晶间腐蚀标准

晶间腐蚀标准
晶间腐蚀标准

Standard practices for

Detecting susceptibility to intergranular attack in austenitic stainless steels

奧氏體不銹鋼晶間腐蝕敏感性標準實驗

1.scope

1.應用範圍

these practices cover the following five tests:

1.2 這些實驗包括下列五類:

1.1.1 parctics A- oxalic acid etch test for classification of etch structures of austenitic stainless steels(section 3 to 7, inclusive)

1.1.1實驗A——奧氏體不銹鋼草酸浸蝕試驗後的浸蝕組織分類(包括3-7部分

1.2 the following factors govern the application of these practices:

1.2以下因素主導著這類實驗:

1.2.1 susceptibility to intergranular attack associated with the precipitation of chromium carbides is readily detected in all six tests.

1.2.1晶間腐蝕敏感性同碳鉻化合物的快速析出

1.2.2 sigma phase in wrought chromium-nickel-molybdenum steels. Which may or may not be visible in the microstructure, can

result in high corrosion rates only in nitric acid.

1.2.2在鉻鎳鉬鋼中可見的和不可見的sigma相,只有在硝酸中才會快速腐蝕。

1.2.3 sigma phase in titanium or columbium stabilized alloys and cast molybdenum-bearing stainless alloys, which may or may not be visible in the microstructure, can result in high corrosion rates in both the nitric acid and ferric sulfate-sulfuric acid solutions.

1.2.3在鈦合金或穩定化合金和鑄造鉬柱狀晶中的sigma相,不管在其顯微組織中可見不可見都會在硝酸和硫化鐵溶液中引起嚴重腐蝕。

1.3 the oxalic acid etch test is a rapid method of identifying, by simple etching, those specimens of certain stainless steel grades that are essentially free of susceptibility to intergranular attack associated with chromium carbide precipitates. These specimens will have low corrosion rates in certain corrosion tests and therefore can be eliminated (screened) from testing as ―acceptable.‖

1.3草酸浸蝕試驗是一個快速方法用來使這些本質上晶間腐蝕不敏感的不銹鋼試樣快速析出碳鉻化合物。

1.7 only these stainless steel grades are listed in table one for which data on the application of the oxalic acid etch test

and on their performance in various quantitative evaluation tests are available.

1.7在表一中列出哪些適合用草酸進行浸蝕試驗及各種數量測試下的性能是有效的。

Practice A oxalic acid etch test for classification of etch structures of austenitic stainless steels 2

實驗A——奧氏體不銹鋼草酸浸蝕試驗後的浸蝕組織分類

3.1 the oxalic acid etch test is used for acceptance of material but not for rejection of material. This may be used in connection with other evaluation tests to provide a rapid method for identifying those specimens that are certain to be free of susceptibility to rapid intergranular attack in these other tests. Such specimens have low corrosion rates in the various hot acid tests, requiring from 4 to 20 h of exposure. These specimens are identified by means of their etch structures, which are classified according to the following criteria:

3.1草酸浸蝕法晶間腐蝕試驗一般用來作為材料的評價,不作為材料的判廢標準。这方法一般为其它评价方法提供一个快速途径来鉴定实验试样在各种测试中是否具有晶间腐蚀敏感性。这些在各种热酸试验中腐蚀率都很低的试样,需要承受4至20小时的试验。通过对这些

腐蚀试样的腐蚀结构来进行评判。相应的定级根据下列标准:

3.2 the oxalic acid etch test may be used to screen speciments intended for testing in practice B--Ferric Sulfate-Sulfuric Acid Test, practice C—nitric acid test, practice E—copper-copper sulfate-16% sulfuric acid test, and practice F—copper-copper sulfate-50% sulfuric acid test.

3.2 草酸浸蚀试验是代替试验程序B——硫化铁和硫酸溶液试验,程序C——硝酸试验,程序F——铜和硫化铜及16%硫酸铜溶液试验,用来甄别试样。

3.2.1 each practice contains a table showing which classifications of etch structures on a given stainless steel grade are equivalent to acceptable, or possibly nonacceptable performance in that particular test. Specimens having acceptable etch structures need not be subjected to the hot acid test. specimens having nonacceptable etch structures must be tested in the specified hot acid solution.

3.2.1 每个试验程序都包括一个表格,这个表格显示给定试验不锈钢的浸蚀组织中哪类同等级别下可以被接受,或者在这特殊的实验后哪些性能可能不被接受。试样拥有可以被接爱的显微组织不必服从热酸试验。试样拥有不接爱的显微组织必须得在批定热酸溶液下进行试验。

3.3 the grades of stainless steels and the hot acid tests for

which the oxalic acid etch test is applicable are listed in table 2.

3.3 不锈钢等级和哪类钢需要进行热草酸酸测试见表2。

3.4 extra-low-carbon grades, and stabilized grades, such as 304L,316L,317L,321, and 347, are tested after sensitizing heat treatments at 650 ℃to 675℃,which is the range of maximum carbide precipitation. These sensitizing treatments must be applied before the specimens are submitted to the oxalic acid etch test. The most commonly used sensitizing treatment is 1

h at 675℃.

3.4 对于超低碳级的和稳定化级的不锈钢,如304L,316L,317L,321和347这些材料应该在其最大碳化物析出温度650 ℃到675℃区域进行敏化处理后再进行晶间腐蚀试验。敏化处理应该在草酸浸蚀试验前进行,一般用675℃保温一小时的处理方法。

4. apparatus

4.仪器装置

4.1 source of direct current-battery, generator, or rectifier capable of supplying about 15 V and 20 A.

4.1 直流电源——同时可以有能力提供15伏和20安的电池、发电机或者变压器。

4.2 ammeter-range 0 to 30 A (note 1)

4.2 电流表(安培计)——范围是0至30安培(注1)

4.3 variable resistance (note 1)

4.3 可变电阻(注1)

4.4 cathode-A cylindrical piece of stainless steel or, preferably, a 1-qt (0.946-L) stainless steel beaker.

4.4 阴极——一个圆柱形的不锈钢棒,最好是一个一加仑的不锈钢烧杯。

4.5 large electric clamp- to hold specimen to be etched. 4.5 大带电夹具——用来支撑浸蚀试样。

4.6 metallurgical microscope-for examination of etched microstructures at 250 to 500 diameters.

4.6 金相显微镜——在250至500倍直径内检查腐蚀样的显微结构。

4.7 electrodes of the etching cell- the specimen to be etched is made the anode, and a stainless steel beaker or a piece of stainless steel as large as the specimen to be etched is made the cathode.

4.7 腐蚀容器的电极——试样用来作为阳极,同时一个不锈钢烧杯或者和试样一样大小的一个圆棒作为阴极。

4.8 electrolyte- oxalic acid,(H2C2O4.2H2O), reagent grade, 10 weight% solution.

4.8 电解液——草酸,(H2C2O4.2H2O),分析纯级,重量百分比10%。Note 1- the variable resistance and the ammeter are placed in the circuit to measure and control the current on the specimen

to be etched.

注1——各种可变电阻和安培计都安装在回路里以用来测量和控制试样腐蚀时的电流。

5. preparation of the test specimens

5. 试样制备

5.1 cutting- sawing is preferred to shearing, especially on the extra-low-carbon grades. Shearing cold works adjacent metal and affects the response to subsequent sensitization. Micro scopical examination of an etch made on a specimen containing sheared edges, should be made on metal unaffected by shearing.

A convenient specimen size is 25 by 25 mm(1 by 1 in.)

5.1 切割——用锯子同切割相比一般情况下总是优先选择,特别是对于超低碳不等级的不锈钢。切割使相鄰材料變形,影響著下一步的材料敏感性。浸蝕試樣的微觀檢查包括有切邊的微觀檢查,以確保試樣剪切邊沒有對材料的敏感性產生影響。一般试样尺寸为25×25mm(1英吋×1英吋)。

5.2 the intent is to test a specimen representing as nearly as possible the surface of the material as it will be used in service. Therefore the preferred sample is a cross section including the surface to be exposed in service. Only such surface finishing should be performed as is required to remove foreign material and obtain a standard, uniform finish as

described in 5.3. for very heavy sections, specimens should be machined to represent the appropriate surface while maintaining reasonable specimen size for convenient testing.

5.3 抛光——对所有材料而言,交叉部位应当进行抛光而进行浸蚀和金相检查。有焊缝试样应当包括母材、热影响区和焊缝熔合线。

5.4 etching solution- the solution used for etching is prepared by adding 100g of reagent grade oxalic acid crystals (H2C2O4.2H2O)to 900ml of distilled water and stirring until all crystals are dissolved.

