第9章弯曲应力与弯曲变形习题解答

第9章弯曲应力与弯曲变形习题解答
第9章弯曲应力与弯曲变形习题解答

第9章 弯曲应力与弯曲变形 习题解答

题9 – 1 试计算下列各截面图形对z 轴的惯性矩I z (单位为mm )。

解:(a )mm 317400

250500350200

400250250500350≈?-???-??=

c y

()()4

932

3mm 107314002502003171240025050035025031712500350?≈???

? ????-+?-???

? ????-+?=.I Z (b )mm 431550

400800500375

550400400800500≈?-???-??=

c y

()()4

1032

3mm 1054615504003754311255040080050040043112800500?≈???

? ????-+?-???

? ????-+?=.I Z (c )()mm 306020206050

6020102060=?+???+??=

c y

()()4

63

2

3mm

103616020503012602020601030122060?=???

? ????-+?+?

??

? ????-+?=.Z I

(a) (b) (c)

题9-1图

题9–2 悬臂梁受力及截面尺寸如图所示。设q = 60kN/m ,F = 100kN 。试求(1)梁1

– 1截面上A 、B 两点的正应力。(2)整个梁横截面上的最大正应力和最大切应力。

解:(1)求支反力

kN 220100260=+?=A F (↑)

m kN 32021001260?=?+??=A M ( ) (2)画F S 、M 图

(3)求1-1截面上A 、B 两点的正应力 m kN 1305016011001?=??+?=.M

F M

A 点:MPa 254Pa 1025412

15010055

01013063

31=?≈???==...I y M z

A t σ

B 点:MPa 162Pa 107816112

150100*********

3

31=?≈???==....I y M σz

B c (4)求最大正应力和最大切应力

MPa 853Pa 103853615010103206

2

3max max =?≈??==...W M σz

MPa 22Pa 102215

01010220232363

max =?≈???=?

=..A F τS 题9 - 3 简支梁受力如图所示。梁为圆截面,其直径d = 40 mm ,求梁横截面上的最大正应力和最大切应力。

解:(1)求支反力

A F (↓)=

B F (↑)kN 10203

?= (2)画F S 、M 图

M e =4.4kN ·

m

题9-3图

(3)求最大正应力与最大切应力

382MPa Pa 10381.9732

0.04π102.463

3

max max =?≈??==z

W M σ 21.2MPa Pa 1021.20.02π102034346

2

3max max =?≈???=?=A F τS

题9 - 4 空心管梁受载如图所示。已知管的外径D = 60 mm ,内径d = 38mm ,管材的许用应力[σ] = 150MPa ,试校核此梁的强度(长度单位为mm )。

解:(1)求支反力

F S

M

题9-4图

kN 510.F A =(↑) kN 59.F B =(↑)

(2)画F S 、M 图

(3)校核强度

()()

633

060

38107816330132060π132π5

434

3.D d ...D W ===?=-?=-=-αα []σ≤=?≈??==-MPa 5147Pa 104714710

78110625265

3

max max ....W M σz 满足强度要求。

题9- 5 某圆轴的外伸部分系空心圆截面,载荷如图所示,其许用应力[σ]=120MPa ,试校核其强度(长度单位为mm )。

解:(1)求支反力

kN 363.F A =(↑) kN 647.F B =(↑)

题9-5图

F S

M 2.625m kN ?

(2)画M 图

(3)校核强度

C 点:[]σ≤=?≈??==63.4MPa Pa 1063.4320.06π101.3446

3

3max max z

W M σ B 点:75.060

45

===D d α ()543101.450.751320.06π-?=-?=

z W []σ≤=?≈??==-62.1MPa Pa 1062.110

1.45100.965

3

max max z W M σ 题9–6 一单梁桥式吊车如图所示,梁为№28b 工字钢制成,电葫芦和起重量总重F =30kN ,材料的许用正应力[σ]=140MPa ,许用切应力[τ]=100MPa ,试校核梁的强度。

解:(1)求支反力

M

0.9

题9-6图

15kN ==B A F F (↑)

(2)画M 图 (当吊车在梁中间时有最大弯矩)

(3)校核强度

查表得:2

4m 1061-?=A 36m 10534-?=x W

[]σ≤=?≈??==-84.3MPa Pa 1084.2710

53410456

6

3max max x W M σ []τ≤=?≈??==- 4.9MPa Pa 104.9210

6110306

43max max A F τS 题9 – 7 外伸梁受力如图所示.已知:F =20kN ,[σ]=160 MPa ,[τ]=90 MPa ,试选择工字钢的型号。

解:(1)求支反力

5kN =A F (↓) 25kN =B F (↑)

(2)画F S 、M 图

9-7图

M

(3)选择工字钢型号

根据正应力强度选择工字钢的型号

[]σ≤z

W M max []3366

3

max cm 125m 10125101601020=?=??=≥-σM W z 查表得:№16的3cm 141=x W 2

4m 1013126-?=.A

切应力强度校核

[]τ≤=?≈??==-7.7MPa Pa 107.710

26.13110206

43max max A F τS 选择№16工字钢。

题9– 8 一矩形截面梁如图所示。已知:F = 2 kN ,横截面的高宽比h / b = 3;材料的许用应力[σ]= 8 MPa ,试选择横截面的尺寸。

解:(1)求支反力

题9-8图

M

F S

3kN 22

3

23=?===F F F B A (↑) (2)画M 图

(3)选择横截面的尺寸 []σσ≤==

2

max

max max 6bh M W M z ∵

3=b

h

, b h 3=代入上式 []σ96max 3M b ≥

[]cm 7m 0690108310423236

3

3

max =≈????=≥.M b σ

cm 21733=?==b h

题9 – 9 外伸梁受力如图所示,梁为T 形截面。已知:

[σ]= 160 MPa ,试确定截面尺寸a 。

解:(1)求支反力

kN 340=

A F (↑) kN 3

80

=B F (↑) (2)画F S 、M 图

题9 - 9图

C

(3)确定截面尺寸a ① C Z a a a a a a a a a a a Z C 9

5

.1445345.05=?+???+??=

② 截面对形心轴的惯性矩z I

()4

22

3

22

336707495.14312452195.14125a a a a a a a a a a a I z =???? ?

?-+?+???? ??-+?=

③ 确定截面尺寸a

[]σ≤z I y M max max []

σmax max y

M I z ≥

mm 221m 0212010

1607073695145109803

6

3...a =≈??????

