误差、精度、不确定度

误差、精度、不确定度
误差、精度、不确定度

一、误差的基本概念:

1.误差的定义:

误差=测得值-真值;

因此,误差是一个值,数学上就是坐标轴上的一个点,是具有正负号的一个数值。

2.误差的表示方法:

2.1 绝对误差:

绝对误差=测量值-真值(约定真值)

在检定工作中,常用高一等级准确度的标准作为真值而获得绝对误差。

如:用一等活塞压力计校准二等活塞压力计,一等活塞压力计示值为100.5N/cm2,二等活塞压力计示值为100.2N/cm2,

则二等活塞压力计的测量误差为-0.3N/cm2。

2.2 相对误差:

相对误差=绝对误差/真值X100%

相对误差没有单位,但有正负。

如:用一等标准水银温度计校准二等标准水银温度计,一等标准水银温度计测得20.2℃,二等标准水银温度计测得20.3℃,则二等标准水银温度计的相对误差为0.5%。

2.3 引用误差:

引用误差=示值误差/测量范围上限(或指定值)X100%

引用误差是一种简化和实用方便的仪器仪表示值的相对误差。

如测量范围上限为3000N的工作测力计,在校准示值2400N处的示值为2392.8N,则其引用误差为-0.3%。

3.误差的分类:

3.1 系统误差:在重复性条件下,对同一被测量进行无限多次测量所得结果的平均值与被测量的真值之差。

3.2 随机误差:测量结果与在重复性条件下,对同一被测量进行无限多次测量所得结果的平均值之差。

3.3 粗大误差:超出在规定条件下预期的误差。

二、精度:

1.精度细分为:准确度:系统误差对测量结果的影响。精密度:随机误差对测量结果的影响。精确度:系统误差和随机误差综合后对测量结果的影响。精度是误差理论中的说法,与测量不确定度是不同的概念,在误差理论中,精度定量的特征可用目前的测量不确定度(对测量结果而言)和极限误差(对测量仪器仪表)来表示。对测量而言,精密度高的准确度不一定高,准确度高的精密度不一定高,但精确度高的准确度与精密度都高,精度是精确度的简称。目前,不提倡精度的说法。

三、测量不确定度:

1.定义:表征合理地赋予被测量之值地分散性,与测量结果相联系地参数。

(1)此参数可以是诸如标准差或其倍数,或说明了置信水准的区间的半宽度。

(2)测量不确定度由多个分量组成。其中一些分量可用测量列结果的统计分布估算,并用实验标准差表征。另一些分量则可用基于经验或其他信息的假定概率分布估算,也可用标准偏差表征。

(3)测量结果应理解为被测量之值的最佳估计,而所有的不确定度分量均贡献给了分散性,包括那些由系统效应引起的(如,与修正值和参考测量标准有关的)分量。

由此可以看出,测量不确定度与误差,精度在定义上是不同的。因此,其概念上的差异也造成评价方法上的不同。

四、测量误差和测量不确定度的主要区别

1.定义上的区别:误差表示数轴上的一个点,不确定度表示数轴上的一个区间;

2.评价方法上的区别:误差按系统误差与随机误差评价,不确定度按A类B类评价;

3.概念上的区别:系统误差与随机误差是理想化的概念,不确定度只是使用估计值;

4.表示方法的区别:误差不能以±的形式出现,不确定度只能以±的形式出现;

5.合成方法的区别:误差以代数相加的方法合成,不确定度以方和根的方法合成;

6.测量结果的区别:误差可以直接修正测量结果,不确定度不能修正测量结果;误差按其定义,只和真值有关,不确定度和影响测量的因素有关;

7.得到方法的区别:误差是通过测量得到的,不确定度是通过评定得到的;

8.操作方法的区别:系统误差与随机误差难于操作,不确定评定易于操作;

误差与测量不确定度是相互关联的,就是说,测量误差也包含不确定度,反之,评定得到的不确定度也还是有误差。

精度是按照误差的分类进行评价的,但在误差合成的方法上与测量不确定度是不同的,系统误差按照代数和合成,随机误差按方和根法合成,而系统误差与随机误差的合成则有按标准差合成的,有按极限误差合成的。因此,其合成的方法并不统一。

目前,在测量领域,国际上通用的是测量不确定度方法,精度的说法目前已经不再使用,本贴希望通过一些简单的介绍,能够对大家在误差,精度及测量不确定度的概念上有所明确,不致引起一些错误有所帮助。

西仪测控活塞式压力计欢迎你

误差和不确定度的区别和联系

误差与不确定度的概念比较 实验教学中关于误差和不确定度的区别和联系,是学生感到难以理解并准确掌握的概念之一,本文将对此比较总结如下。 1误差和不确定度的定义 1.1 误差的概念 各被测量量在实验当时条件下均有不依人的意志为转移的真实大小,此值被称为被测量的真值。即真值就是被测量量所具有的、客观的真实数值。然而实际测量时,总是由具体的观测者,通过一定的测量方法,使用一定的测量仪器和在一定的测量环境中进行的。由于受到观测者的操作和观察能力,测量方法的近似性,测量仪器的分辨力和准确性,测量环境的波动等因素的影响,其测量结果和客观的真值之间总有一定的差异。测量结果与真值的差为测量值的误差,即 测量值(x)-真值(a)=误差(ε) 在实验中通常要处理的来源于测量值的误差有两类:偶然误差和系统误差。 对于偶然误差,有算术平均值作为被测量真值的最佳估计值,相应的误差有标准偏差s ,它的定义为 1)(12 --=∑=n x x s n i i ------------------------------(1) 式中n 为测量值的个数。对于算术平均值的标准偏差,用来表示算术平均值的偶然误差,表达式为 n s x s /)(=------------------------------------(2) 二者的统计意义是,标准偏差小的测量值,其可靠性较高。 对于系统误差,不能用统计的方法评定不确定度,首先要对实验理论分析或对比分析之后,可以得知其系统误差的来源,并可采取一定的措施去削减系统误差。例如由于天平左右臂长不完全相同导致的系统误差,可将物体放在天平左盘、右盘上各称一次取平均去消除,而对于单摆周期与振幅有关,缩小振幅可以减小此项系统误差,在测量要求更高时,可根据理论分析得出的修正公式去补正。 1.2 不确定度的概念 测量不确定度则是评定作为测量质量指标的此量值范围,即对测量结果残存误差的评估。设测量值为x ,其测量不确定度为u ,则真值可能在量值范围(x-u ,x+u)之中,显然此量值范围越窄,即测量 不确定度越小,用测量值表示真值的可靠性就越高。 不确定度也有两类:A 类标准不确定度和B 类不确定度。 由于偶然效应,A 类标准不确定度用统计方法来评定,其就取为平均值的标准偏差,即(2)式,也可写为 n s x s x u A /)()(==-------------------------(3) B 类评定的标准不确定度为 u(x)=Δ/3--------------------------------------(4) (4)式又称为仪器的标准误差。该式是根据仪器误差概率密度函数遵从均匀分布规律,由数学计算所得。 式中Δ为极限误差或仪器误差,是在规定的使用条件下,正确使用仪器时,仪器的示值和被测量真值之间可能出现的最大误差,其可以从下列几种情况中获得:国家计量技术规范;计量仪器说明书或检定书;仪器准确度等级;仪器分度值或经验(粗略估计)等。 2 二者的比较 不同类型的误差中究竟如何来区分误差和不确定度,表达式等方面有何不同,仍然有很多教材没有说明清楚。1993年,国际标准化组织颁布了《测量不确定度表达指南》(UGM),1999年,国家技术监督局颁布了《测量不确定度的评定与表示》 (JJF1059-1999)。这两个文件的颁布,标志着我国各技术领域 在不确

