关于非晶态金属材料的研究

关于非晶态金属材料的研究
关于非晶态金属材料的研究

第三节非晶态金属材料研究现状与前景

1. 非晶态金属材料及性质

非晶态金属是一种“年轻”的金属材料,从它诞生以来,就显示出了巨大的潜能。人们不断地发现它的各种奇异的、优良的特性,非晶材料已被广泛应用与此同时,人们对该材料的磁性、电学性质、力学性质、化学性质以及非晶态之形成及结构进行了广泛的研究,希望在这个亚稳的非晶态结构基础上研发出具有全新的结构和性能的新材料。

1. 1 非晶态金属材料

物质的结构决定了其性质. 物质材料按其结构分类,可分为晶体和非晶体两大类.常见的金属材料从结构上看一般都属于晶体材料.近几十年来,人们发现了金属存在的另一种结构形式——非晶态. 如果把晶体结构的金属视为金属的“常现性态”的话,那么,非晶态金属就是金属的“特常现性态”.非晶态金属又可形象的称为金属玻璃(非晶合金原子的混乱排列类似于玻璃) .对于金属材料来说,通常情况下,当金属或合金从液体凝固成固体(例如钢水凝固成钢锭)时,原子总是从液体的混乱排列转变成固体的整齐排列,即成为晶体.因为只有这样,其结构才最稳定.但是,如果金属或合金的凝固速度非常快(例如以106℃/ s 的冷却速率将铁-硼合金熔体凝固) ,原子来不及整齐排列便被冻结住了,最终的原子排列方式类似于液体,是混乱的,这就是非晶合金.从理论上说,任何物质只要它的液体冷却速率足够快,原子来不及整齐排列就凝固,那么原子在液态时混乱排列并迅速冻结,就可以形成非晶[2 ].有人根据这一特点又将非晶合金称为“过冷液”.但是,不同的物质形成非晶所需要的冷却速度大不相同.例如,普通的玻璃熔体只要慢慢冷却下来,得到的玻璃就是非晶态. 而单一的金属则需要108℃/ s 以上的冷却速度才能形成非晶态. 目前,受工艺水平的限制,在实际生产中难以达到如此高的冷却速度,也就是说,普通的单一的金属难以在生产中制成非晶.故非晶态金属多为合金,纯的非晶态金属很少.

非晶态金属结构是一种亚稳态结构.在一定的条件下(比如高温、强冲击作用) 会向更稳定的状态——晶态转变而变成普通晶态金属.我们把这一转变过程称为

“晶化”.

非晶态金属结构的无序性带来了结构的复杂性,给相应的研究工作带来了很大的困难.加上它又是那么的“年轻”,人们至今尚未能找到一个理想的物理或数学模型来描述或表征非晶态金属的结构.然而,这并不妨碍人们对它的研究兴趣.最近的研究表明,非晶态金属结构与“硬球无规密堆模型”相近,属于长程无序,短程有序的结构.这种短程有序表现在两个方面:某个原子最近邻的特定原子种类,称为化学短程序(CSRO) ;这些特定种类原子在空间的特定堆积,称为拓扑短程序( TSRO) .正是这两种短程序的存在,使得非晶态金属表现出许多优异的性能.

1. 2 性质

非晶态金属得以广泛研究和应用的原因是它具有结晶金属不具备的各种优良特性.影响物质性能的根本因素除了其成分外,就是原子的排列以及电子状态.从结构上看,非晶态金属的构造与结晶金属不同,原子排列紊乱无序,原子之间相互作用,电子所处的状态都与结晶金属不同.非晶态金属的这种特殊结构,决定了其性能与结晶金属有很大差异.除此之外,还有一点应强调的是非晶态金属在成分上的特殊性.非晶态金属大都是多元素合金,从均匀的液体状态快速冷却、凝固,使各元素能均匀分布,形成一个固溶体.添加各种不同的元素会使非晶态金属产生各种不同性质.这种在成分上自由调节的特殊性给非晶态金属带来了很大影响.结晶金属则不同,多元素所形成的合金,像平衡状态图所示的一样,大部分都形成化合物,或是分离成几个相,多元素在一个相中均匀的混合,形成固溶体的范围少.所以,结晶金属不具备非晶态金属的多种元素任意、均匀混合的特点,结构和成分上的特殊性决定了非晶态金属有各种特殊性能[4 ]非晶态金属位错密度高,宏观组织均一,没有晶界等缺陷,被认为是一种具有高韧性、高强度的材料.实验证明,非晶态金属的强度比结晶金属材料要高得多. 铁系非晶态金属的最高强度达450 kgmm2,钴系和镍系也达300 kg/ mm2以上,比人们所知的强度最高的钢丝线强度(直径为0. 18 mm 的钢丝线强度为280 kg/ mm2)还高.

非晶态金属中虽然含有许多非铁磁性元素,难以得到很强的磁化,但其没有结晶金属的磁的各向异性,也不存在阻碍磁畴壁移动的结晶缺陷及析出物,因而它的磁滞损失非常小.此外,非晶态金属的电阻率是结晶金属的5~6 倍,它的

涡流损失也很小.非晶态金属是极理想的软磁材料,它具有低矫顽力、高导磁率及高频特性好等优良特性.由于非晶态金属没有成分变化而引起相变现象,磁性可以随成份连续变化,所以可以做出各种特性的非晶态磁性金属.

从构造上看,非晶态金属没有晶界、层错等缺陷,没有偏析、析出及异相,当添加适当元素形成亚稳态后,会显示出惊人的抗腐蚀性,在酸性、中性或碱性等各种溶液中长期浸泡而不被腐蚀.如在Fe 基合金中添加Cr 和Mo ,其耐腐蚀性之强令人难以置信.可以说,这是非晶态金属的构造特殊性和成分特殊性而带来的结果.

非晶态金属除了高强韧性、超耐腐蚀性和软磁性外,还具备许多其他特性,如耐放射线损伤.通常中子照射到结晶金属上后,原子的点阵排列会遭到破坏,出现很多缺陷使材料性能下降,但是非晶态金属在放射线长期照射后既不脆化,导电性也不下降.将来人类可利用原子能以及氢的核聚变能解决能源问题.由于原子炉以及核聚变炉中有大量的放射线,

因此,要求耐照射损伤的材料,非晶态金属的耐放射线损伤的特性将有助于解决这一问题.非晶态金属的构造可以看成是无数个缺陷的组合体.表面处于非常活泼的化学状态,可以作为很有前途的催化剂材料.另外,很多非晶态金属具有超导性,可作为贮氢材料减轻材料粉化的问题等.非晶态金属的历史还很短,随着其研究的深入,还会发现许多新的特性.

2. 非晶态金属的制备

制备非晶态金属的方法很多,大致可分为液相急冷法、气相沉积法、化学溶液反应法及固相反应法等几大类.液相急冷法和气相沉积法是较常见的两种方法.从材料制备的工艺和产品的质地来看,液相急冷法是比较好的一种,目前已成为制备各种非晶态金属的主要方法.

2. 1 液相急冷法

此方法是将金属加热熔化,然后采取各种方法让液态金属快速冷却凝固,形成非晶态金属.该方法在非晶态金属制作中用得最广泛、最频繁,目前得到应用的非晶态金属几乎都是由此法制成的. 此方法的种类很多,用不同的急冷法得到的非晶态金属的形态、性质有很大的不同.

目前,非晶态金属的大型制造设备可连续生产宽达20 cm的非晶态金属薄带.利用单轮法还可以制作复合非晶态薄带,即利用两个坩埚将金属熔化,然后同时喷到同一个快速旋转的轮子上,就可以得到两种材料接合的复合非晶态金属薄带.除此之外,还可利用激光、电子束等离子体等手段在碳素钢等金属表面涂盖一层耐腐蚀的非晶态金属膜,或利用脉冲大电流将多晶薄膜快速熔化,快速凝固成非晶态金属膜,或利用熔射法将10μm 左右的合金粉末通过等离子体熔化后喷到冷却板上,制取带状或粉末状非晶态金属.这些方法都属于液相急冷法.液相急冷法的特点是让液态金属中的热量在非常短的时间内散发掉,使晶核的形成及长大得到抑制,冷却时间t0随温度、压力、成分、短程有序性等的差异而不同,一般t0 在10 - 2~10- 7s的范围内.冷却速率是液相急冷法的关键因素之一,冷却速率越快,会使非晶态金属的形成范围加宽,非晶态金属的尺寸加大,非晶态的均一性好,从而使非晶态金属的热稳定性提高.非晶态化均一性对材料性能的影响极大,如果试料中有微小的结晶成分存在,那么材料的许多性质显著下降.如很多脆性的非晶态金属往往是因没有完整均一地非晶态化,或虽是均匀非晶态化,但在保存中又出现了结晶而造成的.

