作业-矿床地球化学

作业-矿床地球化学
作业-矿床地球化学

包裹体

包裹体,有的简称为包体。包体是指矿物形成过程中被捕获的成矿介质。它相当完整地记录了矿物形成的条件和历史,是矿物最重要的标型特征之一,可作为译解成矿作用,特别是内生成矿作用的密码

主矿物

主矿物是圈闭流体包裹体的矿物,几乎与所包含的包裹体同时形成

子矿物

正矿物生长过程(或之后)捕获(或沿裂隙浸入)的成矿流体(或熔体)被圈闭在晶体缺陷、窝穴(或愈合裂隙)中与主矿物有相界的物质称为矿物中包裹体,其中的内含物随物理化学条件变化出现的盐析物(固相)谓之子矿物。

负晶形包裹体

负晶形包裹体是矿物中常见的一种包裹体。即:在晶体生长过程中因晶格位错等缺陷产生的空穴被高温气液充填后又继续按原晶格方向生长,形成与宿主矿物晶体形状(宿主矿物:含有包裹体的宝石矿物)相似的孔洞,这种由气液充填的形态与宿主矿物晶体形状相似的孔洞称为负晶或空晶,所形成的包裹体称为负晶形包裹体。

充填度

指包裹体或者富气包裹体中,液相所占的整个包裹体的体积比即为充填度。

均一温度

室温下呈两相或多相的包裹体,经人工加热,当温度升高到一定程度时,包裹体由两相或多相转变成原来的均匀的单相流体,此时的瞬间温度称为均一温度,一般认为代表矿物形成温度的下限,经压力校正后可获得近似的矿物形成温度(包裹体的捕获温度)

盐度

指包裹体中溶解于溶液中的卤化物的质量与液体质量百分比。

1、试述均一法测温的原理

均一温度:均一法(高温-低温)是流体包裹体测温的基本方法。其均一过程有两相水溶液包裹体中液-气相的均一作用和不混溶的H2O-CO2 包裹体的均一状态。液相和气相的均一过程有三种模式:

①均一到液体状态(L+V→L)室温下加热时气相逐渐缩小至最后消失,均一到液相,此时的温度称为均一温度;当温度下降则气相又重新出现,说明包裹体内原先捕获的是较高密度的流体相。

②均一到气体状态(L+V→V)加热时液相缩小,气相逐渐扩大至充满整个包裹体并均一为气相;当温度下降时则液相又重新出现,说明包裹体内原先捕获的是较低密度的流体相。

③均一到临界状态(L+V→超临界流体)加热时气相既不收缩也不扩大,而是随着温度的升高液-气相之间的弯月面界线逐渐模糊至消失,均一到一个相,即均一到临界状态,说明这类包裹体是在临界状态下捕获的。

均一法测温的主要仪器是显微加热台,如德国莱兹厂生产的1350 显微加热台、Linkam1500 显微加热台及我国浑江光学仪器厂生产的T1350 显微加热台。近十年来又开发了冷热两用台,如法国南锡的Chaimeca 冷热两用台、英国的Linkam 冷热两用台和美国的Reynolds 冷热两用台。近年来,已发展到可将电视录象等设备与显微冷-热台连接进行包裹体研究,对小于1μm 的包裹体进行测定。

2、简述包裹体研究的理论基础

在实验器材方面:1、偏光显微镜,主要是用于研究包裹体的一般特征及各类包裹体的识别,如通常使用的西德莱兹Orthoplan POL 型、OrtholuxⅡ-POL BK 型偏光显微镜。2、体视显微镜,主要用于对标本作初步观察3、紫外光显微镜,主要用于某些在紫外光照射下能发出萤光的物质。4、扫描电子显微镜(SEM),用于观察体积较小的包裹体。

获取包裹体参数理论基础:

温度方面:1、均一温度法,均一法(高温-低温)是流体包裹体测温的基本方法。其均一过程有两相水溶液包裹体中液-气相的均一作用和不混溶的H2O-CO2 包裹体的均一状态。2、爆裂温度法,当加热包裹体达到均一后,若再继续升温,因包裹体内压急剧上升直至爆裂并发出响声,开始发出响声时的温度称为爆裂温度,故该温度为包裹体形成的上限值。3、捕获温度法,淬火法可以说是均一法的一个变种,其原理与均一法近似,但它不用于气-液包裹体的研究。4、冷冻温度法,冻法是通过在冷台上改变温度,观察包裹体所发生的相变过程,并与已知的有关体系的实验相图进行对比,测定包裹体中流体所属体系和流体成分。

压力参数估算:

1、纯H2O 体系,当已知包裹体的均一温度,并能从另一个独立温度计估算捕获温度时,则可从Roedder(1980)所作的水的等容线P-T 图上估算捕获压力。

2、利用流体蒸气压估算压力NaCl-H2O 体系,一般将盐度低于26wt%NaCl 当量的包裹体,或室温下含NaCl 未饱和水溶液的包裹体称为低-中等盐度包裹体;而把含有NaCl 子矿物的包裹体,或盐度高于25wt%NaCl 当量的包裹体称为高盐度包裹体。

3、CO2-H2O 体积法;4 、NaCl-H2OCO2 体系;5、硅酸盐熔融包裹体;6、油和盐水体系。

包裹体盐度:

1、冷冻法,通过在冷台上改变温度,以观察包裹体中发生的相变,并与已知有关体系的实验相图进行对比,来测定包裹体流体所属体系和流体成分。

2、热溶法,NaCl 浓度大于26.3wt%时,在显微镜下可见到包裹体中有NaCl 子矿物出现。此时不是采用冷冻法确定溶液中NaCl 的浓度,而是在热台上测定子矿物的消失(溶解)温度,根据消失温度查表确定NaCl 的浓度。

3、计算法,利用Fournier(1973)根据包裹体成分中K、Na、Ca 摩尔浓度,提出了计算其成矿温度K-Na-Ca 温度计。

流体密度:

1、图解法,溶液的密度、温度和浓度有一定的关系。在一定浓度条件下溶液的密度与温度成反比。2)计算法,刘斌等(1987)根据实验数据采用计算方法求出盐水包裹体的流体密度公式。

包裹体化学成分:

1、群体包裹体成分分析方法:气相色谱法、电感偶合等离子(ICP)原子发射光谱、原子吸收光谱、离子色谱仪、中子活化法

2、单个包裹体分析方法:电子显微探针(EPMA)、激光显微光谱、激光诱导等离子体法、激光烧蚀等离子体质谱法、激光拉曼光谱(MOLE)、同步加速辐射(SXRF)、激光显微探针惰性气体质谱分析(LMNGNS)、质子显微探针法(PIXE)。

此外,研究包裹体还可以利用其特定同位素来确定成矿流体的可能来源提供重要信息,尤其是对含矿环境、成矿时代、变质作用成因等提供确切的证据。

3、在野外如何采集包裹体样品

1)热液矿床

最好的测温样品是产于晶洞和晶簇中的颗粒较大、晶形发育良好、晶面小的晶体。而产于热液矿脉中较为致密块状集合体中的包裹体质量较差。应尽量避免采集被强烈剪切而变形的矿脉样品因其很可能泄漏而失去全部或部分组分。

2)火成岩在花岗岩的石英颗粒中流体包裹体特别发育,而在长石类矿物中包裹体很少且常常表现出泄漏及颈缩的迹象。花岗岩石英中所捕获的流体代表冷凝的最早期的硅酸盐熔浆,或是热液循环演化的较晚期的流体。在花岗岩中的黄玉、碳酸盐或与之相关岩石的磷灰石、火山岩的斑晶等矿物中流体包裹体发育特别好。

3)变质岩

从低级到高级变质岩中都发育了捕获有变质流体的包裹体,赋存包裹体的矿物有石英、石榴石、蓝晶石、红柱石、透辉石、绿帘石、碳酸盐类矿物等。但基质矿物中所含包裹体数量较少且较小,而在脉状产出的扁豆体、透镜体等脉体中数量较多,适合研究。

4)沉积岩

碎屑岩(矿物)中的继承包裹体是在碎屑矿物沉积之前捕获的包裹体,研究其可推断碎屑矿物的源岩、沉积物的源区,有助于进行地层对比和提供找矿线索。在沉积岩中较大脉体、晶洞、晶腺和结核中包裹体保存得最好;成岩作用中石英和碳酸盐的次生加大边及中、粗碎屑之间的胶结物也有流体包裹体,但常常很小(<5μm)。

此外,均一法、冷冻法等使用的光薄片,则只需采集手标本可供磨片用即可。而用于爆裂法、包裹体群体成分和同位素分析使用的单矿物,野外采样时若为块状矿石,一般采集100~200 g 重的手标本;若为浸染状矿石,则需采集300~500 g(或以上,不同的测试用量大不相同)重量的手标本,通过室内选别后才能分选出适量的单矿物样品。

