400A动铁心分磁式弧焊变压器课程设计要点

400A动铁心分磁式弧焊变压器课程设计要点
400A动铁心分磁式弧焊变压器课程设计要点

目录

绪论 ................................................................................................. 错误!未定义书签。第一章动铁心分磁式弧焊变压器简介 (4)

1.1 结构和原理 (4)

1.2 用途及特点 (5)

1.3 安全使用规则 (6)

1.4 故障与处理方法 (7)

1.5 注意事项 (7)

第二章动铁分磁式弧焊变压器设计 (9)

2.1 原始数据 (9)

2.2 初步参数计算 (9)

2.3 初步决定铁心主要尺寸 (10)

2.4 计算初、次级绕组尺寸 (12)

2.5 确定变压器尺寸 (14)

2.6 核算焊接电流 (15)

2.7 验算变压器经济指标 .................................................... 错误!未定义书签。结束语 ............................................................................................. 错误!未定义书签。参考文献 . (20)

绪论

1、弧焊电源在电弧焊中的作用

不同材料、不同结构的工件,需要采用不同的电弧焊工艺方法,而不同的电弧焊工艺方法则需用不同的电弧焊机。例如:操作方便、应用最为广泛的焊条电弧焊,需要由对电弧供电的电源装置、和焊钳组成的手弧焊机;锅炉、化工、造船等工业广为使用的埋弧焊,需要由电源装置和、控制箱和焊车等组成的埋弧焊机;适用于焊接化学性活泼金属的气体保护电弧焊,需要由电源装置、控制箱、焊车(自动焊)或送丝机构(半自动焊)、焊枪、气路和水路系统等组成的气体保护电弧焊;适用于焊接高熔点金属的等离子弧焊,则需要由电源装置、控制系统、焊枪或焊车(自动焊)、气路和水路系统等组成的等离子弧焊机。

由上述可知,各种电弧焊方法所需的供电装置即弧焊电源是电弧焊机的重要组成部分,是对焊接电弧供给电能的装置,它应满足电弧焊所要求的电气特性,这正是本课程将要系统讲述的内容。与弧焊电源配套的其它装置和设备部分,将在《焊接方法和设备》课程中讲述。

显然,弧焊电源电气性能的优劣,在很大程度上决定了电弧焊机焊接过程的稳定性。没有先进的弧焊电源,要实现先进的焊接工艺和焊接过程自动化也是难以办到的。因此,应该对弧焊电源的基本理论、结构特点和电气性能进行深入的研究,真正了解和正确使用弧焊电源,进而研制出新型的弧焊电源,使焊接质量

和生产效率得到进一步提高。[][]5数据来源参考文献

2、常见弧焊电源的特点和用途

1、交流弧焊电源

交流弧焊电源包括工频交流弧焊电源(弧焊变压器)、矩形波交流弧焊电源。下面分述其特及用途。

工频交流弧焊电源

即是弧焊变压器,它把电网的交流电变成适合于电弧焊的低电压交流电,它由变压器、电抗器等组成。弧焊变压器具有结构简单、易造易修、成本低、磁偏吹小、空载损耗小、噪声小等优点。但其输出电流波形为正弦波,因此,电弧稳定性较差,功率因数低,一般用于焊条电弧焊、埋弧焊和钨极惰性气体保护电弧焊等方法。

矩形波交流弧焊电源

它是利用半导体控制技术来获得矩形交流电流的。由于输出电流过零点时间短,电弧稳定性好,正负半波通电时间和电流比值可以自由调节,此特点适合于铝及铝合金钨极氩弧焊。

2、直流弧焊电源

直流弧焊发电机

一般由特种直流发电机、调节装置和指示装置等组成。按驱动动力的不同,直流弧焊发电机可分为两种:以电动机驱动的并与发电机组成一体的称为直流弧焊电动发电机;以柴(汽)油驱动并与发电机组成一体的,称为直流弧焊柴(汽)油发电机。它与弧焊整流器相比,制造复杂,噪声及空载损耗大,效率低,价格高;但其抗过载能力强,输出脉动小,受电网电压波动的影响小,一般用于碱性焊条电弧焊。

弧焊整流器

是由变压器、整流器及为获得所需外特性的调节装置、指示装置等组成。它把电网交流电经降压整流后获得直流电。与直流弧焊发电机相比,它具有制造方便、价格低、空载损小、噪声小等优点。而且大多数弧焊整流器可以远距离调节焊接工艺参数,能自动补偿电网电压波动对输出电压和电流的影响。它可作为各种弧焊方法的电源。

3、逆变式弧焊电源

它把单相(或三相)交流电经整流后,由逆变器转变为几百至几万赫兹的中频交流电,降压后输出交流或直流电。整个过程由电子电路控制,使电源获得符合要求的外特性和动特性。它具有高效节能、重量轻、体积小、功率因数高等优点,可应用于各种弧焊方法 是一种很有前途的普及型弧焊电源。

顺便指出,逆变式弧焊电源既可以输出交流电,又可以输出直流电。但目前常用后种形式。因此又可把它称为逆变式弧焊整流器。

4、脉冲弧焊电源

焊接电流以低频调制脉冲方式馈送,一般由普通的弧焊电源与脉冲发生电路组成。它具有效率高、输入线能量较小、线能量调节范围宽等优点。它主要用于气体保护电弧焊和等离子弧焊。[][]2数据来源参考文献。

3、弧焊电源的现状及发展方向

焊接技术的发展是与近代工业和科学技术的发展紧密相联的。弧焊电源又是弧焊技术发展水平的主要标志,它的发展与弧焊技术的发展也是互相促进、密切相关的。

1、早期的弧焊电源

1802年俄国学者发现了电弧放电现象。并指出利用电弧热熔化金属的可能性。但是电弧真正应用于工业生产,则是在1892年出现了金属极电弧焊接方法以后。当时电力工业发展较快,弧焊电源本身也有了很大的改进,到20世纪20年代除直流弧焊发电机外,已开始应用结构简单、成本低廉的弧焊变压器。

2、焊接方法的发展

随着工业生产的进一步发展,不但需要焊接的产品数增加了,而且许多产品对焊接质量要求也提高了,加之焊接冶金科学的发展,20世纪30年代在薄药皮焊条的基础上研制成功了焊接性能优良的厚药皮焊条,更显示了焊接方法的优越性。这个时期由于机器制造、电机制造工业及电力拖动、自动控制等新科学技术的发展,也为实现焊接过程机械化、自动化提供了物质条件和技术条件,于是在30年代后期,研制成功了自动埋弧焊。20世纪40年代初,由于航空、核能等技术的发展,迫切需要轻金属或合金,如铝、镁、钛、锆及其合金等。这些材料的