2. 2 气相沉积法

气相沉积法是通过加热、溅射等各种手段使金属先变成原子、分子、离子或原子团状态,然后沉积到基板上,形成非晶态金属.此法是从制作非晶态金属磁性薄膜而发展起来的.目前,制造薄膜、超微粉、多层膜以及人造晶格膜经常运用气相沉积法. 此法大体上可以分为两大类:一类是物理气相沉积法,包括真空蒸镀法、溅射法、离子束法、ICB ( Iion clusterbeam)法等;另一类是化学气相沉积法,包括热CVD法、光CVD 法和等离子体CVD 法.气相沉积法的非常重要的因素是飞往基板的粒子运动能量和基板周围的真空度.真空蒸镀法虽有基板温度不升高、堆积速度快、装置结构简单及调节方便等优点,但是粒子运动能量低,仅有0. 01~1eV 左右,必须将基板温度降到很低才行.另外,形成的膜与基板结合强度低,所以在非晶态金属制作中用得不多. 溅射法虽然膜的形成机构复杂,难以控制,基板温度上升显著,但是离子能量约为10 eV ,很适合做非晶态金属膜,而且膜与基板接合牢,成分控制也比真空蒸镀膜好,是制取非晶态金属薄膜的主要方法.用溅射法能使一些用液相急冷法不能非晶态化的合金

非晶态化,如Fe2Mo , Fe2La , Fe2Cu2Ag等合金系.溅射法的主要缺点是离子能量难以控制,基板温度上升快,真空度低及Ar 等气体杂质易混入试料中.用此法获得的非晶态金属的性能与液相急冷法获得的非晶态金属的性能相差很大.最近离子束法的研究很受重视. 此法真空度高,能避免Ar 等气体杂质混入,离子束也容易控制,可以在很宽的成分范围内制取纯净度很高、性能很好的非晶态薄膜,不足处是膜形成速度太慢.ICB 法是一种速度较快的非晶态金属薄膜形成方法.将试料加热熔化使金属蒸发形成原子团,同时使原子团离子化,以离子团的形式加速飞向基板.此法真空度高,不存在Ar 等气体杂质混入问题,同时基板温度上升问题也能避免,但目前还没有发现此法形成的非晶态金属薄膜有什么很实用的特性.另外,在设备和技术上还有不少问题尚待解决. CVD法也可以用来制非晶态金属薄膜,但一般仅在高熔点金属及金属陶瓷合金中有所应用,如可以制备SiC ,SiB ,SiN 等非晶态薄膜.

2. 3 化学溶液反应法

化学溶液反应法包括电解镀膜法和无电解镀膜法.电解镀膜法是早已为人们所知的非晶态金属薄膜制作法,是通过加入电流使金属离子直接还原析出在电极上,其最大特点是简单,能大面积形成非晶态金属薄膜.最近此法又开始重新引人注目,在材料的防腐等领域中得到了应用.由于此法是在溶液中靠电极反应而生成膜,因此控制溶液的种类、温度及电解条件等都很重要.无电解镀膜法是不加电流,而在溶液中加入一些还原剂,靠其化学反应在基板上析出形成薄膜.例如,将CoCl2 ·6H2 O ,NaH2 PO2 ·H2O ,N H4 CNa KC4 H4O6混合,调成p H 为9~10 的水溶液,经反应可生成Co2P 非晶态金属膜,按类似条件也可以形成Ni2P ,Ni2Fe2P 及Ni2B 等非晶态金属膜.除这两种以外,最近又发现金属离子水溶液和氢化、硼化物的水溶液混合,在短时间内可产生大量非晶态金属超细粉. 这种现象在Fe2B ,Co2B , Fe2M2B ,Ni2M2B (M = Cr ,Mo ,W ,Mn)等许多合金中都得到证实,此方法的原理与无电解镀膜类似.用此法制成的非晶态金属为20 nm 左右的超细粉,而且形成非晶态金属的成分范围与液相急冷法有很大不同.现在已开始对这些超细粉进行物性研究,并发现了一些良好的特性.

2. 4 固相反应法

目前,这个领域的研究最活跃,作为非晶态金属制作的新方法受到极大的关

注.固相反应法大体上可以分为四大类.第一类是利用电子线、放射线等的照射使金属非晶化,如Zr3 Al ,Ni Ti ,Cu4 Ti3和Ni3 M等金属间化合物受照射后形成非晶态金属.第二类是将两种金属作成间隔为数mm 的多层膜,然后在高真空中加热到数百度,靠加热反应形成非晶态金属.如在Au2La ,Zr2Ni ,Ni2Hf ,Co2Zr ,Co2Hf 和Rh2Si 等系中成功地获得了非晶态相.第三类是让AB ,AB2和AB3型金属间化合物在常温或常温以上的高温中吸收氢气,在金属与氢气反应中形成非晶态金属.如Laves相RM2 (R =稀土金属;M = Fe ,Ni ,Co ,Mn) ,Do19型R3M(R = La , Pr ,Nd ,Sm ;M = Ga ,Al)以及C23B8型的许多金属间化合物,在适当的条件下与氢气反应,都可以形成非晶态金属.此方法获得非晶态金属一般以粉末状为多,也有块状的.通过控制氢气的压力及反应温度可以改变非晶态金属的形态及特性. 第四类是机械合金化法(mechanical allo2ying ,简称MA 法) .这种方法是将数种金属粉末混在一起,靠球磨碰撞等机械能量使金属粉末局部破坏、压挤,在微观上混合化、合金化和微粒化,通过局部加热和扩散反应,获得非晶态金属粉末.前三种方法形成非晶态相的合金成分都有局限于金属间化合物的倾向,而MA 法则不存在此限制. MA 法能在液相急冷法不能获得的合金成分范围内获得非晶态相,这已在Fe2Zr , Cu2Nb2Sn ,Ag2Cu ,Ni2Ti ,Ni2Zr ,Cu2Zn 和Ag2Fe 等许多系中得到证实. 此法所需的设备简单,操作方便,适应的合金范围宽,是一种大量生产非晶态金属粉末的有效方法. 近几年来,与MA 法有关的研究很活跃,但用此法制出的非晶态金属粉末很微细,表面易氧化,反应所需时间长,容器的磨损带来的杂质混入现象也难以避免.另外,非晶态化的均一性与液相急冷法相比是否相同还不清楚.关于粉末及压粉体性能达到或超过液相急冷法的粉末及压粉体的性能报道也很少,这些都是急待解决的问题. 与MA 法相似的还有机械压粉体法(mechanical grinding ,简称MG法) . MG法与MA法的不同之处是出发原料不同,它不是以两种以上的纯金属粉末,而是以几种金属的合金粉末为原料.

3. 非晶态金属的性能及其应用

与晶态合金相比,非晶态合金在物理性能(力、热、电、磁)和化学性能等方面都发生了显著的变化.而几乎所有的这些特性都可以进一步挖掘和利用,给

我们带来科学的、经济的、社会的利益和价值.

3. 1 非晶态金属的力学性能及应用

研究表明,非晶态合金与普通钢铁材料相比,有着突出的高强度、高韧性和高耐磨性.根据这些特点用非晶态材料和其它材料可以制备成优良的复合材料,也可以单独制成高强度耐磨器件.在日常生活中我们接触的非晶态材料已经很多,如用非晶态合金制做的高耐磨音频视频磁头在高档录音、录相机中的广泛使用;把块状非晶合金应用于高尔夫球击球拍头和微型齿轮中;采用非晶丝复合强化的高尔夫球杆、钓鱼杆已经面市;非晶合金材料广泛用于轻、重工业、军工和航空航天业,在材料表面、特殊部件和结构零件等方面也都得到广泛的应用.

3. 2 非晶态金属的电学性能应用

一般非晶态金属的电阻率较同种的普通金属材料要高,在变压器铁芯材料中利用这一特点可降低铁损.人们发现,在某些特定的温度环境下,非晶的电阻率会急剧的下降(跃变效应) ,利用这一特点可设计特殊用途的功能开关.还可利用其低温超导现象开发非晶超导材料.目前,人们对非晶态合金电学性能及其应用方面的了解相对较少,尚有待进一步研发.