??-??≥

题9 - 10 一受均布载荷的外伸梁,梁为№18工字钢制成,许用应力[σ]= 160 MPa ,

F S

3

M

材料力学作业题7(弯曲变形)

第七章弯曲变形 一、是非题 1 梁内弯矩为零的横截面其挠度也为零。 ( ) 2 梁的最大挠度处横截面转角一定等于零。 ( ) 3梁的最大挠度必然发生在梁的最大弯矩处。( ) 4若两梁的抗弯刚度相同,弯矩方程也相同,则两梁的挠曲线形状完全相同。( ) 5 绘制挠曲线的大致形状,既要根据梁的弯矩图,也要考虑梁的支承条件。( ) 6 静不定梁的基本静定系必须是静定的和几何不变的。 ( ) 二、选择或填空 1 等截面直梁在弯曲变形时,挠曲线曲率最大发生在( )处。 A. 挠度最大 B. 转角最大 C. 剪力最大 D. 弯矩最大 2 将桥式起重机的主钢梁设计成两端外伸的外伸梁较简支梁有利,其理由是( )。 A. 减小了梁的最大弯矩值 B. 减小了梁的最大剪力值 C. 减小了梁的最大挠度值 D. 增加了梁的抗弯刚度值 3 图示两梁的抗弯刚度EI相同,载荷q相同, 则下列结论中正确的是( )。 A. 两梁对应点的内力和位移相同 B. 两梁对应点的内力和位移不相同 C. 内力相同,位移不同 D. 内力不同,位移相同 4 为提高梁的抗弯刚度,可通过( )来实现。 A. 选择优质材料 B. 合理安排梁的支座,减小梁的跨长 C. 减少梁上作用的载荷 D. 选择合理截面形状 三计算题 1 图示梁,弯曲刚度EI为常数。试绘制挠曲轴的大致形状,并用积分法计算截面C的转角。

2 图示简支梁,左右端各作用一个力偶矩分别为M1和M2的力偶,欲使挠曲轴拐点位于离左端l/3处,则M1和M2应保持何种关系。 3图示梁,弯曲刚度EI为常数。试用叠加法计算截面B的转角和截面C的挠度。

4 图示电磁开关,由铜片AB与电磁铁S组成。为使端点A与触点C接触,试求磁铁S所需吸力的最小值F以及间距a的尺寸。铜片横截面的惯性矩I z=0.18×10-12m4,弹性模量E=101GPa。

弯曲变形、应力状态概念练习

第七章练习 (弯曲变形) 一 选择题 24.如图所示变截面杆,用积分法求挠曲线方程时应分( )段积分。 A .2; B.3; C.3; D.4。 25.如13题图所示变截面杆,用积分法求挠曲线方程时共有( )个积分常数。 A .2; B.4; C.6; D.8。 二 填空题 1.如图所示,用积分法求图示梁的变形时,所应满足的边界条 件是 A 截面挠度为零, C 截面挠度等于CB 杆伸长 。 2.提高梁弯曲刚度最有效的措施是 增加支座 ,减少跨长 。 三. 简答题 1. 静不定结构如图所示,试对每一结构分别选取一种基本静定系,写出相应的变形协调方程。 第八章练习 (应力状态,强度理论) 一 选择题 1.轴向拉伸构件,按四个强度理论中的( )强度理论计算的相当应力相同。 A .第一和第二; B . 第三和第四; C .第一和第三; D . 第一、第二、第三和第四。 2.圆轴受扭时,轴表面各点处于( )。 A . 单向应力状态; B . 二向应力状态; C . 三向应力状态; D . 各向等应力状态。 题25图 题1图 (a ) (b )

3.等截面杆受轴向拉力作用,如图所示,A 、B 、C 三点的应力状态( )。 A . 各不相同; B . 相同; C . 仅A 、C 两点的应力状态相同; D . 仅B 、C 两点的应力状态相同。 4.图示某危险点的应力状态,其主应力1σ和最大切应力为( )。 A .120MPa ,30 MPa ; B.130 MPa, 80 MPa ; C.150MPa ,60 MPa ; D.140 MPa,, 80MPa 。 5.按照第三强度理论,如图所示应力状态的相当应力是为( )MPa 。 A .100; B.80; C.60; D.120。 6.对于一个微分单元体,下列结论中( )是错误的。 A .正应力最大的面上切应力必为零; B.切应力最大的面上正应力必为零; C.正应力最大的面与切应力最大的面相交成450角; D.正应力最大的面与正应力最小的面必互相垂直。 7.两单元体的分别如图(a )(b )所示,且σ与τ的数值相等,由第三强度理论比较两者的危险程度,则( )。 A .(a )为平面应力状态,(b )为空间应力状态,两者无法比较; B.应力状态图(b )较图(a )危险; C.两者的危险程度相同; D.应力状态图(a )较图(b )危险。 8.以下结论中( )是正确的。 A .第一、二强度理论主要用于塑性材料; B.第三、四强度理论主要用于脆性材料; C.第一强度理论主要用于单向应力状态; D.第四强度理论可用于塑性屈服的任何应力状态。 9. 图示应力单元,已知σx = 40MPa,σy = 40MPa,τxy = 20MPa ,应力单元的主应力大小为 ( )。 A .σ1 = 40MPa ,σ2= 0,σ3=-40MPa ; B .σ1 = 60MPa ,σ2= 20 MPa ,σ3=0 ; C.σ1 = 80MPa ,σ2= 0,σ3=-80MPa ; D.σ1 = 100MPa ,σ2= 60 MPa ,σ3=0 。 题3图 题4图 题5图 单位MPa (a ) (b )

第一节 矩形截面梁的纯弯曲实验

第一节矩形截面梁的纯弯曲实验 一、实验目的 1.学习电测法的基本原理和静态电阻应变仪的使用方法。 2.学习电测法中的1/4桥、1/2桥和全桥的测量方法。 3.测量矩形截面梁在纯弯曲段中测点沿轴线方向的线应变,画出该线应变沿梁高度方向的变化规律,验证平面截面假设。 4.根据上述测量结果计算测点的正应力,并与理论计算值进行比较。 二、实验设备和仪器 1.多用电测实验台。 2.DH-3818型静态电阻应变仪。 3.SDX-I型载荷显示仪。 三、实验原理及方法 实验装置如图2-1所示,矩形截面梁采用低碳钢制成,其弹性模量,E,210 GPa梁的尺寸为,,。在发生纯弯曲变形的梁段上,沿a,100 mmb,20 mmh,40 mm 梁的沿轴线方向粘贴有5个应变片(其中应变片1位于梁的上表面,应变片2 位于梁的上表面与中性层的中间,应变片3位于梁的中性层上,应变片4位于梁的中性层与下表面的中间,应变片5位于梁的下表面),另外在梁的支撑点以外粘贴有一个应变片作为温度补偿片。应变片的灵敏系数K,2.08。 1.应变测量 3种测量桥路的接线方法如下: F 温度补偿片 b