5.4 浸蚀溶液——在900毫升蒸溜水中加入100克草酸晶体(H2C2O4.2H2O),并且充分搅拌使所有晶体充分溶解于水中。

5.5 etching conditions- the polished specimen should be etched at 1 A/cm2 for 1.5min. To obtain the correct current density.

5.5 浸蚀条件——抛光后的试样应当在1 A/cm2电流强度下浸蚀1.5分钟。为获得准确的电流密度,需:

5.5.1 the total immersed area of the specimen to be etched should be measured in square centimeters, and

5.5.1 试样所有的浸蚀面积以平方厘米为单位进行测定,而且

5.5.2 the variable resistance should be adjusted until the ammeter reading in amperes is equal to the total immersed area of the specimen in square centimeters.

5.5.2 各种电阻必须进行调整到安培计读数(单位:安培)等于试样

总的浸蚀面积(单位:平方厘米)。

5.6 etching precautions

5.6 浸蚀注意事项

5.6.1 caution- etching should be carried out under a ventilated hood. Gas, which is rapidly evolved at the electrodes with some entrainment of oxalic acid, is poisonous and irritating to mucous membranes.

5.6.1 注意——浸蚀试验须在通风柜内进行,因为腐蚀过程中会产生很多表毒有害的气体,会使人体受到伤害刺激黏膜。

5.6.2 a yellow-green film is gradually formed on the cathode. This increases the resistance of the etching cell. When this occurs, the film should be removed by rinsing the inside of the stainless steel beaker (or the steel used as the cathode) with an acid such as 30% HNO3.

5.6.2 在阴极表面逐渐形成一黄绿色薄膜。这将增加腐蚀容器的电阻。当发生这样的情况时,必须用酸,如30%硝酸清洗不锈钢容器内壁来清洗掉这层黄绿薄膜(或者将这作为阳极)。

5.6.3 The temperature of the etching solution gradually increases during etching. The temperature should be kept below 50℃ by alternating two beakers. One may be cooled in tap water while the other is used for etching. The rate of heating depends on the total current (ammeter reading) passing through the cell.

Therefore, the area etched should be kept as small as possible while at the same time meeting the requirements of desirable minimum area to be etched.

5.6.3 在浸蚀过程中浸蚀液的温度会逐渐升高,但这必须用两个腐蚀槽来交替使用以使温度控制在50℃以下。当一个在使用时,另一个用自来水冷却。这个温度升高的速度取决于通过浸蚀槽的总电流(从安培计可以读出)。因此在固定时间内获得理想浸蚀结果那浸蚀面积得尽可能地小。

5.6.4 immersion of the clamp holding the specimen in the etching solution should be avoided.

5.6.4 在腐蚀试验过程中要避免将试样支撑架子浸没于腐蚀溶液中。

5.7 rinsing- following etching, the specimen should be thoroughly rinsed in hot water and in acetone or alcohol to avoid crystallization of oxalic acid on the etched surface during drying.

5.7 清洗——试样浸蚀后,必须用自来水和丙酮或者酒精彻底清洗,以防止在干燥过程中草酸在浸蚀表面形成结晶体。

5.8 on some specimens containing molybdenum (AISI 316,316L,317,317L),which are free of chromium carbide sensitization, it may be difficult to reveal the presence of step structures by electrolytic etching with oxalic acid. In such cases, an electrolyte of a 10% solution of ammonium

persulfate,(NH4)2S2O8, may be used in place of oxalic acid. An etch of 5 or 10 min at 1A/CM2 in a solution at room temperature readily develops step structures on such specimens.

5.8 一些含钼材料(AISI 316,316L,317,317L),其对碳铬化合物不敏感,用草酸来浸蚀很难对其晶界进行浸蚀,在这种情况下,一种称为过硫酸铵盐的10%电解质((NH4)2S2O8)可以用来代替草酸。在室温下,用1A/CM2 5到10分钟就可以在试样上很容易地显示晶界浸蚀状况了。

6. classification of etch structures

6.浸蚀组织的分类

6.1 the etched surface is examined on a metallurgical microscope at 250* to 500* for wrought steels and at about 250* for cast steel.

6.1 金相顯微鏡下的浸蝕組織檢驗,對熟鋼一般用250到500倍下觀察,而鑄鋼一般用250倍觀察。

6.2 the etched cross-sectional areas should be thoroughly examined by complete traverse from inside to outside diameters of rods and tubes, from face to face on plates, and across all zones such as weld metal, weld-affected zones, and base plates on specimens containing welds.

6.2

6.3the etch structures are classified into the following types

(note 2)

6.3 浸蝕組織一般分為以下幾類:

6.3.1 step structure (figure 1)—steps only between grains ,no ditches at grain boundaries.

6.3.1

6.3.2 dual structure (figure 2)_some ditches at grain boundaries in addition to steps, but no single grain completely surrounded by diktches.

6.3.3 ditch structure (figure 3)-one or more grains completely surrounded by ditches.

6.3.4 isolated ferrite (figure 4)-observed in castings and welds. Steps between austenite matrix and ferrite pools. 6.3.5 interdendritic ditches (figure 5)-observed in castings and welds. Deep interconnected ditches.

6.3.6 (figure 6)-structure contains a few deep end-grain pits along with some shallow etch pits at 500*.(of importance only when nitric acid test is used.)

6.3.7 end-grain pitting 2 (figure 7)-structure contains numerous, deep end-grain pits at 500*.( of importance only when nitric acid test is used.)

Note 2: all photomicrographs were made with specimens that were

etched under standard conditions: 10% oxalic acid, room temperature, 1.5 min at 1 A/cm2.

6.4 the evaluation of etch structures containing steps only and of those showing grains completely surrounded by ditches in every field can be carried out relatively rapidly. In cases that appear to be dual structures, more extensive examination is required to determine if there are any grains completely encircled. If an encircled grain is found, the steel should be evaluated as a ditch structure. Areas near surfaces should be examined for evidence of surface carburization.

6.4.1 on stainless steel castings (also on weld metal,) the steps between grains formed by electrolytic oxalic acid etching tend to be less prominent than those on wrought materials or are entirely absent. However, any susceptibility to intergranular attack is readily detected by pronounced ditches.

6.5 some wrought specimens, especially from bar stock, may contain a random pattern of pits. If these pits are sharp and so deep that they appear black(fig.7) it is possible that the specimen may be susceptible to end grain attack in nitric acid only. Therefore, even though the grain boundaries all have step

structures, specimens having as much or more end grain pitting than that shown in fig.7 cannot be safely assumed to have low nitric acid rates and should be subjected to the nitric acid test whenever it is specified. Such sharp, deep pits should not be confused with the shallow pits shown in fig 1 and fig.6.

7. use of etch structure classifications

7.1 the use of these classifications depends on the hot acid corrosion test for which stainless steel specimens are being screened by etching in oxalic acid and is described in each of the practices. Important characteristics of each of these tests are described below.

7.2 practice B-ferric sulfate-sulfuric acid test is a 120 h test in boiling 50% solution that detects susceptibility to intergranular attack associated primarily with chromium carbide precipitate. It does not detect susceptibility associated with sigma phase in wrought chromium-nickel-molybdenum stainless steels (316, 316L, 317, 317L),which is known to lead to rapid intergranular attack only in certain nitric acid environments. It does not detect susceptibility to end grain attack, which is also found only in certain nitric acid environments. The ferric

sulfate-sulfuric acid test does reveal susceptibility associated with a sigma-like phaseconstituent in stabilized stainless steels, AISI 321 and 347, and in cast chromium-nickel-molybdenum stainless steels(CF-8M, CF-3M, C6-8M, and CG-3M).

7.3 practice C- nitric acid test is a 240 h test in boiling, 65% nitric acid that detects susceptibility to rapid intergranular attack associated with chromium carbide precipitate and with sigma-like phase precipitate. The latter may be formed in molybdenum-bearing and in stabilized grades of austenitic stainless steels and may or may not be visible in the microstructure. This test also reveals susceptibility to end grain attack in all grades of stainless steels.

7.4 practice E- copper-copper sulfate-16% sulfuric acid test is a 24 h test in a boiling solution containing 16% sulfuric acid and 6% copper sulfate with the test specimen embedded in metallic copper shot or grindings, which detects susceptibility to intergranular attack associated with the precipitation of chromium-rich carbides. It does not detect susceptibility to intergranular attack associated with sigma phase or end-grain corrosion, both of which have been observed

to date only in certain nitric acid environments.

7.5 practice F – copper-copper sulfate-50% sulfuric acid test is a 120 h test in a boiling solution that contains 50% sulfuric acid, copper sulfate, and metallic copper and that detects susceptibility to intergranular attack associated with the precipitation of chromium-rich carbides. It does not detect susceptibility to attack associated with sigma phase.