化学性能活泼,产品对焊接质量的要求又很高,氩弧焊就是为了满足上述要求而发展起来的新的焊接方法。50年代又相继出现了CO2焊等各种气体保护电弧焊,以及随后出现的焊接高熔点金属材料的等离子弧焊。

3、弧焊电源的发展

各种焊接方法的问世,促进了弧焊电源的飞速发展,20世纪40年代开始出现了用硒片制成的弧焊整流器。到了60年代由于大容量的硅整流器件、晶闸管的问世,为发展新的弧焊整流器开辟了道路。70年代以来又相继成功研制了脉冲弧焊电源、逆变式弧焊电源、矩形波交流弧焊电源。

4、弧焊电源的发展方向

弧焊电源的飞速发展,不仅表现在弧焊电源种类的大量增加,还表现在广泛应用电子技术、控制技术、电子计算机技术等方面的理论知识和最新成就,来不断提高弧焊电源的质量,改善其电气性能。例如,采用单旋钮调节,即用一个旋钮就可以对电弧电压、焊接电流和短路电流上升速度等同时进行调节并获得最佳配合;通过电子控制电路获得多种形状的外特性,以适应各种弧焊工艺的需要;提供多种电压、电流波形,以满足某些弧焊工艺的特殊需要;采用电压和温度补偿控制;设置电流递增和电流衰减环节,以防止引弧冲击和提高填满弧坑的质量;采用计算机控制,具有记忆、预置焊接参数和在焊接过程中自动变换焊接参数等功能,使弧焊电源智能化。[][]2数据来源参考文献。

第一章 动铁心分磁式弧焊变压器简介

1.1、结构和原理

1、结构特点

它是一种增强漏磁式弧焊变压器,靠增强本身漏磁获得下降外特性,其结构如图1.1所示。铁心Ⅱ可以移动,进出于铁心I 的窗口(在图中是垂直于纸面移动)以调节漏磁,故称为动铁心式。

图1.1 动铁心式弧焊变压器结构

2、工作原理

(1) 空载 变压器空载电压是由 穿过W2感应建立的,所以

1-1 当动铁心移出变压器铁心窗口时,1fl Φ磁路的磁阻增大,使1fl Φ减小、 KM 增大,于是0U 增大;反之,则0U 减小。由于动铁心位置不同,0U 有几伏的差别。

(2)负载 其等效电路如图1.2b 所示。

其外特性方程式是: 或

即靠变压器本身具有的纵漏抗获得下降外特性。

(3)短路 这时wd f I I U ==,0f ,从外特性方程式可得

ZL

wd X U I 0=

,即靠ZL X 限制短路电流。

0φ20M 11

N U K U N =f 0f ZL

U U jI X =-222f 0f ZL

U U I X =-

(3)短路 这时wd f I I U ==,0f ,从外特性方程式,可得 ZL

wd X U I 0=

,即靠ZL X 限制短路电流。

图1.2 负载时磁通分布及其 等效电路图

a )负载时磁通分布

b )等效电路

3、规范调节

根据 ZL f f X U U I 220-=, 211

20U K N N U M =, 可知通过改变ZL X 可调节f I 。

图1.3 梯形动铁心及其静铁心的配合

1.2、用途及特点

BX1型动铁心分磁式交流弧焊机是以供给单人手工操作进行交流焊接电源 电源电压220V/380V 它可采用直径为:

(BX1-400)Φ2.5-Φ7 (BX1-300)Φ2.0-Φ6 (BX1-250)Φ1.6-Φ5

包皮涂药焊条进行各种低碳钢,低合金钢件的焊接,BX1型交流弧焊机是一具有动铁芯分磁式弧焊机。

该焊机具有体积小,重量轻,既较高的经济指标具有适用灵活,调节方便,噪音小的良好适用性能,更突出的是焊机静铁芯窗口和动铁芯均采用梯型结构,这结构型式使电流调节比较均匀,既线性度好,动铁芯的振动得到良好的改善,从而使电弧燃烧稳定,飞溅小,电弧弹性好熔深大.焊接流畅等优良的焊接性能。

该焊机不仅可实现酸性焊条(如J422型)对低碳钢件的焊接,而且还可实现交直两用碱性焊条(如J506型)对低合金钢制件的焊接。

该焊机静铁芯窗口和动铁芯均采用梯形结构。这结构型式使电流调节比较均匀,既线性度好,动铁芯的振动得到良好改善,从而使电弧稳定性特别是小电流时电弧稳定性获得显著提高。这型式使外特性较为陡降,提高了电弧弹性。 本焊机具有较高的空载电压,使起弧变得容易。

本焊机将导轨从静铁芯内移出,在有限的窗口空间扩大了动铁芯截面,消除了动铁芯饱和。获得畸变的小正弦电流波形,从而得到优良焊接性能。

本焊机采用风扇强迫冷却,这不仅可大大提高经济指标,而且也可显著提高焊接性能。[][]6数据来源参考文献

1.3、安全使用规则

1.在弧焊机开始使用之前必须注意:

(1)焊机允许工作条件

A.环境温度在-30℃至40℃;相对湿度85%(+25℃)。

B.海拔高度不超过1000米。

C.使用场所应无严重影响焊机绝缘性能和引起腐蚀的气体、蒸气、化学性沉积、尘垢、霉菌及其它爆炸腐蚀性介质。

D.使用场所无严重振动和颠簸。

(2)仔细地检查其接线螺丝及其它结构是否有损坏,并用干燥空气吹去灰尘及泥土。

(3)检查线圈间线圈于静铁芯间的绝缘电阻应不低于0.5兆欧,如果绝缘电阻低于上述数值,焊机必须给予干燥处理。可将焊机在烘箱中烘燥(烘箱温度不超过100℃)或将焊机置于干燥处。靠近热的烘炉场所。

(4)接好初级电源,接线及次级焊接电缆。

(5)弧焊机必须良好接地,在弧焊机箱壳后板的下方有接地螺钉,并标有接地名牌邻近的箱皮固定箱丝既为接地螺钉。

(6)弧焊机应存放于干燥处

BX1-250、300、500型交流弧焊机电气接线示意图

(7)电源接线时请看焊机后面电压标志接线。

2.使用时必须注意下列情况:

(1)首先检查风扇的运转是否正常,严禁在不通风的情况下使用焊机,以免损害焊机。

(2)电源电压需改变时,相应改变换线片接法,将螺丝拧紧,换线板在焊机内装置。打开箱盖既能看到。

(3)焊机工作应按照相应的负载持续率工作,不允许过载使用。

(4)焊机在大电流工作状态下应尽可能避免较长时间的短路现象。

(5)所有接线应可靠,螺丝要拧紧,以保证良好的接触。

(6)移动焊机时不得用焊机电缆拖动,使用吊车吊起时必须垂直吊起,并在两边吊绳上支以撑棒免使焊机箱架变形。

(7)工作中不允许用铁板搭接等来代替连焊件的电缆,否则将因接触不良或压降过大而使电流不稳定影响焊接质量。

(8)焊机安装地点要清洁整齐,防止造成线圈短路。

(9)焊工必须注意不应接触初、次级线路的带电部分。使用期间必须定期的检查焊机,特别是风扇应及时维修、保养、正常情况时一年检修一次,更换黄油。及时发现并解决可能引起事故的潜在因素。[][]6数据来源参考文献

