的使用硬度可达HRC63以上,在600℃左右的工作温度下仍能保持高的硬度,而且其韧性、耐磨性和耐热性均较好。 ①使用特性:硬度工具钢制成工具经热处理后具有足够高的硬度,如用于金属切削加工的工具一般在HRC60以上。工具在高的切削速度和加工硬材料所产生高温的受热条件下,仍能保持高的硬度和良好的红硬性。碳素工具钢和合金工具钢一般在180℃~250℃、高速工具钢在600℃左右的工作温度下,仍能保持较高的硬度。红硬性对热变形模具和高速切削刀具用钢是非常重要的性能。 ②工艺特性工具钢除了具有上述使用性能外,还应具有良好的工艺性能。 ●③加工性工具钢应具有良好的热压力加工性能和机械加工性能,才能保 证工具的制造和使用。钢的加工性取决于化学成分、组织的质量。 ●④耐磨性工具钢具有良好的耐磨性,即抵抗磨损的能力。工具在承受 相当大的压力和摩擦力的条件下,仍能保持其形状和尺寸不变。 ●⑤强度和韧性工具钢具有一定的强度和韧性,使工具在工作中能够承 受负荷、冲击、震动和弯曲等复杂的应力,以保证工具的正常使用。 ●⑥其他性能由于各种工具的工作条件不同,工具用钢还具有一些其他 性能,如模具用钢还应具有一定的高温力学性能、热疲劳性、导热性和耐磨腐蚀性能等。 ⑵化学成分(质量分数,)C2.30~2.60、Cr3.80~4.50、W4.00~4.50、Mo2.80~3.50、V7.75~8.20、Co≤0.50、P≤0.03、S≤0.03、N≤0.08、O≤ 0.015、Ar≤0.05ppm。 ⑶典型应用举例适合于要求高速切削、高热硬性、高寿命的刀具。 高速工具钢主要用于制造高效率的切削刀具。由于其具有红硬性高、耐磨性好、强度高等特性,也用于制造性能要求高的模具、轧辊、高温轴承和高温弹簧等。 (4)淬火温度范围工具钢的淬火温度应足够宽,以减少过热的可能性。 (3)淬硬性和淬透性淬硬性是钢在淬火后所能达到最高硬度的性能。淬硬性主要与钢的化学成分特别是碳含量有关,碳含量越高,则钢的淬硬性越高。淬透性表示钢在淬火后从表面到内部的硬度分布状况。淬透性的高低与钢的化学成分、纯洁度、晶粒度有关。根据用于制造不同的工具,对这两种性能各有一定的要求。 (5)脱碳敏感性工具表面发生脱碳,将使表面层硬度降低,因此要求工钢的脱碳敏感性低。在相同的加条件下,钢的脱碳敏感性取决于其化学成分。 (6)热处理变形性工具在热处理时,要求其尺寸和外形稳定。 (7)耐削性对很制造刀具和量具用钢。要求具有良好的磨削性。钢的磨削性与其化学成分有关,特别是钒含量,如果钒质量分数不小于0.50%则磨削性变坏。

相关文档
最新文档