测量仪器准确度、最大允许误差和不确定度辨析

测量仪器准确度、最大允许误差和不确定度辨析国家计量技术规范JJF1033—2001《计量标准考核规范》对所采用的计量标准器具、配套设备以及所开展的检定/校准项目的准确度指标,要求填写“不确定度或准确度等级或最大允许误差”;JJF1069—2000《法定计量检定机构考核规范》要求填写检定/校准“准确度等级或测量扩展不确定度”;实验室国家认可的校准项目则是填写“不确定度/准确度等级”。以上几种表述方式,表面看来仅仅在文字上有所区别,而实际,在对不确定度如何表达的问题上,存在不同的理解和误区。例如,JJF1033—2001对计量标准器具、配套设备不确定度的解释是“已知测量仪器或量具的示值误差,并且需要对测量结果进行修正时,填写示值误差的测量不确定度”;另JJF1033—2001对所开展的检定及校准项目不确定度的解释是“指用该计量标准检定或校准被测对象所给出的测量结果不确定度,其中不应包括由被测对象所引入的不确定度分量”(见JJF1033—2001国家统一宣贯教材《计量标准考核规范实施指南》,中国计量出版社)。对仪器的不确定度,在同一规范中,已有不同的理解,在其它规范中的含义也各有区别,还有不少专家提出用不确定度表示测量仪器的特性,根本就是不合适。为了对表述测量仪器的准确度指标有统一和清晰的理解,对仪器准确度等级、最大允许误差和不确定度的意义和内在联系进行分析和探讨,是十分必要的。 一、准确度等级是用符号表示的准确度档次 测量仪器准确度是定性概念。这个问题在JJF1001—1998《通用计量术语及定义》,JJF1059—1999《测量不确定度的评定与表示》,BIPM、ISO等7个国 际计量组织1993年颁布的《国际基本和通用计量名词术语》(VIM)、ISO等7 个国际组织于1993年正式颁布《测量不确定度表示指南》(GUM)已有明确的解释。JJF1033—2001《计量标准考核规范》也已将JJF1033—1992中对计量标准 准确度赋予一个定量计算公式的规定作出修订,以测量结果不确定度取代。明确测量仪器准确度是定性概念,以和国际接轨以及和上面规范保持一致是十分必要的。由于VIM和GUM是以多个国际组织的名义联合颁布,国际上各个组织也在逐渐消除这种不规范的表述。对于一些不合适的表达,如“二等活塞压力计的准确度为±0.05%”,只能是对标准、规范等文件的修订逐步改正。

不确定度与数据处理

不确定度与数据处理 一、 误差与不确定度 1.误差与不确定度的关系 (1)误差:测量结果与客观真值之差 ?x =x -A 其中A 称为真值,一般不可能准确知道,常用约定真值代替:?????理论公式计算结果 —理论值更高精度仪器测量结果—标准值如物理常数等 —公认值 对一个测量过程,真值A 的最佳估计值是平均值x 。 在上述误差公式中,由于A 不可知,显然?x 也不可知,对误差的最佳估计值是不确定度u (x )。 (2)不确定度:对误差情况的定量估计,反映对被测量值不能肯定的程度。 通常所说“误差”一般均为“不确定度”含义。 不确定度分为A 、B 两个分量,其中A 类分量是可用统计方法估计的分量,它的主要成分是随机误差。 2.随机误差: 多数随机误差服从正态分布。定量描述随机误差的物理量叫标准差。 (1)标准差与标准偏差 标准差 k A x i k ∑-=∞ →2 ) (lim σ ∵真值A 不可知,且测量次数k 为有限次 ∴ σ 实际上也不可知,于是: 用标准偏差S 代替标准差σ : 1 ) ()(2 --= ∑k x x x S i ——单次测量的标准偏差 结果表述: x i ± S (x ) (置信概率~68.3%) 真值的估计值 单次测量标准差最佳估计值 S (x )的物理意义:在有限次测量中,每个测量值平均所具有的标准偏差。(并不是只做一次测量) 通常不严格区分标准差与标准偏差,统称为标准差。 (2)平均值的标准差 真值的最佳估计值是平均值,故结果应表述为: x ± S (x ) (置信概率~68.3%) 平均值的标准差最佳估计值 其中 ) 1() ()(2 --= ∑k k x x x S i ——平均值的标准偏差 例1:某观察量的n 次独立测量的结果是X 1, X 2, , X n 。试用方差合成公式证明平均值的标准偏差是样本标准偏差的 n 1,即n X S X S )()(=。 解: n X X i ∑= 由题知X i 相互独立,则根据方差合成公式有 n X u X u X u n ) ()()(212++= 利用样本标准偏差的定义,可知 u (X i )=S (X ) i =1,2, ,n 故 n X S n X nS n X S X S X S X u )()() ()()()(222= = ++= = 3.系统误差与仪器误差(限) (1)系统误差:在同一被测量的多次测量过程中,保持恒定或以可以预知方式变化的那一部分误差称为系统误差。已被确切掌握了其大小和符号的系统误差,称为可定系统误差;对大小和符号不能确切掌握的系统误差称为未定系统误差。前者一般可以在测量过程中采取措施予以消除或在测量结果中进行修正;而后者一般难以作出修正,只能估计出它的取值范围。 在物理实验中,对未定系统误差的估计常常利用仪器误差限来进行简化处理。