不锈钢晶间腐蚀问题

不锈钢晶间腐蚀问题 晶间腐蚀是金属材料在特定的腐蚀介质中沿着材料的晶界发生的一种局部腐蚀。这种腐蚀是在金属(合金)表面无任何变化的情况下,使晶粒间失去结合力,金属强度完全丧失,导致设备突发性破坏。 许多金属(合金)都具有晶间腐蚀倾向。其中不锈钢、铝合金及含钼的镍基合金晶间腐蚀较为突出。如有应力存在,由晶间腐蚀转变为沿晶应力腐蚀破坏。贫化理论认为,晶间腐蚀是由于晶界析出新相,造成晶界附近某一成分的贫乏化。如奥氏体不锈钢回火过程中(400-800℃)过饱和碳部分或全部以Cr23C6 形式在晶界析出,造成碳化物附近的碳与铬的浓度急剧下降,在晶界上形成贫铬区,贫铬区作为阳极而遭受腐蚀。对于低碳和超低碳不锈钢来说,不存在碳化物在晶界析出引起贫铬的条件。但一些实验表明,低碳,甚至超低碳不锈钢,特别是高铬、钼钢,在650-850℃受热时,在强氧化介质中,或其电位处于过钝化区时,也发生晶间腐蚀。铁素体不锈钢在900℃以上高温区快冷(淬火或空冷)易产生晶间腐蚀。即使极低碳、氮含量的超纯铁素体不锈钢也难免产生晶间腐蚀。但在700-800℃重新加热可消除晶间腐蚀。由此可见,铁素体不锈钢焊后在焊缝金属和熔合线处易产生晶间腐蚀。18Cr-9Ni 钢在温度高于750℃时,不产生晶间腐蚀,而在600-700℃区间,晶间腐蚀倾向最严重。当温度低于600℃时,需长时间才能产生晶间腐蚀倾向,温度低于450℃时基本不产生晶间腐蚀倾向。 检验某种钢材是否有晶间腐蚀倾向,一般采用敏化处理工艺。钢材加热到晶间腐蚀最敏感的,恒温处理一定时间,这种处理工艺称为敏化处理,产生晶间腐蚀最敏感的温度叫敏化温度。18-8 不锈钢最敏感温度为650-700℃,产生晶间腐蚀倾向所需要的最短时间为1-2小时。 不锈钢中,除了主要成分Cr、Ni、C 外,还含有Mo、Ti、Nb 等合金元素。它们晶间腐蚀的作用如下:1.碳:奥氏体不锈钢中碳量越高,晶间腐蚀倾向越严重,导致晶间腐蚀碳的临界浓度为0.02%(质量分数)。 2.铬:能提高不锈钢耐晶间腐蚀的稳定性。当铬含量较高时,允许增加钢中含碳量。例如,当不锈钢中铬的质量分数从18%提高到22%时,碳的质量分数允许从0.02%增加到0.06%。 3.镍:增加不锈钢晶间腐蚀敏感性。可能与镍降低碳在奥氏体钢中的溶解度有关。 4.钛、铌:都是强碳化物生成元素,高温时能形成稳定的碳化物TiC 及NbC,减少了碳的回火析出,从而防止了铬的贫化。 防止晶间腐蚀的措施:(1)降低含碳量。当钢中碳的质量分数在0.03%以下时,即使在700℃较长时间回火也不会产生晶间腐蚀。(2)加入固定碳的合金元素。对含Ti、Nb 元素的18-8不锈钢,在高温下使用时,要经过稳定化处理。即在常规的固溶处理后,还要在850-900℃保温1-4 小时,然后空冷至室温,以充分生成TiC 及NbC。(3)固溶处理。固溶处理能使碳化物不析出或少析出。但对含Ti、Nb 的不锈钢还要进行稳定化处理。(4)采用双相钢。采用铁素体和奥氏体双相钢有利于抗晶间腐蚀。由于铁素体在钢中大多沿奥氏体晶界分布,含铬量又较高,因此,在敏化温度受热时,不产生晶间腐蚀。

晶间腐蚀方法

6.4不锈钢局部腐蚀(晶间腐蚀、点蚀)试验结果与对比 6.4.1不锈钢晶间腐蚀试验方法 1)沸腾硝酸法(E法,用于304、410S、430、409L) 目的:检测304(敏化后)和410S、430、409L(热轧态)的耐晶间腐蚀性能;实验条件:试样在65%硝酸溶液中微沸48h(304)或24h(其他); 试样情况:试样表面抛光,并用乙醇清洗; 检测:测量失重;腐蚀后的特征形貌; 标准:GB 4334.3 2)硫酸-硫酸铜法(用于奥氏体不锈钢304) 目的:检测304(敏化后)的耐晶间腐蚀性能; 实验条件:试样在CuSO4+H2SO4+铜屑的微沸溶剂中24h(对于≤18%C r的不锈钢); 试样情况:试样表面抛光,并用乙醇清洗; 检测:测量失重;腐蚀后的金相特征; 溶剂配方:100g CuSO4+100ml H2SO4加蒸馏水稀释至1000ml。 标准:GB 4334.2 注1:304不锈钢为热轧后再经650℃、2h处理的敏化态,铁素体不锈钢为热轧态。 注2:以上二法对304都适用;对铁素体不锈钢,试验表明:410、430、409L 在硫酸-硫酸铜 溶液中试样表面发生较严重的镀铜现象,故仅采用沸腾硝酸法。因此, 为了便于304与其它3种铁素体不锈钢进行耐晶间腐蚀性能的对比分 析,以下以沸腾硝酸法为主,此外还要与晶间腐蚀的电化学试验、分 析相结合(参6.7)。

图0-1 晶间腐蚀试验装置图0-2 点蚀试验装置(恒温水浴锅)6.7 不锈钢局部腐蚀的电化学分析与对比 6.7.1不锈钢晶间腐蚀电化学试验方法 主要目的:对不锈钢耐晶间腐蚀的电化学性能的测定和对比分析,与浸泡试验结果相辅相成。 测试项目:用动电位再活化法测得晶间腐蚀的电化学曲线,可得阳极化环和再活化环的最大电流Ia和Ir,并以其比值Ir/Ia作为耐晶间腐蚀性能的度量。 试样状态:304---650o C 2h、空冷; 430、410、409L---热轧态;均经机械抛光。 所用仪器:CHI600C电化学分析仪 标准:JIS G0580-1986,ASTM G108,GB/T 15260-1994 晶间腐蚀电化学测定方法: 采用电化学动电位再活化法(EPR):以0.5mol/L的H2SO4为腐蚀介质(30o C),采用双环EPR法,以6V/h的扫描速度从腐蚀电位[约-400mv(SCE)] 极化到+300mv(SCE),一旦达到这个电位则扫描方向反转,以相同速度降低到腐蚀电位。分别测定阳极化环和 再活化环的最大电流Ia和Ir(如图2,单位为A),Ir:Ia比值越小越耐晶间腐蚀。

