三苯基膦氯化铑中铑含量检测实验报告(报批稿)

三苯基膦氯化铑中铑含量检测实验报告(报批稿)
三苯基膦氯化铑中铑含量检测实验报告(报批稿)

ICP-AES法测定三苯基膦氯化铑中铑含量

方卫、李青、侯文明、杨晓滔、马媛、冯璐

(贵研铂业股份有限公司,云南昆明650106)

前言

三苯基膦氯化铑,又称威尔金森催化剂,为绛红色晶体,主要用于催化加氢、醛脱羰基反应、烯选择性加氢、羰基化、甲酰化反应等的催化剂,广泛应用于石化、生物、化工、化学等领域。一般其铑含量的理论值为11.12%。随着国内三苯基膦氯化铑产品市场的开拓,需要对三苯基膦氯化铑产品中铑含量及杂质元素进行准确分析。GB/T 23519-2009三苯基膦氯化铑标准中规定了铑含量及杂质元素的检测方法,其铑质量分数的测定是取三苯基膦氯化铑于管式电炉中灼烧通氢还原制备成为铑粉后,转入聚四氟乙烯溶样罐中酸溶解,按YS/T 561-2009硝酸六氨合钴重量法进行测定。重量法虽然准确度高,但样品前处理漫长、繁琐,分析速度慢。因此,非常有必要制订专门针对三苯基膦氯化铑产品检测方法的国家标准,方法应快速、准确,有极强的可操作性。

本文用试料采用硝酸、高氯酸在电热板上加热冒烟分解破坏有机物,再使用混合酸将铑转换为氯化铑水溶液,以铟为内标,电感耦合等离子体发射光谱仪进行测定、计算得到铑的质量分数。铑测定范围:0.5%~12%;方法精密度优于1%;样品加标回收率99.58%~100.62%。方法准确快速。与“YS/T 561铂铑合金中铑量的测定硝酸六氨合钴重量法”的结果一致。

实验部分

1 试剂

本方法所用水均为二级蒸馏水。盐酸(ρ1.19 g/mL)、硝酸(ρ1.42 g/mL)、高氯酸(ρ1.76 g/mL)均为分析纯。

铟内标溶液:1.000 mg/mL(1+9盐酸介质)。

铑标准贮存溶液:1.000 mg/mL(1+9盐酸介质)

铑标准工作溶液:取六个100 mL容量瓶,分别移取相应的铑标准贮存溶液,各加入1.00 mL铟内标溶液、10 mL盐酸(4.1),用水稀释定容。混匀。得到铑含量分别为5.00、10.00、25.00、50.00、及100.00 μg/mL的标准工作溶液。

2 仪器

电感耦合等离子体原子发射光谱仪( Optima 5300DV):中阶梯光栅+石英棱镜二维分光,200 nm处分辨率:0.005 nm。仪器测定波长及测定条件(推荐)如下:

测定条件:分析功率1.25 KW;冷却气流量12 L/Min;辅助气流量0.8 L/Min;载气流量0.3 L/Min;观测高度为线圈上方15 mm;观测方向为垂直方向;积分时间5 s;测定波长见表1:

表1 推荐的分析线及其背景等效浓度和检出限

3 样品处理

称取约0.05 g试样于100 mL烧杯中,加入5 mL硝酸,盖上表皿,低温加热溶解后,冷却,加入3 mL高氯酸继续溶解至冒高氯酸烟,取下,冷却,加入5 mL王水再低温溶解0.5小时左右,冷却至室温后,将溶液移入100 mL容量瓶中,加入铟内标溶液1.00 mL,用1+9的盐酸溶液稀释至刻度,摇匀。

结果与讨论

1 三苯基膦氯化铑样品的溶解方法选择

用聚四氟乙烯消化罐进行溶解,王水、硝酸或它们与高氯酸的混酸,均不能得到溶解清亮的溶液。用电热板进行溶解,仅使用王水或硝酸,均不能将样品溶解彻底和清亮。而使用先加入硝酸和高氯酸冒烟,再加入王水的方式可得到清亮透明的试液。最终采用的溶解方法为:加入5 mL硝酸及3 mL高氯酸,控制电热板温度在180℃±5 ℃下溶解至冒高氯酸烟,稍冷却后,再加入5 mL王水,150 ℃下溶解约0.5 h。

2 介质对Rh测定的影响

由于溶解方法中使用了盐酸、硝酸及高氯酸,因此,分别试验了三种介质对测定的影响情况。由实验可知:10%以内的盐酸、硝酸及5%以内的高氯酸不影响测定。本实验使用5 mL硝酸、3 mL高氯酸及5 mL王水就可溶解完全,不影响测定。

3 共存物对Rh测定的影响

化合物中仅有有机配位体三苯基膦,因此采用与化合物相同量的三苯基膦作为空白,与样品一样处理后测定Rh含量。结果表明其对铑的测定几乎无干扰(见表3中合成KB测定值)。

4 内标元素选择及对精密度改善效果

采用内标法可以大大改善Rh含量测定的精密度。铟和钇均可作为候选的内标元素,综合考虑成本因素,最终选择了铟作为内标。其浓度为10 μg/mL,波长选择In 325.609 nm。

5方法加标回收率

为了检验方法的回收率,使用在样品中定量加入铑标准,用上述方法进行测定并计算回收率。结果列入表2中。

表2 方法的加标回收率

5.1 合成样品分析结果

采用三苯基膦中加入铑标准溶液的方式合成样品,按样品的处理方式进行处理和测定。结果如下表3。

表3 合成样品的测定结果

5.2 实际样品分析结果及精密度试验

平行称取7份试样,每份0.05 g,按上述溶解方法进行溶解,最后定容于100 mL容量瓶中测定。表4为实际样品在不同时间处理测定的精密度(共六组数据)。

表4 样品测定结果及精密度(六组数据)

表5:铑含量测定结果总平均值

5.3 合成样品精密度试验

表6:合成样品精密度试验(低点及中间点)

6 结论

本文用试料采用硝酸、高氯酸在电热板上加热冒烟分解破坏有机物,再使用混合酸将铑转换为氯化铑水溶液,以铟为内标,电感耦合等离子体发射光谱仪进行测定、计算得到铑的质量分数。铑测定范围:0.5%~12%;方法精密度优于1%;样品加标回收率99.58%~100.62%。方法准确快速。与传统的“YS/T 561铂铑合金中铑量的测定硝酸六氨合钴重量法”的结果一致。

7 参考文献

1.YS/T 561-2009贵金属合金化学分析方法铂铑合金中铑量的测定硝酸六氨合钴重量法

2.Richard C.Kaltenbach;https://www.360docs.net/doc/312231977.html,rry Manziek, Rhodium/Sampling and Analysis (International Precious Metals Institute),1992,97~119

3.郑萍,潘再富,姜婧等.紫外分光光度法测定一氯三(三苯基膦)合铑( I)的含量.贵金属, 2010,31(3),43~45.