3. 3 非晶态金属的磁学性能及应用

非晶态合金具有优异的磁学性能.在非晶的诸多特性中,人们目前对这一方面的研究相对要深入些.常常有人对图书馆或超市的书或物品中所暗藏的报警设施感到惊讶,其实,这不过是非晶态软磁材料在其中发挥着作用.与传统的金属磁性材料相比,由于非晶合金原子排列无序,没有晶体的各向异性,电阻率高,具有高的导磁率,是优良的软磁材料.根据铁基非晶态合金具有高饱和磁感应强度和低损耗的特点,现代工业多用它制造配电变压器,铁芯的空载损耗与硅钢铁芯的空载损耗相比降低60 %~80 %,具有显著的节能效果.应用非晶态合金配电变压器所带来的巨大节能效益意味着可以通过节能减少新建电厂的数量,同时减少新建电厂对环境的污染,从这个意义上讲,非晶态材料被誉为“绿色材料”.非晶态合金铁芯还广泛地应用在各种高频功率器件和传感器件上,用非晶态合金铁芯变压器制造的高频逆变焊机,大大提高了电源工作频率和效率,焊机的体积成倍减小.如今,电力电子器件正朝着高效、节能、小型化的方向发展,新的科技发展方向对非晶态金属材料研究现状与前景磁性材料也提出了新的要求.于

是,一种体积小、重量轻的非晶态软磁材料以损耗低、导磁高的优异特性正逐步代替一部分传统的硅钢、坡莫合金和铁氧体材料,成为目前研究最深入、应用领域最多、最引人注目的新型功能材料之一.

3. 4 非晶态金属的化学性能及应用

非晶态合金还具有优异的化学性能.研究表明,非晶态合金对某些化学反应具有明显的催化作用,可以用作化工催化剂.某些非晶态合金通过化学反应可以吸收和释放出氢,可以用作储氢材料.由于没有晶粒和晶界,非晶态合金比晶态合金更加耐腐蚀,因此,它可以成为化工、海洋等一些易腐蚀的环境中应用设备的首选材料.

3. 5 非晶态金属材料与纳米晶金属材料

非晶态金属与纳米晶金属材料有着非常亲缘的关系.通过一些特殊的方法控制非晶晶化的过程,可以得到致密良好、纯净度很高并符合期望的纳米晶金属材料. 根据近期文献报道,在诸多非晶晶化法中,退火晶化法和激波诱导晶化法是比较成功也比较好的两种方法. 20 世纪80 年代末,日本的吉泽克仁等发现,含有Cu 和Nb 的铁基的FeBSi 非晶合金在晶化温度以上退火时,会形成非常细小的晶粒组织,晶粒尺寸仅有10~20 nm ,这时材料的磁性能不仅不退化,反而非常优良.这种非晶合金经过特殊的退火晶化而形成的晶态材料称为纳米晶合金(以前也曾称为超微晶合金) .铁基纳米晶合金的磁性能几乎能够和非晶合金中最好的钴基非晶合金相比,但是却不含有昂贵的钴,所以被广泛应用于高频变压器铁芯,替代铁氧体和坡莫合金等.

非晶态金属材料综述

非晶态金属材料 一,非晶态金属材料 非晶态金属材料是指在原子尺度上结构无序的一种金属材料。大部分金属材料具有很高的有序结构,原子呈现周期性排列(晶体),表现为平移对称性,或者是旋转对称,镜面对称,角对称(准晶体)等。而与此相反,非晶态金属不具有任何的长程有序结构,但具有短程有序和中程有序(中程有序正在研究中)。一般地,具有这种无序结构的非晶态金属可以从其液体状态直接冷却得到,故又称为“玻璃态”,所以非晶态金属又称为“金属玻璃”或“玻璃态金属”。 制备非晶态金属的方法包括:物理气相沉积,固相烧结法,离子辐射法,甩带法和机械法。 二,非晶态金属的特点 由于传统的金属材料都以晶态形式出现。但这类金属熔体,由于极快的速率急剧冷却,例如每秒钟冷却温度大于100万度,冷却速度极快,而高温下液态时原子呈无序状态,因被迅速“冻结”而形成无定形的固体,此时这称为非晶态金属;由于其内部结构与玻璃相似,故又称金属玻璃。 这种材料强度和韧性兼具,即强度高而韧性好,一般的金属在两点上是相互矛盾的,即强度高而韧性低,或与此相反。而对于非晶态金属,其耐磨性也明显地高于钢铁材料。 非晶态金属还具有优异的耐蚀性,远优于典型的不锈钢,这可能是因为其表面易形成薄而致密的钝化膜;同时由于其结构均匀,没有金属晶体中经常存在的晶粒、晶界和缺陷,所以不易产生引起电化学腐蚀 并且非晶态金属还具有优良的磁学性能;由于其电阻率比一般金属晶体高,可以大大减少涡流损失,低损耗、高磁导,故使其成为引人注目的新型材料,也被誉为节能的“绿色材料”。 另外,非晶态金属有明显的催化性能;它还可作为储氢材料。 但是非晶态合金也有其致命弱点,即其在500度以上时就会发生结晶化过程,因而使材料的使用温度受到限制。还有其制造成本较高,这点也限制非晶态金属广泛应用。

金属材料性能

金属材料性能 金属材料是指金属元素或以金属元素为主构成的具有金属特性的材料的统称。包括纯金属、合金、金属材料金属间化合物和特种金属材料等。(注:金属氧化物(如氧化铝)不属于金属材料) 性能 一般分为工艺性能和使用性能两类。所谓工艺性能是指机械零件在加工制造过程中,金属材料在所定的冷、热加工条件下表现出来的性能。金属材料工艺性能的好坏,决定了它在制造过程中加工成形的适应能力。由于加工条件不同,要求的工艺性能也就不同,如铸造性能、可焊性、可锻性、热处理性能、切削加工性等。 所谓使用性能是指机械零件在使用条件下,金属材料表现出来的性能,它包括力学性能、物理性能、化学性能等。金属材料使用性能的好坏,决定了它的使用范围与使用寿命。在机械制造业中,一般机械零件都是在常温、常压和非常强烈腐蚀性介质中使用的,且在使用过程中各机械零件都将承受不同载荷的作用。金属材料在载荷作用下抵抗破坏的性能,称为力学性能(过去也称为机械性能)。金属材料的力学性能是零件的设计和选材时的主要依据。外加载荷性质不同(例如拉伸、压缩、扭转、冲击、循环载荷等),对金属材料要求的力学性能也将不同。常用的力学性能包括:强度、塑性、硬度、冲击韧性、多次冲击抗力和疲劳极限等。 种类 金属材料通常分为黑色金属、有色金属和特种金属材料。 (1)黑色金属又称钢铁材料,包括含铁90%以上的工业纯铁,含碳2%~4%的铸铁,含碳小于2%的碳钢,以及各种用途的结构钢、不锈钢、耐热钢、高温合金、不锈钢、精密合金等。广义的黑色金属还包括铬、锰及其合金。 (2)有色金属是指除铁、铬、锰以外的所有金属及其合金,通常分为轻金属、重金属、贵金属、半金属、稀有金属和稀土金属等。有色合金的强度和硬度一般比纯金属高,并且电阻大、电阻温度系数小。 (3)特种金属材料包括不同用途的结构金属材料和功能金属材料。其中有通过快速冷凝工艺获得的非晶态金属材料,以及准晶、微晶、纳米晶金属材料等;还有隐身、抗氢、超导、形状记忆、耐磨、减振阻尼等特殊功能合金以及金属基复合材料等。 金属材料特质 1.塑性 塑性是指金属材料在载荷外力的作用下,产生永久变形(塑性变形)而不被破坏的能力。金属材料在受到拉伸时,长度和横截面积都要发生变化,因此,金属的塑性可以用长度的伸长(延伸率)和断面的收缩(断面收缩率)两个指标来衡量。 金属材料的延伸率和断面收缩率愈大,表示该材料的塑性愈好,即材料能承受较大的塑性变形而不破坏。一般把延伸率大于百分之五的金属材料称为塑性材料(如低碳钢等),而把延伸率小于百分之五的金属材料称为脆性材料(如灰口铸铁等)。塑性好的材料,它能在较大的宏观范围内产生塑性变形,并在塑性变形的同时使金属材料因塑性变形而强化,从而提高材料的强度,保证了零件的安全使用。此外,塑性好的材料可以顺利地进行某些成型工艺加工,如冲压、冷弯、冷拔、校直等。因此,选择金属材料作机械零件时,必须满足一定的塑性指标。 2.硬度 硬度表示材料抵抗硬物体压入其表面的能力。它是金属材料的重要性能指标之一。一

新材料概论金属材料及其合金的研究进展

新材料概论金属材料及其合金的研究进展

河南工程学院《新材料概论》考查课 专业论文 金属材料及其合金的研究进展 学生姓名: 学号:== 学院: 专业班级: 专业课程: 任课教师:

日 金属材料及其合金的研究进展 ) 摘要:金属是人们日常生活生产中最不可或缺的材料,更是人类社会进步的关键所在,本篇论文主要论述金属材料的种类、性能及在社会发展中的重要应用,并且展望金属材料在未的发展前景。 关键词:金属材料、镁合金、铝合金、记忆金属 金属材料是指由金属元素或以金属元素为主构成的具有金属特性的材料的统称。包括纯金属、合金、金属间化合物和特种金属材料等。由两种或两种以上的金属,或金属与非金属,经熔炼、烧结或其它方法组合而成并具有金属特性的物质称为合金。工业中广泛使用的金属材料是合金,金属材料中最常用的是钢铁、铝合金、铜合金、镁合金、钛合金等。现代生产生活中种类繁多的金属材料已成为人类社会发展的重要物质基础。 一、金属材料的分类 金属材料通常分为黑色金属和有色金属如图1所示 1、黑色金属又称钢铁材料,包括含铁90%以上的工业纯铁,含碳2%~4%的铸铁,含碳小于2%的碳钢,以及各种用途的结构钢、不锈钢、耐热钢、高温合金、精密合金等。广义的黑色金属还包括铬、锰及其合金。 2、有色金属是指除铁、铬、锰以外的所有金属及其合金,通常分为轻金属、重金属、贵金属、半金属、稀有金属和稀土金属等。有色合金的强度和硬度一般比纯金属高,并且电阻大、电阻温度系数小。 3、特种金属材料包括不同用途的结构金属材料和功能金属材料。其中有通过快速冷凝工艺获得的非晶态金属材料,以及准晶、微晶、纳米晶金属材料等;还有隐身、抗氢、超导、形状记忆、耐磨、减振阻尼等特殊功能合金,以及金属基复合材料等。[1]金属材料按生产成型工艺又分为铸造金属、变形金属、喷射成形金属,以及粉末冶金材料。铸造金属通过铸造工艺成型,主要有铸钢、铸铁和铸造有色金属及合金。变形

影响金属材料疲劳强度的八大因素

影响金属材料疲劳强度的八大因素 Via 常州精密钢管博客 影响金属材料疲劳强度的八大因素 材料的疲劳强度对各种外在因素和内在因素都极为敏感。外在因素包括零件的形状和尺寸、表面光洁度及使用条件等,内在因素包括材料本身的成分,组织状态、纯净度和残余应力等。这些因素的细微变化,均会造成材料疲劳性能的波动甚至大幅度变化。 各种因素对疲劳强度的影响是疲劳研究的重要方面,这种研究将为零件合理的结构设计、以及正确选择材料和合理制订各种冷热加工工艺提供依据,以保证零件具有高的疲劳性能。 应力集中的影响 常规所讲的疲劳强度,都是用精心加工的光滑试样测得的,然而,实际机械零件都不可避免地存在着不同形式的缺口,如台阶、键槽、螺纹和油孔等。这些缺口的存在造成应力集中,使缺口根部的最大实际应力远大于零件所承受的名义应力,零件的疲劳破坏往往从这里开始。 理论应力集中系数Kt :在理想的弹性条件下,由弹性理论求得的,缺口根部的最大实际应力与名义应力的比值。 有效应力集中系数(或疲劳应力集中系数)Kf:光滑试样的疲劳极限σ-1与缺口试样疲劳极限σ-1n的比值。 有效应力集中系数不仅受构件尺寸和形状的影响,而且受材料的物理性质、加工、热处理等多种因素的影响。 有效应力集中系数随着缺口尖锐程度的增加而增加,但通常小于理论应力集中系数。 疲劳缺口敏感度系数q:疲劳缺口敏感度系数表示材料对疲劳缺口的敏感程度,由下式计算。 q的数据范围是0-1,q值越小,表征材料对缺口越不敏感。试验表明,q并非纯粹是材料常数,它仍然和缺口尺寸有关,只有当缺口半径大于一定值后,q值才基本与缺口无关,而且对于不同材料或处理状态,此半径值也不同。 尺寸因素的影响

金属材料的分类及性能

金属材料的分类及性能 一、金属材料定义:是金属元素或以金属元素为主构成的具有金属特性的材料。 二、金属材料分类: ①黑色金属:纯铁、铸铁、钢铁、铬、锰。 ②有色金属:有色轻金属、有色重金属、半金属、贵金属、稀有金属 三、金属材料性能: ①工艺性能:铸造性能、锻造性能、焊接性能、切削加工性能、热处理性能等 ②使用性能:机械性能、物理性能、化学性能等 1. 工艺性能 金属对各种加工工艺方法所表现出来的适应性称为工艺性能,主要有以下五个方面:(1)铸造性能:反映金属材料熔化浇铸成为铸件的难易程度,表现为熔化状态时的流动性、吸气性、氧化性、熔点,铸件显微组织的均匀性、致密性,以及冷缩率等。铸造性能通常指流动性,收缩性,铸造应力,偏析,吸气倾向和裂纹敏感性。 (2)锻造性能:反映金属材料在压力加工过程中成型的难易程度,例如将材料加热到一定温度时其塑性的高低(表现为塑性变形抗力的大小),允许热压力加工的温度范围大小,热胀冷缩特性以及与显微组织、机械性能有关的临界变形的界限、热变形时金属的流动性、导热性能等。可锻性:塑性和变形抗力 (3)焊接性能:反映金属材料在局部快速加热,使结合部位迅速熔化或半熔化(需加压),从而使结合部位牢固地结合在一起而成为整体的难易程度,表现为熔点、熔化时的吸气性、氧化性、导热性、热胀冷缩特性、塑性以及与接缝部位和附近用材显微组织的相关性、对机械性能的影响等。 (4)切削加工性能:反映用切削工具(例如车削、铣削、刨削、磨削等)对金属材料进行切削加工的难易程度。 (5)热处理性能:热处理是机械制造中的重要过程之一,与其他加工工艺相比,热处理一般不改变工件的形状和整体的化学成分,而是通过改变工件内部的显微组织,或改变工件表面的化学成分,赋予或改善工件的使用性能。其特点是改善工件的内在质量,而这一般不是肉眼所能看到的,所以,它是机械制造中的特殊工艺过程,也是质量管理的重要环节。 2. 机械性能:

金属材料大气腐蚀研究进展汇总

存档日期:存档编号: 北京化工大学 研究生课程论文 课程名称:材料保护学 课程代号: 任课教师: 完成日期: 专业: 学号: 姓名: 成绩:_____________

金属材料大气腐蚀研究进展 摘要:本文对金属大气腐蚀研究做了简介,综述了我国的大气腐蚀研究进展,并比较了国内外的发展水平。得出我国的大气腐蚀研究已经进入了世界强国之列,但是总体上与美国等发达国家有着20-30年的差距。对以后的大气腐蚀研究方面提出了展望。 关键词:金属,大气,腐蚀

大气腐蚀是指大气中的腐蚀性气体溶解在水中作用于金属表面所引起的腐蚀[1]。大气腐蚀是金属腐蚀的基本类型,几乎所有与大气接触的金属材料都会受到大气腐蚀,大气腐蚀所造成的损失约占腐蚀总损失的一半以上[2],因此,开展大气腐蚀与防护的研究具有重要的意义。 1.金属大气腐蚀研究简介 金属的大气腐蚀是自然界中存在的最普遍的腐蚀现象,因此人们在很早以前就已经开始对它进行研究。特别是基于自然环境中的大气腐蚀现场曝晒试验直观、可靠的特点,世界各国对其都格外重视。尤其是像美国、英国和日本等工业发达的国家,早在上个世纪初就开始通过现场曝晒试验研究多种材料在自然大气环境中的腐蚀行为。相比之下,我国开展自然环境的大气腐蚀研究起步较晚,始于20世纪50年代中期,即1955年开始建立大气腐蚀曝晒试验站,但由于历史原因,发展迟缓,不具系统性,期间由于“文革”影响还中断了十几年,直到1980年才在全国范围内恢复自然环境腐蚀试验网站的建设工作[3]。我国在大气腐蚀基础研究方面在国内外发表了大量的论文,这些系列论文的发表极大的提高了我国在大气腐蚀方面的研究地位,标志着我国已经进入大气腐蚀研究强国之列,而且这方面还保持着很好的发展势头[4]。 2.大气腐蚀行为与规律若干研究进展 (1)金属材料自然环境腐蚀幂指数规律的建立和金属大气腐蚀初期行为与规律研究[5]。以黑色金属和有色金属材料在我国典型大气环境中的长期现场腐蚀试验为基础,通过数据采集、评价和综合分析,获得了金属材料在我国典型大气环境中的腐蚀速率幂函数规律和相关参数以及拟合曲线,由此建立的幂函数模型可以表征我国典型大气环境下金属材料的腐蚀规律,这一规律的确认与获得是我国材料大气腐蚀学科领域的重要进展。其模型为: D A n t 其中,D——腐蚀深度(mm); t——暴晒试验时间(a); A——第一年的腐蚀深度(与环境及材料有关); n——代表腐蚀发展趋势(随钢种和环境变化极大,数值一般小于1); 对Q235和09CuPCrNi耐候钢在模拟潮湿和湿热大气环境中的腐蚀初期行为;铝合金AZ91D镁合金在模拟大气环境中的腐蚀初期行为与机理;Q235、09CuPCrNi耐候钢、铝合金AZ91D镁合金在单一SO2、CO2、NaCl沉积污染状况下和SO2、CO2、NaCl沉积复合污染下的腐蚀初期行为与机理等进行了系统研究,得到了一系列结果,发表在国内外学术刊物上。