不锈钢晶间腐蚀控制措施

不锈钢晶间腐蚀控制措施 1 问题的提出 技术统一规定中通常包括“奥氏体不锈钢制容器用于可能引起晶间腐蚀的环境, 焊后应做固 溶或稳定化处理”, 提出这样的要求, 自有其存在的合理性。但即使设计人员在图样的技术要求中提出这一条, 要求制造厂进行不锈钢制容器(比如换热器) 的焊后热处理, 由于实际热处理工艺参数难以控制和其他一些意想不到的困难, 通常难以达到设计人员提出的理想要求, 实际上在役的不锈钢设备绝大部分是在焊后态使用。这就促使我们去思考:晶间腐蚀是奥氏体不锈钢最常见的腐蚀形式, 那么产生晶间腐蚀的机理是什么? 在什么介质环境下会引起晶间腐蚀?防止和控制晶间腐蚀的主要方法有哪些?奥氏体不锈钢制容器用于可能引起晶间腐蚀的环境焊后是否都要热处理?本文查阅有关的标准、规范,专著,结合生产实际谈谈个人看法。 2 晶间腐蚀的产生机理 晶间腐蚀是一种常见的局部腐蚀, 腐蚀沿着金属或合金晶粒边界或它的临近区域发展, 而晶粒腐蚀很轻微,这种腐蚀便称为晶间腐蚀,这种腐蚀使晶粒间的结合力大大削弱。严重的晶间腐蚀,可使金属失去强度和延展性,在正常载荷下碎裂。现代晶间腐蚀理论, 主要有贫铬理论和晶界杂质选择溶解理论。 2. 1 贫铬理论 常用的奥氏体不锈钢, 在氧化性或弱氧化性介质中之所以产生晶间腐蚀, 多半是由于加工或使用时受热不当引起的。所谓受热不当是指钢受热或缓慢冷却通过450~850 ℃温度区, 钢就会对晶间腐蚀产生敏感性。所以这个温度是奥氏体不锈钢使用的危险温度。不锈钢材料在出厂时已经固溶处理,所谓固溶处理就是把钢加热至1050~1150 ℃后进行淬火, 目的是获得均相固溶体。奥氏体钢中含有少量碳, 碳在奥氏体中的固溶度是随温度下降而减小的。如0Cr18Ni9Ti , 在1100 ℃时, 碳的固溶度约为0. 2 % , 在500~700 ℃时, 约为0. 02 %。所以经固溶处理的钢,碳是过饱和的。当钢无论是加热或冷却通过450~850 ℃时,碳便可形成( Fe 、Cr) 23C6 从奥氏体中析出而分布在晶界上。( Fe 、Cr) 23C6 的含铬量比奥氏体基体的含铬量高很多, 它的析出自然消耗了晶界附近大量的铬, 而消耗的铬不能从晶粒中通过扩散及时得到补充, 因为铬的扩散速度很慢, 结果晶界附近的含铬量低于钝化必须的的限量(即12 %Cr) ,形成贫铬区, 因而钝态受到破坏, 晶界附近区域电位下降, 而晶粒本身仍维持钝态, 电位较高, 晶粒与晶界构成活态———钝态微电偶电池, 电池具有大阴极小阳极的面积比,这样就导致晶界区的腐蚀。 2. 2 晶界杂质选择溶解理论 在生产实践中, 我们还了解到奥氏体不锈钢在强氧化性介质(如浓硝酸) 中也能产生晶间腐蚀, 但腐蚀情况和在氧化性或弱氧化性介质中的情况不同。通常发生在经过固溶处理的钢上,经过敏化处理的钢一般不发生。当固溶体中含有磷这种杂质达100ppm时或硅杂质为1000 - 2000ppm 时, 它们便会偏析在晶界上。这些杂质在强氧化性介质作用下便发生溶解, 导致晶间腐蚀。而钢经敏化处理时, 由于碳可以和磷生成(MP) 23C6 , 或由于碳的首先偏析限制了磷向晶界扩散, 这两种情况都会免除或减轻杂质在晶界的偏析, 就消除或减弱了钢对晶间腐蚀的敏感性。 上述两种解释晶间腐蚀机理的理论各自适用于一定合金的组织状态和一定的介质, 不是互相排斥而是互相补充的。生产实践中最常见的不锈钢的晶间腐蚀多数是在弱氧化性或氧化性介质中发生的,因而绝大多数的腐蚀实例都可以用贫铬理论来解释。 3 引起晶间腐蚀的的介质环境

应力腐蚀科技名词定义

应力腐蚀科技名词定义 中文名称:应力腐蚀英文名称:stress corrosion 定义1:材料在拉应力集中和特定的腐蚀环境共同作用下发生腐蚀裂纹扩展的现象。所属学科:电力(一级学科);热工自动化、电厂化学与金属(二级学科)定义2:由残余或外加应力和腐蚀联合作用所产生的材料破坏过程。所属学科:机械工程(一级学科);腐蚀与保护(二级学科);腐蚀类型(三级学科)定义3:材料在腐蚀介质和拉应力共同作用下,引发裂纹导致断裂的现象。所属学科:水利科技(一级学科);工程力学、工程结构、建筑材料(二级学科);工程力学(水利)(三级学科)本内容由全国科学技术名词审定委员会审定公布目录 简介 名词解释 特征 机理 编辑本段简介 材料、机械零件或构件在静应力(主要是拉应力)和腐蚀的共同作用下产生的失效现象。它常出现于锅炉用钢、黄铜、高强度铝合金和不锈钢中,凝汽器管、矿山用钢索、飞机紧急刹车用高压气瓶内壁等所产生的应力腐蚀也很显著。常见应力腐蚀的机理是:零件或构件在应力和腐蚀介质作用下,表面的氧化膜被腐蚀而受到破坏,破坏的表面和未破坏的表面分别形成阳极和阴极,阳极处的金属成为离子而被溶解,产生电流流向阴极。由于阳极面积比阴极的小得多,阳极的电流密度很大,进一步腐蚀已破坏的表面。加上拉应力的作用,破坏处逐渐形成裂纹,裂纹随时间逐渐扩展直到断裂。这种裂纹不仅可以沿着金属晶粒边界发展,而且还能穿过晶粒发展。应力腐蚀过程试验研究表明:当金属加上阳极电流时可以加剧应力腐蚀,而加上阴极电流时则能停止应力腐蚀。一般认为压应力对应力腐蚀的影响不大。 编辑本段名词解释 应力腐蚀是指在拉应力作用下,金属在腐蚀介质中引起的破坏。这种腐蚀一般均穿过晶粒,即所谓穿晶腐蚀。应力腐蚀由残余或外加应力导致的应变和腐蚀联合作用产生的材料破坏过程。应力腐蚀导致材料的断裂称为应力腐蚀断裂。 编辑本段特征 一般存在拉应力,但实验发现压应力有时也会产生应力腐蚀。对于裂纹扩展速率,应力腐蚀存在临界KISCC,即临界应力强度因子要大于KISCC,裂纹才会扩展。一般应力腐蚀都属于脆性断裂。四、应力腐蚀的裂纹扩展速率一般为10- 6~10-3 mm/min,而且存在孕育期,扩展区和瞬段区三部分。 编辑本段机理 机理一般认为有阳极溶解和氢致开裂两种。应力腐蚀的机理仍处于进一步研究中。为防止零件的应力腐蚀,首先应合理选材,避免使用对应力腐蚀敏感的材料,可以采用抗应力腐蚀开裂的不锈钢系列,如高镍奥氏体钢、高纯奥氏体钢、超纯高铬铁素体钢等。其次应合理设计零件和构件,减少应力集中。改善腐蚀环境,如在腐蚀介质中添加缓蚀剂,也是防止应力腐蚀的措施。采用金属或非金属保护层,可以隔绝腐蚀介质的作用。此外,采用阴极保护法见电化学保护也可减小或停止应力腐蚀。词条图册更多图册 开放分类:

晶间腐蚀性能弯曲评价影响实证探讨

晶间腐蚀性能弯曲评价影响实证探讨 引言 目前在国内不锈钢晶间腐蚀敏感性的评价过程中采用最为广泛的是硫酸-硫酸铜-铜屑沸腾溶液浸泡法,对应的标准为GB4334-2008E《不锈钢硫酸-硫酸铜腐蚀试验方法》。 在GB 4334-2008 E法中,通常是用直径为5mm的压头将腐蚀后的试样弯曲到180°后观察是否产生裂纹来判定材料对晶间腐蚀的敏感性。用这一弯曲方法评定材料的晶间腐蚀的倾向性,实际是用适量的变形来加速晶间腐蚀裂纹的暴露,使晶间腐蚀微裂纹扩大,以弯曲后拉伸面是否有宏观裂纹来判定试样是否产生了晶间腐蚀。这一方法可行的前提是弯曲拉伸面的变形量不超过试样允许的不发生塑性开裂的变形量。实际上,在试样弯曲拉伸面上出现裂纹不一定能代表其有晶间腐蚀倾向,当弯曲变形量超过了塑性开裂的极限,也可能引起开裂。不同材料的塑性开裂极限是不同的,在既定的标准下,很难保证所有的材料在弯曲过程中拉伸面的塑性变形都不超过材料本身允许的塑性开裂变形量。因此在实际的检验过程中,对于不同的材料评价标准的准确性和可靠性需要考虑。尤其是对于塑性较差的焊接接头材料, 按标准用直径为5mm的压头将试样弯曲到180°时, 即使没有晶间腐蚀裂纹,也可能发生开裂[引用文献]。为此,需要研究材料力学性能(强度,塑性及断裂阻力等)对于晶间腐蚀评价方法的影响。由于核电焊接接头材料在高温高压水环境中容易发生由晶间腐蚀引起的应力腐蚀开裂, 对核电设备的安全可靠性产生很大影响。因此,对GB 4334-2008 E法对核电焊接接头材料的适用性尤其需要进行研究。本章用ABAQUS软件通过三维有限元对晶间腐蚀性能评价方法中的弯曲试验进行了模拟计算,研究不同材料力学性能对于晶间腐蚀评价方法的影响,讨论了GB 4334-2008 E法标准对核电焊接接头材料试样的适用性,为研究核级焊材晶间腐蚀性能评价方法奠定基础,对开展核级焊接材料的国产化研究工作,并掌握核级焊接材料焊接腐蚀性能评价技术具有重要意义。 1.1有限元模型及分析方法 为了探究晶间腐蚀裂纹弯曲评价方法的影响因素,模拟计算了三点弯曲试验过程,分析弯曲试样的应变分布和起裂以及裂纹的扩展情况。 1.1.1 模型结构和尺寸 1