123hz45y aa工作片 图2-1 矩形截面梁的纯弯曲 (1) 1/4桥测量方法 将5个工作片和温度补偿片按1/4桥形式分别接入电阻应变仪的5个通道中,组成5个电桥。具体接法:工作片的引线接在每个电桥的、端,温度补偿片接AB ?19 ? 在电桥的、端。当梁在载荷作用下发生弯曲变形时,工作片的电阻值将随着梁CB 的变形而发生变化,电阻应变仪相应通道的输出应变为,于是测点的应变为 ,仪 ,,,仪实 (2) 1/2桥测量方法 由于测点5与测点1的应变之间存在关系 ,,,,实5实1 测点4与测点2的应变之间存在关系 ,,,,实4实2 于是可将工作片5和1、4和2分别按1/2桥形式接入电阻应变仪的2个通道中,组 成2个电桥。具体接法:工作片5接到一个电桥的、端,工作片1接到该电桥AB的、端;工作片4接到另一个电桥的、端,工作片2接到相应电桥的、CBABB 端。当梁在载荷作用下发生弯曲变形时,电阻应变仪相应通道的输出应变为,C,仪 于是测点5和测点4的应变为

纯弯曲实验报告

《材料力学》课程实验报告纸 实验二:梁的纯弯曲正应力试验 一、实验目的 1、测定矩形截面梁在只受弯矩作用的条件下,横截面上正应力的大小随高 度变化的分布规律,并与理论值进行比较,以验证平面假设的正确性,即横截面上正应力的大小沿高度线性分布。 2、学习多点静态应变测量方法。 二:实验仪器与设备: ①贴有电阻应变片的矩形截面钢梁实验装置 1台 ②DH3818静态应变测试仪 1件 三、实验原理 (1)受力图 主梁材料为钢梁,矩形截面,弹性模量E=210GPa,高度h=40.0mm,宽度 b=15.2mm。旋动转轮进行加载,压力器借助于下面辅助梁和拉杆(对称分布)的传递,分解为大小相等的两个集中力分别作用于主梁的C、D截面。对主梁进行受力分析,得到其受力简图,如图1所示。 (2)内力图 分析主梁的受力特点,进行求解并画出其内力图,我们得到CD段上的剪力为零,而弯矩则为常值,因此主梁的CD段按理论描述,处于纯弯曲状态。主梁的内力简图,如图2所示。 Page 1 of 10

《材料力学》课程实验报告纸 (3)弯曲变形效果图(纵向剖面) (4)理论正应力 根据矩形截面梁受纯弯矩作用时,对其变形效果所作的平面假设,即横截面上只有正应力,而没有切应力(或0=τ),得到主梁纯弯曲CD 段横截面上任一高度处正应力的理论计算公式为 z i i I y M = 理论σ 其中,M 为CD 段的截面弯矩(常值),z I 为惯性矩, i y 为所求点至中性轴的距 离。 (5)实测正应力 测量时,在主梁的纯弯曲CD 段上取5个不同的等分高度处(1、2、3、4、5),沿着与梁的纵向轴线平行的方向粘贴5个电阻应变片,如图4所示。 在矩形截面梁上粘贴上如图5.3所示的2组电阻应变片,应变片1-5分别贴在横力弯曲区,6-10贴在纯弯曲区,同一组应变片之间的间隔距离相等。 Page 2 of 10

材料力学B试题6弯曲变形

弯曲变形 1. 已知梁的弯曲刚度EI 为常数,今欲使梁的挠曲线在x =l /3处出现一拐点,则比值M e1/M e2为: (A) M e1/M e2=2; (B) M e1/M e2=3; (C) M e1/M e2=1/2; (D) M e1/M e2=1/3。 答:(C) 2. 外伸梁受载荷如 致形状有下列(A)(B)、(C),(D)四种: 答:(B) 3. 简支梁受载荷并取坐标系如图示,则弯矩M 、剪力F S 与分布载荷q 之间的关系以及挠曲线近似微分方程为: (A)EI x M x w q x F F x M ) (d d ,d d , d d 2 2S S ===; (B)EI x M x w q x F F x M ) (d d ,d d , d d 2 2 S S =-=-=; (C)EI x M x w q x F F x M )(d d ,d d , d d 2 2S S -==-=; (D)EI x M x w q x F F x M )(d d ,d d , d d 2 2S S -=-==。 答:(B) 4. 弯曲刚度为EI 的悬臂梁受载荷如图 示,自由端的挠度EI l M EI Fl w B 232 e 3+=(↓) 则截面C 处挠度为:

(A)2 e 3 322323??? ??+??? ??l EI M l EI F (↓); (B)2 3 3223/323?? ? ??+??? ??l EI Fl l EI F (↓); (C)2 e 3 322)3/(323? ? ? ??++??? ??l EI Fl M l EI F (↓);(D)2 e 3 322)3/(323? ? ? ??-+??? ??l EI Fl M l EI F (↓)。 答:(C) 5. 画出(a)、(b)、(c)三种梁的挠曲线大致形状。 答: 6. 7. (a)、(b)刚度关系为下列中的哪一种: (A) (a)>(b); (B) (a)<(b); (C) (a)=(b); (D) 不一定。 答:(C) 8. 试写出图示等截面梁的位移边界条件,并定性地画出梁的挠曲线大致形状。 答:x =0, w 1=0, 1 w '=0;x =2a ,w 2 w 2;x =2a ,32 w w '='。 9. 试画出图示静定组合梁在集中力F 作用下挠曲线的大致形状。 (a) (b) (c) w ===θw w

纯弯梁的弯曲应力测定

纯弯梁的弯曲应力测定实验报告 使用设备名称与型号 同组人员 实验时间 1、 实验目的 1.测定梁纯弯曲时横截面上的正应力大小及分布规律,并与理论值比较,以验证弯曲正应力公式。 2.观察正应力与弯矩的线性关系。 3.了解电测法的基本原理和电阻应变仪的使用方法。 2、 实验设备与仪器 1.弯曲梁实验装置和贴有电阻应变片的矩形截面钢梁。 2.静态数字电阻应变仪YJ28A-P10R(见附录四)和载荷显示仪。 3.直尺。 3、 实验原理 梁纯弯曲时横截面上的正应力公式为σ= ,式中M为作用在横截面上的弯矩,Y为欲求应力点到中性轴Z的距离,I z为梁横截面对中性轴的惯性矩。本实验采用矩形截面钢梁,实验时将梁的支承及载荷情况布置如图6-1所示,梁的CD段为纯弯曲,在梁的CD段某截面不同高度(四等分点)处贴五片电阻应变片,方向平行梁轴,温度补偿片粘贴梁上不受力处,当纯弯梁受载变形时,利用电阻应变仪测出各应变片的应变值(即梁上各纵向应变值)ε实。由于纵向纤维间不互相挤压,故根据单向应力状态的虎克定律求出应力σ实=Eε实。E为梁所用材料的弹性模量。为了减少测量误差,同时也可以验证正应