4.张岩, 梁景程, 杨慧娟等.三苯基磷中铑的测定(ICP-AES法) .辽宁化工.2006,35(9),552~554.

国家标准《三苯基膦氯化铑》编制说明

三苯基膦氯化铑 编制说明 (送审稿) 二OO八年六月

三苯基膦氯化铑 编制说明 1、工作简况 贵研铂业股份有限公司于2007年3月向上级主管部门提出制定三苯基膦氯化铑标准的计划,2007年12月中国有色金属工业标准计量质量研究所以中色协综字(2007)第237号文下达制定该标准的任务,国家标准计划号为20079127-T-610,项目起止时间为2008年1月~2008年12月,技术归口单位为中国有色金属工业标准计量质量研究所,起草单位为贵研铂业股份有限公司。 本标准主要起草人:侯文明、刘桂华、左川、李锟、方卫。 2、编制原则 三苯基膦氯铑,分子式[RhCl{P(C6H5)3}3],橙红色晶体,又称威尔金森催化剂,是重要的均相催化剂,可作为烯变烃、乙炔加氢的催化剂,广泛应用于石化、生物、化工、化学等领域。到目前为止,国内尚无统一的标准,制订三苯基膦氯铑国家标准是非常必要的。本标准制定的各项指标先进、合理,满足用户要求,通过本标准的实施,将进一步提高三苯基膦氯化铑的质量,提高该类产品的竞争力,无疑具有重要的经济效益和社会效益。 本标准严格按照GB/T1.1-2000《标准化工作导则》进行编写,以范围—规范性引用文件—要求等的顺序编写,内容规范。 3、主要技术内容的确定 3.1铑质量分数 RhCl{P(C6H5)3}3的分子量为925.23(按1995年国际相对原子质量),铑金属理论含量为11.12% 根据用户的使用情况,把铑的含量定为11.00%~11.11%。 称取一定量的三苯基膦氯化铑试样(精确至0.0001g),样品经加热溶解后,按YS/T 561的规定测定铑含量。 3.2溶解试验 称取一定量的化合物,用三氯甲烷溶解,应澄清。

实验报告氯化钠的提纯实验报告范文_0708

2020 实验报告氯化钠的提纯实验报告 范文_0708 EDUCATION WORD

实验报告氯化钠的提纯实验报告范文_0708 前言语料:温馨提醒,教育,就是实现上述社会功能的最重要的一个独立出来的过程。其目的,就是把之前无数个人有价值的观察、体验、思考中的精华,以浓缩、系统化、易于理解记忆掌握的方式,传递给当下的无数个人,让个人从中获益,丰富自己的人生体验,也支撑整个社会的运作和发展。 本文内容如下:【下载该文档后使用Word打开】 2-2+2+2-2-2+2+2-3+2+2+2- 1.准备实验仪器 2.洗涤 先用洗衣粉水刷洗,再用自来水冲洗,最后用蒸馏水冲洗。 3.称量粗盐 调零,在左、右盘中各放等质量的称量纸,取粗盐称得10.0g。 4.溶解粗盐 将粗盐转入烧杯,加入5ml蒸馏水,用玻璃棒搅拌,放在三脚架上加热溶解。 5.过滤 将滤纸折成圆锥状,置于漏斗中,用蒸馏水润湿,用玻璃棒将气泡赶出。

6.加入BaCl2溶液 待滤液液沸腾,边加边搅拌。 7.静置 继续加BaCl2溶液,直至溶液不再变浑浊。 8.加入NaOH―Na2CO3 待滤液液沸腾,边加边搅拌,用PH试纸检验,直到其值为4 9.过滤 10.纯度检验 称 1.0g粗盐,溶解,取一定量于两小试管中,一支加入NaOH、镁试剂,无天兰色沉淀;另一支加入CH3COOH、(NH4)2C2O4,出现白色沉淀。取过滤好的溶液,同样操作,一支无天兰色沉淀,另一支无沉淀。 11.蒸发、结晶 加热蒸发滤液,不断搅拌至稠状,趁热抽干转入蒸发皿蒸干。 12.称量 冷至室温,称得8.6g. 13.计算产率 产率=(8.6/10)100%=86%. 1.向第一次过滤后的滤液加入BaCl2时,溶液变浑浊(Ba2++SO42-=BaSO4); 2.向第二次过滤后的滤液加入NaOH―Na2CO3溶液时,溶液变浑浊; 3.蒸发结晶时,发出“噗噗”的响声。

废催化剂中铑的回收工艺

废催化剂中铑的回收工艺 摘要贵金属铑是铂族元素成员之一,作为催化剂中心金属被广泛应用于多相、均相络合催化反应中。铑催化剂具有高活性、高选择性、高热稳定性和寿命长的特点而经常被使用,催化剂中铑含量较高,而贵金属铑的资源少、价格昂贵、生产困难和产量不高等因素,使得贵金属铑的回收极其重要,其经济效益也是相当可观的。 关键词催化剂回收机理 催化剂在化学工业的发展过程中,起着不可替代的重要作用。但是催化剂随着使用时间的增长,会因过热导致活性组分晶粒的长大甚至发生烧结而使催化剂活性下降,或因遭受某些毒物的毒害而部分或全部丧失活性,也会因污染物积聚在催化剂活性表面或堵塞催化剂孔道而降低活性,最终不得不更新催化剂。催化剂在制备过程中,为了确保其活性、选择性、耐毒性和一定的强度及寿命等指标性能,常常挑选一些贵金属作为其主要成分。尽管催化剂在使用过程中某些组分的形态、结构和数量会发生变化,但废催化剂中仍然会含有相当数量的有色金属或贵金属,有时它们的含量会远远高于贫矿中相应组分的含量。 全球每年产生的废工业催化剂约为50万-70万吨,其中含有大量的铂族贵金属(如Pt、Pd 和Rh等) 及其氧化物,将其作为二次资源加以回收利用,可以得到品位极高的贵金属。从废工业催化剂中回收贵金属,不仅可获得显著的经济效益,更可以提高资源的利用率,减少催化剂带来的环境问题。 一、铑催化剂失活机理 铑催化剂以铑原子为活性中心,以三苯基膦为配位体。该催化剂含有贵重金属铑所以价格昂贵,在日常生产中少部分催化剂随产品带走,大部分催化剂的活性随着生产周期逐渐降低,直到完全失去活性。使铑催化剂失活的原因有很多种,以下分别进行介绍。 1、催化剂外部中毒 铑催化剂失活的主要原因是毒剂和抑制剂的进入,另外随着操作时间的延长,反应温度的提高,铑原子之间“搭桥”生成螯合物而失活。一类降低催化剂活性的物质是抑制剂,如2-乙基己烯醛、丙基二苯基膦等,这些物质可与烯烃竞争配位,降低催化剂活性,但其只能与铑形成很弱的配位键,配位后还可以逆转。另一类使铑催化剂活性降低的物质有卤化物(如HCl)、硫化物(如H2S、COS、CH3SH)等,这些都是使铑膦配合物中毒的毒物。这些物质能与铑形成很强的配位键,占据铑配合中心,使催化剂不能再与烯烃反应,由于反应中铑的浓度