非晶材料文献综述

本科生毕业设计(论文)文献综述文献综述题目:Ti基非晶合金的制备以及低温力学性能 姓名:孙驰 学院:材料学院 班级:04320701 指导教师:程焕武

Ti基非晶合金的制备以及低温力学性能文献综述 1.非晶合金 1.1非晶合金概述 非晶合金材料是20世纪后期材料学领域发展迅速的新型材料,是亚稳金属材料的重要组成部分。从组成物的原子模型考虑,物质可分为两类:一类为有序结构,另一类为无序结构。晶体为典型的有序结构,而气态,液态和非晶态固体都属于无序结构。在非晶体中的原子,分子的空间排列不呈现周期性和平移对称性,晶态长程有序受到破坏,知识由于原子间的相互关联作用,使其在几个原子间距的区间内仍然保持着有序特征,即具有短程有序,人们把这样一类特殊的物质状态统称为非晶态[1]。 非晶合金长程无序但短程有序,是指原子在空间排列上不呈周期性和平移对称性,但在1-2nm的微小尺度内,与近邻或次近邻原子间的键合具有一定的规律性。短程有序可分为化学短程有序和几何短程有序。化学短程有序是指合金元素的混乱状态,即每个合金原子周围的化学成分与平均成分不同的度量;几何短程有序包括拓扑短程序和畸变短程序。非晶合金的微观结构与液态金属相似,但又非完全相同,液态金属的短程有序范围约为4个原子间距,而非晶合金约为5-6个原子间距,前者中原子可以做大于原子间距的热运动,后者的原子主要做运动距离小于一个原子间距的热运动。非晶合金结构特征可以用径向分布函数RDF(r)=4πr2ρ(r)加以描述。它表示以某个原子为中心,在半径r,厚度为d(r)的球壳内的平均原子数。非晶合金的RDF(r)上出现清晰的第一峰和第二峰,没有可分辨的其它峰出现。在X射线衍射谱上,不存在晶体所特有的尖锐衍射峰,而是出现宽展的馒头峰。它的电子衍射花样是由较宽的晕和弥散的环组成,不存在表征晶态的任何斑点和条纹[2]。 1.2非晶合金与块状非晶合金的发展历史 历史上第一次制备出非晶的是Kramer于1938年利用蒸发沉积的方法实现的,此后不久,Brenner等声称用电沉积法制备出了Ni-P非晶合金。1960年 Duwez等人用快速凝固方法第一次制备出了Au 75Si 25 非晶合金,这标志了非晶 合金的诞生,这种快速凝固法是将Au 75Si 25 金属直接喷射到Cu基底上直接激冷

影响金属材料疲劳强度的八大因素和预防措施

影响金属材料疲劳强度的八大因素和预防措施 材料的疲劳强度对各种外在因素和内在因素都极为敏感,外在因素包括零件的形状和尺寸、表面光洁度及使用条件等,内在因素包括材料本身的成分、组织状态、纯净度和残余应力等。 这些因素的细微变化,均会造成材料疲劳性能的波动甚至大幅度变化。 01、应力集中的影响 常规所讲的疲劳强度,都是用精心加工的光滑试样测得的,实际机械零件都不可避免地存在着不同形式的缺口,如台阶、键槽、螺纹和油孔等。 这些缺口的存在造成应力集中,使缺口根部的最大实际应力远大于零件所承受的名义应力,零件的疲劳破坏往往从这里开始。 理论应力集中系数Kt : 在理想的弹性条件下,由弹性理论求得的,缺口根部的最大实际应力与名义应力的比值。 有效应力集中系数(或疲劳应力集中系数)Kf: 光滑试样的疲劳极限σ-1与缺口试样疲劳极限σ-1n的比值。 有效应力集中系数不仅受构件尺寸和形状的影响,而且受材料的物理性质、加工、热处理等多种因素的影响。 有效应力集中系数随着缺口尖锐程度的增加而增加,但通常小于理论应力集中系数。

疲劳缺口敏感度系数q: 疲劳缺口敏感度系数表示材料对疲劳缺口的敏感程度,由下式计算: q的数据范围是0~1,q值越小,表征材料对缺口越不敏感。 试验表明,q并非纯粹是材料常数,它仍然和缺口尺寸有关,只有当缺口半径大于一定值后,q值才基本与缺口无关,而且对于不同材料或处理状态,此半径值也不同。 02、尺寸因素的影响 由于材料本身组织的不均匀性以及内部缺陷的存在,尺寸增加造成材料破坏概率的增加,从而降低材料的疲劳极限。 尺寸效应的存在,是把试验室小试样测得的疲劳数据运用于大尺寸实际零件中的一个重要问题,由于不可能把实际尺寸的零件上存在的应力集中、应力梯度等完全相似地在小试样上再现出来,从而造成试验室结果与某些具体零件疲劳破坏之间的互相脱节。 03、表面加工状态的影响 机加工的表面总存在着高低不平的加工痕迹,这些痕迹就相

金属材料的晶体结构

金属材料的晶体结构 一、晶体与非晶体 固态物质可分为晶体与非晶体两类。 ●晶体是指其组成微粒(原子、离子或分子)呈规则排列的物质。 晶体具有固定的熔点和凝固点、规则的几何外形和各向异性特点,如金刚石、石墨及一般固态金属材料等。 ●非晶体是指其组成微粒无规则地堆积在一起的物质,如玻璃、沥青、石蜡、松香等都是非晶体。非晶体没有固定的熔点,而且性能具有各向同性。 图1-18 简单立方晶格及其晶胞示意图 二、金属的晶体结构 (一)晶格 ●抽象地用于描述原子在晶体中排列形式的空间几何格子,称为晶格。 (二)晶胞 ●反映晶格特征、具有代表性的最小几何单元称为晶胞。 晶胞的几何特征可以用晶胞的三条棱边的边长(晶格常数)a、b、c和三条棱边之间的夹角α、β、γ等六个参数来描述。 (三)常见的金属晶格类型 常见的晶格类型是:体心立方晶格、面心立方晶格和密排六方晶格: 1.体心立方晶格 体心立方晶格的晶胞是立方体,立方体的8个顶角和中心各有一个原子,每个晶胞实有原子数是2个。具有这种晶格的金属有:α铁(α-Fe)、钨(W)、钼(Mo)、铬(Cr)、钒(V)、铌(Nb)等约30种金属。

图1-19 体心立方晶格示意图 2.面心立方晶格 面心立方晶格的晶胞也是立方体,立方体的八个顶角和六个面的中心各有一个原子,每个晶胞实有原子数是4个。具有这种晶格的金属有:γ铁(γ-Fe)、金(Au)、银(Ag)、铝(Al)、铜(Cu)、镍(Ni)、铅(Pb)等金属。 图1-20 面心立方晶格示意图 3.密排六方晶格 密排六方晶格的晶胞是六方柱体,在六方柱体的十二个顶角和上下底面中心各有一个原子,另外在上下面之间还有三个原子,每个晶胞实有原子数是6个。具有这种晶格的金属有:α钛(α-Ti)、镁( Mg)、锌(Zn)、铍(Be)、镉(Cd)等金属。 图1-21 密排六方晶格示意图 三、金属的实际晶体结构 ●原子从一个核心(或晶核)按同一方向进行排列生长而形成的晶体,称为单晶体。 自然界存在的单晶体有水晶、金刚石等,采用特殊方法也可获得单晶体,如单晶硅、单