4、包裹体的显微镜下观察描述应包括哪些内容

包裹体的显微镜下观察描述应包括:观测矿物中包裹体的形态、大小和颜色,包裹体数量、产状及分布特征,相态、成分、充填度等。

5、包裹体在室温下分为哪几类

①纯液体包裹体( 1 相),在室温下为单液相包裹体。通常上在较低温度或冷水条件下从均匀流体中形成的。

②纯气体包裹体( 1 相),在室温下为单气相包裹体。通常是在火山喷气、气成条件或沸腾条件下形成。

③液体包裹体( 2 相),液相占整个包裹体体积50%以上,均一到液相。主要是含液

相和一个小气泡的包裹体。所谓充填度是指流体包裹体中液相体积与包裹体总体积之比的百分数。这类包裹体是分布最广的、几乎在各种地质环境中均可见到的包裹体。

④气体包裹体( 2 相),气相占整个包裹体体积50%以上,即含有一个较大气泡和少量液相(充填度小于50%),加热时均一到气相。这类包裹体在岩浆热液、伟晶-气成热液矿床尤其是在斑岩型矿床中常见。

⑤含子矿物包裹体(≥3 相),通常有液相、气相和子矿物组成。最常见的主矿物是石

盐(NaCl)、钾盐(如KCl),次为硬石膏、赤铁矿、萤石、方解石和石英等。

⑥含液体CO2 包裹体(≥3 相),从包裹体中心向外,由气相CO2(VCO2)、液相CO2(LCO2)和含盐水溶液(L)组成。加热时,在31.1℃(临界温度)发生临界均一。

⑦含有机质包裹体(≥3 相),除液相或气相外,尚含有有机质,如气态甲烷、固体沥

青、液体石油和高分子碳氢化合物等。有时包裹体可全由有机质组成。

6、成矿流体盐度的测定方法有哪几种

1)冷冻法冷冻法是研究包裹体流体体系和盐度的基本方法之一。通过在冷台上改变温度,以观察包裹体中发生的相变,并与已知有关体系的实验相图进行对比,来测定包裹体流体所属体系和流体成分。

(1)NaCl 浓度为0~23.3wt%时的盐度确定Potter 等(1978)提出根据测定的冰点值计算盐度的经验公式:

ms=0.00+0.30604θ-2.8598×10-3θ2+4.8690×10-6θ3 (7-3)

ωs=0.00+1.76985θ-4.2384×10-2θ2+5.2778×10-4θ2 (7-4)

式中:ms 为NaCl 摩尔浓度(mol),ωs 为盐度(wt%NaC),θ为-冰点温度(℃)。

(2)NaCl 浓度为23.3~26.3wt%时的盐度确定

2)热溶法NaCl 浓度大于26.3wt%时,在显微镜下可见到包裹体中有NaCl 子矿物出现。此时不是采用冷冻法确定溶液中NaCl 的浓度,而是在热台上测定子矿物的消失(溶解)温度,根据消失温度查表7-3 确定NaCl 的浓度。

3)计算法

利用Fournier(1973)根据包裹体成分中K、Na、Ca 摩尔浓度,提出了计算其成矿温度K-Na-Ca 温度计。

1、某样品中H

2O包裹体和CO

2

包裹体共生(纯组份),测得它们的均一温度分别为

210℃和28℃,其均一相态均为液相,求它们的捕获压力和捕获温度。

根据查表得纯水包裹体H

2O密度是0.850g/cm3,,CO

2

密度是0.655g/cm3,

由上图得出捕获压力和捕获温度分别是800bar和250℃.

2、室温下一个气液水包裹体的液相充填度为49%,均一相态为气相还是液相?为什么?

据刘焕章的《流体包裹体》所述,由于液相充填度为49%,属于充填度小的包裹体,所以称

为气体包裹体(充填度小于50%),其在温室加温到均一相时候为气相。

1、某矿床中闪锌矿的δ34S 值为+1.38‰,共生的方铅矿的δ34S 值为-0.71‰,求分馏系数α闪-方。

根据公式-R =R α闪闪方方(1),而-R =S +R δ??334闪闪标准(101)(2),

-R =S +R δ??334方方标准

(101)(3) (2)(3)代入公式(1)得到-334--33410S +1=10S +1

δαδ??闪闪方方 1.0021≈ 2、用△34S 闪-方=0.7×106/T 2画出闪锌矿-方铅矿矿物对在100℃~600℃范围内的

分馏系数随温度的变化图。

根据公式343434--S =S -S =1000ln αV 方闪方闪闪方

所以分馏系数,-334-32-10S 0.710/-=e =e T α?V 闪方闪方

根据上表格绘制如下图:

3、在135℃时,△34S 闪-方=+5.8‰,△34S Py-闪=+2.7‰,求在该温度下黄铁矿-方铅

矿之间的同位素分馏系数。

根据公式343434py--py-S =S +S ???方闪方闪,得到34py-S ?方=5.8‰+2.7‰=8.5‰(1)

又因为公式34py-py-S =1000ln α?方方,将公式(1)代入得到

py-α方=-334-3py-10S 8.510e

=e =??方

1.0085 4

3462

5、某矿床中闪锌矿的δ34S 值为+1.21‰,共生的方铅矿的δ34S 值为-1.16‰,试用△34S=0.7×106T -2方程计算硫同位素平衡温度。

根据公式621000ln 10X Y A T B δ--=?+(1)

又因为=X Y X Y δδδδδ-=-=-方闪 2.37‰ 代入公式(1)

T=1000(2) 代入公式(2)得到 T=270℃

6、已知22℃时,伊利石与水之间氧的分馏系数为 1.0234,求与δ18O=-9.00‰的水处于平衡的伊利石的δ18O 值。

根据公式-18-18--18-18R O +1R O +1===R O +1R O +1

δδαδδ????33伊伊标伊伊水33水水水标(10)10(10)10 而-α伊水=1.0234 δ18

O 水=-0.9‰ 所以18

O δ伊=+14.20‰

7、已知下列矿物对之间氧的分馏方程是:1000㏑α石英-水=2.51×106/T 2-1.96,

1000㏑α金红石-水=-4.1×106/T 2+0.96,试推导出石英-金红石的测温方程,并计算

700℃时的△18O 石英-金红石值。

由于方程181818---=O +O O ???石英金红石石英水金红石水 (1)

而18

-O =-?1000α石英水石英水㏑ (2)

18-=O -?1000α金红石水金红石水㏑ (3)

由上面公式得到

18-././1000+././1000=O ?--?+?626225110T 1964110T 096石英金红石)()((4) 所以-18-18--18-18O +1R R O +1===R O +1R O +1

a δδδδ????33石英石英标石英石英金红石33金红石金红石金红石标(10)10(10)10(4) 18-O ?石英金红石=—0.425‰

8、已知200℃时,CO 2与金刚石之间的分馏系数是1.0115,而金刚石与石墨之间

的分馏系数是1.0029,求200℃时CO 2与石墨之间的分馏系数是多少?与石墨处

于平衡的CO 2的δ13C 值是多少?(已知石墨的δ13C 值为-15.00‰) 根据公式2222-18-18CO CO CO CO --18-18R O +1R O +1===R O +1R O +1

δδαδδ????33标金33金金金标(10)10(10)10(1) -18-18--18-18O +1R R O +1===R O +1R O +1

δδαδδ????33金标金金金石33石石石标(10)10(10)10 (2) 而2CO -α金=1.0115 -α金石=1.0029

由于(1)/(2)= 2CO -α石

所以2CO -α石=1.0115/1.0029=1.0086 由于2222-18-18CO CO CO CO --18-18R O +1R O +1===R O +1R O +1

δδαδδ????33标石33石石石标(10)10(10)10 得到218

CO O δ=+8.485 ‰

9、某活火山的含铅升华被壳具有以下同位素组成:206Pb/204 Pb=18.757,207Pb/204 Pb=15.603,208Pb/204 Pb=38.644,利用上题给出的常数计算地球年龄。

根据公式 207204206204Pb 10.294Pb =Pb 9.307Pb

Φ-- 代入数值得到Φ=0.562 又因为5588T t

T t 1e e =137.88e e

λλλλΦ—()— 当t=0时,可得到

T=(ln 137.88Φ)/(58λλ—)

即得出T=443.157Ma

10、某喷气孔喷出的气体的碳同位素组成为:CO 2的δ13C 值为-4.5‰,CH 4的δ13C 为-23.3‰,假定这些碳处于同位素平衡,试计算平衡温度。请用CH 4-CO 2体系的分馏系数:T=298.1°K ,α(CH4-CO2)=0.943;T=500°K ,α(CH4-CO2)=0.975 根据公式4422CH CH -CO CO R =R α=0.943 t=25.1℃,同理42CH -CO α=0.975,t=227℃

再根据公式621000ln 10X Y A T B δ--=?+得t=1000

—273.5=265.4℃ 11、某盐丘的丘盖岩石中,方解石的平均δ13C 值为-36.2‰,而海相灰岩的δ13C 值为2‰~-2‰,试问丘盖中的方解石富集12C 的原因是什么?