化学实验报告-氯化钠提纯

化学实验报告-氯化钠提纯 实验目的 1.通过沉淀反应,了解提纯氯化钠的方法; 2.练习台称和煤气灯的使用以及过滤、蒸发、结晶、干燥等基本操作。 实验原理 粗食盐中含有不溶性杂质(如泥沙)和可溶性杂质(主要是Ca2+、Mg2+、K+和SO42-)。 不溶性杂质,可用溶解和过滤的方法除去。 可溶性杂质可用下列方法除去:在粗食盐溶液中加入稍微过量的BaCl2溶液时,即可将SO42-转化为难溶解的BaSO4沉淀而除去: Ba2++SO42- = BaSO4 将溶液过滤,除去BaSO4沉淀,再加入NaOH和Na2CO3溶液,由于发生下列反应: Mg2++2OH- = Mg(OH)2 Ca2++CO32- = CaCO3 Ba2++ CO32- = BaCO3 食盐溶液中的杂质Mg2+、Ca2+以及沉淀SO42-时加入的过量Ba2+转化为难溶的Mg(OH)2,CaCO3,BaCO3沉淀,并通过过滤的方法除去。过量的NaOH和Na2CO3可以用纯盐酸中和除去。少量可溶性的杂质(如KCl)由于含量很少,在蒸发浓缩和结晶过程中仍留在溶液中,不会和NaCl同时结晶出来。 过程步骤 一、粗食盐的提纯 1.在台秤上,称取8g粗食盐,放入小烧杯中,加30ml蒸馏水,用玻璃棒搅动,并加热使其溶解。至溶液沸腾时,在搅动下一滴一滴加入1mol·dm-3BaCl2溶液至沉淀完全(约2ml),继续加热,使BaSO4颗粒长大易于沉淀和过滤。为了试验沉淀是否完全,可将烧杯从石棉网上取下,待沉淀沉降后,在上层清液中加入1-2滴BaCl2溶液,观察澄清液中是否还有混浊

现象,如果无混浊现象,说明SO42-已完全沉淀。如果仍有混浊现象,则需继续滴加BaCl2溶液,直到上层清液在加入一滴BaCl2后,不再产生混浊现象为止。沉淀完全后,继续加热五分钟,以使沉淀颗粒长大而易于沉降,用普通漏斗过滤。 2.在滤液中加入1ml2mol·dm-3NaOH和3ml 1mol·dm-3Na2CO3溶液加热至沸。待沉淀沉降后,在上层清液中滴加1mol·dm-3Na2CO3溶液至不再产生沉淀为止,用普通漏斗过滤。 3.在滤液中还滴加入2mol·dm-3HCl,并用玻璃棒沾取滤液在pH试纸上试验,直到溶液呈微酸性为止(pH≈6)。 4.将溶液倒入蒸发皿中,用小火加热蒸发,浓缩至稀粥状的稠液为止,但切不可将溶液蒸发至干。 5.冷却后,用布氏漏斗过滤,尽量将结晶抽干。将结晶移入蒸发皿中,在石棉网上用小火加热干燥。 6.称出产品的质量,并计算产量百分率。 二、产品纯度的检验:取少量(约1g)提纯前和提纯后的食盐。分别用5ml蒸馏水溶解,然后各盛于三支试管中,组成三组,对照检验它们的纯度。 的检验:在第一组溶液中,分别加入2滴1mol·dm-3BaCl2溶液,比较沉淀产生的情况,在提纯的食盐溶液中应该无沉淀产生。 +的检验:在第二组溶液中,各加入2滴·dm-3草酸铵(NH4)2C2O4溶液,在提纯的食盐溶液中应无白色难溶的草酸钙CaC2O4沉淀产生。 +的检验:在第三组溶液中,各加入2-3滴1mol·dm-3NaOH溶液,使溶液呈碱性(用pH试纸试验)再各加入2-3滴“镁试剂”,在提纯的食盐溶液中应无天蓝色沉淀产生。 镁试剂是一种有机染料,它在酸性溶液中呈黄色,在碱性溶液中呈红色或紫色,但被Mg(OH)2沉淀吸附后,则呈天蓝色,因此可以用来检验Mg2+的存在。 分析思考 1.怎样除去粗食盐中的杂质Mg2+、Ca2+、K+和SO42-等离子? 2.怎样除去过量的沉淀剂BaCl2、NaOH、Na2CO3? 3.提纯后的食盐溶液浓缩时为什么不能蒸干? 4.怎样检验提纯

1, 1' - 二(二苯基膦)二茂铁金属配合物的晶体生产与结构分析

1, 1' - 二(二苯基膦)二茂铁金属配合物的晶体生产 与结构分析 *中山大学化学学院应用化学,广州,510275 摘要:实验中制备了[1,1'-双(二苯基膦基)二茂铁]二氯化镍、[1,1'-双(二苯基膦基)二茂铁]二氯化钯,培养得到合适的单晶后,通过X射线衍射仪对其晶体结构进行分析,收集相关数据。然后使用Olex2软件,SHELXTL程序解析得到的单晶衍射数据,通过数据分析及精修得到这两个化合物的的晶体结构参数;并用Diamond软件绘制晶体结构图。实验结果表明,在[1,1'-双(二苯基膦基)二茂铁]二氯化镍中,镍是四面体配位,由于氯原子间强大的斥力,存在一个较大的Cl--Ni--Cl角(124.47(3)0),而两个Cl-Ni-P角的不同是由于空间位阻的存在,二茂铁配体表现出稍微扭曲。[1,1'-双(二苯基膦基)二茂铁]二氯化钯属于单斜晶系,P21/c空间群,Mr= 772.71,其中的Pd是平行四边形配位,其处于两个P 原子和两个顺式1C 原子组成的假平面中心,Pd 一P1和Pd 一P2的键长分别为2.2933(8) ?和2.2774(8) ?,P1和P2原子都与Pd的两个C l原子所组成的平面有些偏离, 可能是由于四个苯基的空间位阻所致,扭曲程度越大Pd一P键就越长。两者的中心配位原子不一样,中心原子的配位方式不一样,因此相应的键角和键长也不一样。 关键词1, 1' - 二(二苯基膦)二茂铁金属配合物晶体结构结构分析 1.引言 晶体由原子组成的点阵在三维空间呈有序排列,类似于光线和光栅的作用,当一束单色X 射线照射到某一小晶体上,由于晶体内部结构及其周期性,点阵面间距d与X射线入射角之间符合布拉格(Bragg)方程:2dsinθ=nλ时,产生相干现象,就会产生衍射效应。 当X 射线穿过物体时,电场使带电粒子(电子和质子)振荡,结果是带电粒子本身又成为辐射源,这称为散射。大体上,X 射线衍射分析实验即是通过测定散射波的强度,由此推导出晶体中的电子密度分布。电子密度的峰值与原子核的位置相关,峰值处的密度越高,该处原子核的原子序数就越大,从而可根据电子密度分布情况确定原子的种类与坐标。 常常采用帕特森方法、直接法和charge-flipping 法推导出部分衍射的正确相角值,获得初步的电子密度分布图。对电子密度峰进行原子指认后,经过多轮的傅立叶合成,可最终得到完整的结构模型。为了获得精确的结构数据,还必须利用最小二乘法对原子坐标、占有率、热振