金属材料疲劳研究综述

金属材料疲劳研究综述 摘要:人会疲劳,金属也会疲劳吗?早在100多年前,人们就发现了金属也是会疲劳的,并且发现了金属疲劳带给人们各个方面的危害,所以研究金属材料的疲劳是非常有必要的。本文主要讲述了国内外关于金属疲劳的研究进展,概述了金属产生疲劳的原因及影响因素,以及金属材料疲劳的试验方法。 关键词:金属材料疲劳裂纹疲劳寿命 一.引言 金属疲劳的概念,最早是由J.V.Poncelet 于1830 年在巴黎大学讲演时采用的。当时,“疲劳”一词被用来描述在周期拉压加载下材料强度的衰退。引述美国试验与材料协会( ASTM) 在“疲劳试验及数据统计分析之有关术语的标准定义”( EZ06-72) 中所作的定义: 在某点或某些点承受挠动应力,且在足够多的循环挠动作用之后形成裂纹或完全断裂时,材料中所发生的局部永久结构变化的发展过程,称为“疲劳”。金属疲劳是指材料、零构件在循环应力或循环应变作用下,在一处或几处逐渐产生局部永久性累积损伤,经一定循环次数后产生裂纹或突然发生完全断裂的过程。在材料结构受到多次重复变化的载荷作用后,应力值虽然始终没有超过材料的强度极限,甚至比弹性极限还低的情况下就可能发生破坏,这种在交变载荷重复作用下材料和结构的破坏现象,就叫做金属的疲劳破坏。据统计金属材料失效80%是由于疲劳引起的,且表现为突然断裂,无论材料为韧性材料还是塑性材料都表现为突然断裂,危害极大,所以研究金属的疲劳是

非常有必要的。 由于金属材料的疲劳一般难以发现,因此常常造成突然的事故。早在100多年以前,人们就发现了金属疲劳给各个方面带来的损害。由于但是条件的限制,还不能查明疲劳破坏的原因。在第二次世界大战期间,美国的5000艘货船共发生1000多次破坏事故,有238艘完全报废,其中大部分要归咎于金属的疲劳。2002 年 5 月,华航一架波音747-200 型客机在由台湾中正机场飞往香港机场途中空中解体,19 名机组人员及206名乘客全部遇难。调查发现,飞机后部的金属疲劳裂纹造成机体在空中解体,是导致此次空难的根本原因。直到出现了电子显微镜之后,人类在揭开金属疲劳秘密的道路上不断取得了新的成果,才开发出一些发现和消除金属疲劳的手段。 二.金属疲劳的有关进展 1839年巴黎大学教授在讲课中首先使用了“金属疲劳”的概念。1850一1860年德国工程师提出了应力-寿命图和疲劳极限的概念。1870一1890年间,Gerber研究了平均应力对疲劳寿命的影响。Goodman提出了考虑平均应力影响的简单理论。1920年Griffith发表了关于脆性材料断裂的理论和试验结果。发现玻璃的强度取决于所包含的微裂纹长度,Griffith理论的出现标志着断裂力学的开端。1945年Miner用公式表达出线性积累损伤理论。五十年代,力学理论上对提出应力强度因子K的概念。六十年代,Manson—Coffin公式概括了塑性应变幅值和疲劳寿命之间的关系。Paris在1963年提出疲劳裂纹扩展速率da/dN和应力强度因子幅值?k之间的关系。1974年,美

常用的金属材料疲劳极限试验方法

常用的金属材料疲劳极限试验方法 疲劳试验可以预测材料或构件在交变载荷作用下的疲劳强度,一般该类试验周期较长,所需设备比较复杂,但是由于一般的力学试验如静力拉伸、硬度和冲击试验,都不能够提供材料在反复交变载荷作用下的性能,因此对于重要的零构件进行疲劳试验是必须的。 MTS 810 金属材料疲劳试验的一些常用试验方法通常包括单点疲劳试验法、升降法、高频振动试验法、超声疲劳试验法、红外热像技术疲劳试验方法等。 单点疲劳试验法

适用于金属材料构件在室温、高温或腐蚀空气中旋转弯曲载荷条件下服役的情况。该种方法在试样数量受限制的情况下,可近似测定疲劳曲线并粗略估计疲劳极限。试验所需的疲劳试验机一般为弯曲疲劳试验机和拉压试验机。 升降法疲劳试验 升降法疲劳试验是获得金属材料或结构疲劳极限的一种比较常用而又精确的方法,在常规疲劳试验方法测定疲劳强度的基础上或在指定寿命的材料或结构的疲劳强度无法通过试验直接测定的情况下,一般采用升降法疲劳试验间接测定疲劳强度。 主要用于测定中、长寿命区材料或结构疲劳强度的随机特性。所需试验机一般为拉压疲劳试验机。 高频振动疲劳试验法 常规疲劳试验中交变载荷的频率一般低于200Hz,无法精确测得一些零件在高频环境状态下的疲劳损伤。高频振动试验利用试验器材产生含有循环载荷频率为1000Hz左右特性的交变惯性力作用于疲劳试样上,可以满足在高频、低幅、高循环环境条件下服役金属材料的疲劳性能研究。

高频振动试验主要用于军民机械工程的需要。试验装置通常包括:控制仪、电荷适配器、功率放大器、加速度计、振动台等。 超声法疲劳试验 超声法疲劳试验是一种加速共振式的疲劳试验方法,其测试频率(20kHz)远远超过常规疲劳测试频率(小于200Hz)。超声疲劳试验可以在不同载荷特征、不同环境和温度等条件下进行,为疲劳研究提供了一个很好的手段。嘉峪检测网提醒超声疲劳试验一般用于超高周疲劳试验,主要针对10^9以上周次疲劳试验。高周疲劳时,材料宏观上主要表现为弹性的,所以在损伤本构关系中采用应力、应变等参量的弹性关系处理,而不涉及微塑性。 红外热像技术疲劳试验方法 为缩短试验时间、减少试验成本,能量方法成为疲劳试验研究的重要方法之一。金属材料的疲劳是一个耗散能量的过程,而温度变化则是研究疲劳过程能量耗散极为重要的参量。 红外热像技术是一种波长转换技术,即将目标的热辐射转换为可见光的技术,利用目标自身各部分热辐射的差异获取二维可视图像,用计

金属材料性能知识大汇总(超全)

金属材料性能知识大汇总 1、关于拉伸力-伸长曲线和应力-应变曲线的问题 低碳钢的应力-应变曲线 a、拉伸过程的变形:弹性变形,屈服变形,加工硬化(均匀塑性变形),不均匀集中塑性变形。 b、相关公式:工程应力σ=F/A0;工程应变ε=ΔL/L0;比例极限σP;弹性极限σ ε;屈服点σS;抗拉强度σb;断裂强度σk。 真应变e=ln(L/L0)=ln(1+ε) ;真应力s=σ(1+ε)= σ*eε指数e为真应变。 c、相关理论:真应变总是小于工程应变,且变形量越大,二者差距越大;真应力大于工程应力。弹性变形阶段,真应力—真应变曲线和应力—应变曲线基本吻合;塑性变形阶段两者出线显著差异。

2、关于弹性变形的问题 a、相关概念 弹性:表征材料弹性变形的能力 刚度:表征材料弹性变形的抗力 弹性模量:反映弹性变形应力和应变关系的常数,E=σ/ε;工程上也称刚度,表征材料对弹性变形的抗力。 弹性比功:称弹性比能或应变比能,是材料在弹性变形过程中吸收变形功的能力,评价材料弹性的好坏。 包申格效应:金属材料经预先加载产生少量塑性变形,再同向加载,规定残余伸长应力增加;反向加载,规定残余伸长应力降低的现象。 滞弹性:(弹性后效)是指材料在快速加载或卸载后,随时间的延长而产生的附加弹性应变的性能。 弹性滞后环:非理想弹性的情况下,由于应力和应变不同步,使加载线与卸载线不重合而形成一封闭回线。 金属材料在交变载荷作用下吸收不可逆变形功的能力,称为金属的循环韧性,也叫内耗 b、相关理论: 弹性变形都是可逆的。 理想弹性变形具有单值性、可逆性,瞬时性。但由于实际金属为多晶体并存在各种缺陷,弹性变形时,并不是完整的。 弹性变形本质是构成材料的原子或离子或分子自平衡位置产生可逆变形的反映