12C 富集在盐丘盖中是因为,在大陆生长很多植物,提供丰富的有机质,在水流冲击会富集

到湖泊,使得湖泊或者说是陆地的凹地12C 富集,也随着时间推移而愈加富集,最后随盐类

矿物一起富集成岩石。

作业-矿床地球化学

包裹体 包裹体,有的简称为包体。包体是指矿物形成过程中被捕获的成矿介质。它相当完整地记录了矿物形成的条件和历史,是矿物最重要的标型特征之一,可作为译解成矿作用,特别是内生成矿作用的密码 主矿物 主矿物是圈闭流体包裹体的矿物,几乎与所包含的包裹体同时形成 子矿物 正矿物生长过程(或之后)捕获(或沿裂隙浸入)的成矿流体(或熔体)被圈闭在晶体缺陷、窝穴(或愈合裂隙)中与主矿物有相界的物质称为矿物中包裹体,其中的内含物随物理化学条件变化出现的盐析物(固相)谓之子矿物。 负晶形包裹体 负晶形包裹体是矿物中常见的一种包裹体。即:在晶体生长过程中因晶格位错等缺陷产生的空穴被高温气液充填后又继续按原晶格方向生长,形成与宿主矿物晶体形状(宿主矿物:含有包裹体的宝石矿物)相似的孔洞,这种由气液充填的形态与宿主矿物晶体形状相似的孔洞称为负晶或空晶,所形成的包裹体称为负晶形包裹体。 充填度 指包裹体或者富气包裹体中,液相所占的整个包裹体的体积比即为充填度。 均一温度 室温下呈两相或多相的包裹体,经人工加热,当温度升高到一定程度时,包裹体由两相或多相转变成原来的均匀的单相流体,此时的瞬间温度称为均一温度,一般认为代表矿物形成温度的下限,经压力校正后可获得近似的矿物形成温度(包裹体的捕获温度) 盐度 指包裹体中溶解于溶液中的卤化物的质量与液体质量百分比。 1、试述均一法测温的原理 均一温度:均一法(高温-低温)是流体包裹体测温的基本方法。其均一过程有两相水溶液包裹体中液-气相的均一作用和不混溶的H2O-CO2 包裹体的均一状态。液相和气相的均一过程有三种模式: ①均一到液体状态(L+V→L)室温下加热时气相逐渐缩小至最后消失,均一到液相,此时的温度称为均一温度;当温度下降则气相又重新出现,说明包裹体内原先捕获的是较高密度的流体相。 ②均一到气体状态(L+V→V)加热时液相缩小,气相逐渐扩大至充满整个包裹体并均一为气相;当温度下降时则液相又重新出现,说明包裹体内原先捕获的是较低密度的流体相。 ③均一到临界状态(L+V→超临界流体)加热时气相既不收缩也不扩大,而是随着温度的升高液-气相之间的弯月面界线逐渐模糊至消失,均一到一个相,即均一到临界状态,说明这类包裹体是在临界状态下捕获的。 均一法测温的主要仪器是显微加热台,如德国莱兹厂生产的1350 显微加热台、Linkam1500 显微加热台及我国浑江光学仪器厂生产的T1350 显微加热台。近十年来又开发了冷热两用台,如法国南锡的Chaimeca 冷热两用台、英国的Linkam 冷热两用台和美国的Reynolds 冷热两用台。近年来,已发展到可将电视录象等设备与显微冷-热台连接进行包裹体研究,对小于1μm 的包裹体进行测定。

重要的矿床类型(带图)

5.方茴说:“那时候我们不说爱,爱是多么遥远、多么沉重的字眼啊。我们只说喜欢,就算喜欢也是偷偷摸摸的。” 6.方茴说:“我觉得之所以说相见不如怀念,是因为相见只能让人在现实面前无奈地哀悼伤痛,而怀念却可以把已经注定的谎言变成童话。” 7.在村头有一截巨大的雷击木,直径十几米,此时主干上唯一的柳条已经在朝霞中掩去了莹光,变得普普通通了。 8.这些孩子都很活泼与好动,即便吃饭时也都不太老实,不少人抱着陶碗从自家出来,凑到了一起。 9.石村周围草木丰茂,猛兽众多,可守着大山,村人的食物相对来说却算不上丰盛,只是一些粗麦饼、野果以及孩子们碗中少量的肉食。 重要的矿床类型 1、矽卡岩型铁矿床 此类矿床规模大小不一,可构成中、大型矿床,一般多为富矿,而且常伴生Co、Ni、Au、Cu、Pb、Zn→Cu、Pb、Zn、Mo、Bi、W、Sn等多种有用金属组分,并且常与矿浆贯入型铁矿、矽卡岩型铜矿、矽卡岩型锡等矿床共生。重要的矿床如(河北)中关、(湖北)铁山、(新疆)磁海、(菲)Parap、(美)Eagle Mountain、(墨)Fierro。 (1)地质构造背景 有利成矿的大地构造位置是不同地质时期的大陆边缘弧及岛弧、大陆边缘隆起中的凹陷带和与之相邻的坳陷带及裂谷。矿床形成于中、浅成侵入体与碳酸盐岩、钙质凝灰岩及钙质页岩等化学性质活泼的围岩接触带及其附近。与成矿有关的岩体可为辉长岩及辉绿岩、闪长岩及二长岩、石英闪长岩及石英二长岩、花岗闪长岩及花岗岩,一般富碱质(多富Na2O)或偏碱性,规模多属中、小型。成矿深度一般在1-4.5km,蚀变及矿化的温度一般在800-200oC,主要矿化温度在500-400oC。 (2)矿床特征 矿体呈似层状、凸镜状、囊状、不规则状产于接触带的矽卡岩中,主要受接触带、断裂及层间破碎带、捕虏体等构造控制,与围岩 1.“噢,居然有土龙肉,给我一块!” 2.老人们都笑了,自巨石上起身。而那些身材健壮如虎的成年人则是一阵笑骂,数落着自己的孩子,拎着骨棒与阔剑也快步向自家中走去。

西藏蒙亚啊铅锌矿床地球化学特征及成因意义

西藏蒙亚啊铅锌矿床地球化学特征及成因意义 蒙亚啊铅锌矿床地处西藏自治区嘉黎县绒多乡南东18km处,构造上隶属于西藏特提斯-喜马拉雅构造域一级构造单元冈底斯-念青唐古拉板片中部隆格尔-念青唐古拉中生代岛链带东段,是本区较为重要和典型的一个矽卡岩型铅锌矿床。文章主要分析了矿区岩体及主要岩矿石稀土元素特征,结果显示所选取的岩矿石样品均呈现向右缓倾、负Ce异常的分布特征,与岩体一致,存在一定的同源性;其矽卡岩期矽卡岩及磁铁矿石稀土元素均出现正Eu异常,指示矽卡岩阶段为高温氧化环境;而铅锌矿石的负Eu异常与矽卡岩及磁铁矿的正Eu异常相对,暗示成矿过程从矽卡岩期到石英硫化物期成矿 1 矿区地质简述 矿区主要出露晚古生界地层,包括第四系(Q)、中二叠统洛巴堆组(P2l)、上石炭-下二叠统来姑组(C2P1l)。其中来姑组(C2P1l)为主要含矿地层,其分布于整个矿区,上部岩性段以灰黑色板岩为主,夹石英、长石石英晶屑凝灰岩及泥灰岩,下部岩性段以砂岩为主,夹板岩、少量砾岩、凝灰岩、灰岩。 矿区范围内目前共有20个大小不等的铅锌矿(化)体,沿矿区主断层带及其两侧展布,主要呈层状、似层状产出。以Pb-14 矿体规模最大,其次为Pb-12、Pb-13、Pb-20及Pb-21矿体,本次主要研究对象为Pb-21矿体。Pb-21矿体位于整个矿区西部,爬格西坡地段,矿体在平面上呈近南北向展布,形态上呈“蛇”形。矿体整体走向186°,倾向西,倾角54°~68°。矿体平均品位:Zn6.95×10-2、Ag19.78×10-6、Pb0.32×10-2。 矿区矿物组成主要金属矿物有方铅矿、闪锌矿、黄铁矿、磁黄铁矿、磁铁矿、黄铜矿,少量黄锡矿、辉钼矿、孔雀石;脉石矿物主要有方解石、石英、石榴石、透辉石、硅灰石、阳起石、透闪石、绿帘石、绿泥石、黑云母、绢云母等。矿石组构:矿石的结构主要见它形粒状结构,半自形-自形粒状结构,乳浊状结构,残余结构,浸蚀结构。矿石的构造主要见块状构造,稠密浸染状构造,浸染状构造,条带状构造,斑点状构造,网脉状构造。 2 分析测试方法 选取18件样品送至西南冶金地质测试所进行全岩分析测试。常量元素使用Axios X荧光仪通过X荧光法、重量法、滴定法、原子吸收法等方法进行检测,检测标准参照GB/T14506.28-2010、DZG20-02、GB/T14353-2010,检测温度20℃,检测湿度60%;微量元素使用iCAP6300全谱仪、802W摄谱仪、NexION300xICP-MS质谱仪、AFS2202E原子荧光仪、Axios X荧光仪通过发射光谱法、质谱法、原子荧光法、X荧光法等方法进行检测,检测标准参照DZG20-05、DZG20-06,检测温度20℃,检测湿度60%。测试结果列于表1、表2中。