铂族金属旧料中回收铂、钯、铑生产流程

从铂族金属旧料中提纯铂、钯、金生产流程 北京金飞腾科技有限公司 原料对象主要是贵金属首饰厂家的边角旧料和生产旧料,铂族金属品位在X‰-XX%,金属提纯纯度为:99.9%以上,铂、钯一次直接回收率皆在99.7%以上,金的回收率在99.95%以上。这里重点介绍一下铂族金属三元旧料铂、钯、金的分离和精制提纯工艺过程。 一、从以铂为主的三元旧料分离含量大约为93%铂、5%钯、2%金的工艺流程: 三元旧料 ↓ 预处理(铸条) ↓ 压片至0.1-0.2毫米 ↓ 王水溶解 ↓ 先用甲酸赶硝酸,最后用盐酸赶硝酸,溶解完成后过滤 ↓ 加亚硫酸钠还原金 ↓ 滤液滤渣

↓↓ 丁二酮肟沉淀钯送金的提取和精炼 ↓ 过滤分离钯 ↓ 滤液用氯化铵沉铂 ↓ 氯铂酸铵 ↓ 煅烧 ↓ 99.9%铂 二、硝酸溶解—高含量75%-95%钯的提纯分离 先将物料放入玻璃反应釜内,加少量水润湿,缓慢加入硝酸,待反应平稳后,接通蒸汽开始加热。溶解开始时,反应非常剧烈,视反应情况,缓慢补加硝酸,注意反应滞后,冒缸,等液面较为平稳时,再补加少量硝酸,溶解结束后,继续加热浓缩,趁热加入试剂A(可缩短赶硝时间)进行赶硝作业,直至无黄烟冒出时为终点。 钯在浓硝酸作用下发生如下反应: Pd+4HNO3?Pd(NO3)2+2NO2↑+2H20 钯在稀硝酸作用下发生如下反应: 3Pd+8HNO3?3Pd(NO3)2+2NO↑+4H20

采用单纯硝酸溶解,钯溶解进入溶液,此时铂、金进入不溶残渣而实现铂、金与钯的分离。 过滤除去不溶物,滤出钯的溶液,在沉淀时必须加入氧化剂氯酸钠、硝酸、双氧水等,使二价钯氧化成四价钯。一般情况下在母液中直接加工业盐酸,过1小时后,加入氯化铵,再过1小时后,取小样过滤母液,滤液加氯化铵看有无混浊或红色沉淀(反应完全后,颜色为黄绿色)。过滤得到氯钯酸铵,用酸化的10%氯化铵溶液洗红色的滤饼几遍后,称重送钯的精制。其化学反应方程式为 H2PdCl4+2NH4Cl+Cl2? ( NH4) 2Pd Cl6↓+2HCL 三、王水溶解—铂的提纯分离 先将物料放入玻璃反应釜内,加少量水润湿,缓慢加入盐酸,接通导热油开始加热至沸腾,加入硝酸,溶解开始,反应非常剧烈,视反应情况,缓慢补加硝酸,注意反应滞后,冒缸,等液面较为平稳时,,再补加少量硝酸,溶解结束后,继续加热浓缩,趁热加入试剂A进行赶硝作业,直至无黄烟冒出时为终点。化学反应方程式为:3Pt+4HNO3+18HCl?3H2PtCl6+8H2O+NO↑ 过滤除去不溶物,滤出铂的溶液,控制含铂50-80克/升。操作时,将溶液煮沸,加入固体氯化铵,搅拌使之充分溶化反应,这时有黄色氯铂酸铵沉淀析出,静置半小时后取40毫升上清液过滤,加固体氯化铵搅拌,没有黄色沉淀,说明氯化铵已加够量。实践表明,溶液中铂的浓度在50克/升以上时,直收率可达99%。其化学方程式为: H2PtCl6+2NH4Cl? ( NH4) 2Pt Cl6↓+2HCL

杨玉淮:超常规思维的阿维菌素专家

杨玉淮:超常规思维的阿维菌素专家 ——记河北宇泽化工科技有限公司总经理杨玉淮 杨玉淮,河北宇泽化工科技有限公司总经理。毕业于北京理工大学。虽然现今只有30余岁,但已成为国内阿维菌素研究开发卓有成效的老专家了。 杨总曾在河北威远生物药业工作多年。2003-2004年参与主持了大庆志飞生物有限公司阿维菌素项目工程的实施。2004-2005年与南京大学紫金智能公司合作创办了紫金生物科技有限公司,担任董事职务。杨总参与阿维菌素新工艺的研究和其系列产品的开发始于1995年,历经10年的探索实践,在合成及发酵方面有自己独到的见解和丰富的经验。 为了贯彻自己“超常规”的思维理念,为了在阿维菌素的研发上持续开拓创新,杨总于2003年成立了河北宇泽化工科技有限公司。在公司的发展过程中,他始终采取主动进取的态度,积极应对各种困难,逐步闯出了一条具有企业特色的发展之路。宇泽的今天就是杨总智慧和心血的结晶。难怪员工都说:没有杨总的努力,就没有宇泽的今天。 在公司的运营上杨总打破习惯做法,充分运用现代理念和现代化管理手段,实现目标超值。所谓“目标超值”,既涵盖了战略目标的超常规,也涵盖了思路与措施的超常规。杨总认为,超常规不是违规,也不是盲目的空想和无序的蛮干,而是一种健康有序、体现现代文明的思维方式和工作方式。在超常规战略实施中杨总领悟到,人才是资本,但人不是成本,“谋事在人,成事也在人”。 以杨总为首的宇泽化工坚持以科技为先导,以精细化工和生物发酵技术开发为主业,在过去的几年里,以超常规的思维和理念,以持续开拓创新的优势,创造了速度、规模、效益的完美统一,实现了宇泽跳跃式发展。 我们有理由相信,创造性应用超常规企业战略的杨总,必将会有一个超常规发展的美好未来。 阿维菌素及其衍生物发展动态 杨玉淮 (河北宇泽化工科技有限公司总经理) 从20世纪40年代以来,每5年就有一种新的抗寄生虫药物开发上市。使用