1.4、各种可能故障与处理方法

1.线圈的匝间短路:

现象是线圈极度发热且发出强烈翁翁响和保险丝熔断,甚至烧坏部分线圈。为修理这种故障。必须拆开机壳隔开好短路处。

2.接线处接触不良:

现象为接线处发热,可拆开接线端子,清洁接触面。重新拧紧接线。

3.铁芯螺栓的绝缘破坏,使铁芯及铁芯螺栓过热,必须更换螺栓的绝缘。

4.铁芯响声大

由于铁芯夹紧螺栓松弛,造成箱壁及铁芯发出强烈噪音,应及时检查旋紧螺母。

5.线圈与静铁芯间绝缘的破坏。

检查破坏部分并用绝缘隔开破坏处。

6.动铁芯振动较大或摇动螺杆吃力时可调整滑轨连板和支板面上的调节螺

丝。使其适宜为止。[][]6数据来源参考文献

1.5、弧焊时注意事项

1.禁止触及初级次级线圈间带电部分。

2.防止弧光灼伤眼睛及面部和手臂的裸露部分。禁止使用不戴有或使用深度不适宜滤光片的面罩及不戴电焊手套进行操作;在周围有人进行其它作业之时,

焊工应挡板屏障等东西把焊接的工件地点与周围隔开,以免影响别人正常工作。

3.工作时应有防护措施,防止熔化金属的灼伤。

4.工作场地应符合要求,对易燃、易爆物品要妥善安全措施后才能施焊。

1.6、动铁心弧焊变压器的设计要求

动铁心弧焊变压器是依靠增强变压器本身漏磁来获得感抗的,这种变压器除了初次级绕组耦合比较松散,以造成一定的空气漏磁外,主要是依靠动铁心的慈分路作用来增强漏抗。动铁心可相对于静铁心运动,改变磁分路的漏磁面积S 和空气隙大小,从而改变漏磁分路的磁阻,达到调节焊接电流的目的。

这类变压器与一般单相变压器的设计步骤基本相同,所不同的是焊接变压器的输出电流应能在较大范围内调节。焊接电流的大小取决于漏抗的数据。

动铁心弧焊变压器的漏抗,包括动铁心磁分路漏抗和空气漏抗两部分。相应的,就要计算动铁心磁分路磁阻和空气磁阻。

动铁心磁分路磁阻,它又包括空气隙磁阻和动铁心磁阻两部分。由于铁心材料的磁导率大大高于空气的磁导率,所以,动铁心本身的磁阻远小于空气隙的磁阻,可以忽略动铁心磁阻,而以空气隙磁阻来近似代替整个磁分路的磁阻。这样,在公式s

l R μ=m 中,μ为空气的磁导率,l 就等于上下空气隙之和,S 为伸入静铁心的那部分动铁心面积。

空气磁阻,除了动铁心磁分路之外,初、次级绕组相距一段距离,它们之间的耦合比较松散,这部分空间漏磁是不能忽磁阻的计算困难,误差也大。因为空间漏磁不像铁心中那样集中,它分布在一个很大的空间范围内,S 、L 的确切度量几乎是不可能的,只能用近似折合的办法替代。通常把漏磁面积S 折合为一个

底面周长为p l ,高为??

? ??++3211H H δ的圆桶面积,把磁路长度L 定为绕组的径向高b 。这样的折合代替,必然会带来误差,因此,在漏抗的计算式中引入诸如g K 、R K 等修正系数来加以弥补。通过设计—试制—修正设计,反复深化过程,进一

步丰富和改动设计方法,使理论更切合实际。[][]1数据来源参考文献

第二章 动铁心分磁式弧焊变压器设计

2.1、原始数据

原始数据需要根据生产需要进行决定,

额定电流为400A 的动铁心弧焊变压器生产需要的变压器原始数据,如表

2.1所示。[][]1数据来源参考文献 表2.1 400A 的动铁心弧焊变压器原始数据

初级额定电压

()ν3801=N U 额定焊接电流 A I N 4001= 次级额定空载电压 ν720=U 次级额定工作电压 ν322=N U

焊接电流调节范围

A I 400~75h = 相数 1m = 额定频率

50Hz 额定负载持续率 %35=N FS 效率

%5.83=η 功率因数 1=A λ 绝缘等级 B 冷却方式,使用地区 自然冷却,

温带地区

2.2、初步参数计算

1、次级额定输出功率P N

KW I U P N N N 8.121040032312=??==- 2-1

2、功率因数φcos

()??

????+=∑022/9.095.0~9.0cos U I P U N A N λφ 2-2 式中 92.0~9.0——修正系数,此可取0.9;

A λ——交变电弧的功率因数;

∑P ——变压器的全部功率损耗:

0.9——∑P 的约90%为短路损耗:

kw P P P N N 5.28.12835.0/8.12/=-=-=∑η

()??????+=∑022/9.095.0~9.0cos U I P U N A N λφ

()49.07230025009.013295.0~9.0=??

? ??÷?+?=

3、初级输入容量(即初级视在功率)1P )(KVA P P N .33149

.0835.08.12cos 1=?=?=ηφ 2-3 4、变压器的计算容量(即长时容量)C P 1 ()KVA FS P P N C 5.18%353.3111=== 2-4

5、初级额定长时电流(即额定工作电流)N I 1 ()A U P I N N 4.82380

103.313111=?== 2-5 6、初级长时工作电流C I 1 ()A U P I N C C 7.48380

105.183111=?== 2-6 7、次级长时工作电流C I 2 ()A FS I I N N C 236%3540012=== 2-7

2.3、初步决定铁心主要尺寸

1、确定铁心结构形式,选择铁心材料

动铁心分磁式弧焊变压器铁心,一般为单相内铁式。这种形式结构简单,绕组包围铁心,安装和绝缘处理比较容易。

铁心采用矩形截面,以重叠装配法叠接而成。

选择铁心材料时,结合我国具体情况,弧焊变压器一般选用高硅热轧硅钢片D41、D42。

活动铁心与静铁心间的最小气隙0δ对于最大漏抗影响很大。一般0δ为

1-2mm 。活动铁心为梯形时,上下底边之差在14-22mm 。

本设计采用单相心式,梯形铁心,上下底边差值为16mm ,采用D42-0.5mm 热轧硅钢片。

2、计算铁心净截面积e F S C P P B S 1m e 30

~20= 2-8

式中 20~30——系数,根据铁铜用量比的要求选取,系数选取27.5

m B ——按铁心材料选取的最大密度,根据文献一表5-6,m B 取1.4T ()21m e cm 845.184

.15.2730~20===C P P B S 2-9 3、铁心柱宽度a 及叠片厚度b

b a S P ?=e ,一般取()a b 2~1=,计算得cm 7=a ,cm b 12=

铁心毛厚度C K b b /'=,C K 为叠片系数,0.5mm 硅钢片C K 取0.93

cm K b b C 1393.0/12/'===

4、动铁心有效净截面积δS

活动铁心有效净截面积的大小可以从获得最小电流min I 来计算 ???