矿床地球化学国家重点实验室分析测试项目价格表(试行)

矿床地球化学国家重点实验室分析测试项目价格表(试行)文章来源:矿床地球化学国家重点实验室发布时间:2011.08.16

一)理化检测 序号 检验方法 计量单位 收费标准 (元/个数据) 备 注 1 感观指标 每个数据 3 1、按《水和废水监测分析方法》、《空气和废气 监测分析方法》的规定进 行水、气、土壤、底质等 理化检验。 2、分析需使用原子吸收、等离子色谱、原子荧光、测汞仪、离子发射光谱仪、气相色谱、色-质联机、液相色谱、高分辨气相色谱/质谱法等大型仪器的,样品总数少于(不含)10个时加收30%,样品总数50个样(不含50个)以上时,按收费标准的70%收取,样品总数100个样(不含100个)以上时,按收费标准的50%收取。 2 温度计 每个数据 5 3 稀释、对比法 每个数据 15 4 pH 计 每个数据 15 5 电导仪 每个数据 15 6 溶氧仪 每个数据 15 7 酸碱滴定法 每个数据 35 8 络合滴定法 每个数据 50 9 碘量法 每个数据 50 10 电极法 每个数据 60 11 分光光度比色法 每个数据 60 12 重量法 每个数据 60(有机溶剂蒸发100元) 13 离子色谱法 每个数据 80 14 紫外光度法 每个数据 80 15 红外光度法 每个数据 80 16 荧光光度法 每个数据 80 17 火焰光度法 每个数据 80 18 测硫仪 每个数据 80 19 五日培养法 每个数据 100 20 原子吸收法 每个数据 100 15 气相色谱法 每个数据 100 21 高压液相色谱法 每个数据 250 22 色-质联机 每个数据 260 23 三点比较法(恶臭) 每个数据 500 24 气体专用分析仪 每个数据 80(不另收采 样费) 25 等离子发射光谱法 (ICP ) 每个数据 180 26 高分辨气相色 一般有 每个数据 1000

钨矿床类型

钨矿床类型 中国钨矿床划分为3类5亚类20型,现将中国钨矿的主要矿床类型地质特征简述如下。 (1)石英脉型黑钨矿床此类型矿床是我国钨矿主要类型之一,以开发之早,产量之多,矿床规模之大而驰名中外。矿床主要分布在赣南、粤北、湘南成矿区带里。成矿与壳源改造花岗岩类侵入体的关系密切,矿体多产于岩体内外接触带,以岩体内为主,受岩体内构造裂隙控制,沿裂隙充填呈脉状、似脉状,有的产在岩体顶部顶板的围岩中。矿体围岩蚀变主要有云英岩化、硅化、钾化、绢云母化等。矿石主要由石英和黑钨矿所组成,并含有锡石、辉钼矿、辉铋矿、白钨矿、毒砂、磁黄铁矿、黄铁矿、闪锌矿、黄铜矿等。具有代表性的矿床有江西西华山、大吉山,广东锯板坑、梅子窝、石人嶂等石英脉型黑钨矿床。 (2)斑岩型钨矿该类型矿床的形成主要与火山-次火山作用晚期的弱酸性钙碱系列的浅成-超浅成侵入体有成因联系。与钨矿化有关的斑岩主要是花岗闪长斑岩、二长花斑岩、花岗斑岩、石英斑岩等。矿化主要分布在岩体内,有的产在斑岩体与围岩接触带,个别的产在围岩中。矿化呈细脉浸染状,品位低,规模大,常有辉钼矿伴生,矿体产出浅,围岩蚀变具有分带现象。矿化呈浸染状、网脉状和细脉状,矿体常呈似层状、透镜状、不规则状,与围岩无明显界线。矿石矿物主要有白钨矿、黑钨矿、辉钼矿,其次有黄铜矿、闪锌矿、辉铋矿、黄铁矿等。代表性矿床为广东莲花山钨矿床、江西阳储岭钨矿床等。 (3)夕卡岩型白钨矿床该类型也是我国钨矿床主要类型之一。70年代以前,我国勘探的主要是石英脉型黑钨矿和斑岩型黑钨矿等。当时储量组成主要是黑钨矿,约占储量50%以上,白钨矿约占20%,混合钨矿(黑钨矿、白钨矿)约占30%左右。70年代以来,白钨矿储量有较大幅度增长,至此改变了我国钨储量结构,白钨矿占71%,而储量主要来自夕卡岩型白钨矿床,但大部分是贫矿。这类矿床的生成和分布主要与中深-浅成的中酸性岩浆岩有关。矿床产在岩浆岩体与碳酸盐类岩石接触带及其附近的围岩中。围岩蚀变主要是夕卡岩化,一般在晚期复杂夕卡岩阶段富集成矿。矿体形态复杂,多为不规则囊状、扁豆状、透镜状,也有的呈层状、似层状或形态简单的透镜状。有的夕卡岩钨矿的围岩尚有大理岩化、硅化、斜长石化、钾长石化、白云母化、叶蜡石化、黄铁矿化等。矿石矿物主要是白钨矿、辉钼矿、辉铋矿、锡石、方铅矿、闪锌矿、黄铜矿、黄铁矿、磁黄铁矿、毒砂、磁铁矿等。具有代表性的矿床:湖南瑶岗仙钨矿床、新田岭白钨矿床、柿竹园钨(锡铋钼)矿床,江西修水香炉山白钨矿床、甘肃塔儿沟似夕卡岩型白钨矿床。 (4)爆破角砾岩型钨矿床在斑岩型钨矿区内,常伴生有含钨爆破角砾岩,其矿石成分主要是黑钨矿、辉钼矿,其次有黄铁矿、黄铜矿、闪锌矿等,主要以胶结构形式存在。矿体主要产在爆破砾岩体内,也有的产在角砾岩体围岩构造裂隙中,形成钨矿脉。角砾岩体内的矿常分布在角砾岩体上部及接触带附近。这类矿床品位较富,但规模较小,多为中小型富矿。

高等地球化学

高等地球化学读书报告 关键词:地球化学研究方法同位素 摘要:主要介绍了地球化学的研究方法,研究领域以及解决的一些问题,着重介绍了同位素地球化学。 地球化学是研究地球的化学组成、化学作用和化学演化的科学,它是地质学与化学、物理学相结合而产生和发展起来的边缘学科。作为一门独立的学科,地球化学的研究对象是地球中的原子,研究地球系统中元素及同位素的组成,元素的共生组合和赋存形式问题,元素的迁移和循环,地球的历史和演化。其学科特点是研究的主要物质系统是地球、地壳及地质作用体系。着重研究地球系统物质运动中物质的化学运动规律。研究原子的自然历史,必然联系到元素自身的性质及其所处的热动力学条件。与有关学科密切结合和相互渗透,使得地球化学的研究范畴不断扩大,并繁衍出众多分支学科。运用学科自身的知识、理论、研究思路和工作方法研究矿产资源、资源利用以及农田、畜牧、环境保护等多方面的问题。我国地球化学工作主要开始于20世纪50年代,最初是进行大规模的土壤分散流和基岩地球化学测量。20世纪80年代至今,随着我国地球化学专业队伍的迅速扩大,一批新的地球化学研究所和研究中心相继建立,并建立了一批具有先进测试设备和技术的实验室和计算中心。成矿作用地球化学、勘查地球化学、同位素地球化学、微疾元素地球化学、实验地球化学、环境地球化学、有机地球化学以及陨石化学、宇宙化学、岩石圈地球化学等多领域的研究已全面展开,目前我国地球化学研究已逐渐进入到与国际合作研究并同步发展的阶段。 一.基本内容 地球化学主要研究地球和地质体中元素及其同位素的组成,定量地测定元素及其同位素在地球各个部分(如水圈、气圈、生物圈、岩石圈)和地质体中的分布;研究地球表面和内部及某些天体中进行的化学作用,揭示元素及其同位素的迁移、富集和分散规律;研究地球乃至天体的化学演化,即研究地球各个部分,如