晶间腐蚀的定义

晶间腐蚀 英文名称:intergranular corrosion;intercrystalline corrosion 说明:局部腐蚀的一种。沿着金属晶粒间的分界面向内部扩展的腐蚀。主要由于晶粒表面和内部间化学成分的差异以及晶界杂质或内应力的存在。晶间腐蚀破坏晶粒间的结合,大大降低金属的机械强度。而且腐蚀发生后金属和合金的表面仍保持一定的金属光泽,看不出被破坏的迹象,但晶粒间结合力显著减弱,力学性能恶化, 不能经受敲击,所以是一种很危险的腐蚀。通常出现于黄铜、硬铝合金和一些不锈钢、镍基合中。不锈钢焊缝的晶间腐蚀是化学工厂的一个重大问题。 不锈钢的晶间腐蚀: 不锈钢在腐蚀介质作用下,在晶粒之间产生的一种腐蚀现象称为晶间腐蚀。 产生晶间腐蚀的不锈钢,当受到应力作用时,即会沿晶界断裂、强度几乎完全消失,这是不锈钢的一种最危险的破坏形式。晶间腐蚀可以分别产生在焊接接头的热影响区(HAZ)、焊缝或熔合线上,在熔合线上产生的晶间腐蚀又称刀线腐蚀(KLA)。 不锈钢具有耐腐蚀能力的必要条件是铬的质量分数必须大于10~12%。当温度升高时,碳在不锈钢晶粒内部的扩散速度大于铬的扩散速度。因为室温时碳在奥氏体中的溶解度很小,约为0.02%~0.03%,而一般奥氏体不锈钢中的含碳量均超过此值,故多余的碳就不断地向奥氏体晶粒边界扩散,并和铬化合,在晶间形成碳化铬的化合物,如(CrFe)23C6等。数据表明,铬沿晶界扩散的活化能力162~252KJ/mol,而铬由晶粒内扩散活化能约540KJ/mol,即:铬由晶粒内扩散速度比铬沿晶界扩散速度小,内部的铬来不及向晶界扩散,所以在晶间所形成的碳化铬所需的铬主要不是来自奥氏体晶粒内部,而是来自晶界附近,结果就使晶界附近的含铬量大为减少,当晶界的铬的质量分数低到小于12%时,就形成所谓的“贫铬区”,在腐蚀介质作用下,贫铬区就会失去耐腐蚀能力,而产生晶间腐蚀。 不锈钢的敏化及预防措施 含碳量超过0.03%的不稳定的奥氏体型不锈钢(即不含钛或铌的0Cr18Ni9不锈钢),如果热处理不当则在某些环境中易产生晶间腐蚀。这些钢在425-815℃之间加热时,或者缓慢冷却通过这个温度区间时,都会产生晶间腐蚀。这样的热处理造成碳

晶间腐蚀

晶间腐蚀 1.沿着金属晶粒边界发生的选择性腐蚀,称为晶间腐蚀(lntergranular Corrosion);锈钢、形式,发生在金属晶体的边缘上形式,发生在金属晶体的边缓得很松弛,机械强度大大降低。经过晶腐蚀的金属表面,外表看上去好像还如很完整,但因失去了机械强度,所以稍加轻轻敲击,便会碎成细粒。晶间腐蚀由于肉眼无法看出,常常成设备及重要构件突然破坏,危害性极大。例如,不锈钢、镍基合金、铝合金、镁合金等都存在腐蚀问题。航空零件上采用的高强度铝合金镀硬铬,尤其是含铜量高的铝合金,如果热处理未处理好,就有可能在晶粒边缘连续地析出CuAl2的硬化相颗。粒,这样晶粒近旁的含铜量就比晶粒内部的含铜量少,结果晶粒边界附近就成为阳极,为阴极,在一定的腐蚀条件下,腐蚀微电池产生,界腐蚀就发生了。此外锌、锡、铝等金,也会发生晶间腐蚀。 2.另一种晶间腐蚀现象就是穿晶腐蚀或称为腐蚀破坏。其腐蚀的破坏形式是沿最大张应力线发生的,可穿透晶体,所以被称为穿晶腐蚀。例如,金属在周期交变载荷下的腐蚀及在)。例如,金属在周期交变载荷的属性):成开裂,通常称为腐蚀裂要开。这类腐蚀是经常发生的,尤其是合金材料,由于不同金属元素,它们之间审代取真,濟窿。旨油韵胖解呀队等因素,这种腐蚀便会加速,直至腐蚀裂开。 3.黄铜的脱锌所形成的开裂称为季裂(Season :应力Cracking),也就是指黄铜的缉分之中去,造成铜组分富集在合金盼表面上,这蚀实属晶间腐蚀,当有应力存在时,便造成开裂实际生产中,也经常发现rosion )

现象,就是金属腐蚀后于晶间腐蚀的一种特殊形多与穿晶腐蚀相似,多数发生在高粥例如,机翼的上淳窝结构等多冠妄三劣情况下,使该部位凳纹的侧墜金产生剥蚀腐蚀。 4.另外,还有空穴腐蚀( Cavitation Corrosinn竽生物腐蚀( Microbiological CorroSion)【电镀设备厂】https://www.360docs.net/doc/3211592058.html,属的晶格同样存在着影响,紲严,与所受的介质条件有密切关系:很危险,必须引起重视。形成晶间腐蚀的因素很多,首先料的特性和耐蚀性,以及材不锈钢的晶间腐蚀现腐蚀最有害的元舅出,就可以防止晶间腐蚀。莠都钢的碳的质量分数降低到0. 03%以下。 5.同样,对于高强度铝合金中含铜星对高强度钢中含镍量的控蚀的一种措施。在机械加工、焊差中,也会引起晶间腐蚀在不锈钢焊接时,由于热的影响(焊缝附近处于热影响区温度范围内),也会引起对晶间腐蚀的敏感性,一旦在腐蚀介质的作用下,焊缝附近就很容生晶间腐蚀。这种现象通常也叫做焊接劣化。此外,超高强度等,也腐蚀倾向性。因此,必须设法消除应力,高强度合应力腐蚀裂纹是引起结构破坏的一个主要原因。

不锈钢晶间腐蚀

《材料腐蚀与防护》结课作业304奥氏体不锈钢的晶间腐蚀报告 班级:成型1303班 :旭男 学号:20132336

304奥氏体不锈钢是指在常温下具有奥氏体组织的不锈钢,钢中含Cr约18%、含Ni约8%、C约0.1%时,具有稳定的奥氏体组织。它是一种很常见的不锈钢材料,业也叫做18/8不锈钢。奥氏体不锈钢无磁性而且具有高韧性和塑性,但强度较低,不可能通过相变使之强化,仅能通过冷加工进行强化,具有良好的易切削性。 304奥氏体不锈钢的防锈性能比200系列的不锈钢材料要强,密度为7.93 g/。它在耐高温方面也比较好,最高可承受1000℃~1200℃。它具有优良的耐腐蚀性能和较好的抗晶间腐蚀性能,加工性能好且韧性高,被广泛应用。适用于食品的加工储存、家庭用品、汽车配件、医疗器具、化学建材,农业船舶部件等。 304奥氏体不锈钢中最为重要的元素是Ni和Cr,但是又不仅限于这两种元素。对于304奥氏体不锈钢来说,其成分中的Ni元素十分重要,直接决定着它的抗腐蚀能力。它正是因为有足够含量的铬,其保护性氧化膜是自愈性的。当其 薄膜破坏时,重新形成新的保护性氧化薄膜。致使它能进行机械加工也不失去抗氧化性能。然而当金属含铬量不够或某些原因造成不锈钢晶界贫铬,就不能形成保护性氧化膜。这就说明不锈钢之所以不锈,关键在于要有足够的铬和足够的氧。 此外,Ni与Cr配合,在不锈钢中发挥着重要作用。Ni在不锈钢中的主要作用在于其改变了钢的晶体结构,形成奥氏体晶体结构,从而改善和加强Cr 的钝化机理,其抗晶间腐蚀能力得到提高。