耐磨金属材料的最新研究现状

耐磨金属材料的最新研究现状 关键词:耐磨材料;锰钢;抗磨白口铸铁;技术进展 摘要:耐磨金属材料被广泛地应用于工业生产的各个领域, 而随着科学技术和现代工业的高速发展,由于金属磨损而引起的能源和金属材料消耗增加等所造成的经济损失相当惊人。近年来,对金属磨损和耐磨材料的研究,越来越引起国内外人们的广泛重视。本文概述了国内外耐磨金属材料领域研究开发的现状及取得的一系列新进展。 0 引言 随着科学技术和现代工业的高速发展,机械设备的运转速度越来越高,受摩擦的零件被磨损的速度也越来越快,其使用寿命越来越成为影响现代设备(特别是高速运转的自动生产线)生产效率的重要因素。尽管材料磨损很少引起金属工件灾难性的危害,但其所造成的能源和材料消耗是十分惊人的。据统计,世界工业化发达的国家约30%的能源是以不同形式消耗在磨损上的。如在美国,每年由于摩擦磨损和腐蚀造成的损失约1000亿美元,占国民经济总收入的4%。而我国仅在冶金、矿山、电力、煤炭和农机部门,据不完全统计,每年由于工件磨损而造成的经济损失约400亿元人民币[1]。因此,研究和发展耐磨材料,以减少金属磨损,对国民经济的发展有着重要的意义。 1国外耐磨金属材料的发展 国外耐磨材料的生产和应用经过了多年研究与发展的高峰期,现已趋于稳定,并有自己的系列产品和国家标准、企业标准。经历了从高锰钢、普通白口铸铁、镍硬铸铁到高铬铸铁的几个阶段,目前已发展为耐磨钢和耐磨铸铁两大类。 耐磨钢除了传统的奥氏体锰钢及改性高锰钢、中锰钢以外,根据其含量的不同可分为中碳、中高碳、高碳合金耐磨钢;根据合金元素的含量又可分为低合金、中合金及高合金耐磨钢;根据组织的不同还可分为奥氏体、贝氏体、马氏体耐磨钢。而耐磨铸铁主要包括低合金白口铸铁和高合金白口铸铁两大类。二者中最具有代表性的是低铬白口铸铁和高铬白口铸铁,而且这两种材料目前在耐磨铸铁中占有主导地位。马氏体或贝氏体、马氏体组织的球墨铸铁在制作小截面耐磨件方面也占有一席之地,中铬铸铁则应用较少。从整体上看,合金白口铸铁的耐磨性优于耐磨铸钢,但后者韧性好,在诸如衬板、耐磨管道等方面有着广泛的应用[2]。 2 我国耐磨金属材料的发展 据统计,国内每年消耗金属耐磨材料约达300万吨以上,应用摩擦磨损理论防止和减轻摩擦磨损,每年可节约150亿美元。近年来,针对设备磨损的具体工况和资源情况,研制出多种新型耐磨材料。主要有改性高锰钢、中锰钢、超高锰钢

金属材料性能及国家标准

金属材料性能 为更合理使用金属材料,充分发挥其作用,必须掌握各种金属材料制成的零、构件在正常工作情况下应具备的性能(使用性能)及其在冷热加工过程中材料应具备的性能(工艺性能)。 ???? 材料的使用性能包括物理性能(如比重、熔点、导电性、导热性、热膨胀性、磁性等)、化学性能(耐用腐蚀性、抗氧化性),力学性能也叫机械性能。 ???? 材料的工艺性能指材料适应冷、热加工方法的能力。 ???? (一)、机械性能 ???? 机械性能是指金属材料在外力作用下所表现出来的特性。 ??? 1 、强度:材料在外力(载荷)作用下,抵抗变形和断裂的能力。材料单位面积受载荷称应力。 ??? 2 、屈服点(бs ):称屈服强度,指材料在拉抻过程中,材料所受应力达到某一临界值时,载荷不再增加变形却继续增加或产生 0.2%L 。时应力值,单位用牛顿 / 毫米 2 ( N/mm2 )表示。 ??? 3 、抗拉强度(бb )也叫强度极限指材料在拉断前承受最大应力值。单位用牛顿 / 毫米 2 ( N/mm2 )表示。 ??? 4 、延伸率(δ):材料在拉伸断裂后,总伸长与原始标距长度的百分比。 ?? 5、断面收缩率(Ψ)材料在拉伸断裂后、断面最大缩小面积与原断面积百分比。??? 6 、硬度:指材料抵抗其它更硬物压力其表面的能力,常用硬度按其范围测定分布氏硬度( HBS 、 HBW )和洛氏硬度( HKA 、 HKB 、 HRC ) ??? 7 、冲击韧性( Ak ):材料抵抗冲击载荷的能力,单位为焦耳 / 厘米 2 ( J/cm 2 ) . (二)、工艺性能 ???? 指材料承受各种加工、处理的能力的那些性能。 8 、铸造性能:指金属或合金是否适合铸造的一些工艺性能,主要包括流性能、充满铸模能力;收缩性、铸件凝固时体积收缩的能力;偏析指化学成分不均性。 9 、焊接性能:指金属材料通过加热或加热和加压焊接方法,把两个或两个以上金属材料焊接到一起,接口处能满足使用目的的特性。 10 、顶气段性能:指金属材料能承授予顶锻而不破裂的性能。 11 、冷弯性能:指金属材料在常温下能承受弯曲而不破裂性能。弯曲程度一般用弯曲角度α(外角)或弯心直径 d 对材料厚度 a 的比值表示, a 愈大或 d/a 愈小,则材料的冷弯性愈好。 12 、冲压性能:金属材料承受冲压变形加工而不破裂的能力。在常温进行冲压叫冷冲压。检验方法用杯突试验进行检验。 13 、锻造性能:金属材料在锻压加工中能承受塑性变形而不破裂的能力。 (三)、化学性能 ???? 指金属材料与周围介质扫触时抵抗发生化学或电化学反应的性能。 14 、耐腐蚀性:指金属材料抵抗各种介质侵蚀的能力。 15 、抗氧化性:指金属材料在高温下,抵抗产生氧化皮能力。 >> 返回 金属材料的检验

医用金属材料的研究进展

医用金属材料的研究进展 姓名:因 学号: 专业:材料

摘要:介绍了医用金属材料目前的研究现状、性能和应用,指出了医用金属材料 应用中目前存在的主要问题,阐述了近年来生物医用金属材料的新进展1。Medical metal materials with high strength toughness, fatigue resistance, easy processing and forming excellent properties become clinical dosage biggest and wide application of biomedical materials. 关键词:医用金属种类应用研究进展 一生物医用金属材料的简介 生物医用材料是指能够植入生物体或与生物组织相结合的材料,可用于诊断、治疗,以及替换生物机体中的组织、器官或增进其功能。生物医用金属材料是用作生物医用材料的金属或合金,又称外科用金属材料或医用金属材料,是一类惰性材料2。这类材料具有高的机械强度和抗疲劳性能,是临床应用最广泛的承力植入材料。该类材料的应用非常广泛,遍及硬组织、软组织、人工器官和外科辅助器材等各个方面。除了要求它具有良好的力学性能及相关的物理性质外,优良的抗生理腐蚀性和生物相容性也是其必须具备的条件。医用金属材料应用中的主要问题是由于生理环境的腐蚀而造成的金属离子向周围组织扩散及植入材料自身性质的退变,前者可能导致毒副作用,后者常常导致植入的失败。已经用于临床的医用金属材料主要有纯金属钛、钽、铌、锆等、不锈钢、钴基合金和钛基合金等3。 二生物医用金属材料的特性 2.1材料毒性 生物医用金属材料的毒性主要来自金属表面离子或原子因腐蚀或磨损进入周围生物组织,由此作用于细胞,抑制酶的活性,组织酶的扩散和破坏溶酶体。具体可表现为与体内物质生成有毒化合物。并且金属离子进入组织液,会引起水肿、栓塞、感染和肿瘤等。一般才用的降毒方法包括合金化、提高耐蚀性、提高光洁度、表面涂层等4。 2.2生理腐蚀性 生物医用金属材料的生理腐蚀性是决定材料植入后成败的关键,其产物对生物机体的影响决定植入器件的使用寿命。 2.3力学性能 生物医用金属材料需要有足够的强度与塑性。一般说来,对人工髋关节金属材料的要求是:屈服强度>450Mpa;抗拉强度>800Mpa;疲劳强度>400Mpa;延伸率>8%。通常材料的弹性模量大于骨的弹性模量,由此会使得材料与骨应变不同,界面处发生的相对位移造成界面松动;除此产生应力屏蔽,引起骨组织的功能退化或吸收8。 2.4耐磨性 耐磨性影响植入摩擦器件的寿命;以及可能产生有害的金属微粒或微屑,导致周围组织的炎性、毒性反应。可通过提高硬度,表面处理等方法进行改善。 三医用金属材料的种类