重要的矿床类型

日志 分享给好友复制网址隐藏签名档小字体 上一篇下一篇返回日志列表 [转] 转载:重要的矿床类型 编辑 | 删除 | 权限设置 | 更多▼ 更多▲ ?设置置顶 ?推荐日志 ?转为私密日志 转载自徐大良转载于2010年04月12日 23:16 阅读(0) 评论(0) 分类:个人日记权限: 公开 重要的矿床类型 1、矽卡岩型铁矿床 此类矿床规模大小不一,可构成中、大型矿床,一般多为富矿,而且常伴生Co、Ni、Au、Cu、Pb、Zn→Cu、Pb、Zn、Mo、Bi、W、Sn等多种有用金属组分,并且常与矿浆贯入型铁矿、矽卡岩型铜矿、矽卡岩型锡等矿床共生。重要的矿床如(河北)中关、(湖北)铁山、(新疆)磁海、(菲)Parap、(美)Eagle Mountain、(墨)Fierro。 (1)地质构造背景 有利成矿的大地构造位置是不同地质时期的大陆边缘弧及岛弧、大陆边缘隆起中的凹陷带和与之相邻的坳陷带及裂谷。矿床形成于中、浅成侵入体与碳酸盐岩、钙质凝灰岩及钙质页岩等化学性质活泼的围岩接触带及其附近。与成矿有关的岩体可为辉长岩及辉绿岩、闪长岩及二长岩、石英闪长岩及石英二长岩、花岗闪长岩及花岗岩,一般富碱质(多富Na2O)或偏碱性,规模多属中、小型。成矿深度一般在1-4.5km,蚀变及矿化的温度一般在800-200ºC,主要矿化温度在500-400ºC。 (2)矿床特征 矿体呈似层状、凸镜状、囊状、不规则状产于接触带的矽卡岩中,主要受接触带、断裂及层间破碎带、捕虏体等构造控制,与围岩多呈渐变关系。 矿石矿物以磁铁矿为主,可见赤铁矿、菱铁矿、镜铁矿、磁黄铁矿、黄铁矿、黄铜矿、锡石、闪锌矿、方铅矿等。脉石矿物为矽卡岩矿物组合,如石榴石、透辉石及钙铁辉石、方柱石、钠长石、阳起石、符山石、绿泥石、方解石、金云母、蛇纹石、白云石、石英等,因矿床和矽卡岩类型而异。 矿石具交代结构、交代残余结构、它形-半自形粒状结构,浸染状、条带状、斑杂状、角砾状、致密块状等构造。

矿床学研究方法

成矿物质来源及其研究方法开发矿产资源方面的成就, 现在比以往任何时候都更加依赖于对地球化学异常实质的 认识, 地化异常表现为金属的局部富集, 即所谓的金属矿床。从这个公认的原则中可以看出, 必须解决三个基本的问题:金属及其伴生元素是从哪里来的, 它们是怎样、通过什么样的途径迁移到地壳中来的多在什么地方、什么条件下它们停止了迁移, 从而留下了有价值的东西。换言之, 需要重视一般成矿作用的三个部分: 成矿物质的来源, 这些物质的迁移以及这些物质的堆积。研究成矿物质来源可以通过多种途径来解决,其中包括地质学方法、稳定同位素地球化学、矿物包裹体地球化学、稀土元素地球化学和成岩成矿模拟实验等方法。 大多数学者都承认, 含矿接液原则上可能来自冷却了的岩浆, 或者来自沉积岩和火山 一沉积岩(这些岩石中分散的金属在变质作用过程中得以富集), 或者来自地球的深部—上 地慢。在分析现有资料(包括作者在不同矿区工作过程中所取得的资料) 的基础上,我们试图对上述各种成矿物质来源作出评价。 一.成矿物质来源与含矿建造 现代矿床学研究表明,多数矿床,尤其是非成岩矿产矿床都具有成矿物质多来源的特征,重视成矿物质多来源是矿床学地球化学的研究趋势。成矿物质来源对探讨矿床成因、成矿规律以及指导地质找矿具有较大的理论和实际意义。同时研究发现,许多矿床成矿作用具有复合成矿的特点,常不是一次成矿作用完成的,而是经过了预富集到再富集成矿的多次地质作用完成的。我们把预富集阶段形成的成矿物质丰度较高的岩石组合称为含矿建造,含矿建造是包含一系列含矿岩石与非含矿岩石的岩石系列,包括沉积岩、变质岩和岩浆岩。含矿建造中有一部分是成矿元素的富集岩,一部分是具有与矿化有关的矿化剂元素[2],如S、Cl、F、C等[1]。 而根据矿床学研究成矿物质来源分为直接来源与间接来源。直接由地幔岩浆、花岗岩浆或沉积介质提供成矿物质到矿床中的物质来源称为直接来源,由幔源、壳源固结岩石,即矿源层或矿源岩提供成矿物质所反映出的幔源或壳源来源特征,称为间接物质来源。 对于成岩矿产成矿物质来源可能更多地反映直接物质来源,而对于非成岩矿产,由于其经过多次富集成矿,其物质来源特征可能更多反映间接物质来源[4]。 1.成矿元素(“矿质”)的来源

矿床地球化学结课作业(原著-可直接交)

中国地质大学(北京) 课程期末考试 作业

矿床地球化学作业(一) 根据下列给定的火山岩岩石化学数据计算火山岩的特征参数,并作出图解,分析火山岩岩石系列和形成环境(参考岩石矿床地球化学教材第三章计算方法)。 原数据中火山岩岩性有流纹斑岩、杏仁状流纹斑岩、角砾岩和硅化角砾岩。共有样品18个,数据包括样品全分析与部分微量元素。全析中大多样品SiO2含量大于63%,样品岩性以流纹岩为主。 根据样品全分析数据计算出的火山岩的各类特征参数如表1表示,先将样品数据进行CIPW 标准矿物计算,其中氧化铁调整方法为TFeO=FeO+0.8998Fe2O3,所计算出的标准矿物均为重量百分含量,则可得出各矿物分异指数(DI) = Qz + Or + Ab + Ne + Lc + Kp。其中固结指数为(SI) =MgO×100/(MgO+FeO+F2O3+Na2O +K2O) (Wt%)。里特曼指数算式为σ43=(Na2O+K2O)^2/(SiO2-43),据表里特曼指数多位于1.8-3.3显示为钙碱性,由于原岩多数SiO2含量较高,里特曼指数确定出的钙碱度准确度差。碱度率(AR) =[Al2O3+CaO+(Na2O+K2O)]/[Al2O3+CaO- (Na2O+K2O)] (Wt%),当SiO2>50%, K2O/Na2O大于1而小于 2.5时, Na2O+K2O=2*Na2O,本例以碱度率对样品碱度进行判别,由表可知,杏仁状流纹斑岩的碱度率都为1-3,显示钙碱性,流纹斑岩为3.3-5显示出弱碱性。 图1 样品SiO2-K2O+Na2O 图解 Pc-苦橄玄武岩;B-玄武岩;O1-玄武安山岩;O2-安山岩;O3-英安岩;R-流纹岩;S1-粗面玄武岩;S2-玄武质粗面安山岩;S3-粗面安山岩;T-粗面岩、粗面英安岩;F-副长石岩;U1-碱玄岩、碧玄岩;U2-响岩质碱玄岩;U3-碱玄质响岩;Ph-响岩;Ir-Irvine 分界线,上方为碱性,下方为亚碱性。

矿床勘探类型

矿床勘探类型 SANY标准化小组 #QS8QHH-HHGX8Q8-GNHHJ8-HHMHGN#

矿床勘探类型 概念:根据矿床地质特点,尤其按矿体主要地质特征及其变化的复杂程度对勘探工作难易程度的影响,将相似特点的矿床加以归并而划分的类型,称为矿床勘探类型。 矿床勘探类型是在大量探采资料对比基础上,对已勘探矿床勘探经验的总结。 意义:矿床勘探类型的划分为勘探人员提供了类比、借鉴、参考应用类似矿床勘探经验的基础和可能,是为了正确选择勘探方法和手段,合理确定工程间距,对矿体进行有效控制的重要步骤。 注意:灵活运用和借鉴同类型矿床勘探的经验,切忌生搬硬套。在新矿床勘探初期可运用类比推理的方法,按其所归属的勘探类型,初步确定应采用的勘探方法,随着勘探工作的深入开展和新的资料信息的不断积累,重新深化认识和修正其原来所属勘探类型,避免因原来类比推断的不正确而造成勘探不足(原勘探类别过低时)或勘探过头(原勘探类型过高时)的错误,给勘探工作带来不应有的损失。(一)矿床勘探类型划分的依据 原则:在划分勘探类型和确定工程间距时,遵循以最少的投入获得最大效益,从实际出发,突出重点抓主要矛盾,以主矿体为主的原则。 五大依据:依据矿体规模、主要矿体形态及内部结构、矿床构造影响程度、主矿体厚度稳定程度和有用组分分布均匀程度等五个主要地质因素来确定。

确定方法:为了量化这些因素的影响大小,提出了类型系数的概念。即对每个因素都赋予一定的值,用每个矿床相对应的五个地质因素类型系数之和就可以确定是何种勘探类型。在影响勘探类型的五个因素中,主矿体的规模大小比较重要,所赋予的类型系数要大些,约占30%;构造对矿体形状有影响,与矿体规模间有联系,所赋予的值要小些,约占10%;其他三个因素各占20%。 矿床勘探类型的划分一般依据以下5个方面的地质因素: 1 矿体规模 矿体规模分为大、中、小三类,其具体划分如表4-3-1所列: 表4-3-1 矿体规模