304、347、321钢的化学成分表格1(%) 奥氏体不锈钢在许多介质环境中容易发生晶间腐蚀、点腐蚀、缝隙腐蚀、应力腐蚀、腐蚀疲劳等腐蚀类型。在其中加入不同元素可得到不同特性,加Mo改善点蚀和耐缝隙腐蚀,降低C含量或加入Ti和Nb可减少晶间腐蚀倾向,加Ni 和Cr可改善高温抗氧化性和强度,加Ni改善抗应力腐蚀性能。我查阅了晶间腐蚀的相关资料,因为以前在《金属学与热处理》里接触过晶间腐蚀,而且在《材料腐蚀与防护》的课堂上,自己对晶间腐蚀也更感兴趣。 晶间腐蚀是一种常见的局部腐蚀,遭受这种腐蚀的不锈钢,表面看来还很光亮,但只要轻轻敲击便会破碎成细粒。由于晶间腐蚀不易检查,会造成设备突然破坏,所以危害性极大。奥氏体不锈钢是工业中应用最广的不锈钢之一,多半在约427℃~816℃的敏化温度围,在特定的腐蚀环境中易发生晶间腐蚀,晶间腐蚀也会加快整体腐蚀。

腐蚀的定义

腐蚀的定义:腐蚀是材料受环境介质的化学、电化学和物理作用产生的损坏或变质现象。腐蚀的特点:自发性、普遍性、隐蔽性。 腐蚀的分类:(金属腐蚀和非金属腐蚀) 金属腐蚀分为: (机理)化学腐蚀、电化学腐蚀。 (破坏特征)全面腐蚀、局部腐蚀。 (腐蚀环境)大气、土壤、电解质溶液、熔融盐、高温气体等腐蚀。 局部腐蚀:应力腐蚀、疲劳腐蚀、磨损腐蚀、小孔腐蚀、晶间腐蚀、缝隙腐蚀、电偶腐蚀等电化学腐蚀的定义:金属与电解质溶液发生电化学作用而引起的破坏。 化学腐蚀:金属与非电解质直接发生化学作用而引起的破坏。 金属腐蚀:金属腐蚀是金属与周围环境之间相互作用,使金属由单质转变成化合物的过程。腐蚀速度:在均匀的腐蚀情况下,常用重量指标和深度指标来表示腐蚀速度。 极化的概念:电池工作过程中由于电流流动而引起电极电位偏离初始值的现象,称为极化现象,通阳极电流,阳极电位向正方向偏离称阳极极化;通阴极电流,阴极电位向 负方向偏离称阴极极化。 产生极化的根本原因:阳极或阴极的电极反应与电子迁移(从阳极流出或流入阴极)速度存在差异引起的。 标准氢电极:把电镀有海绵状铂黑(极细而分散的铂金粉)的铂金片插入氢离子活度1的溶液(酸性溶液)中,不断地通入分压101325Pa(1atm)的纯氢气冲击,使铂黑吸附氢气 至饱和,这是铂金片即为标准氢电极。 金属电化学腐蚀的热力学条件: (1)阳极溶解反应自发进行的条件:E A>E eM (2)阴极去极化反应自发进行的条件:E K>E0k (3)电化学腐蚀持续进行的条件:E e.M

晶间腐蚀标准

Standard practices for Detecting susceptibility to intergranular attack in austenitic stainless steels 奧氏體不銹鋼晶間腐蝕敏感性標準實驗 1.scope 1.應用範圍 these practices cover the following five tests: 1.2 這些實驗包括下列五類: 1.1.1 parctics A- oxalic acid etch test for classification of etch structures of austenitic stainless steels(section 3 to 7, inclusive) 1.1.1實驗A——奧氏體不銹鋼草酸浸蝕試驗後的浸蝕組織分類(包括3-7部分 1.2 the following factors govern the application of these practices: 1.2以下因素主導著這類實驗: 1.2.1 susceptibility to intergranular attack associated with the precipitation of chromium carbides is readily detected in all six tests. 1.2.1晶間腐蝕敏感性同碳鉻化合物的快速析出 1.2.2 sigma phase in wrought chromium-nickel-molybdenum steels. Which may or may not be visible in the microstructure, can

奥体不锈钢的耐晶间腐蚀性能

奥体不锈钢的耐晶间腐蚀性能 奥体不锈钢在合适的温度下再加热(如热处理、焊接或高温运行)时,由于C、N、P、Si的化合物或沉淀析出相,将在晶界析出或偏析,可使奥氏体不锈钢发生晶间腐蚀,大大降低其力学性能,导致结构和设备的破坏,危害极大。 奥体不锈钢晶间腐蚀的影响如下: 碳含量是影响奥体不锈钢晶间腐蚀的重要因素,奥体不锈钢晶间腐蚀的敏感性随碳含量的增加而提高。碳在18-8奥体不锈钢中的溶解度为: Log(wc%)=-6120/T+3.639 据此,碳在18-8奥体不锈钢的溶解量在1000℃时约为wc0.07%,在800℃时约为wc0.01%,而在温室下就低于wc0.01%。所以,固溶处理时,碳处于过饱和状态。一旦遇到400~850℃范围内的加热及适当的保留时间,铬的碳化物就会在晶间析出,若造成晶界附近的铬含量低于wcr12%,析出贫铬区而容易被腐蚀。此外,随奥体不锈钢中铬、镍含量的增加,碳的溶解度将进一步下降,其晶间腐蚀倾向将增加。1)提高奥体不锈钢的纯度,即降低C及有害杂质P、S、Si的含量。这一点已经得到应用,许多超低碳不锈钢已被产生出来。 2)从中可以看到,提高铬含量,微信公众号:hcsteel有利于降低晶间腐蚀的敏感性;而提高镍含量,则提高了晶间腐蚀的敏感性。 3)在奥体不锈钢中加入与C亲合力比Cr大的Ti、Nb等合金元素,

而优先于Cr形成Ti、Nb的碳化物,避免在奥氏体晶界附近出现贫铬区,就能够避免晶间腐蚀。 4)焊后进行固溶处理,使其在焊接接头去因焊接加热到敏感化区(400~850℃)而析出的铬的碳化物重新溶解而消除贫铬区,也能够避免晶间腐蚀。

腐蚀机理(上篇)

由于腐蚀的危害性十分大,为了搞好防腐蚀工作,作为防腐施工的技术人员和工人对材料受到腐蚀的起因、原理等应进一步加深了解,以便合理地选择防腐蚀的方法。 一、腐蚀 腐蚀是指材料在环境的作用下引起的破坏或变质。这里所说的材料包括金属材料和非金属材料。 金属的腐蚀是指金属和周围介质发生化学或电化学作用而引起的破坏。有时还伴随有机械、物理和生物作用。 非金属腐蚀是指非金属材料由于直接的化学作用(如氧化、溶解、溶胀、老化等)所引起的破坏。 这里应当指出,单纯的机械磨损和破坏不属于腐蚀的范畴。 二、腐蚀分类 腐蚀在这里指金属腐蚀,金属腐蚀的分类方法很多。通常是根据腐蚀机理、腐蚀破坏的形式和腐蚀环境等几个方面来进行分类。 (1)按腐蚀机理分类从腐蚀机理的角度来考虑,金属腐蚀可分为化学腐蚀和电化学腐蚀两大类。 1 化学腐蚀金属的化学腐蚀是指金属和纯的非电解质直接发生纯化学作用而引起的金属破坏,在腐蚀过程中没有电流产生。例如,铝在纯四氯化碳和甲烷中的腐蚀,镁、钛在纯甲醇中的腐蚀等等,都属于化学腐蚀。实际上单纯的化学腐蚀是很少见的,原因是在上述的介质中,往往都含有少量的水分,而使金属的化学腐蚀转变为电化学腐蚀。 2电化学腐蚀金属的电化学腐蚀是指金属和电解质发生电化学作用而引起金属的破坏。它的主要特点是:在腐蚀过程中同时存在两个相对独立的反应过程———阳极反应和阴极反应,并有电流产生。例如,钢铁在酸、碱、盐溶液中的腐蚀都属于电化学腐蚀。金属的电化学腐蚀是最普遍的一种腐蚀现象,电化学腐蚀造成的破坏损失也是最严重的。 (2)按腐蚀破坏的形式分类金属腐蚀破坏的形式多种多样,但无论哪种形式,腐蚀一般都从金属表面开始,而且伴随着腐蚀的进行,总会在金属表面留下一定的痕迹,即腐蚀破坏的形式。可以通过肉眼、放大镜或显微镜等进行观察分析。根据腐蚀破坏的形式,可将金属腐蚀分为全面腐蚀和局部腐蚀两大类。 1 全面腐蚀金属的全面腐蚀亦称为均匀腐蚀,是指腐蚀作用以基本相同的速度在整个金属表面同时进行。如碳钢在强酸、强碱中发生的腐蚀一般都是全面腐蚀。由于这种腐蚀可以根据各种材料和腐蚀介质的性质,测算出其腐蚀速度,这样就可以在设计时留出一定的腐蚀裕量。所以,全面腐蚀的危害一般是比较小的。