? ??-=2min 211m 45N U N U B S δ 2-10 式中 m i n 2U ——最小焊接电流所对应的工作电压,本设计要求的最小电流()A I 75min =,则()V I U 2304.020min min 2=+=;

21,N N ——初级和次级绕组匝数,匝匝,2814421==N N 22min 211m 4.5828231443804.14545cm N U N U B S =??

? ??-=???? ??-=δ 则动铁心的叠宽净尺寸:

cm b S a 5.413

4.58'===δδ, 毛尺寸:cm K a a C 8.493

.05.4'===δδ 用厚为1.5mm 的铁板四块来夹紧动铁心,

其尺寸为:mm 545.1448=?+

动铁心形状如图2.1所示 图2.1 动铁心尺寸

2.4、计算初级、次级绕组

1、每伏电压所需匝数0N ()V S B N P /38.084

4.14545e m 0匝=?== 2-11 2、初、次级绕组匝数21N N 、

匝4.14438038.0101=?==N U N N ,取匝1441=N 匝28144380

27211002=?+=?+=N U U U N N ,取匝282=N 3、初、次级绕组导线截面积21S S 、

初级绕组 21111.222

.27.48j mm I S C === 2-12 次级绕组 22221182236j mm I S C ===

2-13 式中 1j ——初级绕组导线许用电流密度()2/mm A ;

2j ——次级绕组导线许用电流密度()2/mm A 。

对于动铁分磁式弧焊变压器,在B 级绝缘和空气自冷情况下,根据文献一表5-10, 初级绕组KVA I C 7.481=,故 1j =1.8-2.6()2/mm A ,取1j =2.2()2/mm A

次级绕组KVA I C 2361=,故2j =1.6-2 ()2/mm A ,取2j =2()2/mm A

根据初级绕组211.22mm S =,查文献一表5-7,可选用21044.2mm ?规格的双玻璃丝包线:次级绕组22118mm S =,可选用28.108.3mm ?规格的双玻璃丝包线三根并联。

实际电流密度:04.29.237.48'',9.23'11121====S I j mm S C ()

2/mm A 94.15.403236'',5.403'22122=?==

?=S I j mm S C ()2/mm A 4、确定初、次级绕组尺寸

初级绕组144匝,分8盘,上下铁心各4盘,每盘18匝,同柱互相串联后,上下铁心上的绕组再串联。所用导线带绝缘尺寸为25.1094.2mm ?,两盘之间用3mm 的绝缘隔板隔开,初级绕组尺寸如图2.2所示。

()mm 5694.2118b 1=?+=,

mm H 513345.101=?+?=

图2.2 初级绕组尺寸

次级绕组28匝,分6盘,上下铁心各三盘,每盘14匝,

用单股8.108.3?mm 的双玻璃丝包线单股绕制。为了避免环流,各盘之间的接线如图2.3所示。次级所用导线带绝缘层的尺寸为mm 3.113.4?,两盘之间用6mm 的绝缘隔板隔开。绕组尺寸如图2.4所示。

()mm b 653.41142=?+=

mm H 462633.112=?+?=

图2.3 次级绕组之间的接线 图2.4 次级绕组尺寸

2.5、确定变压器的尺寸

1、计算铁心下料尺寸及片数

每台叠片数:片2425.011201=+=+=δb n

式中 b ——铁心柱净厚度(mm ):

δ——硅钢片厚度(mm )。

取n=240片,外面用1.5mm 厚钢板夹紧。

心柱 冲片尺寸mm 70275?,冲片数量片4802==n n

轭铁 以8种尺寸进行过渡,其尺寸如下表:

规格mm 片数

70220? 2?30片

70218? 2?30片

70216? 2?30片

70214? 2?30片

70212? 2?30片

70210? 2?30片

70208? 2?30片

70206? 2?30片

动铁 动铁心为梯形形状,尺寸如图2.5所示。

冲片数量:片905

.045===δδa n

图2.5 动铁心的尺寸

2、根据绕组尺寸、静铁心截面、动铁心尺寸,确定变压器总体尺寸如下图2.6

图2.6 变压器的总体尺寸

2.6、核算焊接电流

1、计算焊机最小漏抗min X

Ω??

? ??++=32'211222'220g min H H b N l f K K X p R δμπ 2-14 式中 g K ——结构系数,常取2~5.1;g K 取2

R K ——罗氏修正系数,,96.05.66.41.510b 22112=?++=++=

ππδσH H 36.035.012=+-=σσR K ;

0μ——空气的磁导率,9-0104?=πμ;

p l 2——次级绕组平均匝长;()cm l p 715.641486.07.722=?+++≈

2'2N ——半个变压器的次级绕组有效匝数; Ω=??? ??++?????=-073.036.41.5105.61471104236.02'29

min πππf X Ω==146.0'2min min X X

2、计算最大焊接电流

根据焊机外特性方程式可知

()()A X U U U I N

497146.03227222min 22200gmax =-+=-?+= 2-15

3、计算焊机最大漏抗max X

min max max 'X X X +=

Ω=??????==-03.118.0284.581045022'29022

0max ππδπδN S fu X

式中 δS ——活动铁心有效净面积;

0δ——活动铁心上下气隙之和;

2N ——次级绕组匝数。

Ω=+=+=15.1146.003.1'min max max X X X

4、焊机最小电流gmin I ()A X U U I N 4915.132729.0'22max 2220gmin =-?=-= 2-16

5、计算活动铁心在中间位置时的焊机漏抗Z X

min 'X X X Z Z +=

Ω=?????==-092.098.0282.291045022'29z 022

0ππδμπδN S f X Z

其中 cm 98.08.018.02

6.10z 0=+=+=δδ Ω=+=+=238.0146.0092.0'min X X X Z Z

6、计算活动铁心在中间位置时的焊接电流C I 2 A X U U I Z N C 271238

.032722222202=-=-= 2-18 7、核算计算结果

A I A I N 480%1204971max =>=

A I A I N 100%25491min =<=

动铁心移动距离与焊接电流的线性关系

5.049

6.049

49749271-min max min 2≈≈--=-I I I I C 2.7、验算变压器经济指标

为了验证变压器设计的合理性,还要验算焊机的铁损、铜损、空载电流、效率及功率因数。

1、计算变压器静铁心重量e F G

kg r V G Fe F F 64106.71008410'33e e =???=?=-- 2-19

式中 e F V ——静铁心硅钢片的净体积()3cm ;

e F γ——硅钢片的比重()3/cm g ,热轧硅钢片6.7e =F γ()