§3 测量的不确定度

测量不确定度与数据处理复习纲要 §1 测量及其误差 1 测量的概念 测量:为确定被测对象的测量值,首先要选定一个单位,然后用这个单位与被测对象进行比较,求出它对该单位的比值──倍数,这个数即为数值。表示一个被测对象的测量值时必须包含数值和单位两个部分。 目前,在物理学上各物理量的单位,都采用中华人民共和国法定计量单位,它是以国际单位制(SI)为基础的单位。它是以米(长度)、千克(质量)、秒(时间)、安培(电流强度)、开尔文(热力学温度)、摩尔(物质的量)和坎德拉(发光强度)作为基本单位,称为国家单位制的基本单位;其它量(如力、能量、电压、磁感应强度等等)的单位均可由这些基本单位导出,称为国际单位制的导出单位。 2 直接测量、间接测量、等精度测量 测量分为直接测量和间接测量。直接测量是指把待测物理量直接与作为标准的物理量相比较,例如用直尺测某长度,间接测量是指按一定的函数关系,由一个或多个直接测量量计算出另一个物理量。 同一个人,用同样的方法,使用同样的仪器并在相同的条件下对同一物理量进行的多次测量,叫做等精度测量。以后说到对一个量的多次测量,如无另加说明,都是指等精度测量。 3 测量的正确度、精密度和精确度 正确度表示测量结果系统误差的大小,精密度表示测量结果随机性的大小,精确度则综合反映出测量的系统误差与随机性误差的大小。 4 误差的概念 测量值x与真值X之差称为测量误差Δ,简称误差。 Δ=x-X。 误差的表示形式一般分为绝对误差与相对误差。 绝对误差使用符号±Δx。x表示测量结果x与直值X之间的差值以一定的可能性(概率)出现的范围,即真值以一定的可能性(概率)出现在x-Δx至x+Δx区间内。 相对误差使用符号β。由于仅根据绝对误差的大小还难以评价一个测量结果的可靠程度,还需要看测定值本身的大小,故用相对误差能更直观的表达测定值的误差大小。 绝对误差、相对误差和百分误差通常只取1~2位数字来表示。 5 误差的分类与来源

压力传感器测量误差不确定度分析

线性压力传感器(静态)基本误差不确定度评定 吉林省计量科学研究院:张攀峰 李德辉 韩晓飞 孙俊峰 1、评定依据:JJG 860-1994 《压力传感器(静态)》 JJF 1059-1990 《测量不确定度评定与表示》 JJF 1094-2002 《测量仪器特性评定》 2、测量方法: 检定/校准、检测装置由标准器(在此为0.02级活塞式压力计)、压力源、三通接头用导压管连接起来而组成,导压管另一端与压力传感器(以下简称传感器)连接起来,连接处不得泄漏,外加对传感器供电电源,并由数字电压表读取传感器输出。通过采用多次循环测量确定被测传感器工作直线方程的方法进行检定/校准、检测。 3、数学模型 依据JJG 860 — 1994 压力传感器(静态)检定规程可知,线性压力传感器的基本误差公式为: A =±(ξS +ξLH )------(1) 式中:A ——传感器各检定/校准、检测点的基本误差(以绝对误差表示) ξLH ——传感器各检定/校准、检测点系统标准不确定度分量 3 方差和灵敏度系数 ()()() () 22 222212------+=LH S u C u C A u ξξ

式中:灵敏度系数C 1=C 2=1 则: 4 标准不确定度一览表 5 标准不确定度分量的计算 5.1 由被检定/校准、检测传感器重复性引起的标准不确定度u (ξS ): 用0.02级活塞压力计检定/校准、检测由北京中航机电技术公司生产CYB —IOS 型,编号为2H2883,测量范围为0—80MPa,0.25级传感器的0MPa 、10MPa 、20MPa 、30MPa 、40MPa 、50MPa 、60MPa 、70MPa 、80MPa 点,分别读取被检定/校准、检测传感器各点四个循环读数如下表所示: 传感器在整个测量范围内的标准偏差为s : ()()() () 3222------+=LH S u u A u ξξ) 4(21 2 1 2------+= ∑∑==m S S s m i Di m i Ii

浅谈测量仪器仪表不确定度与误差的区别

浅谈测量仪器仪表不确定度与误差的区别 测量不确定度和误差是计量学中研究的基本命题,也是计量测试人员经常运用的重要概念之一。它直接关系着测量结果的可靠程度和量值传递的准确一致。然而很多人由于概念不清,很容易将二者混淆或误用,本文结合学习《测量不确定度评定与表示》的体会,着重谈谈二者之间的不同之处。 首先要明确的是测量不确定度与误差二者之间概念上的差异。 测量不确定度表征被测量的真值所处量值范围的评定。它按某一置信概率给出真值可能落入的区间。它可以是标准差或其倍数,或是说明了置信水准的区间的半宽。它不是具体的真误差,它只是以参数形式定量表示了无法修正的那部分误差范围。它来源于偶然效应和系统效应的不完善修正,是用于表征合理赋予的被测量值的分散性参数。不确定度按其获得方法分为A、B两类评定分量。A类评定分量是通过观测列统计分析作出的不确定度评定,B类评定分量是依据经验或其他信息进行估计,并假定存在近似的“标准偏差”所表征的不确定度分量。 误差多数情况下是指测量误差,它的传统定义是测量结果与被测量真值之差。通常可分为两类:系统误差和偶然误差。误差是客观存在的,它应该是一个确定的值,但由于在绝大多数情况下,真值是不知道的,所以真误差也无法准确知道。我们只是在特定的条件下寻求最佳的真值近似值,并称之为约定真值。 通过对概念的理解,我们可以看出测量不确定度与测量误差的主要有以下几方面区别: 一.评定目的的区别: 测量不确定度为的是表明被测量值的分散性; 测量误差为的是表明测量结果偏离真值的程度。 二.评定结果的区别:

测量不确定度是无符号的参数,用标准差或标准差的倍数或置信区间的半宽表示,由人们根据实验、资料、经验等信息进行评定,可以通过A,B两类评定方法定量确定; 测量误差为有正号或负号的量值,其值为测量结果减去被测量的真值,由于真值未知,往往不能准确得到,当用约定真值代替真值时,只可得到其估计值。 三.影响因素的区别: 测量不确定度由人们经过分析和评定得到,因而与人们对被测量、影响量及测量过程的认识有关; 测量误差是客观存在的,不受外界因素的影响,不以人的认识程度而改变; 因此,在进行不确定度分析时,应充分考虑各种影响因素,并对不确定度的评定加以验证。否则由于分析估计不足,可能在测量结果非常接近真值(即误差很小)的情况下评定得到的不确定度却较大,也可能在测量误差实际上较大的情况下,给出的不确定度却偏小。 四.按性质区分上的区别: 测量不确定度不确定度分量评定时一般不必区分其性质,若需要区分时应表述为:“由随机效应引入的不确定度分量”和“由系统效应引入的不确定度分量”; 测量误差按性质可分为随机误差和系统误差两类,按定义随机误差和系统误差都是无穷多次测量情况下的理想概念。 五.对测量结果修正的区别: “不确定度”一词本身隐含为一种可估计的值,它不是指具体的、确切的误差值,虽可估计,但却不能用以修正量值,只可在已修正测量结果的不确定度中考虑修正不完善而引入的不确定度;

误差精度与不确定度的区分

作为计量人员,误差、精度与不确定度是应该搞清楚的概念,但这些概念互相联系又有区别,也常常使人不知所芸。在此略作论述,希望能引起大家讨论。 一、误差的基本概念: 1.误差的定义: 误差=测得值-真值; 因此,误差是一个值,数学上就是坐标轴上的一个点,是具有正负号的一个数值。 2.误差的表示方法: 2.1 绝对误差: 绝对误差=测量值-真值(约定真值) 在检定工作中,常用高一等级准确度的标准作为真值而获得绝对误差。如:用一等活塞压力计校准二等活塞压力计,一等活塞压力计示值为 100.5N/cm2,二等活塞压力计示值为100.2N/cm2,则二等活塞压力计的测量误差为-0.3N/cm2。 2.2 相对误差: 相对误差=绝对误差/真值X100% 相对误差没有单位,但有正负。 如:用一等标准水银温度计校准二等标准水银温度计,一等标准水银温度计测得20.2℃,二等标准水银温度计测得20.3℃,则二等标准水银温度计的相对误差为0.5%。 2.3 引用误差: 引用误差=示值误差/测量范围上限(或指定值)X100%引用误差是一种简化和实用方便的仪器仪表示值的相对误差。 如测量范围上限为3000N的工作测力计,在校准示值2400N处的示值为2392.8N,则其引用误差为-0.3%。 3.误差的分类: 3.1 系统误差:在重复性条件下,对同一被测量进行无限多次测量所得结

果的平均值与被测量的真值之差。 3.2 随机误差:测量结果与在重复性条件下,对同一被测量进行无限多次测量所得结果的平均值之差。 3.3 粗大误差:超出在规定条件下预期的误差。 二、精度: 1.精度细分为:准确度:系统误差对测量结果的影响。精密度:随机误差对测量结果的影响。精确度:系统误差和随机误差综合后对测量结果的影响。精度是误差理论中的说法,与测量不确定度是不同的概念,在误差理论中,精度定量的特征可用目前的测量不确定度(对测量结果而言)和极限误差(对测量仪器仪表)来表示。对测量而言,精密度高的准确度不一定高,准确度高的精密度不一定高,但精确度高的准确度与精密度都高,精度是精确度的简称。目前,不提倡精度的说法。 三、测量不确定度: 1.定义:表征合理地赋予被测量之值地分散性,与测量结果相联系地参数。 (1)此参数可以是诸如标准差或其倍数,或说明了置信水准的区间的半宽度。 (2)测量不确定度由多个分量组成。其中一些分量可用测量列结果的统计分布估算,并用实验标准差表征。另一些分量则可用基于经验或其他信息的假定概率分布估算,也可用标准偏差表征。 (3)测量结果应理解为被测量之值的最佳估计,而所有的不确定度分量均贡献给了分散性,包括那些由系统效应引起的(如,与修正值和参考测量标准有关的)分量。 由此可以看出,测量不确定度与误差,精度在定义上是不同的。因此,其概念上的差异也造成评价方法上的不同。 四、测量误差和测量不确定度的主要区别 1.定义上的区别:误差表示数轴上的一个点,不确定度表示数轴上的一个

测量的不确定度,测量误差

什么叫测量的不确定度?什么叫测量误差?测量不确定度和误差是计量学中研究的基本命题,也是计量测试人员经常运用的重要概念之一。它直接关系着测量结果的可靠程度和量值传递的准确一致。然而很多人由于概念不清,很容易将二者混淆或误用,本文结合学习《测量不确定度评定与表示》的体会,着重谈谈二者之间的不同之处。 首先要明确的是测量不确定度与误差二者之间概念上的差异。 测量不确定度表征被测量的真值所处量值范围的评定。它按某一置信概率给出真值可能落入的区间。它可以是标准差或其倍数,或是说明了置信水准的区间的半宽。它不是具体的真误差,它只是以参数形式定量表示了无法修正的那部分误差范围。它来源于偶然效应和系统效应的不完善修正,是用于表征合理赋予的被测量值的分散性参数。不确定度按其获得方法分为 A、B两类评定分量。A类评定分量是通过观测列统计分析作出的不确定度评定,B类评定分量是依据经验或其他信息进行估计,并假定存在近似的“标准偏差”所表征的不确定度分量。 误差多数情况下是指测量误差,它的传统定义是测量结果与被测量真值之差。通常可分为两类: 系统误差和偶然误差。误差是客观存在的,它应该是一个确定的值,但由于在绝大多数情况下,真值是不知道的,所以真误差也无法准确知道。我们只是在特定的条件下寻求最佳的真值近似值,并称之为约定真值。 通过对概念的理解,我们可以看出测量不确定度与测量误差的主要有以下几方面区别: 一.评定目的的区别: 测量不确定度为的是表明被测量值的分散性; 测量误差为的是表明测量结果偏离真值的程度。 二.评定结果的区别:

测量不确定度是无符号的参数,用标准差或标准差的倍数或置信区间的半宽表示,由人们根据实验、资料、经验等信息进行评定,可以通过A,B两类评定方法定量确定;测量误差为有正号或负号的量值,其值为测量结果减去被测量的真值,由于真值未知,往往不能准确得到,当用约定真值代替真值时,只可得到其估计值。 三.影响因素的区别: 测量不确定度由人们经过分析和评定得到,因而与人们对被测量、影响量及测量过程的认识有关; 测量误差是客观存在的,不受外界因素的影响,不以人的认识程度而改变;因此,在进行不确定度分析时,应充分考虑各种影响因素,并对不确定度的评定加以验证。 否则由于分析估计不足,可能在测量结果非常接近真值(即误差很小)的情况下评定得到的不确定度却较大,也可能在测量误差实际上较大的情况下,给出的不确定度却偏小。 四.按性质区分上的区别: 测量不确定度分量评定时一般不必区分其性质,若需要区分时应表述为: “由随机效应引入的不确定度分量”和“由系统效应引入的不确定度分量”; 测量误差按性质可分为随机误差和系统误差两类,按定义随机误差和系统误差都是无穷多次测量情况下的理想概念。 五.对测量结果xx的区别: “不确定度”一词本身隐含为一种可估计的值,它不是指具体的、确切的误差值,虽可估计,但却不能用以修正量值,只可在已修正测量结果的不确定度中考虑修正不完善而引入的不确定度; 而系统误差的估计值如果已知则可以对测量结果进行修正,得到已修正的测量结果。

误差精度与不确定度有什么关系

误差、精度与不确定度有什么关系? 一、误差的基本概念: 1.误差的定义: 误差=测得值-真值; 因此,误差是一个值,数学上就是坐标轴上的一个点,是具有正负号的一个数值。 2.误差的表示方法: 2.1 绝对误差: 绝对误差=测量值-真值(约定真值) 在检定工作中,常用高一等级准确度的标准作为真值而获得绝对误差。 如:用一等活塞压力计校准二等活塞压力计,一等活塞压力计示值为100.5N/cm2,二等活塞压力计示值为100.2N/cm2, 则二等活塞压力计的测量误差为-0.3N/cm2。 2.2 相对误差: 相对误差=绝对误差/真值X100% 相对误差没有单位,但有正负。 如:用一等标准水银温度计校准二等标准水银温度计,一等标准水银温度计测得20.2℃,二等标准水银温度计测得20.3℃,则二等标准水银温度计的相对误差为0.5%。 2.3 引用误差: 引用误差=示值误差/测量范围上限(或指定值)X100% 引用误差是一种简化和实用方便的仪器仪表示值的相对误差。 如测量范围上限为3000N的工作测力计,在校准示值2400N处的示值为2392.8N,则其引用误差为-0.3%。 3.误差的分类: 3.1 系统误差:在重复性条件下,对同一被测量进行无限多次测量所得结果的平均值与被测量的真值之差。 3.2 随机误差:测量结果与在重复性条件下,对同一被测量进行无限多次测量所得结果的平均值之差。 3.3 粗大误差:超出在规定条件下预期的误差。 二、精度:

1.精度细分为: 准确度:系统误差对测量结果的影响。 精密度:随机误差对测量结果的影响。 精确度:系统误差和随机误差综合后对测量结果的影响。 精度是误差理论中的说法,与测量不确定度是不同的概念,在误差理论中,精度定量的特征可用目前的测量不确定度(对测量结果而言)和极限误差(对测量仪器仪表)来表示。对测量而言,精密度高的准确度不一定高,准确度高的精密度不一定高,但精确度高的准确度与精密度都高,精度是精确度的简称。目前,不提倡精度的说法。 三、测量不确定度: 1.定义:表征合理地赋予被测量之值地分散性,与测量结果相联系地参数。 (1)此参数可以是诸如标准差或其倍数,或说明了置信水准的区间的半宽度。 (2)测量不确定度由多个分量组成。其中一些分量可用测量列结果的统计分布估算,并用实验标准差表征。另一些分量则可用基于经验或其他信息的假定概率分布估算,也可用标准偏差表征。 (3)测量结果应理解为被测量之值的最佳估计,而所有的不确定度分量均贡献给了分散性,包括那些由系统效应引起的(如,与修正值和参考测量标准有关的)分量。 由此可以看出,测量不确定度与误差,精度在定义上是不同的。因此,其概念上的差异也造成评价方法上的不同。 四、测量误差和测量不确定度的主要区别 1.定义上的区别:误差表示数轴上的一个点,不确定度表示数轴上的一个区间; 2.评价方法上的区别:误差按系统误差与随机误差评价,不确定度按A类B类评价; 3.概念上的区别:系统误差与随机误差是理想化的概念,不确定度只是使用估计值; 4.表示方法的区别:误差不能以±的形式出现,不确定度只能以±的形式出现; 5.合成方法的区别:误差以代数相加的方法合成,不确定度以方和根的方法合成; 6.测量结果的区别:误差可以直接修正测量结果,不确定度不能修正测量结果;误差按其定义,只和真值有关,不确定度和影响测量的因素有关; 7.得到方法的区别:误差是通过测量得到的,不确定度是通过评定得到的; 8.操作方法的区别:系统误差与随机误差难于操作,不确定评定易于操作; 误差与测量不确定度是相互关联的,就是说,测量误差也包含不确定度,反之,评

实验1.1_测量误差与不确定度(20130325修订)