不锈钢定义及代号

不锈钢基础知识 在空气中或化学腐蚀介质中能够抵抗腐蚀的一种高合金钢,不锈钢是具有美观的表面和耐腐蚀性能好,不必经过镀色等表面处理,而发挥不锈钢所固有的表面性能,使用于多方面的钢铁的一种,通常称为不锈钢。代表性能的有13铬钢,18-铬镍钢等高合金钢。 从金相学角度分析,因为不锈钢含有铬而使表面形成很薄的铬膜,这个膜隔离开与钢内侵入的氧气起耐腐蚀的作用。 为了保持不锈钢所固有的耐腐蚀性,钢必须含有12%以上的铬。 不锈钢种类: 不锈钢可以按用途、化学成分及金相组织来大体分类。 以奥氏体系类的钢由18%铬-8%镍为基本组成,各元素的加入量变化的不同,而开发各种用途的钢种。 以化学成分分类: ①.CR系列:铁素体系列、马氏体系列 ②.CR-NI系列:奥氏体系列,异常系列,析出硬化系列。 以金相组织的分类: ①.奥氏体不锈钢 ②.铁素体不锈钢 ③.马氏体不锈钢 ④.双相不锈钢 ⑤.沉淀硬化不锈钢 不锈钢的标识方法 钢的编号和表示方法 ①用国际化学元素符号和本国的符号来表示化学成份,用阿拉伯字母来表示成份含量: 如:中国、俄国12CrNi3A ②用固定位数数字来表示钢类系列或数字;如:美国、日本、300系、400系、200系; ③用拉丁字母和顺序组成序号,只表示用途。 我国的编号规则

①采用元素符号 ②用途、汉语拼音,平炉钢:P、沸腾钢:F、镇静钢: B、甲类钢:A、T8:特8、 GCr15:滚珠 ◆合结钢、弹簧钢,如:20CrMnTi 60SiMn、(用万分之几表示C含量) ◆不锈钢、合金工具钢(用千分之几表示C含量),如:1Cr18Ni9 千分之一(即 0.1%C),不锈C≤0.08% 如0Cr18Ni9,超低碳C≤0.03% 如0Cr17Ni13Mo 国际不锈钢标示方法 美国钢铁学会是用三位数字来标示各种标准级的可锻不锈钢的。其中: ①奥氏体型不锈钢用200和300系列的数字标示, ②铁素体和马氏体型不锈钢用400系列的数字表示。例如,某些较普通的奥氏体不锈钢 是以201、304、316以及310为标记, ③铁素体不锈钢是以430和446为标记,马氏体不锈钢是以410、420以及440C为标记,双相(奥氏体-铁素体), ④不锈钢、沉淀硬化不锈钢以及含铁量低于50%的高合金通常是采用专利名称或商标命名。 4).标准的分类和分级 4-1分级: ①国家标准GB ②行业标准YB ③地方标准 ④企业标准Q/CB 4-2 分类: ①产品标准 ②包装标准 ③方法标准 ④基础标准 4-3 标准水平(分三级): Y级:国际先进水平 I级:国际一般水平

晶间腐蚀

不锈钢产品晶间腐蚀的危害和防止措施 自然界的腐蚀无处不在,腐蚀给人类带来的危害和损失远远的超过了火灾、水灾和地震等自然灾害的总合,它可以在不知不觉中毁掉你能看到的东西,腐蚀造成损失是非常巨大的,而由于腐蚀引起的突发恶性事故,不仅仅带来巨大经济损失,而往往会引发火灾、中毒、爆炸、人身伤亡等灾祸,造成严重的社会后果,应引起我们的高度重视。据资料统计在石油化工设备腐蚀失效设备中,我国每年因金属腐蚀造成的损失至少200亿,晶间腐蚀占了9%左右。 1.晶间腐蚀的特征: 晶间腐蚀与一般的腐蚀不同,它不是从金属外表面开始,而是集中发生在金属的晶界区,沿着金属晶界向内部扩展。这种腐蚀使得金属在外表面看不出任何迹象的情况下,完全丧失其力学性能,危害极大。已晶间腐蚀的不锈钢产品,表面看起来还是很光亮的,但是内部已经损坏,严重时已失去金属的声音,在外表面轻轻的敲击就会破碎成细粒。用显微镜观察,发现晶界已成网状,晶界区因腐蚀已造破坏,这时晶粒已接近分离状态,稍受外力作用即发生晶界断裂,成为粉末,造成设备破坏和人员伤亡。晶间腐蚀隐蔽性强是突发事故,危害巨大。 2.晶间腐蚀原因: 2.1介质:引起A氏体不锈钢晶间腐蚀的介质主要酸性介质,如工业醋酸、硫酸、硝酸、草酸、盐酸等,在强氧化性介质中,随着不锈钢中Cr含量的减少,出现晶界贫Cr,因此晶界的腐蚀速度远远大于晶粒本体的腐蚀速度。 2.2不锈钢是否产生晶间腐蚀以及腐蚀的程度取决于产品的受热过程,不锈钢在450°C~850°C范围内加热,有产生晶间腐蚀的倾向,其中在650°C~750°C范围内加热对晶间腐蚀最为敏感,此温度称为“敏化温度”,在敏化温度下产生的晶间腐蚀倾向的时间最短,加热时间越长,晶间腐蚀的倾向越大。 2.3晶界合金元素的贫Cr化是产生晶间腐蚀的主要原因,不锈钢在450°C~850°C范围内,Cr的碳化物主要在晶间析出,这种碳化物中Cr的含量远高于基体中的含Cr量,势必引起临近区域Cr的集聚和扩散,从而形成贫Cr区(Cr<12%),贫Cr区不能抵抗某些介质的腐蚀,就形成晶间腐蚀。2.4钢种的含碳量越高,碳向晶界扩散的倾向越大,晶间腐蚀的倾向就越大,

金属腐蚀及控制

第一章电化学腐蚀 1、何为腐蚀原电池?(外电路短路,画图) 腐蚀原电池:外电路短路原电池。 2、何为次生腐蚀反应?举例说明(Fe) 次生腐蚀反应:阳极、阴极腐蚀产物之间发生反应。 如:Fe,Cu,3%NaCl溶液中; 阳极:Fe - 2e = Fe2+ 阴极:O2 + 2H2O + 4e =4OH-次生腐蚀过程:Fe2++ 2OH- = Fe(OH)2 Fe(OH)2 沉积阳、极阴交界处形成致密膜起保护作用,若Fe(OH)2 进一步反应:Fe(OH)2 + O2 + 2H2O =4Fe(OH)3,脱水成铁锈xFeO.yFe2O3.2H2O 疏松不起保护作用。 3、微电池的种类有哪些? 定义:人眼不可辨,指阳极区和阴极区尺寸小,很难区分。 (1)成分不均匀钢或铸铁中的Fe、Fe3C或石墨,Fe为阳极,Fe3C或石墨为阴极;(2)组织不均匀晶界与晶粒内部,一般晶界为阳极,晶粒内部为阴极; (3)物理状态不均匀应力大晶格畸变为阳极,应力小为阴极。 4、双电层有哪几种? (1)金属+ H2O Mn +.ne + mH2O = Mn+ .mH2O + ne (2)金属+ 金属盐溶液

CuSO4溶液中的Cu2+由于被Cu吸引沉积到Cu上。Cu2 + + 2e = Cu (3)非金属+ 电解质溶液 氧电极:Pt吸附O2或O,得到Pt上的e。Pt =Pt + + e 氢电极:Pt吸附H2或H,得到Pt上的e。Pt =Pt + + e 5、简述阴极和阳极化学极化、浓差极化、电阻极化的原因。 (1)阳极极化原因 A.化学极化(活化极化):金属溶解速度<电子迁移速度,电子迁移到阴极,失电子Mn+还未迁移到溶液中,导致阳极带正电荷,电位升高,ηa>0; B.浓差极化:阳极周围Mn+向外扩散速度较慢,使阳极附近Mn+活度升高,ηc>0; M - ne =Mn+;ε↑=ε0+RT/nF ln(a Mn↑/1) C. 电阻极化:阳极形成保护膜,使M→Mn+过程受阻,ηr>0; (2)阴极极化原因