系列金(I)有机膦化合物的合成

2015年5月 贵 金 属 May 2015 第36卷第2期 Precious Metals V ol.36, No.2 收稿日期:2014-09-11 基金项目:稀贵金属综合利用新技术国家重点实验室开放课题(2014020605);国家科技支撑计划(2012BAE06B08)。 第一作者:余 娟,女,研究生,工程师,研究方向:无机化学。E-mail :juanyu1210@https://www.360docs.net/doc/312231977.html, *通讯作者:叶青松,男,研究生,高级工程师,研究方向:贵金属化学。E-mail :qingsongye@https://www.360docs.net/doc/312231977.html, 系列金(I)有机膦化合物的合成 余 娟,雷 婧,姜 婧,常桥稳,晏彩先,叶青松*,刘伟平 (昆明贵金属研究所 稀贵金属综合利用新技术国家重点实验室,昆明 650106) 摘 要:以氯金(III)酸(HAuCl 4)为起始原料,经过两步反应合成了3种有机膦氯化金化合物,产率均在95%以上。首先HAuCl 4与二甲基硫醚(Me 2S)反应,制备二甲基硫醚氯化金(I)中间体;然后与有机膦,包括三苯基磷(PPh 3)、双(二苯基膦)二茂铁(dppf)、1,2-双(二苯基膦)乙烷(dppe)反应,合成了的三苯基膦氯化金(I) [AuCl(PPh 3)]等有机膦氯化金,[AuCl(PPh 3)]与三氟甲烷磺酸银(AgSO 3CF 3)反应,可进一步获得三氟甲烷磺酸三苯基膦金(I) [(CF 3SO 3)][Au(PPh 3)]。 关键词:有机化学;合成路线;二甲基硫醚氯化金(I);有机膦化金(I) 中图分类号:O627.8 文献标识码:A 文章编号:1004-0676(2015)02-0038-06 Synthesis of Organic Phosphine Gold(I) Compounds YU Juan, LEI Jing, JIANG Jing, CHANG Qiaowen, YAN Caixian, YE Qingsong *, LIU Weiping (State Key Laboratory of Advanced Technologies for Comprehensive Utilization of Platinum Metals, Kunming Institute of Precious Metals, Kunming 650106, China) Abstract: Three organic-phosphine gold(I) chlorides were synthesized from HAuCl 4 as the starting chemical via a two-step process, with a yield of 95%. The reaction of HAuCl 4 with dimethyl sulfide (Me 2S) produced an intermediate [AuCl(Me 2S)] which was then converted to the corresponding organic- phosphine gold(I) chloride by mixing with triphenylphosphine (PPh 3), 1,1'-bis(diphenylphosphino)- ferrocene (dppf) or 1,2-bis(diphenylphosphino)ethane (dppe). Replacing chloride in [AuCl(PPh 3)] with AgSO 3CF 3 gave rise to the product [(CF 3SO 3)][Au(PPh 3)]. Key words: organic chemistry; synthesis route; chloro(dimethyl sulfide) gold; organic phosphine gold(I) Au(I)有机膦化合物是一类能高效催化有机合 成的催化剂,可催化炔烃水合制备烷基酮等。朱凤 霞等[1]制备的Au-PPh 2-PMO(Ph)催化苯乙炔水合反 应,得到的目标产物选择性为100%。Shin S [2]发现 在反应趋势不够强的反应体系中,适当的金(I) 可以直接影响产物的选择性。 Gorin D J 等人[3]发现有机 膦金(I)催化的施密特反应,以卤代吡咯衍生物合成 的高炔丙基叠氮化物,反应条件温和,易取代处在 吡咯环上不同位置的卤素,同时提出金与给电子配 体形成缺电子σ-系统,激活炔烃t 的亲核加成。并提出了图1所示的反应机理。 图1 催化机理 Fig.1 Possible mechanisms for nucleophilic additional reactions catalyzed by organic-phosphine gold(I)

铑均相有机络合催化剂具有催化活性高优点

铑均相有机络合催化剂具有催化活性高优点 2016-11-19 13:04来源:内江洛伯尔材料科技有限公司作者:研发部 一种由硅胶聚合胺树脂制备水合三氯化铑的方法 铑均相有机络合催化剂具有催化活性高、选择性好等优点,在催化加氢、烯烃氢甲酰化、羰基合成催化中有着重要的应用,并且许多已应用于工业生产。例如:三(三苯基膦)氯化铑作为高效的烯烃加氢催化剂在工业使用,乙酰丙酮二羰基铑、三苯基膦乙酰丙酮羰基铑、三(三苯基膦)羰基氢铑、三[三(间-磺酸盐苯基)膦]羰基氢化铑等作为高效的烯烃氢甲酰化催化剂在烯烃氢甲酰化工业装置中使用。由于水合三氯化铑具有有溶解性好、反应活性高等优点,上述铑均相有机络合催化剂通常由水合三氯化铑为原料进行制备。铑均相催化剂在长期使用的过程中会发生催化活性下降的情况,当催化剂活性下降到一定程度需要将失活的铑催化剂从反应装置中卸出,更换新鲜的铑催化剂。由于铑的价格昂贵,卸出的含铑废催化剂需要通过一系列的方法将其中含有的铑回收分离出来,然后再重新制成新鲜的铑催化剂。目前,现有技术公开了采用阳离子以及阴离子交换树脂来回收提纯铑的技术,但是该类技术大多针对低酸浓度的氯铑酸溶液,而体系中含有大量硫酸的铑溶液的处理方法并没有见诸报道。并且阳离子以及阴离子交换树脂在使用上均存在着一系列的问题。例如铑离子在弱酸性溶液中易水解,导致其在阳离子交换除杂过程中容易水解而吸附在阳离子交换树脂上。采用阴离子交换树脂对铑酸溶液进行纯化时,吸附在树脂上的铑洗脱困难,需要用碱液进行洗脱,因此得到的是含铑的碱性溶液,无法直接制得水合三氯化铑。硅胶是一种硅酸凝胶,具有大的比表面积,优良的机械稳定性,热稳定性和耐强酸性等特点。硅胶聚胺树脂通过键合作用在硅胶载体表面上引入线

【实验报告】氯化钠的提纯实验报告范文

氯化钠的提纯实验报告范文 篇一:粗盐提纯实验报告 一、实验目的: 1.学会化学方法提纯粗盐,同时进一步精制成试剂级纯度的氯化钠提供原料. 2.练习天平的使用,以及加热、溶解、过滤、蒸发和结晶、干燥的基本操作. 3.体会过滤的原理在生活生产等社会实际中的应用. 二、实验原理: 粗盐中含有泥沙等不溶性杂质,以及可溶性杂质如:Ca2+,Mg2+,SO42- 等.不溶性杂质可以用过滤的方法除去,Ca2+,Mg2+,SO42-可以通过化学方法----加试剂使之沉淀,在过滤,然后蒸发水分得到较纯净的精盐. 三、实验仪器和药品: 药品:粗盐,水,盐酸(2N),氢氧化钠(2N),氯化钡(1N),碳酸钠(1N)器材:天平,量筒,烧杯,玻璃棒,药匙,漏斗,铁架台(带铁圈),蒸发皿,酒精灯,坩埚钳,胶头滴管,滤纸,剪刀,火柴,纸片 四、实验操作: 五、实验总结 1.在除去Ca2+,Mg2+,SO42-时,为什么要先加BaCl2溶液,然后加Na2CO3溶液?