矿床勘探类型

矿床勘探类型 Company number:【0089WT-8898YT-W8CCB-BUUT-202108】

矿床勘探类型 概念:根据矿床地质特点,尤其按矿体主要地质特征及其变化的复杂程度对勘探工作难易程度的影响,将相似特点的矿床加以归并而划分的类型,称为矿床勘探类型。 矿床勘探类型是在大量探采资料对比基础上,对已勘探矿床勘探经验的总结。 意义:矿床勘探类型的划分为勘探人员提供了类比、借鉴、参考应用类似矿床勘探经验的基础和可能,是为了正确选择勘探方法和手段,合理确定工程间距,对矿体进行有效控制的重要步骤。 注意:灵活运用和借鉴同类型矿床勘探的经验,切忌生搬硬套。在新矿床勘探初期可运用类比推理的方法,按其所归属的勘探类型,初步确定应采用的勘探方法,随着勘探工作的深入开展和新的资料信息的不断积累,重新深化认识和修正其原来所属勘探类型,避免因原来类比推断的不正确而造成勘探不足(原勘探类别过低时)或勘探过头(原勘探类型过高时)的错误,给勘探工作带来不应有的损失。 (一)矿床勘探类型划分的依据 原则:在划分勘探类型和确定工程间距时,遵循以最少的投入获得最大效益,从实际出发,突出重点抓主要矛盾,以主矿体为主的原则。 五大依据:依据矿体规模、主要矿体形态及内部结构、矿床构造影响程度、主矿体厚度稳定程度和有用组分分布均匀程度等五个主要地质因素来确定。

确定方法:为了量化这些因素的影响大小,提出了类型系数的概念。即对每个因素都赋予一定的值,用每个矿床相对应的五个地质因素类型系数之和就可以确定是何种勘探类型。在影响勘探类型的五个因素中,主矿体的规模大小比较重要,所赋予的类型系数要大些,约占30%;构造对矿体形状有影响,与矿体规模间有联系,所赋予的值要小些,约占10%;其他三个因素各占20%。 矿床勘探类型的划分一般依据以下5个方面的地质因素: 1 矿体规模 矿体规模分为大、中、小三类,其具体划分如表4-3-1所列: 表4-3-1 矿体规模 注:小型矿体长度<150m赋值01,150~200m赋值02,>200m赋值03;中型矿体30 0~500m赋值03~04,500~700m赋值05,>700m赋值06。

湖南清水塘铅锌矿床地球化学特征与成因分析

第32卷第4期Vol.32,No.4 2018年8月MINERAL RESOURCES AND GEOLOGY Au g.,2018??????????????????????????????????????????????????? 湖南清水塘铅锌矿床地球化学特征与成因分析 史国伟 (湖南省有色地质勘查局217队,湖南衡阳 421001) 摘要:通过对清水塘铅锌矿地层二岩体二围岩二矿体微量元素地球化学特征二硫同位素分析,结合成矿物 质二成矿流体二成矿温度二矿床地质特征以及探矿因素分析,认为本矿床类型为与岩浆侵入活动有关的中 低温热液交代-充填型铅锌矿床,但成矿与出露印支期岩体关系不大三从卫片二重力资料二地表蚀变均推 测矿区南西深部存在隐伏岩体,且矿体深部向南西侧伏三本区岩浆热液可能与深部隐伏岩体有关三 关键词:清水塘铅锌矿;地球化学特征;矿床成因;热液矿床;湖南 中图分类号:P618.42;P618.43文献标识码:A 文章编号:1001-5663(2018)04-0635-06 0 引言 清水塘铅锌矿开采近百年历史,矿区位于湖南省祁东县境内,是该地区发现的最大的脉状铅锌矿床三矿区发育寒武~志留系(?-S),为本区穹隆构造主要组成部分(图1)三由下往上为一套黑色炭质板岩夹碳酸盐岩二灰绿色浅变质粉砂质板岩和泥质二硅质板岩组成三矿区发育有走向NE二NNW为主的花岗岩脉,北东发育走向为NE的印支晚期周家岭花岗岩墙[1],南东有印支期关帝庙花岗岩,以及根据物探资料推测在南西边深部可能有隐伏岩体三矿体成脉状二透镜状充填于NE二NNE向的断裂构造带中三前人对该矿床成因分析,依据铅锌矿脉与周家岭岩墙二斑岩脉空间关系,来探讨成矿与岩墙二岩脉有关,缺乏足够的证据三笔者在前人工作基础上,通过前后四年的野外实地工作,从围岩二蚀变二岩墙二岩脉二矿体微量元素化学特征入手,并结合同位素二成矿流体二成矿温度探讨了矿床成因三 1地层岩石微量元素地球化学特征1.1地层微量元素地球化学特征 本区寒武系二奥陶系的成矿元素,在各时代地层各种岩石中均有不同程度的初始富集三区内成矿微量元素含量均高于地壳平均值:Pb为地壳平均值的5~10倍,Zn为地壳平均值的3~7倍,A g为地壳平 均值的3~10倍,Sb为地壳平均值的35~400倍, Au为地壳平均值的1~7倍三其中寒武系中的Pb二Zn等成矿元素值最高三区内成矿元素值高于湘中寒武二奥陶系元素平均含量,其中Pb二Zn和Sb分别为湘中寒武二奥陶系元素平均含量的1~2倍二2~8倍及2~5倍[3]三 1.2岩浆岩微量元素地球化学特征 花岗岩脉分布不均匀,分布于靠近关帝庙岩体矿区东部三矿区花岗岩脉微量元素含量比克拉克值高许多,比关帝岩体周围的花岗岩脉微量元素含量也高三坑道内含矿破碎带对花岗岩脉进行了破坏,说明矿化对花岗岩脉有影响,导致其微量元素含量普遍较高三周家岭花岗岩墙微量元素值,除Pb元素含量比克拉克值高出几倍,其余A g二Sb二Sn元素基本相当, Zn二Cu甚至低于克拉克值[4]三周家岭岩墙被20号脉组破坏,也说明岩墙生成在前,成矿发生作用在后三2 近矿围岩微量元素 破碎带厚度较大时,矿化体厚度达到数10m,交 收稿日期:2017-12-22;修回日期:2018-01-09 基金项目:湖南省省级探矿权采矿权价款地质勘查项目(编号:20120359)资助三 作者简介:史国伟(1982 ),男,硕士,高级工程师,主要从事地质勘探与找矿工作三E-mail:313127704@https://www.360docs.net/doc/312952469.html, 引文格式:史国伟.湖南清水塘铅锌矿床地球化学特征与成因分析[J].矿产与地质,2018,32(4):635-640. 万方数据

矿床勘探类型

矿床勘探类型 令狐采学 概念:根据矿床地质特点,尤其按矿体主要地质特征及其变化的复杂程度对勘探工作难易程度的影响,将相似特点的矿床加以归并而划分的类型,称为矿床勘探类型。 矿床勘探类型是在大量探采资料对比基础上,对已勘探矿床勘探经验的总结。 意义:矿床勘探类型的划分为勘探人员提供了类比、借鉴、参考应用类似矿床勘探经验的基础和可能,是为了正确选择勘探方法和手段,合理确定工程间距,对矿体进行有效控制的重要步骤。 注意:灵活运用和借鉴同类型矿床勘探的经验,切忌生搬硬套。在新矿床勘探初期可运用类比推理的方法,按其所归属的勘探类型,初步确定应采用的勘探方法,随着勘探工作的深入开展和新的资料信息的不断积累,重新深化认识和修正其原来所属勘探类型,避免因原来类比推断的不正确而造成勘探不足(原勘探类别过低时)或勘探过头(原勘探类型过高时)的错误,给勘探工作带来不应有的损失。

(一)矿床勘探类型划分的依据 原则:在划分勘探类型和确定工程间距时,遵循以最少的投入获得最大效益,从实际出发,突出重点抓主要矛盾,以主矿体为主的原则。 五大依据:依据矿体规模、主要矿体形态及内部结构、矿床构造影响程度、主矿体厚度稳定程度和有用组分分布均匀程度等五个主要地质因素来确定。 确定方法:为了量化这些因素的影响大小,提出了类型系数的概念。即对每个因素都赋予一定的值,用每个矿床相对应的五个地质因素类型系数之和就可以确定是何种勘探类型。在影响勘探类型的五个因素中,主矿体的规模大小比较重要,所赋予的类型系数要大些,约占30%;构造对矿体形状有影响,与矿体规模间有联系,所赋予的值要小些,约占10%;其他三个因素各占20%。 矿床勘探类型的划分一般依据以下5个方面的地质因素: 1 矿体规模 矿体规模分为大、中、小三类,其具体划分如表4-3-1所列: 表4-3-1 矿体规模

我国矿床主要工业类型及开采方法

钼矿床主要工业类型 一、斑岩型钼矿 1、成矿地质特征: 产于花岗岩及花岗斑岩体内部及其周围岩石中,矿化与硅化、钾化关系密切 2、常见金属矿物: 以xx、辉钼矿、黄铜矿为主 3、矿体形状: 层状、似层状、筒状、巨大透镜状 4、规模及品位(质量分数): 中、大型至巨大型,品位偏低 5、伴生组分: 铜、钨、银、铼、铅、锌、钴、硫 6、矿床实例: xxxx堆成,xx大xx,xx繁峙后峪 二、矽卡岩型钼矿 1、成矿地质特征: 产于花岗岩类岩体与碳酸盐围岩接触带,以及外接触带沿层发育 2、常见金属矿物: 以黄铁矿、辉钼矿为主,次为黄铜矿、磁黄铁矿、黑钨矿、白钨矿、方铅矿、闪锌矿