3/cm g ,

kg r V G Fe F F 8.5106.7134.5810''33e e =???=?=--

Kg G G G F F F 8.698.564'''e e e =+=+=

2、验算空载电流0I W G F P A U P I F F N F C 1766475.2'e ,46.0380

176e e 1e =?=??====, 2-20 (e F ?为硅钢片比耗损,D42-0.5mm ,当Bm=1.4T 时,查文献一表5-3得: 2.75W/Kg e =?F 。) A U S q n G q G q I N

Fe u 12211δδ++= 2-21 其中 21q q 、——分别为铁心柱、轭铁的磁化容量,查文献一表5-3, ()Kg VA q q /2621==:

21G G 、——分别为铁心柱、轭铁的重量:Kg G Kg G 324621==、 δn ——叠接铁心时,铁心气隙的数目,4=δn ;

δq ——硅钢片接缝处空气隙的磁化容量,查文献一表5-5,

()

2/46.2cm VA q =δ。 A A U S q n G q G q I N Fe u 4.83808446.243226462612211=??+?+?=++=δδ A I I I C

4.8

5.64

6.022220=+=+=μ %10%2.10102.04

.824.810>===N I I ,符合标准。 2、计算绕组铜导线铜损Cu P

铜导线重量:()322112110-?+=+=Cu Cu Cu Cu s l s l G G G γ

式中 21l l 、——分别为初级和次级绕组长度;

经过计算 m l m l 229421==、

21s s 、——分别为初级和次级绕组的截面积;

22211181.22mm s mm s ==、

Cu γ——铜的比重,)

(3g/cm 9.8=Cu γ ()Kg G G G Cu Cu Cu 42109.8118221.2294321=???+?=+=-

变压器铜损:21Cu Cu Cu P P P += 2-22

W s l m I P Cu N Cu 8661.229402.05.14.82211211=???=???? ?

?=ρ W s l m I P Cu N Cu 8941182202.05.1400222222=???=???? ?

?=ρ 式中 m ——趋表效应系数,当f=50Hz 时,m=1.5;

Cu ρ——铜的电导率,()

m mm Cu /02.02Ω=ρ;

W P P P Cu Cu Cu 1760

89486621=+=+= 3、变压器的效率η %5.83%8.86868.01760176128001280022>==++=++=Cu Fe p p p p η 4、变压器的额定功率因数φcos 47.04

.82380176017612800cos 112=?++=++=N N Cu Fe I U p p p φ 5、铁铜比 66.142

8.69e ==Cu F G G

q35焊接工艺课程设计

1绪论1 .1 Q235的成分及焊接性分析 Q235钢是一种普通碳素结构钢,具有冶炼容易,工艺性好,价格价廉的优点,而且在力学性能上也能满足一般工程结构及普通机器零件的要求,在世界各国得到广泛应用。碳素结构钢的牌号体现其机械性能,符号用Q+数字表示,其中“Q”为屈服点“屈”的汉语拼音,表示屈服强度的数值。Q235表示这种钢的屈服强度为235MP,Q235钢含碳量约为0.2%属于低碳钢。Q235成分:C含量0.12%-0.22%、Mn含量0.30%-0.65%、Si含量不大于0.30%、S含量不大于0.050%、P含量不大于0.045%。S、P和非金属夹杂物较多在相同含碳量及热处理条件下,低碳钢焊接材料焊后的接头塑性和冲击韧度良好,焊接时,一般不需预热、控制层间温度和后热,焊后也不必采用热处理改善组织,整个焊接过程不必采取特殊的工艺措施,焊接性优良。 Q235含有少量的合金元素,碳含量比较低,一般情况下(除环境温度很低或钢板厚度很大时)冷裂倾向不大。工件预热有防止裂纹、降低焊缝和热影响区冷却速度、减小内应力等重要作用。但是预热使劳动条件恶化,并使工艺复杂。低合金结构施焊前是否需要预热,一般应根据生产实践和焊接性试验来确定。当母材的碳当量Ceq≥0.35时应考虑预热。低合金钢淬硬倾向[1]主要取决于钢的化学成分,根据碳当量公式可知Q235的碳当量小于0.4%,在焊接过程中基本无淬硬倾向,焊前不需预热。且这类刚含碳量较低,具有较的抗热裂性能,焊接过程中热裂纹倾向较小,正常情况下不会出现热裂纹。从厚度考虑,当板厚超过25mm时应考虑100℃以上的焊前预热,试验中所用钢板的厚度为12mm,不需预热。 焊接热处理的目的是为了消除焊接内应力、提高构件尺寸的稳定性、增强抗应力腐蚀性能、提高结构长期使用的质量稳定性和工件安全性等。低合金钢焊接结构在大多数请况下不进行焊后热处理,只有在特殊要求的情况下才进行焊后热处理。此试验并无特殊要求,因此并未进行焊后热处理。 1.2 焊条 (1)焊条的熔敷金属应具有良好的力学性能

电力变压器继电保护设计

电力变压器继电保护设计 Final revision on November 26, 2020

课程设计报告书 题目:电力变压器继电保护设计 院(系)电气工程学院_______ 专业电气工程及其自动化____ 学生姓名冉金周__________ 学生学号 57_______ 指导教师张祥军蔡琴______ 课程名称电力系统继电保护课程设计 课程学分 2____________ 起始日期

课程设计任务书 一、目的任务 电力系统继电保护课程设计是一个实践教学环节,也是学生接受专业训练的重要环节,是对学生的知识、能力和素质的一次培养训练和检验。通过课程设计,使学生进一步巩固所学理论知识,并利用所学知识解决设计中的一些基本问题,培养和提高学生设计、计算,识图、绘图,以及查阅、使用有关技术

资料的能力。本次课程设计主要以中型企业变电所主变压器为对象,主要完成继电保护概述、主变压器继电保护方案确定、短路电流计算、继电保护装置整定计算、各种继电器选择、绘图等设计和计算任务。为以后深入学习相关专业课、进行毕业设计和从事实际工作奠定基础。 二、设计内容 1、主要内容 (1)熟悉设计任务书,相关设计规程,分析原始资料,借阅参考资料。 (2)继电保护概述,主变压器继电保护方案确定。 (3)各继电保护原理图设计,短路电流计算。 (4)继电保护装置整定计算。 (5)各种继电器选择。 (6)撰写设计报告,绘图等。