力与弯矩的线性关系,采用等量加载来测定沿高度分布的各相应点的应变,每增加等量的载荷 F,测定各点相应的应变一次,取应变增量的平均值 ε实。求出各应力增量 σ实=E ε实,并与理论值 σ理= 进行比较,其中 M= Fa.,从而验证理论公式的正确性。

图6-1纯弯梁示意图 4、 实验操作步骤 1.将梁放在实验装置的支座上。注意应尽量使梁受平面弯曲,用尺测量力作用点的位置及梁的截面尺寸。 2.在确保梁的最大应力小于材料的比例极限σp前提下,确定加载方案。 3.将梁上各测点的工作应变片逐点连接到应变仪的A、B接线柱上,而温度补偿片接在B、C接线柱上。按电阻应变仪的使用方法,将应变仪调整好。 4.先加载至初载荷,记录此时各点的应变值,然后每次等量增加载荷 ΔF,逐次测定各点相应的应变值,直到最终载荷终止。卸载后,注意记录各测点的零点漂移。 5.检查实验数据是否与离开中性轴的距离成正比,是否与载荷成线形关系,结束工作。 5、 实验结果及分析计算 1、 实验数据 12345

工程力学习题库-弯曲变形

第8章 弯曲变形 本章要点 【概念】平面弯曲,剪力、弯矩符号规定,纯弯曲,中性轴,曲率,挠度,转角。 剪力、弯矩与荷载集度的关系;弯曲正应力的适用条件;提高梁的弯曲强度的措施;运用叠加法求弯曲变形的前提条件;截面上正应力分布规律、切应力分布规律。 【公式】 1. 弯曲正应力 变形几何关系:y ερ = 物理关系:E y σρ = 静力关系:0N A F dA σ==?,0y A M z dA σ==?,2z z A A EI E M y dA y dA σρ ρ == =?? 中性层曲率: 1 M EI ρ = 弯曲正应力应力:,M y I σ= ,max max z M W σ= 弯曲变形的正应力强度条件:[]max max z M W σσ=≤ 2. 弯曲切应力 矩形截面梁弯曲切应力:b I S F y z z S ??=* )(τ,A F bh F S S 2323max ==τ 工字形梁弯曲切应力:d I S F y z z S ??=* )(τ,A F dh F S S ==max τ 圆形截面梁弯曲切应力:b I S F y z z S ??=* )(τ,A F S 34max =τ 弯曲切应力强度条件:[]ττ≤max

3. 梁的弯曲变形 梁的挠曲线近似微分方程:() ''EIw M x =- 梁的转角方程:1()dw M x dx C dx EI θ= =-+? 梁的挠度方程:12()Z M x w dx dx C x C EI ??=-++ ??? ?? 练习题 一. 单选题 1、 建立平面弯曲正应力公式z I My /=σ,需要考虑的关系有( )。查看答案 A 、平衡关系,物理关系,变形几何关系 B 、变形几何关系,物理关系,静力关系; C 、变形几何关系,平衡关系,静力关系 D 、平衡关系, 物理关系,静力关系; 2、 利用积分法求梁的变形,不需要用到下面那类条件( )来确定积分常 数。查看答案 A 、平衡条件 B 、边界条件 C 、连续性条件 D 、光滑性条件 3、 在图1悬臂梁的AC 段上,各个截面上的( )。 A .剪力相同,弯矩不同 B .剪力不同,弯矩相同 C .剪力和弯矩均相同 D .剪力和弯矩均不同 图1 图2 4、 图2悬臂梁受力,其中( )。

弯曲试验方法

金属弯曲试验方法 GB232–2010 本标准参照采用国际标准lSO 7438–1985《金属材料–弯曲试验》。 1 主题内容与适用范围 本标准规定了金属材料弯曲试验方法的适用范围、试验原理、试样、试验设备、试验程序及试验结果评定。 本标准适用于检验金属材料承受规定弯曲角度的弯曲变形性能。 2 引用标准 GB 2975钢材力学及工艺性能试验取样规定 3 试验原理 将一定形状和尺寸的试样放置于弯曲装置上,以规定直径的弯心将试样弯曲到所要求的角度后,卸除试验力检查试样承受变形性能。 4 符号和名称 弯曲试验中使用的符号和名称如下表和图1、图2所示。

5 试验设备 5.1弯曲试验可在压力机或万能试验机上进行。试验机应具备下列装置。 5.1.1应有足够硬度的支承辊,其长度应大于试样的宽度或直径。支辊间的距离可以调节。 5.1.2具有不同直径的弯心,弯心直径由有关标准规定,其宽度应大于试样的宽度或直径,弯心应有足够的硬度。 5.2厚度不大于4mm的试样,可在虎钳上进行弯曲试验,弯心直径按有关标准规定。 6 试样 6.1试验时用圆形、方形、长方形或多边形横截面的试样。弯曲外表面不得有划痕。方形和长方形试样的棱边应锉圆,其半径不应大于2mm。 6.2试样加工时,应去除剪切或火焰切割等形成的影响区域。 6.3圆形或多边形横截面的材料作弯曲试验时,如果圆形横截面直径或多边形横截面的内切圆直径不大于35mm,试样与材料的横截面相同。若试验机能量允许时,直径不大于50mm的材料亦可用全截面的试样进行试验。当材料的直径大于35mm,则加工成直径为25mm的试样,或如图3加工成试样。并保留一侧原表面。弯曲试验时,原表面应位于弯曲的外侧。 6.4当有关标准未作具体规定时,板材厚度不大于3mm,试样宽度为20±5mm。 6.5板(带)材、型材和方形横截面材料的厚度不大于25mm时,试样厚度与材料厚度相同,试样宽度为试样厚度的2倍,但不得小于10mm;当材料厚度大于25mm时,试样厚度应加工成25mm,并保留一个原表面,其宽度应加工成30mm。当试验机能量允许时,厚度大于25mm的材料,可以全厚度的试样进行试验,其宽度为试样厚度的2倍。仲裁时,按厚度减薄加工的试样进行试验。弯曲时,原表面位于弯曲的外侧。 6.6弯曲试样长度根据试样厚度和弯曲试验装置而定,通常按下式确定试样长度: L≈5a+150mm 6.7凡经加工的试样,其宽度、厚度或直径的尺寸偏差均为±1mm。 6.8试样的端部应打印或用其他方法标记试样的代号。 6.9试样的形状和尺寸如有关标准有特殊规定,则按规定执行。 7 试验程序 7.1半导向弯曲