预习操作记录实验报告总评成绩 《大学物理实验(I)》课程实验报告 学院: 专业: 年级: 实验人姓名(学号): 参加人姓名(学号): 日期: 年 月 日 星期 上午[ ] 下午[ ] 晚上[ ] 室温: 相对湿度: 实验1.1 测量误差与不确定度 [实验前思考题] 1.列举测量的几种类型? 2.误差的分类方法有几种? 3.简述直接测量量和间接测量量的平均值及其实验标准差的计算方法,以本实验中实验桌面积的测量为例加以说明。

4.测量仪器导致的不确定度如何确定?在假设自由度为无穷大的情况下,直接测量量的扩展不确定度如何计算?请写出计算步骤。 (若不够写,请自行加页)

[ 实验目的 ] 1.学习游标卡尺、螺旋测微计、读数显微镜、电子天平的使用方法。 2.学习长度、重量、密度等基本物理量的测量方法。 3.学习测量误差和不确定度的概念和计算方法。 [ 仪器用具 ] 编号 仪器名称 数量 主要参数(型号,测量范围,测量精度) 1 游标卡尺 1 2 螺旋测微计 1 3 读数显微镜 1 4 钢尺 1 5 钢卷尺 1 6 电子密度天平 1 7 量杯 1 8 待测薄板 1 9 待测金属丝 1 10 待测金属杯 1 [ 原理概述 ] 1.机械式游标卡尺 图1.1. 1 游标卡尺结构 查阅教材和说明书,写出游标卡尺各部分的名称: A. C . E . G . B. D . F . H .

图1.1. 2 游标卡尺读数 假设游标卡尺的单位为cm ,箭头所指的刻线对齐,则读数为: cm . 2. 机械式螺旋测微计 图1.1. 3 螺旋测微计结构 查阅教材和说明书,写出螺旋测微计各部分的名称: A. C . E . G . I . B. D . F . H . 图1.1. 4 螺旋测微计读数 假设螺旋测微计的单位为mm ,按左图,读数为: mm . 注意:(1)转动微分筒之前需逆时针扳动锁把,使微分筒可自由转动。(2)为保证测量时测杆与被测物表面的接触力恒定,测杆上安装有棘轮装置,使用时应通过旋转棘轮使测杆与工件接触,直至棘轮发出“咔咔”的声音。这点对测量橡胶等较软的物体特别重要,同时还可起到保护螺纹的作用。(3)使用螺旋测微计之前需校准零刻度。(4)使用完毕,需使对杆和测杆离开一段距离,避免存放过程中因热胀冷缩损坏螺纹。 3.读数显微镜测量原理

误差、精度、不确定度

一、误差的基本概念: 1.误差的定义: 误差=测得值-真值; 因此,误差是一个值,数学上就是坐标轴上的一个点,是具有正负号的一个数值。 2.误差的表示方法: 2.1 绝对误差: 绝对误差=测量值-真值(约定真值) 在检定工作中,常用高一等级准确度的标准作为真值而获得绝对误差。 如:用一等活塞压力计校准二等活塞压力计,一等活塞压力计示值为100.5N/cm2,二等活塞压力计示值为100.2N/cm2, 则二等活塞压力计的测量误差为-0.3N/cm2。 2.2 相对误差: 相对误差=绝对误差/真值X100% 相对误差没有单位,但有正负。 如:用一等标准水银温度计校准二等标准水银温度计,一等标准水银温度计测得20.2℃,二等标准水银温度计测得20.3℃,则二等标准水银温度计的相对误差为0.5%。 2.3 引用误差: 引用误差=示值误差/测量范围上限(或指定值)X100% 引用误差是一种简化和实用方便的仪器仪表示值的相对误差。 如测量范围上限为3000N的工作测力计,在校准示值2400N处的示值为2392.8N,则其引用误差为-0.3%。 3.误差的分类: 3.1 系统误差:在重复性条件下,对同一被测量进行无限多次测量所得结果的平均值与被测量的真值之差。 3.2 随机误差:测量结果与在重复性条件下,对同一被测量进行无限多次测量所得结果的平均值之差。 3.3 粗大误差:超出在规定条件下预期的误差。 二、精度: 1.精度细分为:准确度:系统误差对测量结果的影响。精密度:随机误差对测量结果的影响。精确度:系统误差和随机误差综合后对测量结果的影响。精度是误差理论中的说法,与测量不确定度是不同的概念,在误差理论中,精度定量的特征可用目前的测量不确定度(对测量结果而言)和极限误差(对测量仪器仪表)来表示。对测量而言,精密度高的准确度不一定高,准确度高的精密度不一定高,但精确度高的准确度与精密度都高,精度是精确度的简称。目前,不提倡精度的说法。 三、测量不确定度: 1.定义:表征合理地赋予被测量之值地分散性,与测量结果相联系地参数。 (1)此参数可以是诸如标准差或其倍数,或说明了置信水准的区间的半宽度。 (2)测量不确定度由多个分量组成。其中一些分量可用测量列结果的统计分布估算,并用实验标准差表征。另一些分量则可用基于经验或其他信息的假定概率分布估算,也可用标准偏差表征。 (3)测量结果应理解为被测量之值的最佳估计,而所有的不确定度分量均贡献给了分散性,包括那些由系统效应引起的(如,与修正值和参考测量标准有关的)分量。 由此可以看出,测量不确定度与误差,精度在定义上是不同的。因此,其概念上的差异也造成评价方法上的不同。

误差理论与精度分析

误差理论与精度分析 预修课程:概率论与数理统计、应用光学、仪器零件 教学目的和要求: 本科程为机电类、仪器仪表类及测试计量技术等专业研究生的专业课。本科程的主要内容共分两部分,第一部分介绍了误差理论与数据处理的基本知识,第二部分给出了精度的基本概念、设计方法及光、机、电等总体精度分析。 通过对本课程的学习,不仅使学生对仪器的精度具有分析和计算的能力,指导仪器总体设计,而且也使学生掌握了科学实验中数据处理的方法。 内容提要: 第一章误差和精度的基本概念 误差的定义及表示法,误差来源,分类及精度的含义。 第二章随机误差 随机误差的特性及等精度、不等精度测量中随机误差的估计。 第三章系统误差 系统误差的分类、发现及减小消除方法。 第四章粗大误差 粗大误差产生原因,粗大误差判别准则。 第五章函数误差及误差合成 函数随机误差和系统误差计算、误差合成。 第六章测量不确定度评定 测量不确定度基本概念、标准不确定度的评定、测量不确定度的合成、误差结果的表示。 第七章最小二乘法 最小二乘原理、线性参数最小二乘估计 第八章仪器精度基本概念 仪器参数及特性、影响仪器精度主要因素、仪器精度设计基本原则第九章仪器精度特性 仪器精度评定方法、仪器动态精度、仪器精度设计