2、原始数据 某变电所电气主接线如图1所示,已知两台变压器均为三绕组、油浸式、 强迫风冷、分级绝缘,其参数如下:S N =;电压为110±4×2.5%/ ±2×2.5%/11 kV;接线为Y N /y/d 11 (Y /y/Δ-12-11);短路电压U HM (%) =,U HL (%)=17,U ML (%)=6。两台变压器同时运行,110kV侧的中性点只有一台 接地,若只有一台运行,则运行变压器中性点必须接地,其余参数如图1。 3、设计任务 结合系统主接线图,要考虑两条长的110kV高压线路既可以并联运行也可以单独运行。针对某一主变压器的继电保护进行设计,即变压器主保护按一台变压器单独运行为保护的计算方式。变压器的后备保护(定时限过电流电流)作为线路的远后备保护。 图1 主接线图 注: 学号尾号为1、2、3的同学,用图中S kmax =1010MVA,S kmin =510 MVA进行计 算; 学号尾号为4、5、6的同学,用图中S kmax =1100MVA,S kmin =520 MVA进行计 算; 学号尾号为7、8、9、0的同学,用图中S kmax =1110MVA,S kmin =550 MVA进行 计算。 三、时间、地点安排

电力变压器试验报告

电力变压器试验报告 装设地点:幸福里小区运行编号:14#箱变试验日期:2013.07.25 试验性质:交接天气:晴温度:36 ℃ 相对温度: 一、设备型号: 型号电压比制造厂家出厂编号S11—M—630/10 10000/400 南阳市鑫特电气有限公司130274 容量相数接线组别出厂日期630KVA 3 DY0—11 2013.07 二、试验项目: 1、绝缘电阻及吸收比: 测量部位R15”(MΩ)R60”(MΩ)吸收比 高压/低压及地2500 低压/高压及地2500 2、直流电阻:

绕阻S位置 实测值(mΩ)最大不平衡 率% AB BC AC 高压1 1049 1050 1050 0.1 2 993.8 994.2 993.9 3 937.7 938.6 938.1 低压a~o b~o c~o 2.8 1.271 1.281 1.307 3、交流耐压试验: 交流耐压:38 KV 时间:60 S 结论:合格 三、试验结论:合格 四、试验仪器及编号:BCSB系列多用型实验变压器、JRR-10直流电阻测试仪、ZC-7绝缘摇表 五、试验负责人: 六、试验人员: 七、备注: 电力变压器试验报告

装设地点:幸福里小区运行编号:15#箱变试验日期:2013.07.25 试验性质:交接天气:晴温度:36 ℃ 相对温度: 一、设备型号: 型号电压比制造厂家出厂编号S11—M—650/10 10000/400 南阳市鑫特电气有限公司131105 容量相数接线组别出厂日期630KVA 3 DY0—11 2013.07 二、试验项目: 4、绝缘电阻及吸收比: 测量部位R15”(MΩ)R60”(MΩ)吸收比 高压/低压及地2500 低压/高压及地2500 5、直流电阻: 实测值(mΩ)最大不平衡绕阻S位置 率% AB BC AC 高压 1 1050 1048 1050 0.1

《电机与拖动》课程设计_小型单相变压器设计[文档在线提供][1].

小型单相变压器设计 小型单相变压器简介 变压器是通过电磁耦合关系传递电能的设备,用途可综述为:经济的输送电能、合理的分配电能、安全的使用电能。实际上,它在变压的同时还能改变电流,还可改变阻抗和相数。 小型变压器指的是容量1000V.A 以下的变压器。最简单的小型单相变压器由一个闭合的铁心(构成磁路)和绕在铁心上的两个匝数不同、 彼此绝缘的绕组(构成电路)构成。这类变压器在生活中的应用非常广泛。 一、 变压器的工作原理 变压器的功能主要有:电压变换;阻抗变换;隔离;稳压(磁饱和变压器)等,变压器常用的铁心形状一般有E 型和C 型铁心。 变压器(transformer )是利用电磁感应原理将某一电压的交流换成频率相同的另一电压的交流电的能量的变换装备。 变压器的主要部件是一个铁心和套在铁心上的两个绕组,如图(1)所示。一个绕组接电源,称为原绕组(一次绕组、初级),另一个接负载,称为副绕组(二次绕组、次级)。原绕组各量用下标1表示,副绕组各量用下标2表示。原绕组匝数为1N ,副绕组匝数为2N 。 图(1)变压器结构示意图 理想状况如下(不计电阻、铁耗和漏磁),原绕组加电压1u ,产生电流1i ,建立磁通φ,沿铁心闭合,分别在原副绕组中感应电动势21e e 和。 (1) 电压变换 当一次绕组两端加上交流电压1u 时,绕组中通过交流电流1i ,在铁心中将产生既与一 次绕组交链,又与二次绕组交链的主磁通φ。 (1-1) (1-2)

() (1-3) (1-4) 说明只要改变原、副绕组的匝数比,就能按要求改变电压。 (2) 电流变换 变压器在工作时,二次电流2I 的大小主要取决于负载阻抗模|1Z |的大小,而一次电流1I 的大小则取决于2I 的大小。 2211I U I U = 又 (1-5) K I I U U I 22121== ∴ (1-6) 说明变压器在改变电压的同时,亦能改变电流。 小型变压器的原理:小型单相变压器一般是指工频小容量单相变压器。 二、 变压器的基本结构 1、 铁心:铁心是变压器磁路部分。为减少铁心内磁滞损耗涡流损耗,通常铁心用含硅量较高的、厚度为0.35或0.5mm 、表面 涂有绝漆的热轧或冷轧硅钢片叠装而成。 铁心分为铁柱和铁轭两部分,铁柱上套装有绕组线圈,铁轭则是作为闭合磁路之用,铁柱和铁轭同时作为变压器的机械构件。 铁心结构有两种基本形式:心式和壳式。 2、 绕组:绕组是变压器的电路部分。一般采用绝缘纸包的铝线或铜线绕成。为了节省铜材,我国变压器线圈大部分是采用铝线。 图(2) 3、 其它结构部件:储油柜、气体继电器、油箱。

焊接工艺课程设计

[文档标题]

焊接工艺课程设计 1绪论 1 .1 Q235的成分及焊接性分析 Q235钢是一种普通碳素结构钢,具有冶炼容易,工艺性好,价格价廉的优点,而且在力学性能上也能满足一般工程结构及普通机器零件的要求,在世界各国得到广泛应用。碳素结构钢的牌号体现其机械性能,符号用Q+数字表示,其中“Q”为屈服点“屈”的汉语拼音,表示屈服强度的数值。Q235表示这种钢的屈服强度为235MP,Q235钢含碳量约为0.2%属于低碳钢。Q235成分:C含量0.12%-0.22%、Mn含量0.30%-0.65%、Si含量不大于0.30%、S含量不大于0.050%、P含量不大于0.045%。S、P和非金属夹杂物较多在相同含碳量及热处理条件下,低碳钢焊接材料焊后的接头塑性和冲击韧度良好,焊接时,一般不需预热、控制层间温度和后热,焊后也不必采用热处理改善组织,整个焊接过程不必采取特殊的工艺措施,焊接性优良。 Q235含有少量的合金元素,碳含量比较低,一般情况下(除环