材料力学习题册答案第章弯曲变形

第六章弯曲变形 一、是非判断题 1.梁的挠曲线近似微分方程为EIy’’=M(x)。(√)2.梁上弯矩最大的截面,挠度也最大,弯矩为零的截面,转角为零。(×)3.两根几何尺寸、支撑条件完全相同的静定梁,只要所受载荷相同,则两梁所对应的截面的挠度及转角相同,而与梁的材料是 否相同无关。(×)4.等截面直梁在弯曲变形时,挠曲线的曲率最大值发生在转角等于零的截面处。(×)5.若梁上中间铰链处无集中力偶作用,则中间铰链左右两侧截面的挠度相等,转角不等。(√)6.简支梁的抗弯刚度EI相同,在梁中间受载荷F相同,当梁的跨度增大一倍后,其最大挠度增加四倍。(×)7.当一个梁同时受几个力作用时,某截面的挠度和转角就等于每一个单独作用下该截面的挠度和转角的代数和。(√)8.弯矩突变的截面转角也有突变。(×) 二、选择题 1. 梁的挠度是(D) A 横截面上任一点沿梁轴线方向的位移 B 横截面形心沿梁轴方向的位移 C横截面形心沿梁轴方向的线位移

D 横截面形心的位移 2. 在下列关于挠度、转角正负号的概念中,(B)是正确的。 A 转角的正负号与坐标系有关,挠度的正负号与坐标系无关 B 转角的正负号与坐标系无关,挠度的正负号与坐标系有关 C 转角和挠度的正负号均与坐标系有关 D 转角和挠度的正负号均与坐标系无关 3. 挠曲线近似微分方程在(D)条件下成立。 A 梁的变形属于小变形 B 材料服从胡克定律 C 挠曲线在xoy平面内 D 同时满足A、B、C 4. 等截面直梁在弯曲变形时,挠曲线的最大曲率发生在(D)处。 A 挠度最大 B 转角最大 C 剪力最大 D 弯矩最大 5. 两简支梁,一根为刚,一根为铜,已知它们的抗弯刚度相同。跨中作用有相同的力F,二者的(B)不同。 A支反力 B 最大正应力 C 最大挠度D最大转角6. 某悬臂梁其刚度为EI,跨度为l,自由端作用有力F。为减小最大挠度,则下列方案中最佳方案是(B) A 梁长改为l /2,惯性矩改为I/8 B 梁长改为3 l /4,惯性矩改为I/2 C 梁长改为5 l /4,惯性矩改为3I/2 D 梁长改为3 l /2,惯性矩改为I/4 7. 已知等截面直梁在某一段上的挠曲线方程为: y(x)=Ax2(4lx - 6l2-x2),则该段梁上(B)

纯弯曲实验报告

实验二:梁的纯弯曲正应力试验 一、实验目的 1、测定矩形截面梁在只受弯矩作用的条件下,横截面上正应力的大小随高度 变化的分布规律,并与理论值进行比较,以验证平面假设的正确性,即横截面上正应力的大小沿高度线性分布。 2、学习多点静态应变测量方法。 二:实验仪器与设备: ①贴有电阻应变片的矩形截面钢梁实验装置 1台 ②DH3818静态应变测试仪 1件 三、实验原理 (1)受力图 主梁材料为钢梁,矩形截面,弹性模量E=210GPa,高度h=40.0mm,宽度 b=15.2mm。旋动转轮进行加载,压力器借助于下面辅助梁和拉杆(对称分布)的传递,分解为大小相等的两个集中力分别作用于主梁的C、D截面。对主梁进行受力分析,得到其受力简图,如图1所示。 (2)力图 分析主梁的受力特点,进行求解并画出其力图,我们得到CD段上的剪力为零,而弯矩则为常值,因此主梁的CD段按理论描述,处于纯弯曲状态。主梁的力简图,如图2所示。 Page 1 of 10

(3)弯曲变形效果图(纵向剖面) (4)理论正应力 根据矩形截面梁受纯弯矩作用时,对其变形效果所作的平面假设,即横截面上只有正应力,而没有切应力(或0=τ),得到主梁纯弯曲CD 段横截面上任一高度处正应力的理论计算公式为 z i i I y M = 理论σ 其中,M 为CD 段的截面弯矩(常值),z I 为惯性矩, i y 为所求点至中性轴的距 离。 (5)实测正应力 测量时,在主梁的纯弯曲CD 段上取5个不同的等分高度处(1、2、3、4、5),沿着与梁的纵向轴线平行的方向粘贴5个电阻应变片,如图4所示。 在矩形截面梁上粘贴上如图5.3所示的2组电阻应变片,应变片1-5分别贴在横力弯曲区,6-10贴在纯弯曲区,同一组应变片之间的间隔距离相等。 Page 2 of 10

弯曲工艺及弯曲模具设计 复习题答案

第三章弯曲工艺及弯曲模具设计复习题答案 一、填空题 1 、将板料、型材、管材或棒料等弯成一定角度、一定曲率,形成一定形状的零件的冲压方法称为弯曲。 2 、弯曲变形区内应变等于零的金属层称为应变中性层。 3 、窄板弯曲后起横截面呈扇形状。窄板弯曲时的应变状态是立体的,而应力状态是平面。 4 、弯曲终了时,变形区内圆弧部分所对的圆心角称为弯曲中心角。 5 、弯曲时,板料的最外层纤维濒于拉裂时的弯曲半径称为最小弯曲半径。 6 、弯曲时,用相对弯曲半径表示板料弯曲变形程度,不致使材料破坏的弯曲极限半径称最小弯曲半径。 7、最小弯曲半径的影响因素有材料的力学性能、弯曲线方向、材料的热处理状况、弯曲中心角。 8 、材料的塑性越好,塑性变形的稳定性越强,许可的最小弯曲半径就越小。 9 、板料表面和侧面的质量差时,容易造成应力集中并降低塑性变形的稳定性,使材料过早破坏。对于冲裁或剪切坯料,若未经退火,由于切断面存在冷变形硬化层,就会使材料塑性降低,在上述情况下均应选用较大的弯曲半径。轧制钢板具有纤维组织,顺纤维方向的塑性指标高于垂直于纤维方向的塑性指标。 10 、为了提高弯曲极限变形程度,对于经冷变形硬化的材料,可采用热处理以恢复塑性。 11 、为了提高弯曲极限变形程度,对于侧面毛刺大的工件,应先去毛刺;当毛刺较小时,也可以使有毛刺的一面处于弯曲受压的内缘(或朝向弯曲凸模),以免产生应力集中而开裂。 12 、为了提高弯曲极限变形程度,对于厚料,如果结构允许,可以采用先在弯角内侧开槽后,再弯曲的工艺,如果结构不允许,则采用加热弯曲或拉弯的工艺。 13 、在弯曲变形区内,内层纤维切向受压而缩短应变,外层纤维切向受受拉而伸长应变,而中性层则保持不变。 14 、板料塑性弯曲的变形特点是:( 1 )中性层内移( 2 )变形区板料的厚度变薄( 3 )变形区板料长