2.蒸发前为什么要将粗盐溶液的pH调到4―5? 篇二:粗盐制备分析纯氯化钠实验报告 一、实验题目:粗盐制备分析纯氯化钠 二、实验目的: 1.巩固减压过滤,蒸发、浓缩等基本操作; 2.了解沉淀溶解平衡原理的应用; 3.学习在分离提纯物质过程中,定性检验Ca、Mg、SO4等离子是否除尽。 三、实验原理:粗盐中,除含一些不溶性杂志,还含有Ca、Mg、SO4和Fe 等可溶性 2+2+2-3+杂质,不溶性杂质可用过滤法出去,可溶性杂质中Ca、Mg、SO4和Fe通过过滤的方 法除去,然后蒸发水分得到较纯净的精盐。 1.BaCl2―NaOH,Na2CO3法 (1)除SO4,加入BaCl2溶液 Ba+SO4=BaSO4 (2)除Ca2+、Mg2+、和Fe3+和过量的Ba2+,加入NaOH―Na2CO3 Ca2++CO32-=CaCO3 Ba2++CO32-=BaCO3 4Mg2++4CO32- +H2O=Mg(OH)2?3MgCO3 (3)除CO32-,加入HCl溶液

【CN109776608A】一种清洁安全的光引发剂246三甲基苯甲酰基二苯基氧化膦的新合成方法【专利

(19)中华人民共和国国家知识产权局 (12)发明专利申请 (10)申请公布号 (43)申请公布日 (21)申请号 201910262727.X (22)申请日 2019.04.02 (71)申请人 宁波易兮化工科技有限公司 地址 315020 浙江省宁波市江北区长兴路 691号001幢15-3室 (72)发明人 杜红伟  (51)Int.Cl. C07F 9/53(2006.01) C07C 17/38(2006.01) C07C 19/01(2006.01) (54)发明名称一种清洁安全的光引发剂2,4,6-三甲基苯甲酰基-二苯基氧化膦的新合成方法(57)摘要本发明涉及光引发剂合成技术领域,尤其涉及一种清洁安全的光引发剂2,4,6-三甲基苯甲酰基-二苯基氧化膦的新合成方法:首先室温下无水醇与N -甲基咪唑混合均匀,升温至30~50℃,控温滴加二苯基氯化膦后,升温至50~100℃恒温反应2~3h后,静置分层取上层清液减压蒸馏,得二苯基烷氧基膦。然后在-0.098Mpa真空条件下将二苯基烷氧基膦和2,4,6-三甲基苯甲酰氯控温50℃开始反应,每隔20分钟升温10℃,升温至90℃,恒温反应4~8h后加入50%乙醇结晶,得目标产物。产生的副产物经真空脱除至尾气回收系统,经过两级冷凝后回收。本发明合成方法步骤简单,安全清洁,运行成本低,副产物回收率 高。权利要求书2页 说明书6页 附图1页CN 109776608 A 2019.05.21 C N 109776608 A

1.一种清洁安全的光引发剂2,4,6-三甲基苯甲酰基-二苯基氧化膦的新合成方法,其特征在于,包括以下合成步骤: (1)具有通式Ⅱ的二苯基烷氧基膦的合成:在室温条件下将无水醇与N -甲基咪唑加入反应器中混合均匀,加热升温至30~50℃,控温滴加二苯基氯化膦,滴加完毕后,加热升温至50~100℃,恒温反应2~3h,反应完毕后,静置分层,取上层清液减压蒸馏,得到中间产物 二苯基烷氧基膦。 其中,通式Ⅱ中的Rn为Cn的烷基,n=3,4,5。 (2)光引发剂2,4,6-三甲基苯甲酰基-二苯基氧化膦的合成:采用真空泵将反应容器抽真空至-0.098Mpa,在-0.098Mpa的真空条件下将步骤(1)中得到的中间产物二苯基烷氧基膦和2,4,6-三甲基苯甲酰氯加入反应容器,控温50℃开始反应,反应过程中每间隔20分钟升温10℃,直到升温至90℃,然后在90℃恒温反应4~8h,反应结束后加入50%乙醇结晶,得到目标产物。 (3)副产物回收:步骤(2)合成反应过程中产生的副产物烷基氯Rn -Cl(n=3,4,5)经真空脱除至尾气回收系统,经过一级冷却、二级冷凝深冷后,变为液体,流入收集槽中回收利用。 2.如权利要求1所述的清洁安全的光引发剂2,4,6-三甲基苯甲酰基-二苯基氧化膦的新合成方法,其特征在于,所述无水醇的通式为Rn -OH,其中的Rn为Cn的烷基,n=3,4,5。 3.如权利要求1所述的清洁安全的光引发剂2,4,6-三甲基苯甲酰基-二苯基氧化膦的新合成方法,其特征在于,所述无水醇与N -甲基咪唑、二苯基氯化膦的物质的量比为(1~ 2):(1~2):1。 4.如权利要求3所述的清洁安全的光引发剂2,4,6-三甲基苯甲酰基-二苯基氧化膦的新合成方法,其特征在于,所述无水醇与N -甲基咪唑、二苯基氯化膦的物质的量比为(1.2~ 1.5):(1.2~1.5):1。 5.如权利要求1所述的清洁安全的光引发剂2,4,6-三甲基苯甲酰基-二苯基氧化膦的新合成方法,其特征在于,所述二苯基烷氧基膦的合成反应温度为40~100℃。 6.如权利要求5所述的清洁安全的光引发剂2,4,6-三甲基苯甲酰基-二苯基氧化膦的新合成方法,其特征在于,所述二苯基烷氧基膦的合成反应温度为50~70℃。 7.如权利要求1所述的清洁安全的光引发剂2,4,6-三甲基苯甲酰基-二苯基氧化膦的新合成方法,其特征在于,所述二苯基烷氧基膦和2,4,6-三甲基苯甲酰氯的物质的量比为1:1。 8.如权利要求1所述的清洁安全的光引发剂2,4,6-三甲基苯甲酰基-二苯基氧化膦的新合成方法,其特征在于,所述一级冷却、二级冷凝的冷却水温度为-20~0℃。 权 利 要 求 书1/2页2CN 109776608 A