境温度很低或钢板厚度很大时)冷裂倾向不大。工件预热有防止裂纹、降低焊缝和热影响区冷却速度、减小内应力等重要作用。但是预热使劳动条件恶化,并使工艺复杂。低合金结构施焊前是否需要预热,一般应根据生产实践和焊接性试验来确定。当母材的碳当量Ceq≥0.35时应考虑预热。低合金钢淬硬倾向[1]主要取决于钢的化学成分,根据碳当量公式可知Q235的碳当量小于0.4%,在焊接过程中基本无淬硬倾向,焊前不需预热。且这类刚含碳量较低,具有较的抗热裂性能,焊接过程中热裂纹倾向较小,正常情况下不会出现热裂纹。从厚度考虑,当板厚超过25mm时应考虑100℃以上的焊前预热,试验中所用钢板的厚度为12mm,不需预热。 焊接热处理的目的是为了消除焊接内应力、提高构件尺寸的稳定性、增强抗应力腐蚀性能、提高结构长期使用的质量稳定性和工件安全性等。低合金钢焊接结构在大多数请况下不进行焊后热处理,只有在特殊要求的情况下才进行焊后热处理。此试验并无特殊要求,因此并未进行焊后热处理。 1.2 焊条 1.2.1对焊条的基本要求 (1)焊条的熔敷金属应具有良好的力学性能 (2)焊条的熔敷金属应具有规定的化学成分,以保证其使用性能的要求

正激变压器设计要点

首先:正激变压器由于储能装置在后面的BUCK电感上,所以没有Flyback变压器那么复杂,其作用主要是电压、电流变换,电气隔离,能量传递等 所以,我们计算正激变压器的时候,一般都是首先以变压次级后端的BUCK电感为研究对象的,BUCK电感的输入电压就是正激变压器次级输出电压减去整流二极管的正向压降,所以我们又称正激电源是BUCK的隔离版本。 首先说说初次级匝数的选择: 以第三绕组复位正激变压器为例,一旦匝比确定之后,接下来就是计算初次级的匝数,论坛里有个帖子里的工程师认为,正激变压器在满足满负载不饱和的情况下,匝数越小越好。其实这是个误区,匝数的多少决定了初级的电感量(在不开气隙,或开同样的气隙情况下),而电感量的大小就决定了初级的励磁电流大小,这个励磁电流虽不参与能量的传递,但也是需要消耗能量的,所以这个励磁电流越小电源的效率越高;再说了,过少的匝数会导致del tB变大,不加气隙来平衡的话,变压器容易饱和。 无论是单管正激还是双管正激,都存在磁复位的问题。且,都可以看成是被动方式的复位。复位的电流很重要,太小了,复位效果会被变压器自身分布参数(主要是不可控的电容,漏感)的影响。 复位电流是因为电感电流不能突变,初级MOSFET关断之后,初级绕组的反激作用,又复位绕组跟初级绕组的相位相反,所以在复位绕组中有复位电流产生 复位电流关系到磁芯能否可靠的退磁复位,其重要性不言自喻;当变压器不加气隙时,其初级电感量较大,复位电流自然就小。 但在大功率的单管正激和双管正激的实际应用中,往往需要增加一点小小的气隙,否则设计极不可靠, 大功率的电源,一次侧电流很大,漏感引起的磁感应强度变化,B=I*Llik/nAe,就大,加气隙是为了减小漏感Llik. 正激的占空比主要是取决于次级续流电感的输入与输出,次级则就是一个BUCK电路,而CCM的BUCK线路Vo=Vin*D,跟次级的电流无关 Vo=Vin*D Vo:输出电压,Vin:BUCK的输入电压,即正激变压器的输出电压减去整流管的正向压降,D:占空比在此,输出电压是已知的我们只要确定一个合适的占空比,就可以计算出BUCK 电感的Vin,也就是说变压器的输出电压基本就定下来了 在这特别要提醒大家,占空比D的取值跟复位方式有很大的关系,建议D的取值不要超过0.5 正激变压器加少量气隙能将电-磁转换中的剩磁清空,磁芯的实际利用率增加,同时增加的一点空载电流在大功率电流中所占比例较小,效率不会受到太大影响,这样可以让变压器不容 易饱和,电源的可靠性增加,同时可以减少初级匝数,变压器内阻降低,能小体积出大功率.加 气隙也相当于增大了变压器磁芯,但实际好处(特别是抗饱和能力)是胜于加大磁芯的. 加气隙后,减小的电感量会被增加的磁芯利用率补回来,而且有余,是合算的不用担心. 复位绕组的位置问题,是跟初级绕组近好呢,还是夹在初次级之间好? 如果并绕,当然跟初级的耦合是最好的,但对漆包线的耐压是个考验!当然这不至于直接击穿。 无论从EMC角度还是工艺角度来说,复位绕组放在最内层比较好 实际量产中这是这样绕的占多数 单管正激,如果是市电或有PFC输出电压作为输入的话,MOSFET 的最低耐压是2倍直

某电力变压器继电保护设计(继电保护)

1 继电保护相关理论知识 1.1 继电保护的概述 研究电力系统故障和危及安全运行的异常工况,以探讨其对策的反事故自动化措施。因在其发展过程中曾主要用有触点的继电器来保护电力系统及其元件(发电机、变压器、输电线路等),使之免遭损害,所以沿称继电保护。 1.2.1 继电保护的任务 当电力系统发生故障或异常工况时,在可能实现的最短时间和最小区域内,自动将故障设备从系统中切除,或发出信号由值班人员消除异常工况根源,以减轻或避免设备的损坏和对相邻地区供电的影响。 1.2.2继电保护基本原理和保护装置的组成 继电保护装置的作用是起到反事故的自动装置的作用,必须正确地区分“正常”与“不正常”运行状态、被保护元件的“外部故障”与“内部故障”,以实现继电保护的功能。因此,通过检测各种状态下被保护元件所反映的各种物理量的变化并予以鉴别。依据反映的物理量的不同,保护装置可以构成下述各种原理的保护:(1)反映电气量的保护 电力系统发生故障时,通常伴有电流增大、电压降低以及电流与电压的比值(阻抗)和它们之间的相位角改变等现象。因此,在被保护元件的一端装没的种种变换器可以检测、比较并鉴别出发生故障时这些基本参数与正常运行时的差别.就可以构成各种不同原理的继电保护装置。 例如:反映电流增大构成过电流保护; 反映电压降低(或升高)构成低电压(或过电压)保护; 反映电流与电压间的相位角变化构成方向保护; 反映电压与电流的比值的变化构成距离保护。 除此以外.还可根据在被保护元件内部和外部短路时,被保护元件两端电流相位或功率方向的差别,分别构成差动保护、高频保护等。 同理,由于序分量保护灵敏度高,也得到广泛应用。 新出现的反映故障分量、突变量以及自适应原理的保护也在应用中。