腐蚀的定义

关于腐蚀 一、腐蚀的定义 腐蚀是材料在环境的作用下引起的破坏或变质。 金属和合金的腐蚀主要是由于化学或电化学作用引起的破坏,有时还同时伴有机械、物理或生物作用。例如应力腐蚀破裂就是应力和化学物质共同作用的结果。单纯物理作用的破坏,如合金在液态金属中的物理溶解,也属于腐蚀范畴,但这类破坏实例不多。单纯的机械破坏,如金属被切削、研磨,不属于腐蚀范畴非金属的破坏一般是由于化学或物理作用引起,如氧化、溶解、溶胀等。 二、腐蚀的危害 1.经济损失 腐蚀的危害非常巨大,它使珍贵的材料变为废物,如铁变成铁锈、(氧化铁);使生产和生活设施过早地报废,并因此引起生产停顿,产品或生产流体的流失,环境污染,甚至着火爆炸。据统计,工业发达国家每年由于金属腐蚀的直接损失约占全年国民经济总产值的2~4%。中国1988年国民生产总值约为1万4千亿元,由于金属腐蚀造成的直接损失约为300~600亿元。据国外统计,金属腐蚀的年损失远远超过水灾、火灾、风灾和地震(平均值)损失的总和,这还不包括由于停工减产、火灾爆炸等造成的间接损失。例如,发电厂一合锅炉管子腐蚀损坏,其价值不大,但引起一大片工厂停工,则损失要大得多。另外,非金属腐蚀损失还没有详细调查,由于混凝上、木材、塑料等用量庞大,腐蚀损失也是惊人的。材料腐蚀遍及所有的经济和生活领域,由于腐蚀主要是材料与化学介质发生化学反应所引起的,所以,对于大量使用和生产强腐蚀性化学产品的化学工业等,其危害就更大。克服腐蚀危害也是广大科技工作者的迫切任务。 2.对安全和环境的危害 腐蚀不仅造成经济上的损失;也经常构成对安全的威胁。均匀腐蚀,如铁生锈,一般进展缓慢,危险性不大,但一些局部腐蚀如孔蚀(穿孔)和应力腐蚀破裂,常常是突然发生的,可能引起事故,造成意外危险。过去国内外都曾发生过许多灾难性腐蚀事故,如飞机因某一零部件破裂而坠毁,桥梁因钢梁产生裂缝而塌陷,油管因穿孔或裂缝而漏油,引起着火爆炸等。化工厂的腐蚀事故更多,如贮酸槽穿孔泄漏,造成重大环境污染,液氨贮罐爆炸,造成人员伤亡,管道和设备跑、冒、滴、漏,破坏生产环境,有毒气体如氯、硫化氢、氰化氢等的泄漏,则更危及工作人员和附近居民的生命安全。据一些化工厂的统计,化工设备的破坏约有60%是由于腐蚀引起的,而腐蚀破坏中约30%是均匀腐蚀,70%则属于危险的局部腐蚀,其中以应力腐蚀破裂为最多。可见,除了经济损失以外,腐蚀对安全和环境的威胁决不容忽视。 3.阻碍新技术的发展 一项新技术、新产品、和新工业的产生过程中,往往会遇到需要克服的腐蚀问题,只有解决了这些困难的腐蚀问题,新技术、新产品、新工业才得以发展。工业史上有许多例子,如铅室法硫酸工业是在找到了耐稀硫酸的铅材才得以发展起来的; 发明了不锈钢以后,生产硝酸和应用硝酸的工业才蓬勃兴起。近代还有一个有趣的例子,美国人在实施登月计划的过程中,遇到一个严重的腐蚀问题:盛四氧化二氮(氧化剂)的容器是用钛合金(6%A1,4%V)制成的,试验中几小时内就破裂,经查是应力腐蚀所致。后来科学家找到了防止破裂的方法:在氧化剂中加入少量水(>1.5%)或加0.6%NO,作为缓蚀剂,控制了应力腐蚀,克服了这道障碍,人类终于登上了月球。 现在和未来在发展新技术、新产品的过程中,还会不断遇到各种新的腐蚀问题,而且是越来越困难的问题,例如化学、能源(包括核能)、航天工业等都有向高温、高压方向发展的趋势,这样可获得更高的生产率,更快的速度和更低的生产成本。但高温高压会造成更加苛刻的腐蚀环境。早期的喷气机油泵温度约为790℃,现在已达到约1100℃,这就需要适应高温、高速的新材料。由于石油和天然气的短缺,特别是我国,利用蕴藏量巨大的煤转化为气或液体燃料,是有重大意义的,但这就会遇到一连串的腐蚀问题:高温(超过1650℃)、高压、庞大的容器、粉尘的磨损腐蚀,硫化氢以及加氢引起的氢腐蚀,适应高温、高速、高磨蚀的泵和阀等。解决了这一系列问题,将可能获得廉价的煤的液化、气化燃料,将使我国以至世界的经济面貌大为改观。

晶间腐蚀

晶间腐蚀 英文名称:intercrystalline corrosion;intergranular corrosion 说明:局部腐蚀的一种。沿着金属晶粒间的分界面向内部扩展的腐蚀。主要由于晶粒表面和内部间化学成分的差异以及晶界杂质或内应力的存在。晶间腐蚀破坏晶粒间的结合,大大降低金属的机械强度。而且金属表面往往仍是完好的,但不能经受敲击,所以是一种很危险的腐蚀。通常出现于黄铜、硬铝和一些含铬的合金钢中。不锈钢焊缝的晶间腐蚀是化学工厂的一个重大问题。 晶间腐蚀是沿着或紧靠金属的晶界发生腐蚀。腐蚀发生后金属和合金的表面仍保持一定的金属光泽,看不出被破坏的迹象,但晶粒间结合力显著减弱,力学性能恶化。不锈钢、镍基合金、铝合金等材料都较易发生晶间腐蚀。 不锈钢的晶间腐蚀: 不锈钢在腐蚀介质作用下,在晶粒之间产生的一种腐蚀现象称为晶间腐蚀。产生晶间腐蚀的不锈钢,当受到应力作用时,即会沿晶界断裂、强度几乎完全消失,这是不锈钢的一种最危险的破坏形式。晶间腐蚀可以分别产生在焊接接头的热影响区、焊缝或熔合线上,在熔合线上产生的晶间腐蚀又称刀状腐蚀。 不锈钢具有耐腐蚀能力的必要条件是铬的质量分数必须大于12%。当温度升高时,碳在不锈钢晶粒内部的扩散速度大于铬的扩散速度。因为室温时碳在奥氏体中的熔解度很小,约为0.02%~0.03%,而一般奥氏体不锈钢中的含碳量均超过此值,故多余的碳就不断地向奥氏体晶粒边界扩散,并和铬化合,在晶间形成碳化铬的化合物,如(CrFe)23C8等。但是由于铬的扩散速度较小,来不及向晶界扩散,所以在晶间所形成的碳化铬所需的铬主要不是来自奥氏体晶粒内部,而是来自晶界附近,结果就使晶界附近的含铬量大为减少,当晶界的铬的质量分数低到小于12%时,就形成所谓的“贫铬区”,在腐蚀介质作用下,贫铬区就会失去耐腐蚀能力,而产生晶间腐蚀。 不锈钢的晶间腐蚀 含碳量超过0.03%的不稳定的奥氏体型不锈钢(不含钛或铌的牌号),如果热处理不当则在某些环境中易产生晶间腐蚀。这些钢在425-815℃之间加热时,或者缓慢冷却通过这个温度区间时,都会产生晶间腐蚀。这样的热处理造成碳化物在晶界沉淀(敏化作用),并且造成最邻近的区域铬贫化使得这些区域对腐蚀敏感。敏化作用也可出现在焊接时,在焊接热影响区造成其后的局部腐蚀。 最通用的检查不锈钢敏感性的方法是65%硝酸腐蚀试验方法。试验时将钢试样放入沸腾的65%硝酸溶液中连续48h为一个周期,共5个周期,每个周期测定重量损失。一般规定,5个试验周期的平均腐蚀率应不大于0.05mm/月。 奥氏体型不锈钢焊接结构的晶间腐蚀可用如下方法预防: ①使用低碳牌号00Cr19Ni10或00Cr17Ni14Mo2,或稳定的牌号0Cr18Ni11Ti或0Cr 18Ni11Nb.使用这些牌号不锈钢可防止焊接时碳化物沉淀出造成有害影响的数量。 ②如果面品结构件小,能够在炉中进行热处理,则可在1040-1150℃进行热处理以溶解碳化铬,并且在425-815℃区间快速冷却以防止瑞沉淀。 焊接铁素体不锈钢在某些介质中也可能出现晶间腐蚀。这是当钢从925℃以上快速冷却

相关文档
最新文档