弯曲变形的强度条件和强度计算

弯曲变形的强度条件和强度计算 当梁受到一组垂直于其轴线的力即横向力或位于轴线平面内的外力偶作用时,梁的轴线由一条直线变为曲线,称为弯曲变形。如果梁的几何形状材料性能和外力都对称于梁的纵向对称面则称为对称弯曲。如果梁变形后的轴为形心主惯性平面内的平面曲线则称为平面弯曲。本课程中主要研究以对称弯曲为主的平面弯曲,如图1所示。 图1 平面弯曲 一、梁弯曲时的内力——剪力和弯矩 梁的横截面上有两个分量——剪力和弯矩,它们都随着截面位置的变化而变化,可表示为F S=F S(x)和M=M (x),称为剪力方程和弯矩方程。 为了研究方便,通常对剪力和弯矩都有正负规定:使微段梁发生顺时针转动的剪力为正,反之为负,如图2所示;使微段梁上侧受拉下侧受压的弯矩为正,反之为负,如图3所示。 图2 剪力的正负 图3 弯矩的正负 例1:试写出下图所示梁的内力方程,并画出剪力图和弯矩图。

解:( 1 )求支反力 = ∑C M:0 3 10 12 6= ? - - ? Ay F,kN 7 = Ay F = ∑Y:0 10= - +By Ay F F,kN 3 = By F (2)列内力方程 剪力: ? ? ? < < - < < = 6 3 kN 3 3 kN 7 ) ( S x x x F 弯矩: ? ? ? ≤ ≤ ≤ ≤ ? - ? - = 6 3 3 m kN ) 6(3 m kN 12 7 ) ( x x x x x M (3)作剪力图和弯矩图 二、梁弯曲时的正应力 在一般情况下,梁的横截面上既有弯矩又有剪力。若梁上只有弯矩没有剪力,称为纯弯曲。本讲主要讨论纯弯曲时横截面上的应力——正应力。梁横截面上的正应力大小与该点至中性轴的距离成正比,即正应力沿截面宽度均匀分布,沿高度呈线性分布,如图4所示。 图4 梁弯曲时的正应力分布图 即有y I x M z ) ( = σ(1)

金属管 弯曲试验方法及程序

金属管弯曲试验方法及程序 编制: 审核: 批准: 生效日期:2016-10-8

受控标识处: 分发号: 发布日期:2016年9月30日实施日期:2016年10月8日 制/修订记录

1.0 目的和范围 1.1本文件规定了测定圆形横截面的金属管弯曲塑性变形能力的试验方法。 1.2本文件适用于外径≤65mm的钢管。 1.3外径≤60mm的直缝电焊钢管,可用弯曲试验代替压扁试验。 1.4金属管横向条状试样的弯曲试样方法应根据GB/T 232来进行,以增加试样的原始弯曲率。 2.0 符号,名称和单位 本文件使用的符号,名称和单位在表1和图1中规定。 3.0 规范性应用文件 下列文件对于本文件的作用是必不可少的。凡是注日期的应用文件,仅注日期的版本适用于本文件。凡是不注日期的应用文件,其最新版本(包括所有的修改单)适用于本文件。 3.1 GB/T 2975 钢及钢产品力学性能试验取样位置和试样制备 3.2 GB/T 244 金属管弯曲试验方法 3.3 GB/T 232 金属材料弯曲试验方法 3.4 GB/T 13793 直缝电焊钢管 4.0 原理 将一根全截面的金属直管绕着一个规定半径和带槽的弯心弯曲,直至弯曲角度达到相关产品标准所规定的值。 5.0 试验设备

5.1弯曲试样设备应在弯管试验机上进行,试验时试验机应能防止管的横截面产生椭圆变形。 5.2弯管试验机的弯心应具有与管外轮廓相适应的沟槽。弯心半径由相关产品标准规定。 注:弯心半径的偏差,沟槽的深度和椭圆度均对实验结果有影响。 5.3 直缝电焊钢管 弯曲半径为钢管外径的6倍,弯曲角度为90o,试验后焊缝处不得出现裂纹和裂口。 6.0 试样 试样应是金属直管的一部分,并能在弯管试验机上进行试验。 7.0试验程序 7.1试验一般应在10℃∽35℃的室温范围内进行。对要求在控制条件下进行的试验,试验温度应为23℃±5℃。 7.2通过弯管试验机将不带填充物的管试样弯曲,试验时应确保试样弯曲变形段与金属管弯心紧密接触,直至达到规定的弯曲角度。 7.3在进行焊接管的弯曲试验时,焊缝位于弯曲方向的外侧,与弯曲平面呈90o||(|即弯曲中性线)的位置。 7.4对弯曲试样结果的说明应依据相关产品标准的要求。当产品标准中未做规定时,在不使用放大镜的情况下,试样后焊缝处如果无可见裂纹和裂口,应评定为合格。

实验3弯曲实验

实验三 弯曲实验 一、实验目的和要求 1.学习使用试验机进行弯曲实验的基本原理和方法。 2.观察试样在弯曲过程中的各种现象,由此了解试件变形过程中变形随荷载变化规律,以及有关的一些物理现象。测定试样材料的弹性模量E 。 3. 绘制力-挠度的曲线,观察平面假设的实用性,验证纯弯曲梁的挠度计算公式。 二.实验设备、仪器和试件 1.万能材料实验机,划线台,游标卡尺,钢直尺,划针。 2.矩形截面低碳钢试样 三、实验原理和方法 (1)理论公式: 本实验的测试对象为低碳钢制矩形截面简支梁,加载方式如图3-1所示。 由材料力学可知,AB 梁将产生弯曲变形,中点C 的挠度w 最大,计算式为 Z EI Fl w 483 = (1) 其中,跨距 a l 2=,截面惯性矩12 3 bh I Z =,这里,b 和h 分别是横截面的宽和高。 于是材料的弹性模量E 可计算得到 Z wI Fl E 483 = (2) 横截面上各点正应力沿截面高度按线性规律变化,沿截面宽度均匀分布,中性轴上各点的正应力为零。截面的上、下边缘上各点正应力为最大。危险截面C 的正应力最大值为 Z W M = max σ (3)