第十章精密机构精度 轴系精度、导轨精度、齿轮机构精度 第十一章光学电气测量系统精度 测量仪器光学系统对准精度、测量仪器电器系统精度第十二章仪器总体精度分析 仪器总体精度分析方法、提高仪器精度的方法 教材: 《误差理论与精度分析》毛英泰国防工业出版社1982 主要参考书: 1.《误差理论与数据处理》费业泰机械工业出版社2004 2.《仪器精度设计》郑文学兵器工业出版社1992 撰写人:王金波长春理工大学2006年7月

不确定度与误差

误差与不确定度在定义上的区别: 误差定义是测量值与真值之差,是一个确定值,但真值是一个理想的概念,真值的传统定义为:当某量能被完善地确定并能而且已经排除了所有测量上的期限时,通过测量所得到的量值。真值虽然客观存在,但通过测量却得不出,(因为测量过程中总会有不完善之处,因此一般情况下不能计算误差,只有少数情况下,可以用准确度足够高的实际值来作为量的约定真值,即对明确的量赋予的值,有时叫最佳估计值、约定值或参考值,这时才能计算误差。)误差也就无法知道。而误差加前缀的名词如标准误差,极限误差等其值是可以估算的,但它们表示的是测量结果的不确定性,与误差定义并不一致。测量不确定度是测量结果带有的一个参数,用以表征合理赋予被测量值的分散性,它是被测量真值在某一个量值范围内的一个评定。显然,不确定度表述的是可观测量——测量结果及其变化,而误差表述的是不可知量——真值与误差,所以,从定义上看不确定度比误差科学合理。 误差理论与不确定度原理在分类上的区别 以往计算误差时,首先要分清该项误差属于随机误差还是系统误差。随机误差是在同一量的多次测量中以不可预知的方式变化测量误差分量。电表轴承的摩擦力变动、螺旋测微计测力在一定范围内随机变化、操作读数时在一定范围内变动的视差影响、数字仪表末位取整数时的随机舍入过程等,都会产生一定的随机误差分量。VIM93中随机误差的定义为:测量结果与在重复性条件下,对同一被测量进行无限多次测量所得结果的平均值之差。(重复性条件包括:相同的测量程序;相同的观测者;在相同的条件下使用相同的测量仪器;相同地点;在短时间内重复测量)。随机误差分量是测量误差的一部分,其大小和符号虽然不知

如何区别压力测量误差、准确度和不确定度

如何区别压力测量误差、准确度和不确定度! 一、引言 在检测工作中,测量误差、测量准确度、测量不确定度是经常运用的术语,直接关系到测量结果的可靠程度和量值的准确一致,在日常工作中很容易把三者混淆或误用,本文将从三者的定义和区别加以比较,以便在工作中容易区分。 二、三者之间的定义 在测量时,测量结果与实际值之间的差值叫误差。真实值或称真值是客观存在的,是在一定时间及空间条件下体现事物的真实数值,但很难确切表达。量的真值是一个理想的概念,为了使用上的需要,在实际测量中把更高等级精度的标准所测得的量值称为实际值,常用实际值代替真值。测得值是测量所得的结果。这两者之间总是或多或少存在一定的差异,就是测量误差。 测量准确度是指“测量结果与被测量真值之间的一致程度,关于准确度是一个定性概念的问题,可以从以下三个方面理解。首先,被测量真值其实就是被测量本身,而与给定的特定量定义一致的所谓真值,仅是一个理想化的难以操作的概念。因此准确度被定义为测量结果与被测量真值之间的接近程度。是一个定性的概念,不能作为一个量进行运算的。 测量不确定度是与测量结果关联的一个参数,用于表征合理赋予被测量的值的分散

性。它可以用于“不确定度”方式,也可以是一个标准偏差或给定置信度区间的半宽度。 三、三者的区别 1)三者的影响因素不同 测量误差是客观存在的,不受外界因素的影响,不以人的认识程度而改变,任何测量都有其不完善性,所以误差是随时都会产生的;测量不确定度由人们经过分析和评定得到的,因而与人们对被测量,影响量和测量过程的认识有关;测量准确度是测量过程中所用仪器精度的高低,等级的高低有关,精度等级越高,其准确度越好,所测结果越接近真实值。 2)三者评定的目的不同 测量误差为测量结果与真值之差,为的是表明测量结果偏离真值的程度,是一个定量的概念,具体偏离多少;测量准确度是测量结果与被测量真值之间的一致程度,是一个定性的概念,表明所测结果是否在标准要求范围内;测量不确定度是对影响产生误差的分散性的估计,为的是表明被测量值的分散性,表明被测量的结果在某个区间内。 3)三者评定的结果不同 测量误差是有正负符号的量值,是每次测量所得到的具体量值,只有通过测量才能得到,在数轴上是一个点;测量准确度是针对测量设备的精度,不是一个量,不可能作为一个量来进行运算,表明对测量结果的准确性。