氯化钠的提纯实验报告

氯化钠的提纯实验报告 一、实验题目:粗盐制备分析纯氯化钠 二、实验目的: 1.巩固减压过滤,蒸发、浓缩等基本操作; 2.了解沉淀溶解平衡原理的应用; 3.学习在分离提纯物质过程中,定性检验Ca、Mg、SO4等离子是否除尽。 三、实验原理:粗盐中,除含一些不溶性杂志,还含有Ca、Mg、SO4和Fe等可溶性 2+2+2-3+杂质,不溶性杂质可用过滤法出去,可溶性杂质中Ca、Mg、SO4和Fe通过过滤的方 法除去,然后蒸发水分得到较纯净的精盐。 1.BaCl2—NaOH,Na2CO3法 (1)除SO4,加入BaCl2溶液 Ba+SO4=BaSO4 (2)除Ca2+、Mg2+、和Fe3+和过量的Ba2+,加入NaOH —Na2CO3 Ca2++CO32-=CaCO3 Ba2++CO32-=BaCO3 4Mg2++4CO32-+H2O=Mg(OH)2·3MgCO3 (3)除CO32-,加入HCl溶液 CO3+2H=H2O+CO2↑ 四、实验仪器与药品

仪器:托盘天平、药匙、量筒、烧杯、玻璃棒、三脚架、酒精灯、石棉网、火柴、滤纸、漏斗、蒸发皿、坩埚钳、表面皿、PH试纸、抽滤机、铁架台(带铁圈)、小试管、胶头滴管。药品:粗盐、蒸馏水、镁试剂、BaCl2、(NH4)2C2O4、NaOH、HCl、CH3COOH、五、实验装置 2-2+2+2- 2-2+2+2-3+2+2+2- 六、实验步骤 1.准备实验仪器 2.洗涤 先用洗衣粉水刷洗,再用自来水冲洗,最后用蒸馏水冲洗。 3.称量粗盐 调零,在左、右盘中各放等质量的称量纸,取粗盐称得10.0g。 4.溶解粗盐 将粗盐转入烧杯,加入5ml蒸馏水,用玻璃棒搅拌,放在三脚架上加热溶解。 5.过滤 将滤纸折成圆锥状,置于漏斗中,用蒸馏水润湿,用玻璃棒将气泡赶出。 6.加入BaCl2 溶液 待滤液液沸腾,边加边搅拌。 7.静置 继续加BaCl2溶液,直至溶液不再变浑浊。 8.加入NaOH—Na2CO3

贵金属回收利用及工艺流程

贵金属回收利用及工艺流程-标准化文件发布号:(9456-EUATWK-MWUB-WUNN-INNUL-DDQTY-KII

贵金属回收利用及工艺 一、贵金属的种类 金(Au)、银(Ag)、铂(Pt)、锇(Os)、铱(Tr)、钌(Ru)、铑(Rh)、钯(Pd)。共八种金属,价格昂贵,资源稀少。 二、含贵金属的废旧物品及边角料 1、废旧电器电子产品,比如废手机板、手机芯片、排线、电池触点、手机sim卡;废 电脑板、CPU、内存条、插头;线路板厂的含金或钯的废水;首饰厂的废料;VCD机板、电视板上的部分电子元件等。各种镀金件。如航空插头,各种电器上的镀金插件,镀金电子元件、电子脚,镀金工艺品等。各种含银废料:照相制版废水,废X光片,银触点、含银的瓷片电容等。 2、加工贸易企业:电子元件废料,电路触点废料,工业上的电镀厂(镀贵金属的)的 废水、废泥。 三、回收利用过程中存在的问题 1. 回收单位分散,形不成规模,而且回收设备简陋,技术落后,回收率不高,浪费 了资源和能源。 2.政府没有专门的管理部门,至今尚无法统计出国内黄金、银以及铂族金属的回收总 量和回收率。 3.目前我国贵金属回收队伍也十分庞杂而无序,逐渐出现一些正规的贵金属回收企 业,但民营和个体的贵金属回收小作坊也不少,带来的环境污染等问题十分严重。四、回收利用工艺流程 电子废弃物中贵金属回收基本工艺流程如图1所示。其工艺可分为前处理及后续处理2个阶段。前处理指机械处理方法;后续处理包括火法冶金、湿法冶金和生物方法等。80年代火法冶金较为普遍,主要有焚烧熔出工艺、高温氧化熔炼工艺、浮渣技术、电弧炉烧结工艺等。80年代后,由于人们对环保的重视和从电子废物中回收贵金属已变得有利可图,许多科研工作者开始从事这方面的研究,并取得技术上的突破与进步,使湿法冶金提取贵金属技术日趋完善。

两种乙酰丙酮·羰基铑化合物的合成与晶体结构表征

2016年5月 贵 金 属 May 2016 第37卷第2期 Precious Metals V ol.37, No.2 收稿日期:2015-10-20 基金项目:国家科技支撑计划(2012BAE06B08)、云南省科技创新(2015AA006)、稀贵金属国家重点实验室开放课题(2014020605) 第一作者:余 娟,女,硕士,工程师,研究方向:贵金属化学。E-mail :juanyu1210@https://www.360docs.net/doc/312231977.html, *通讯作者:沈善问,男,工程师,研究方向:贵金属化学。E-mail :shensw@https://www.360docs.net/doc/312231977.html, 两种乙酰丙酮·羰基铑化合物的合成与晶体结构表征 余 娟,叶青松,沈善问*,左 川,刘桂华,刘伟平 (昆明贵金属研究所 稀贵金属综合利用新技术国家重点实验室,昆明 650106) 摘 要:在N,N-二甲基甲酰胺介质中,将水合三氯化铑与乙酰丙酮加热回流,一步合成了乙酰丙 酮·二羰基铑([Rh(CO)2(acac)]2),产率为93%;以正丁烷为介质,[Rh(CO)2(acac)]2与三苯基磷(PPh 3) 定量反应,得到乙酰丙酮·三苯基膦·羰基铑(Rh(acac)(PPh 3)(CO)),产率为99%。用气相扩散法和溶 剂缓慢挥发法分别培养出[Rh(CO)2(acac)]2和Rh(acac)(PPh 3)(CO)单晶,元素分析的结果表明产物为 目标化合物。用X 射线单晶衍射仪对其结构进行了表征,获得了晶体结构参数,结果表明2种化合 物均为三斜晶系、P -1空间群,[Rh(CO)2(acac)]2为二聚体化合物,Rh(acac)(PPh 3)(CO)为单核配合物。 关键词:有机化学;乙酰丙酮·二羰基铑;乙酰丙酮·三苯基膦·羰基铑;合成;晶体结构 中图分类号:O627.8,TQ426.94 文献标识码:A 文章编号:1004-0676(2016)02-0008-05 Synthesis and Crystal Structure Characterization of Two Rhodium Carbonyl Compounds YU Juan, YE Qingsong, SHEN Shanwen *, ZUO Chuan, LIU Guihua, LIU Weiping (State Key Laboratory of Advanced Technologies for Comprehensive Utilization of Platinum Metals, Kunming Institute of Precious Metals, Kunming 650106, China) Abstract: [Rh(CO)2(acac)]2 was synthesized in one-step process from RhCl 3·3H 2O in DMF by adding acac as the anion ligand. The yield was 93%. A quantitative reaction between [Rh(CO)2(acac)]2 and PPh 3 in n-butane gave rise to the formation of Rh(acac)(PPh 3)(CO) with a yield of 99%. Single crystals of two complexes were prepared, respectively, via a gaseous diffusion method and a solvent evaporation technique, and were subjected to X-ray diffraction analysis. The results show both complexes are in the triclinic system with a space group of P -1. [Rh(CO)2(acac)]2 displays a dimmeric structure with Rh-Rh bond being 3.417 ?, whereas Rh(acac)(PPh 3)(CO) has a normal mononuclear structure. Key words: organic chemistry; [Rh(CO)2(acac)]2; Rh(acac)(PPh 3)(CO); synthesis; crystal structure 乙酰丙酮·二羰基铑([Rh(CO)2(acac)]2)和乙酰丙酮·三苯基膦·羰基铑(Rh(acac)(PPh 3)(CO))均属乙酰丙酮·羰基铑化合物,是一类非常重要的铂族金属均相催化剂。其可催化氢甲酰化反应,用于有机化工产品,如丁醛、丁醇和甲醇等的工业合成[1-3],具有十分重要的作用。 早在1964年,Bonati [4]等以水合三氯化铑(RhCl 3·x H 2O)为原料,通入CO 制备了[Rh(CO)2Cl]2,与乙酰丙酮(Hacac)反应,制备出[Rh(CO)2(acac)]2,收率为85%;此后,Varshavskii 等人[5-6]报道了以RhCl 3·x H 2O 和Hacac 在N,N-二甲基甲酰胺(DMF)溶剂中一步反应得到[Rh(CO)2(acac)]2,产率为75%;再将[Rh(CO)2(acac)]2和三苯基膦(PPh 3)以摩尔比1:1定量反应即可以得到Rh(acac)(PPh 3)(CO),产率在95%以上。很多学者[7-12]也报道了合成 [Rh(CO)2(acac)]2的详细方法,但是这些报道所得产品纯度较低,同时国内尚未获得适合X 射线衍射分析的单晶。