关于非晶态金属材料的研究

第三节非晶态金属材料研究现状与前景 1. 非晶态金属材料及性质 非晶态金属是一种“年轻”的金属材料,从它诞生以来,就显示出了巨大的潜能。人们不断地发现它的各种奇异的、优良的特性,非晶材料已被广泛应用与此同时,人们对该材料的磁性、电学性质、力学性质、化学性质以及非晶态之形成及结构进行了广泛的研究,希望在这个亚稳的非晶态结构基础上研发出具有全新的结构和性能的新材料。 1. 1 非晶态金属材料 物质的结构决定了其性质. 物质材料按其结构分类,可分为晶体和非晶体两大类.常见的金属材料从结构上看一般都属于晶体材料.近几十年来,人们发现了金属存在的另一种结构形式——非晶态. 如果把晶体结构的金属视为金属的“常现性态”的话,那么,非晶态金属就是金属的“特常现性态”.非晶态金属又可形象的称为金属玻璃(非晶合金原子的混乱排列类似于玻璃) .对于金属材料来说,通常情况下,当金属或合金从液体凝固成固体(例如钢水凝固成钢锭)时,原子总是从液体的混乱排列转变成固体的整齐排列,即成为晶体.因为只有这样,其结构才最稳定.但是,如果金属或合金的凝固速度非常快(例如以106℃/ s 的冷却速率将铁-硼合金熔体凝固) ,原子来不及整齐排列便被冻结住了,最终的原子排列方式类似于液体,是混乱的,这就是非晶合金.从理论上说,任何物质只要它的液体冷却速率足够快,原子来不及整齐排列就凝固,那么原子在液态时混乱排列并迅速冻结,就可以形成非晶[2 ].有人根据这一特点又将非晶合金称为“过冷液”.但是,不同的物质形成非晶所需要的冷却速度大不相同.例如,普通的玻璃熔体只要慢慢冷却下来,得到的玻璃就是非晶态. 而单一的金属则需要108℃/ s 以上的冷却速度才能形成非晶态. 目前,受工艺水平的限制,在实际生产中难以达到如此高的冷却速度,也就是说,普通的单一的金属难以在生产中制成非晶.故非晶态金属多为合金,纯的非晶态金属很少. 非晶态金属结构是一种亚稳态结构.在一定的条件下(比如高温、强冲击作用) 会向更稳定的状态——晶态转变而变成普通晶态金属.我们把这一转变过程称为

金属材料的使用性能

金属材料的使用性能 1. 密度(比重):材料单位体积所具有的质量,即密度=质量/体积,单位为g/cm3。 2. 力学性能: 金属材料在外力作用下表现出来的各种特性,如弹性、塑性、韧性、强度、硬度等。 3. 强度: 金属材料在外力作用下抵抗变形和断裂的能力。屈服点、抗拉强度是极为重要的强度指标,是金属材料选用的重要依据。强度的大小用应力来表示,即用单位面积所能承受的载荷(外力)来表示。 4. 屈服点: 金属在拉力试验过程中,载荷不再增加,而试样仍继续发生变形的现象,称为“屈服”。产生屈服现象时的应力,即开始产生塑性变形时的应力,称为屈服点,用符号σs表示,单位为MPa。 5. 抗拉强度: 金属在拉力试验时,拉断前所能承受的最大应力,用符号σb表示,单位为MPa。 6. 塑性: 金属材料在外力作用下产生永久变形(去掉外力后不能恢复原状的变形),但不会被破坏的能力。 7. 伸长率: 金属在拉力试验时,试样拉断后,其标距部分所增加的长度与原始标距长度的百分比,称为伸长率。用符号δ,%表示。伸长率反映了材料塑性的大小,伸长率越大,材料的塑性越大。 8. 韧性: 金属材料抵抗冲击载荷的能力,称为韧性,通常用冲击吸收功或冲击韧性值来度量。 9. 冲击吸收功: 试样在冲击载荷作用下,折断时所吸收的功。用符号A?k表示,单位为J 。 10. 硬度: 金属材料的硬度,一般是指材料表面局部区域抵抗变形或破裂的能力。根据试验方法和适用范围的不同,可分为布氏硬度和洛氏硬度等多种。布氏硬度用符号HB表示:洛氏硬度用符号HRA、HRB或HRC表示。 部分常用钢的用途 (一)各牌号碳素结构钢的主要用途: 1.牌号Q195,含碳量低,强度不高,塑性、韧性、加工性能和焊接性能好。用于轧制薄板和盘条。冷、热轧薄钢板及以其为原板制成的镀锌、镀锡及塑料复合薄钢板大量用用屋面板、装饰板、通用除尘管道、包装容器、铁桶、仪表壳、开关箱、防护罩、火车车厢等。盘条则多冷拔成低碳钢丝或经镀锌制成镀锌低碳钢丝,用于捆绑、张拉固定或用作钢丝网、铆钉等。 2.牌号Q215,强度稍高于Q195钢,用途与Q195大体相同。此外,还大量用作焊接钢管、镀锌焊管、炉撑、地脚螺钉、螺栓、圆钉、木螺钉、冲制铁铰链等五金零件。

金属储氢材料研究进展

Chemical Propellants & Polymeric Materials 2010年第8卷第2期 · 15 · 金属储氢材料研究进展 范士锋 (海军驻西安地区军事代表局,陕西西安 710065) 摘 要:综述了金属储氢原理、目前国内外金属储氢材料的研究现状及应用研究进展,对镁系、稀土系、Laves相系、钛系及金属配位氢化物等几个系列金属储氢材料当前的研究热点和存在问题进行了详细介绍,并对未来金属储氢材料在民品和军工方面的应用研究方向和发展趋势进行了展望。 关键词:金属储氢材料;研究进展;发展趋势 中图分类号: TG139.7 文献标识码: A 文章编号: 1672-2191(2010)02-0015-05 收稿日期:2009-09-09 作者简介:范士锋(1978-),男,工程师,从事战略导弹总体与固体火箭发动机研究。电子信箱:jizhenli@126.com 作为燃料,氢具有最高的质量热值(其热值1.25×106kJ/kg,为汽油的3倍、焦炭的4.5倍), 是理想的高能清洁燃料之一[1-2]。目前,尽管高压(低于17MPa)气态储氢、低温(低于20K)液态储氢等技术手段使得氢在一些常规燃料和航天推进等领域得以应用,但高压气态氢体积热值小以及低温液态氢液化过程耗能高、使用条件苛刻等问题严重限制了氢作为火炸药能量供给组分的应用。利用吸氢材料与氢气反应生成固溶体和氢化物的固体储氢方式,能有效克服上述储存方式的不足,而且储氢体积密度大、安全度高、使用和运输便利。因此,今后储氢研究的重点将是新型高性能储氢材料的研发,目前研究较为广泛的主要是金属储氢材料[3]。 储氢材料按氢的结合方式可分为化学键合储氢(如储氢合金、配位氢化物、氨基化合物、有机液体碳氢化合物等)和物理吸附储氢(碳纳米管、多孔碳基材料、金属有机框架材料、纳米储氢材料、多孔聚合物等)。从上述储氢材料的性能(燃烧热、材料密度、储氢密度、反应活性)等衡量标准分析,高热值的金属储氢材料(包括金属氢化物或合金储氢材料)是火炸药燃料组分的发展重点。 文中主要针对当前金属储氢材料的研究热点和存在问题,对相关金属储氢材料的国内外研究进展进行较为详细的综述,以期为此类高性能材料在火炸药中的应用提供研究思路。 1 金属储氢原理及储氢研究现状 传统的氢气存储方式中,气态储氢方式简单 方便,是目前储存压力低于17MPa的常用方法,但存在着体积密度小、运输和使用过程中易燃易爆等缺点;液态储氢方法的体积密度(70kg/m3)较高,但氢气的液化需要冷却到20K的超低温下才能实现,此过程需消耗的能量约占所储存氢能的25% ̄45%,且液态氢使用条件苛刻,对储罐绝热性能要求高,目前只限于航天领域。金属储氢材料是目前研究较为广泛、成熟的新型高性能大规模储氢材料之一,其储氢密度高、安全性好、适于大规模氢气储运,最重要的特性是能够可逆地吸、放大量氢气。氢一旦与储氢合金接触,即在其表面分解为H原子,H原子扩散进入合金内部直至与合金发生反应而生成金属氢化物,氢即以原子态储存在金属结晶点内(四面体与八面体间隙位置)。在一定温度和氢压强条件下,上述吸、放氢反应式如下式所示: 其中,吸氢过程放热,放氢过程吸热,上述吸、放氢反应过程热力学和动力学与温度、氢压力密切相关,特别是放氢压力与反应温度呈指数变化关系[4]。 储氢材料性能的衡量标准主要用以下2个产量表示:体积储氢密度和质量储氢密度。其中,体积储氢密度为系统单位体积内储存氢气的质量(kg/m3),质量储氢密度为系统储存氢气的质量与系统质量的比值(质量分数)。考虑储氢材料在火炸药中的应用,系统燃烧热(与储存介质的热值和储氢质量分数的大小密切相关)、系统密度(与储存介质的密度和结构相关)和反应活性( 与氧化

相关文档
最新文档