浅谈误差与不确定度

浅谈误差与不确定度 误差理论及不确定度表述体系是以概率论与数理统计为数学基础,以计量测试工作为实践基础的一个理论性、方法性的体系,这一体系的方法要用于所有科学技术和工程的测量、检验和控制领域,并涉及质量控制、工业管理、商品检测、环境监控、医卫检验、标准规范和国际合作交流贸易等许多方面。 实验标准偏差是分析误差的基本手段,也是不确定度理论的基础,从本质上说,不确定度理论是在误差理论基础上发展起来的,其基本分析和计算方法是共通的。但测量不确定度与测量误差在概念上有许多差异。 1. 误差与不确定度在定义上的区别 误差定义是测量值与真值之差,是一个确定值,但真值是一个理想的概念,真值的传统定义为:当某量能被完善地确定并能而且已经排除了所有测量上的期限时,通过测量所得到的量值。真值虽然客观存在,但通过测量却得不出,(因为测量过程中总会有不完善之处,因此一般情况下不能计算误差,只有少数情况下,可以用准确度足够高的实际值来作为量的约定真值,即对明确的量赋予的值,有时叫最佳估计值、约定值或参考值,这时才能计算误差。)误差也就无法知道。而误差加前缀的名词如标准误差,极限误差等其值是可以估算的,但它们表示的是测量结果的不确定性,与误差定义并不一致。测量不确定度是测量结果带有的一个参数,用以表征合理赋予被测量值的分散性,它是被测量真值在某一个量值范围内的一个评定。显然,不确定度表述的是可观测量——测量结果及其变化,而误差表述的是不可知量——真值与误差,所以,从定义上看不确定度比误差科学合理。 2. 误差理论与不确定度原理在分类上的区别 以往计算误差时,首先要分清该项误差属于随机误差还是系统误差。随机误差是在同一量的多次测量中以不可预知的方式变化测量误差分量。电表轴承的摩擦力变动、螺旋测微计测力在一定范围内随机变化、操作读数时在一定范围内变动的视差影响、数字仪表末位取整数时的随机舍入过程等,都会产生一定的随机误差分量。VIM93中随机误差的定义为:测量结果与在重复性条件下,对同一被测量进行无限多次测量所得结果的平均值之差。(重复性条件包括:相同的测量程序;相同的观测者;在相同的条件下使用相同的测量仪器;相同地点;在短时间内重复测量)。随机误差分量是测量误差的一部分,其大小和符号虽然不知道,但在同一量的多次测量中,它们的分布常常满足一定的统计规律。系统误差:在同一被测量的多次测量过程中,保持恒定或以可预知方式变化的测量误差分量称为系统误差,简称系差。系统误差包括已定系统误差和未定系统误差。已定系统误差是指符号和绝对值已经确定的误差分量。测量中应尽量消除已定系统误差,或对测量结果进行修正,得到已修正结果。修正公式为:已修正测量结果=测得值(或其平均值)—已定系统误差。未定系统误差是指符号或绝对值未经确定的系统分量。通过方案选择、参数设计、计量器具校准、环境条件控制、计算方法改进等环节来减小未定系差的限值。因此随机误差是符合概率分布的,而系统误差经过校正后,其剩余的系统误差按原误差理论一般认为不具有概率分布。因此,实验教材在数据处理时只能将随机误差和系统误差分开计算。但在实际测量时,有相当多的情形很难区分误差的性质是“随机”的还是“系统”的,而且有的误差还具有“随机”和“系统”两重性。例如用千分尺测量钢丝直径,测的是不同位置的直径,测量误差应属系统误差,但多次测量数据又具有统计性质,说明测量又有随机误差。又如磁电式电表,其准确度等级误差是系统误差和随机误差的综合,一般无法将它们分开计算。而不确定度取消了“随机”和“系统”的分类方法,它把不确定度评定分为由观测列的统计分析评定的不确定度(A类不确定度)和由非统计分析评定的不确定度(B类不确定度)。这样的分类方法可使初、中级实验人员在处理实验数据时免除由于难以分清误差的“随机”和“系统”性而带来的困惑,使实验结果的不确

残差与误差的区别

残差与误差的区别 误差与残差,这两个概念在某程度上具有很大的相似性,都是衡量不确定性的指标,可是两者又存在区别。 误差与测量有关,误差大小可以衡量测量的准确性,误差越大则表示测量越不准确。误差分为两类:系统误差与随机误差。其中,系统误差与测量方案有关,通过改进测量方案可以避免系统误差。随机误差与观测者,测量工具,被观测物体的性质有关,只能尽量减小,却不能避免。 残差――与预测有关,残差大小可以衡量预测的准确性。残差越大表示预测越不准确。残差与数据本身的分布特性,回归方程的选择有关。 随机误差项Ut反映除自变量外其他各种微小因素对因变量的影响。它是Y t 与未知的总体回归线之间的纵向距离,是不可直接观测的。 残差e t 是Yt 与按照回归方程计算的Yt 的差额,它是Yt 与样本回归线之间的纵向距离,当根据样本观测值拟合出样本回归线之后,可以计算et 的具体数值。利用残差可以对随机误差项的方差进行估计。 随机误差是方程假设的,而残差是原值与拟合值的差。实践中人

们经常用残差去估计这个随机误差项。 意义不一样哈,残差一般只的是在计算近似值过程中某一步与真实值得差值,而误差指的的是最终近似值与真实值得差值 残差就是回归所得的估计值与真值(实际值)之间的误差;修正的R square就是剔出了数据量影响后的R2 3.4.3 测量不确定度评定方法 参考公式及其详解参考:https://www.360docs.net/doc/3216286408.html,/sfzx/sy3.doc ISO发布的“测量不确定度表示指南”是测量数据处理和测量结果不确定度表达的规范,由于在评定不确定度之前,要求测得值为最佳值,故必须作系统误差的修正和粗大误差(异常值)的剔除。最终评定出来的测量不确定度是测量结果中无法修正的部分。 测量不确定度评定总的过程如图3-3所示的流程。具体的方法还要有各个环节的计算。 图3-3 测量不确定度评定流程图 1、标准不确定度的A类评定 此法是通过对等精度多次重复测量所得数据进行统计分析评定的,正如前面介绍的随机误差的处理过程,标准不确定度u(xi)=s(xi),是用单次测量结果的标准不确定度算出: (3-20) 其单次测量结果的标准不确定度可用贝塞尔法求得,即: = (3-21) 其实,单次测量结果的标准不确定度还有如下求法: ①最大残差法:= ,系数如表3-2所示。 表3-2 最大残差法系数 n 2 3 4 5 6 7 8 9 10 15 20 1.77 1.02 0.83 0.74 0.68 0.64 0.61 0.59 0.57 0.51 0.48 ②极差法:居于服从正态分布的测量数据,其中,最大值与最小值之差称为极差。= ,系数如表3-3所示。 表3-3 极差法系数 n 2 3 4 5 6 7 8 9 10 15 20 1.13 1.69 2.06 2.33 2.53 2.70 2.85 2.97 3.08 3.47 3.74

相关文档
最新文档