透镜状、扁豆状、似层状、囊状、筒状、脉状等 4、规模及品位(质量分数): 大、中、小型均有,品位较富 5、伴生组分: 铜、钨、铅、锌、xx、铼、硫 6、矿床实例: 辽宁杨家杖子,黑龙江五道岭,江苏句容铜山,湖南柿竹园 三、脉型钼矿 1、成矿地质特征: 产于各种岩石(侵入岩、喷出岩、变质岩、沉积岩)的断裂带中,倾斜常陡 2、常见金属矿物: 以黄铁矿、辉钼矿为主,次为黄铜矿、磁黄铁矿、黑钨矿、斑铜矿、方铅矿、闪锌矿 3、矿体形状: 脉状、复脉状、扁豆状 4、规模及品位(质量分数): 中、小型常见,品位中等 5、伴生组分: 铜、钨、铅、铼、硫、xx、银

浙江青田石坪川,安徽太平萌坑、铜牛井,广东五华白石嶂,陕西大石沟 四、沉积型钼矿床 1、成矿地质特征: 砂岩型分为两种: ①钼铜矿床;②钼铀矿床,黑色页岩型,类似沉积岩型镍矿 2、常见金属矿物: 辉铜矿、黄铁矿、辉铜矿及含铀钼矿物、镍的硫化物 3、矿体形状: 层状、似层状、透镜状、扁豆状 4、规模及品位(质量分数): 中、小型,品位偏低 5、伴生组分: 铜、铀、镍、钒、铅、锌、钴、锗、硒 6、矿床实例: xx广通麂子湾,xx兴义大际山 镍矿床主要工业类型 一、超基性岩铜镍矿 1、成矿地质特征: 产于超基性岩(纯橄榄岩、辉橄岩、橄辉岩等)岩体的中、下部或分布在脉状岩体中

矿床地球化学读书报告

《矿床地球化学》 题目:《矿床地球化学》课程读书报告 教师:毛晓东教授 姓名: 张建军 学号:69 学院:核自学院 专业:核能与核技术工程 2011年12月15日

中国铜矿矿床类型 (一)中国铜矿床分类 矿床是指由地质作用形成的,有开采利用价值的有用矿物聚集体。地质矿业工作者为了研究矿床的成因和开发利用则进行矿床分类。中国铜矿床分类有文献记载的最早是丁文江(1917)将我国铜矿床划分为五种类型,其中将斑岩铜矿归入浸染型铜矿,并提出山西中条山铜矿产于“前寒武纪结晶岩中”,属“低品位浸染状矿石”。其后,朱熙人(1935)也讨论过我国铜矿类型和分布,并提出长江中下游和云南为我国铜矿有希望的产地。新中国成立后,对铜矿床的分类做了进一步地研究。1953年,孟宪民、宋叔和等研究了我国铜矿的成矿地质条件、分布情况,提出普查勘探方向,并按工业类型将我国铜矿床分成斑岩铜矿型、黄铁矿型、层状交代矿床、接触交代矿床、多金属含铜矿床、石英含铜矿脉、铜镍矿床、含铜砂页岩、自然铜矿型、钛钒矿脉、铜钴矿层等类型。1957年,谢家荣对中国铜矿床进行成因分类,划分为岩浆矿床、表生矿床、变质矿床等三大类,进而又分6类22式。1959年,郭文魁对我国铜矿工业类型及分布规律进行研究,并按各类型占有储量排列,提出中国铜矿工业类型划分为八大类:层状铜矿(东川式)、细脉浸染型铜矿、接触交代夕卡岩型铜矿、黄铁矿型铜矿、脉状及复脉带铜矿、铜镍矿床、含铜砂页岩、安山玄武岩中之铜矿等,八大类中又按矿石建造、金属组合、矿体形状及产状和矿化时代等又进一步划分若干亚类。 70年代以来,铜矿床的分类从单纯以产状、成因及工业类型划分,转向结合矿石商品价值、成岩成矿作用等综合研究进行铜矿床分类。其中有代表性的,郭文魁于1976年将我国铜矿床分为六大类:①与海相火山作用有关的铜矿床,进一步分为块状硫化物型铜矿(含铜黄铁矿型铜矿)及条带状浸染状铜矿两个亚类;②与基性-超基性岩体有关的铜镍硫化物矿床;③与中酸性火山-深成杂岩或浅成侵入岩有关的斑岩铜矿;④与中酸性侵入岩有关的夕卡岩型铜矿;⑤陆相沉积作用为主的铜矿床;⑥与海相沉积作用有关的铜矿(层状铜矿)。

中国铁矿石矿床的主要类型

中国铁矿石矿床的主要类型 我国幅员辽阔,分布有从超基性—基性—中性—酸性—碱性各时代的各类岩浆(喷发)岩;沉积了从太古宙到第四纪各个时代的地层,包括各种沉积岩系、火山沉积岩系、沉积变质岩系,为不同类型铁矿的形成创造了条件。我国目前具有工业意义的铁矿床,按其成因可分为沉积变质型、岩浆型、接触交代-热液型、火山岩型、沉积型和风化型等6种主要类型,其中以沉积变质型最重要。我国目前具有工业意义的铁矿床,按其成因可分为沉积变质型、岩浆型、接触交代-热液型、火山岩型、沉积型和风化型等6种主要类型,其中以沉积变质型最重要。现介绍如下:现介绍如下: (一)沉积变质型铁矿床(一)沉积变质型铁矿床 这类铁矿床又称受变质沉积型铁矿床,主要产于前寒武纪(太古宙、元古宙)古老的区域变质岩系中,是我国十分重要的铁矿类型,其储量占全国总储量的57.8%。这类铁矿床又称受变质沉积型铁矿床,主要产于前寒武纪(太古宙、元古宙)古老的区域变质岩系中,是我国十分重要的铁矿类型,其储量占全国总储量的57.8%。并具有“大、贫、浅、易(选)”的特点,即矿床规模大,含铁量低,矿体出露地表或浅部,易于选别。并具有“大、贫、浅、易(选)”的特点,即矿床规模大,含铁量低,矿体出露地表或浅部,易于选别。主要分布于吉林东南部、辽宁鞍山—本溪、冀东、北京密云、晋北、内蒙古南部、豫中、鲁中、皖西北、江西新余、陕西汉中、湘中等地。主要分布于吉林东南部、辽宁鞍山—本溪、冀东、北京密云、晋北、内蒙古南部、豫中、鲁中、皖西北、江西新余、陕西汉中、湘中等地。根据矿床中的矿石类型和含矿变质岩系的岩石矿物组合以及其他地质特征,又分为下列两大类。根据矿床中的矿石类型和含矿变质岩系的岩石矿物组合以及其他地质特征,又分为下列两大类。 1.受变质铁硅质建造型铁矿床1.受变质铁硅质建造型铁矿床 典型铁矿床分布于辽宁鞍山—本溪一带,因此,一般称为“鞍山式”铁矿。典型铁矿床分布于辽宁鞍山—本溪一带,因此,一般称为“鞍山式”铁矿。这类铁矿是受不同程度区域变质作用并与火山-铁硅质沉积建造有关的铁矿床。这类铁矿是受不同程度区域变质作用并与火山-铁硅质沉积建造有关的铁矿床。大致与国外阿尔戈马型铁矿相当。大致与国外阿尔戈马型铁矿相当。主要形成于前寒武纪(多集中于2000~3000Ma)老变质岩区。主要形成于前寒武纪(多集中于2000~3000Ma)老变质岩区。

矿床勘探类型

矿床勘探类型 概念:根据矿床地质特点,尤其按矿体主要地质特征及其变化的复杂程度对勘探工作难易程度的影响,将相似特点的矿床加以归并而划分的类型,称为矿床勘探类型。 矿床勘探类型是在大量探采资料对比基础上,对已勘探矿床勘探经验的总结。 意义:矿床勘探类型的划分为勘探人员提供了类比、借鉴、参考应用类似矿床勘探经验的基础和可能,是为了正确选择勘探方法和手段,合理确定工程间距,对矿体进行有效控制的重要步骤。 注意:灵活运用和借鉴同类型矿床勘探的经验,切忌生搬硬套。在新矿床勘探初期可运用类比推理的方法,按其所归属的勘探类型,初步确定应采用的勘探方法,随着勘探工作的深入开展和新的资料信息的不断积累,重新深化认识和修正其原来所属勘探类型,避免因原来类比推断的不正确而造成勘探不足(原勘探类别过低时)或勘探过头(原勘探类型过高时)的错误,给勘探工作带来不应有的损失。 (一)矿床勘探类型划分的依据 原则:在划分勘探类型和确定工程间距时,遵循以最少的投入获得最大效益,从实际出发,突出重点抓主要矛盾,以主矿体为主的原则。 五大依据:依据矿体规模、主要矿体形态及内部结构、矿床构造影响程度、主矿体厚度稳定程度和有用组分分布均匀程度等五个主要地质因素来确定。 确定方法:为了量化这些因素的影响大小,提出了类型系数的概念。即对每个因素都赋予一定的值,用每个矿床相对应的五个地质因素类型系数之和就可以确定是何种勘探类型。在影响勘探类型的五个因素中,主矿体的规模大小比较重要,所赋予的类型系数要大些,约占30%;构造对矿体形状有影响,与矿体规模间有联系,所赋予的值要小些,约占10%;其他三个因素各占20%。 矿床勘探类型的划分一般依据以下5个方面的地质因素: 1 矿体规模 矿体规模分为大、中、小三类,其具体划分如表4-3-1所列: 表4-3-1 矿体规模