三苯基膦氯化铑中铑含量检测实验报告(报批稿)

ICP-AES法测定三苯基膦氯化铑中铑含量 方卫、李青、侯文明、杨晓滔、马媛、冯璐 (贵研铂业股份有限公司,云南昆明650106) 前言 三苯基膦氯化铑,又称威尔金森催化剂,为绛红色晶体,主要用于催化加氢、醛脱羰基反应、烯选择性加氢、羰基化、甲酰化反应等的催化剂,广泛应用于石化、生物、化工、化学等领域。一般其铑含量的理论值为11.12%。随着国内三苯基膦氯化铑产品市场的开拓,需要对三苯基膦氯化铑产品中铑含量及杂质元素进行准确分析。GB/T 23519-2009三苯基膦氯化铑标准中规定了铑含量及杂质元素的检测方法,其铑质量分数的测定是取三苯基膦氯化铑于管式电炉中灼烧通氢还原制备成为铑粉后,转入聚四氟乙烯溶样罐中酸溶解,按YS/T 561-2009硝酸六氨合钴重量法进行测定。重量法虽然准确度高,但样品前处理漫长、繁琐,分析速度慢。因此,非常有必要制订专门针对三苯基膦氯化铑产品检测方法的国家标准,方法应快速、准确,有极强的可操作性。 本文用试料采用硝酸、高氯酸在电热板上加热冒烟分解破坏有机物,再使用混合酸将铑转换为氯化铑水溶液,以铟为内标,电感耦合等离子体发射光谱仪进行测定、计算得到铑的质量分数。铑测定范围:0.5%~12%;方法精密度优于1%;样品加标回收率99.58%~100.62%。方法准确快速。与“YS/T 561铂铑合金中铑量的测定硝酸六氨合钴重量法”的结果一致。 实验部分 1 试剂 本方法所用水均为二级蒸馏水。盐酸(ρ1.19 g/mL)、硝酸(ρ1.42 g/mL)、高氯酸(ρ1.76 g/mL)均为分析纯。 铟内标溶液:1.000 mg/mL(1+9盐酸介质)。 铑标准贮存溶液:1.000 mg/mL(1+9盐酸介质) 铑标准工作溶液:取六个100 mL容量瓶,分别移取相应的铑标准贮存溶液,各加入1.00 mL铟内标溶液、10 mL盐酸(4.1),用水稀释定容。混匀。得到铑含量分别为5.00、10.00、25.00、50.00、及100.00 μg/mL的标准工作溶液。

二苯基氯化碘盐DPI

Diphenyleneiodonium chloride Product Number D2926 Store at Room Temperature Product Description Molecular Formula: C12H8ICl Molecular Weight: 314.6 CAS Number: 4673-26-1 Synonyms: DPI, dibenziodolium chloride1 This product is an inhibitor of nitric oxide synthase. It irreversibly inhibits endothelium-dependent vasodilations in a similar manner to the N G-substituted arginine analogs, but this pressor effect is attenuated or abolished by blockers of the sympathetic nervous system and does not lead to a sustained rise in blood pressure.2 This product also inhibits neutrophil NADPH oxidase.3 The K i for time-dependent inhibition of NADPH oxidase by DPI is 5.6 μM.3 These effects of DPI on NADPH oxidase (in the absence of enzyme turnover) was based on preincubating whole neutrophils in DPI at a concentration range of 1- 25 μM. Precautions and Disclaimer For Laboratory Use Only. Not for drug, household or other uses. Preparation Instructions The product maximum solubility is in DMSO (10 mg/ml) with strong heating and is also easily soluble in DMSO (2.4 mg/ml), 0.1N NaOH (0.5 mg/ml), 0.1N HCl (0.2 mg/ml), ethanol (0.2 mg/ml) or water (0.2 mg/ml. Literature also indicates stock solutions can be prepared at 10 mM in DMSO3 or at 3 x 10-8 to 3 x 10-6 M in a 5% glucose solution.2 References 1. Dictionary of Organic Compounds, 5th ed., Buckingham, J., ed., Chapman and Hall (New York, NY: 1982) p. 1593. 2. Wang, Y. X., et al., Inhibitory Actions of Diphenyleneiodonium on Endothelium-dependent Vasodilatations In Vitro and In Vivo. Br. J. Pharmacol., 110(3), 1232-1238 (1993). 3. O'Donnell, V. B., et al., Studies on the Inhibitory Mechanism of Iodonium Compounds with Special Reference to Neutrophil NADPH Oxidase. Biochem. J., 290(pt 1), 41-49 (1993). CMH/RXR 6/08 Sigma brand products are sold through Sigma-Aldrich, Inc. Sigma-Aldrich, Inc. warrants that its products conform to the information contained in this and other Sigma-Aldrich publications. Purchaser must determine the suitability of the product(s) for their particular use. Additional terms and conditions may apply. Please see reverse side of the invoice or packing slip.

相关文档
最新文档