其中,M 是危险截面C 上的弯矩,Z W 是截面抗弯系数 6 2 bh W Z = (4) (2)实测方法: 实验采用手动加载方法,荷载F 大小可在计算机软件界面下的"负荷"窗口读出;挠度可在软件界面下的"变形"窗口读出。 在弹性范围内,如果测得载荷与变形数据由上式可求出要求的实验值。将实验值进行处理后可以得到材料的弹性模量E ,与理论计算值进行比较,就可以验证弯曲变形公式。 实验采用增量法。每增加等量载荷ΔF ,测得变形一次。因每次ΔF 相同,故变形应是基本上按比例增加。 四.实验步骤 1.测量矩形截面梁试样的宽度b 和高度h , 测量荷载作用点到梁支点距离a 2.在试样的侧面沿中性层划一条纵向线, 再在中性层纵向线两侧等距离各划一条纵向线; 在试样中点划一条横向线, 在中点横向线两侧等距离各划一条横向线 (上述划线用于观察变形情况和平面假设) 在试样支点各划一条横向线(用于安放试样) 3.实验时的取变形量5.00=?l mm ,7.01=?l mm , 9.02=?l mm 1.13=?l mm 左右(最好稍大些),相当于分四次加载。实验时逐级加载,并记录下各级荷载读数和变形读数。 4.手动加载结束后,卸载。然后用连续加载方式(在软件界面中点“运行”)进行实验,以便得到实验曲线。 5.进行数据处理,填写实验报告。注意,计算变形用教材或手册的弹性模量E 五.注意事项 1.认真观察、调整实验装置,确保两侧横力弯曲段长度相等。 2.注意安全!在加载时注意正确运用“快下”(快速接近试样)、“慢下”(已经接近试样)和“微下”(加载装置与试样接触,加载时)按钮 3.观察“平面假设”时,禁止加载! 六、思考题 1.尺寸、加载方式完全相同的钢梁和木梁,如果与中性层等距离处纤维的应变相等,问两梁相应位置的应力是否相等,载荷是否相等? 2.采用等增量加载法的目的是什么? 3.沿梁截面高度,应变怎样分布?随载荷逐级增加,应变分布按什么规律变化?中性轴

组合变形 习题及答案

组合变形 一、判断题 1.斜弯曲区别与平面弯曲的基本特征是斜弯曲问题中荷载是沿斜向作用的。( ) 2.斜弯曲时,横截面的中性轴是通过截面形心的一条直线。( ) 3.梁发生斜弯曲变形时,挠曲线不在外力作用面内。( ) 4.正方形杆受力如图1所示,A点的正应力为拉应力。( ) 图 1 5. 上图中,梁的最大拉应力发生在B点。( ) 6. 图2所示简支斜梁,在C处承受铅垂力F的作用,该梁的AC段发生压弯组合变形,CB段发生弯曲变形。( ) 图 2 7.拉(压)与弯曲组合变形中,若不计横截面上的剪力则各点的应力状态为单轴应力。( ) 8.工字形截面梁在图3所示荷载作用下,截面m--m上的正应力如图3(C)所示。( )

图 3 9. 矩形截面的截面核心形状是矩形。( ) 10.截面核心与截面的形状与尺寸及外力的大小有关。( ) 11.杆件受偏心压缩时,外力作用点离横截面的形心越近,其中性轴离横截面的形心越远。( ) 12.计算组合变形的基本原理是叠加原理。() 二、选择题 1.截面核心的形状与()有关。 A、外力的大小 B、构件的受力情况 C、构件的截面形状 D、截面的形心 2.圆截面梁受力如图4所示,此梁发生弯曲是() 图 4 A、斜弯曲 B、纯弯曲 C、弯扭组合 D、平面弯曲 三、计算题 1.矩形截面悬臂梁受力F1=F,F2=2F,截面宽为b,高h=2b,试计算梁内的最大拉应力,并在图中指明它的位置。

图 5 2.图6所示简支梁AB上受力F=20KN,跨度L=2.5m,横截面为矩形,其高h=100mm,宽b=60mm,若已知α=30°,材料的许用应力[σ]=80Mpa,试校核梁的强度。 3.如图7所示挡土墙,承受土压力F=30KN,墙高H=3m,厚0.75m,许用压应力[σ]ˉ=1 Mpa,许用拉应力[σ]﹢=0.1 Mpa,墙的单位体积重量为 ,试校核挡土墙的强度。 图 6 图 7 4.一圆直杆受偏心压力作用,其偏心矩e=20mm,杆的直径d=70mm,许用应力[σ]=120Mpa,试求此杆容许承受的偏心压力F之值。 5.如图8所示,短柱横截面为2a×2a的正方形,若在短柱中间开一槽,槽深为a,问最大应力将比不开槽时增大几倍?

材料力学B试题弯曲变形

弯曲变形 1、 已知梁得弯曲刚度EI 为常数,今欲使梁得挠曲线在x =l /3处出现一拐点,则比值M e1/M e2为: (A) M e1/M e2=2; (B) M e1/M e2=3; (C) M e1/M e2=1/2; (D) M e1/M e2=1/3。 答:(C) 2、 外伸梁受载荷如图示, 致形状有下列(A)(B)、(C),(D)四种: 答:(B) 3、 简支梁受载荷并取坐标系如图示,则弯矩M 、剪力F S 与分布载荷q 之间得关系以及挠曲线近似微分方程为: (A); (B); (C); (D)。 答:(B) 4、 弯曲刚度为EI 得悬臂梁受载荷如图示,自由端得挠度( ↓) 则截面C 处挠度为: (A)(↓); (B)(↓); (C)(↓);(D)(↓)。 答:(C) 5、 画出(a)、(b)、(c)三种梁得挠曲线大致形状。

答: 6、 7、正方形截面梁分别按(a)、(b)两种形式放置,则两者间得弯曲刚度关系为下列中得哪一种: (A) (a)>(b); (B) (a)<(b); (C) (a)=(b); (D) 不一定。 答:(C) 8、试写出图示等截面梁得位移边界条件,并定性地画出梁得挠曲线大致形状。 答:x=0, w1=0, =0;x=2a,w2=0,w3=0;x=a,w1=w2;x=2a,。 9、试画出图示静定组合梁在集中力F作用下挠曲线得大致形状。 答: (a)(b)(c)

10、 画出图示各梁得挠曲线大致形状。 答: 11、 12、 支座间得距离应为l -2a =0、577l 。 证: 2b ,,因对称性,由题意有: 得 即13、 等截面悬臂梁弯曲刚度EI 为已知,梁下有一曲面,方程为w = -Ax 3。欲使梁变形后与该曲面密合(曲面不受力),试求梁得自由端处应施加得载荷。 解: F S (x ) = -6EIA x=l , M = -6EIAl F =6EIA (↑),M e =6EIAl () 14、 变截面悬臂梁受均布载荷q 作用,已知q 、梁长l 及弹性模量E 。试求截面A 得挠度w A 与截面C 得转角θC 。 解:

材料力学习题弯曲变形

弯曲变形 基本概念题 一、选择题 1.梁的受力情况如图所示,该梁变形后的 挠曲线如图()所示(图中挠曲线的虚线部 分表示直线,实线部分表示曲线)。 2. 如图所示悬臂梁,若分别采用两种坐标 系,则由积分法求得的挠度和转角的正负号为 ()。 题2图题1图 A.两组结果的正负号完全一致 B.两组结果的正负号完全相反 C.挠度的正负号相反,转角正负号一致 D.挠度正负号一致,转角的正负号相反 3.已知挠曲线方程y = q0x(l3 - 3lx2 +2 x3)∕(48EI),如图所示,则两端点的约束可能为下列约束中的()。 题3图 4. 等截面梁如图所示,若用积分法求解梁的转角、挠度,则以下结论中( )是错误的。 A.该梁应分为AB、BC两段进行积分 B.挠度积分表达式中,会出现4个积分常数 -26-

题4图 题5图 C .积分常数由边界条件和连续条件来确定 D .边界条件和连续条件表达式为x = 0,y = 0;x = l ,0==右左y y ,0='y 5. 用积分法计算图所示梁的位移,边界条件和连续条件为( ) A .x = 0,y = 0;x = a + l ,y = 0;x = a ,右左y y =,右左 y y '=' B .x = 0,y = 0;x = a + l ,0='y ;x = a ,右左y y =,右左 y y '=' C .x = 0,y = 0;x = a + l ,y = 0,0='y ;x = a ,右左y y = D .x = 0,y = 0;x = a + l ,y = 0,0='y ;x = a ,右左 y y '=' 6. 材料相同的悬臂梁I 、Ⅱ,所受荷载及截面尺寸如图所示。关于它们的最大挠度有如 下结论,正确的是( )。 A . I 梁最大挠度是Ⅱ梁的 41倍 B .I 梁最大挠度是Ⅱ梁的2 1 倍 C . I 梁最大挠度与Ⅱ梁的相等 D .I 梁最大挠度是Ⅱ梁的2倍 题6图 题7图 7. 如图所示等截面梁,用叠加法求得外伸端C 截面的挠度为( )。 A . EI Pa 323 B . EI Pa 33 C .EI Pa 3 D .EI Pa 233 8. 已知简支梁,跨度为l ,EI 为常数,挠曲线方程为)24)2(323EI x lx l qx y +-=, -27-

三、梁弯曲的内力、变形、应力

目录 引言 (2) 一杆件受拉压的内力、应力、变形 (2) 1.1轴向拉压的内力、轴力图 (2) 1.2 轴向拉压杆横截面上的应力 (5) 1.3 轴向拉压杆横截面上的变形 (7) 1.4 圣维南原理 (9) 1.5 工程结构实例分析 (11) 二圆轴扭转 (15) 2.1、扭转的力学模型及ANSYS建模 (15) 2.2、圆轴扭转时,横截面上的内力偶矩------扭矩 (15) 2.3、圆轴扭转时,横截面上的应力、强度条件 (15) (1) 横截面上的切应力 (15) (2) 极惯性矩与抗扭截面系数 (15) 三、梁弯曲的内力、变形、应力 (20) 3.1 梁的弯曲内力、变形 (20) 3.2 弯曲应力 (27) 3.3 工程实例: (31) 四、压杆稳定 (35) 4.1、压杆稳定的概念 (35) 4.2、临界压力 (35) 4.3、三类压杆的临界载荷 (36) 4.4、压杆稳定性计算 (36) 4.5 工程实例4 (38)

引 言 《材料力学》是机械、土木类工科学生重要的技术基础课,其计算方法和思想在工程计算中应用非常广泛。为了使学生对课内知识体系有一个比较清晰的感性认识,锻炼学生的求真精神和实践动手能力,进一步培养学生的综合创造力,兴趣小组的学生们在教师的指导下基于ANSYS 有限元分析软件对《材料力学》的某些知识点进行数值计算与模拟,得到相关的数据、云图或动画,从而对理论公式进行形象验证,更开阔了学生的视野,提高了学生的CAE 水平。 本研究内容包括三部分: (1)对《材料力学》课程中的基本内容,包括拉压、剪切、扭转、弯曲的内力、应力、变形、压杆稳定、动载荷、疲劳强度、圣维南原理等重要理论知识点情况通过ANSYS 进行分析,得到内力、变形、应力、应变相关的数据、云图或动画; (2)对重要知识点的典型例题通过ANSYS 进行计算,并与理论计算结果进行对比验证。 (3)对《材料力学》理论知识能够解决的典型工程实际问题进行建模、分析与计算。 一 杆件受拉压的内力、应力、变形 1.1轴向拉压的内力、轴力图 在工程结构和机械中,发生轴向拉伸或压缩的构件是很常见的。 在轴向外力作用下,杆件横截面上唯一的内力分量是轴力N F 轴向拉压杆件的受力特点:作用于杆件上的合外力的作用线与杆件轴线重合,杆件变形是沿轴线方向的延长或缩短。 对如图1-1a 所示的两端受轴向外力p F 作用的杆件,用一假想平面沿任意横截面将杆截为两段,由任一部分的平衡方程0=∑F ,可求得截面上的轴力 N F =p F (如图1-1b)

材料力学习题弯曲变形

1. 梁的受力情况如图所示,该梁变形后的 挠曲线如图( )所示(图中挠曲线的虚线部 分表示直线,实线部分表示曲线 )。 2. 如图所示悬臂梁,若分别采用两种坐标 系, 则由积分法求得的挠度和转角的正负号为 )° 弯曲变形 基本概念题 一、选择题 题2图 题1图 A. 两组结果的正负号完全一致 B. 两组结果的正负号完全相反 C. 挠度的正负号相反,转角正负号一致 D. 挠度正负号一致,转角的正负号相反 3 2 3 3. 已知挠曲线方程 y = q o x (l - 3lx +2 x )/(48EI ),如图所示,则两端点的约束可能为 F 列约束中的( )° 题3图 4. 等截面梁如图所示,若用积分法求解梁的转角、挠度,则以下结论中( )是错误的。 A. 该梁应分为 AB 、BC 两段进行积分 B. 挠度积分表达式中,会出现 4个积分常数 5

题4图 题5图 C. 积分常数由边界条件和连续条件来确定 D. 边界条件和连续条件表达式为 x = 0,y = 0 ; x = l , y 左=y 右二0,y'O 5.用积分法计算图所示梁的位移,边界条件和连续条件为 ( ) A. x = =0, y = 0 );x = :a + l ,y = 0 ; x = a, y 左二 y 右,y 左 二y 右 B. x = =0, y = 0 );x = :a + l ,y = 0 ; x = a, y 左二y 右, y 左二y 右 C. x = =0, y =( );x = =a + l ,y = 0, y =0; x = a, y 左= y 右 D. x : =0, y = < 0; x = =a + l, y = 0, y "= 0; x = a, y 左二 :y 右 6. 材料相同的悬臂梁I 、n,所受荷载及截面尺寸如图所示。关于它们的最大挠度有如 下结论,正确的是( )。 1 A . I 梁最大挠度是n 梁的 倍

相关文档
最新文档