云母矿床类型及典型矿床

立志当早,存高远 云母矿床类型及典型矿床 云母矿床类型及典型矿床白云母(含金云母)矿床类型以伟晶岩型和变质岩型为主,亦见夕卡岩型金云母矿床。典型矿床为:(一)花岗伟晶岩型白云母矿床该类型矿床规模一般不大,储量较小,但晶体大、含矿率高。具有代表性的是内蒙古土贵乌拉白云母矿床。矿区内地层为太古宙桑干 群,为角闪岩相和麻粒岩相变质岩,岩性为夕线石榴片麻岩、石榴片麻岩、辉 石片麻岩、黑云母片麻岩及斜长片麻岩。含云母伟晶岩脉的主要围岩为夕线石 榴片麻岩。片麻理的走向北东35°~65°,倾角55°~80°。矿区内已发现伟晶岩脉200 多条,脉体主要受北西走向的张扭性裂隙所控制。脉长一般50~600m,宽一般为1~10m,倾角25°~30°。伟晶岩脉分带自上向下为小片白云母带、巨晶白云母带、石英白云母交代集合体、块状微 斜长石带、似文象-文象结构带、细粒结构带。矿物成分主要有石英、微斜长石、奥长石、钠长石和白云母,次要矿物有黑云母、铁铝榴石,此外还有少量 磷灰石、萤石、黄玉、磁铁矿、绿柱石、独居石、钛铁矿等。白云母主要产于 中粗粒结构的石英白云母交代集合体带中。白云母片面积一般10~60cm2,最大可达1000cm2。云母质量较好,易于剥分。(二)夕卡岩型金云母矿床此类矿床可以以吉林省集安北屯矿区为代表,属镁碳酸岩型夕卡岩型矿床。矿 区出露岩石为太古宙鞍山群新开河组混合岩化变质岩,有石墨变粒岩、斜长角 闪岩、透辉石岩、花斑大理岩。金云母矿脉产于透辉石岩的裂隙中,矿脉长10~20m,宽10~20cm。呈矿囊者长3~4m。成因为热液双交代作用形成。(三)变质岩型碎云母矿床河北灵寿山门口矿区,属于变质成因白云母钾长石片麻岩型碎云母矿床,位于太行山角闪岩相变质带内。含矿层为太古宙阜平 群湾子组下段,岩石为白云钾长片麻岩夹浅粒岩及黑云二长片麻岩。矿层走向

矿床地球化学

矿床学 1,矿床地质学; 2,矿床地球化学; 3,矿床(田)构造学; 4,包裹体地质学及包裹体地球化学; 5,生物成矿及矿床有机地球化学; 6,实验矿床学; 7,矿产经济学; 8,矿产资源的可持续发展。 《矿床地球化学》 中国科学院矿床地球化学开放研究实验室著 1997年地质出版社 全书共分20章,538页,总计82,7万字,售价60元 图书馆编号:P61 4 第一部分:阐述矿床地球化学的研究内容和研究动向 由绪论、第一章和第二章组成; 第二部分:论述矿床地球化学各个领域的基本理论及其在矿床研究中的应用 由第三章--第十四章组成; 第三部分:介绍矿床地球化学的研究方法及相应实例 由第十五章--第二十章组成; 绪论: (作者:涂光炽) 地球化学是研究地球和部分天体化学组成、化学作用和化学演化的科学,矿床地球化学为成矿作用的地球化学。 1,矿床地球化学发展的国际概况: ①深钻和超深钻所揭示的若干与成矿作用有关的重要成果:原苏联在其北缘科拉半岛打了一口世界已知最深的井,深12km,论证了此区太古宇在变质时,古地温梯度为现在的5-7倍,即为150-210℃/km ,这无疑对当时的成矿作用有影响; ②洋底现代成矿作用观察:70年代后,通过深海潜水器在红海、太平洋中脊、大西洋中脊、印度洋中脊和冲绳海槽直接观察到了洋底现代进行的成矿作用—烟囱—热水沉积矿床; ③成矿理论对发现超大型矿床所起的作用:奥林匹克坝④新矿床类型的发现:南澳奥林匹克坝铜金矿床新类型; ⑤对若干矿床类型进行了系统深入的地球化学研究: 2,矿床地球化学的若干重要生长点: 学科生长点指带有突破性的新的理论或见解。生长点的提出可以带动整个学科向前发展。每个学科在其向前迈进的过程中都会提出若干有别于其他学科的生长点。 ①多成因论:指矿床在成矿物质来源、成矿作用和成矿过程等方面不是单一的,而是多种的; ②金属、非金属和盐类矿床、煤、石油、天然气等矿产资源之间的有机联系; ③成矿作用的演化:成矿作用的时间、空间演化。 3,矿床地球化学近期开展的的若干重大科研课题:

矿床分类

矿床以成矿作用作为主要分类依据 在分类中适当考虑环境,同时在分类时再结合考虑成矿来源,分三大类:内生矿床、外生矿床、变质矿床。 (1).内生矿床包括岩浆矿床、伟晶岩矿床、接触交代矿床、热液矿床。 (2).外生矿床包括风化矿床和沉积矿床。 (3).变质矿床包括区域变质矿床、接触变质矿床和混合岩化矿床。 岩浆矿床的特点:三同、两高、一多。同时(成矿作用与成岩作用同时形成或近于同时形成)、同地(矿体多产于岩体中,母岩就是围岩)、同源(矿石的物质组分与母岩物质组分完全相同)。两高指高温和高压。一多指岩浆起源和成矿方式多样化 早期岩浆矿床特征 (1).矿石的矿物组成与母岩的矿物组成在成分上一致,矿体与母岩无明显界线,呈渐变关系; (2).它的矿石常呈自形、半自形结构,构造为侵染状; (3).有用矿物在动力或重力作用下,主要集中在岩体的底部或者边部,矿体的形态呈矿瘤、矿巢、凸镜、似层状。 晚期岩浆矿床特征 (1).矿石与母岩的矿物组成基本上一致,矿体与围岩界线清晰;(2).矿石一般具有海绵陨铁结构稠密侵染状构造或致密块状构造;(3).矿体呈条带状或似层状,含矿岩浆在内外力共同作用下,可形成脉状或凸镜状矿体。 伟晶矿床的物质成分特点:一杂(化学元素种类多,矿物共生组合复杂),二浓(40多种元素高度浓集,本身的克拉克值低);种类齐全,稀有宝库(各个大类的矿物在伟晶岩中都找得到,稀有元素在伟晶岩中也找得到);继承母岩,阶段演化(矿物成分与母岩具有一致性,演化上具有继承性,具有早期成岩晚期成矿的特点)。 气水热液的运移原因:热液自身的能量、压力差、浓度差、底部热液 成矿物质的沉淀影响因素:a、温度,b、压力,c、pH值,d、氧化还原反应,e、不同性质溶液混合。 气水热液的主要成分: (1).H2o:为气水热液的基本成分; (2).基本元素:K、Na、Ca、Mg、卤族元素及各种酸根; (3).金属成矿元素:亲铜元素、过渡元素、稀土稀有元素、放射性元素;(4).气态元素组合:水蒸气、H2S、CO2。(5).微量元素 矽卡岩矿床可分两个带:内带和外带。氧化物主要在内带,硫化物主要在外带。(1).内带:形成矽卡岩的过程中,交代岩体形成的带是内带。形成早,温度高,常见辉石、石榴子石、磁铁矿、赤铁矿,其次可见含水硅酸盐,方柱石、符山石。(2).外带:交代围岩形成的带称外带。其又分两个亚带:Ⅰ.第一亚带:产在紧靠接触带的硅酸盐类矿物中,以中温为主,富含水的硅酸盐类矿物;Ⅱ.第二亚带:产在距接触带较远的围岩中,温度较低,发生硅化(及矽化)、碳酸盐化、萤石化、重晶石化及硫化。 成煤作用:煤是由高等植物或低等植物转变而成的,在一定的物理、化学、地质作用条件下,从植物遗体到形成煤的全过程 热液矿床:指含矿热水溶液在一定的物理化学条件下,在各种有利的构造和岩石中,由充填和交代等成矿方式形成的有用矿物堆积体。 热液矿床的特点:(1).成矿热液多来源;(2).含矿热液成分复杂; (3).形成温度和深度较其它内生矿床低和浅,一般在400。C以下,1.5-4.5Km;(4).

相关文档
最新文档