变压器课程设计-兰州交通大学

. . 电气2013级“卓班” 企业课程(电机学)实习与实训报告 专业:电气工程及其自动化 班级: 姓名: 学号: 指导教师: 兰州交通大学自动化与电气工程学院 2015年7月25日

1 实习报告 1.1实习项目 1.1.1 实习项目 1 时间:2015-7-22,上午8:00至12: 00 地点:中国北车集团兰州机车厂 指导教师:张红生 实习内容:了解电机生产、制造的工艺流程及测试方法 今天,我们来到了中国北车兰州机车厂了解电机生产、制造的工艺流程及测试方法。兰州机车厂隶属中国北方机车车辆工业集团公司,是西北地区机车检修的重要基地,目前检修的主要品种有东风系列内燃机车和韶山型电力机车。 北车兰州机车有限公司是中国北车股份有限公司的全资子公司,始建于1954年,是我国西北地区唯一的内燃机车、电力机车检修基地,铁路工程机械制造基地和规模最大、品种最全的工矿机车制造基地,属国家高新技术企业。今天,在老师的带领下,我们来到了兰州机车厂进行了认识实习。 在进入厂区前,工作人员给我们详细地介绍了相关的注意事项,我们了解到厂区 内部的设备大多都是 带电设备,不能直接 触摸,以免发生危险, 同时也给我们介绍到 中国北车兰州机车厂 是中国北车集团下属 的分公司,主要承担 机车的保养和修理任 务。当机车运行到120 万公里时就必须要进 厂检修。检修也是一 步一步完成的,他们 厂里的各个车间分别 承担着不同的检修任图1 内燃机车主发电机转子务。

进入车间,我们在一个老师的带领下,从外向里开始参观。首先我们参观了电机车间,观看了电机部件的生产,电机的拆卸及组装。进入车间后,我们看到了 正在检修的内燃机车主 发电机的定转子(如图1 和图2所示),在发电机 转子的转子上,绕着一系 列的励磁绕组,励磁绕组 是可以产生磁场的线圈 绕组,有串励和并励之分 的,发电机内用励磁 图 2 内燃机车主 发电机定子 绕组,可以替代永磁体, 可以产生永磁体无法产生的强大的磁通密度,且可以方便调节,从而可以实现大功率发电。在发电机的定子绕组上,绕的是发电机的电枢绕组,电枢绕组由一定数目的电枢线圈按一定的规律连接组成,他是直流电机的电路部分,也是感生电动势,产生电磁转矩进行机电能量转换的部分。线圈用绝缘的圆形或矩形截面的导线绕成,分上下两层嵌放在电枢铁心槽内,上下层以及线圈与电枢铁心之间都要妥善地绝缘,并用槽楔压紧。 接下来,工作人员又带我们了解了机车上的电压互感器,电压互感器的实质就是一个带铁芯的变压器,它主要由一、二次线圈、铁心和绝缘组成。当在一次绕组上施加一个电压U1时,在铁心中就产生一个磁通φ,根据电磁感应定律,则在二次绕组中就产生一个二次电压U2。改变一次或二次绕组的匝数,可以产生不同的一次电压与二次电压比,这就可组成不同比的电压互感器。 最后,我们又参观了电器车间,进去后就可以看到组成机车电气系统的分立元件的生产和检修,车间分为了两部分,一部分用于机车电气系统中一些较大部件的检修,生产和加工;另一部分是一些机车电气小部件及控制开关的检修生产。通过今天的参观实习,我对电机的检修与生产的工艺流程有了进一步的认识,不仅见到了原来在课本上学过但却没有实际见过的东西,也学到了原来在课本上学不到的知识,让我深刻的认识到将理论转换为实践的重要意义,在以后的生活和工作中,我要不断的充实和丰富自己,不放弃任何能够锻炼自己的机会,让自己能够学习到更多的知识。 1.1.2实习项目2 时间:2015-7-22,下午2:30至4: 30 地点:甘肃宏宇变压器有限公司

焊接工艺课程设计要点

焊接工艺课程设计 题目焊接工艺与控制课程设计 指导教师 姓名 学号 专业 班级 完成日期2014 年 6 月23 日

三峡大学课程设计任务书 (2014年春季学期)

焊接工艺卡

目录 1. 30CrMoV A钢的性能分析 (6) 1.1 材料: (6) 1.2 化学成分及力学性能: (6) 2. 15 30CrMoV A钢的焊接性能 (7) 2.1 碳当量分析 (7) 2.2 30CrMoV A的焊接性的主要表现 (7) 3 焊接方法的选择和分析 (8) 3.1 焊接方法选择时应考虑的因素 (8) 3.2 焊接方法的选择 (8) 3.3 焊接方法主要特点分析 (9) 4 焊接设备的选择 (9) 4.1 焊接电源的选择 (9) 4.2 焊丝及焊剂的选择....................................................................................................... (9) 4.3、焊枪及喷嘴的选择 (9) 4.4、钨极的选择 (10) 5 焊接工艺参数的选择 (10) 5.1 焊接电流与电压的选择................................................................................................错误!未定义书签。 5.2 焊接速度的选择 (10) 5.3 钨极直径与保护气体流量............................................................ 错误!未定义书签。 6 焊前预热、焊接过程及焊后处理 (11) 6.1 焊前预热 (11) 6.2 焊接过程与焊后处理 (11) 7 焊后检验 (12) 7.1 外观检验 (12) 8 总结 (13) 参考文献 (14)

干式变压器安装要求规范标准

本文从网络收集而来,上传到平台为了帮到更多的人,如果您需要使用本文档,请点击下载,另外祝您生活愉快,工作顺利,万事如意! 环氧树脂干式电力变压器安装技术要求2010-06-07 14:54:38来源: (1)前期准备 1)变压器安装施工图手续齐全,并通过供电部门审批资料。 2)应了解设计选用的变压器性能、结构特点及相关技术参 数等。 (2)设备及材料要求 1)变压器规格、型号、容量应符合设计要求,其附件,备 件齐全,并应有设备的相关技术资料文件,以及产品出厂合 格证。设备应装有铭牌,铭牌上应注明制造厂名、额定容量、 一、二次额定电压、电流、阻抗、及接线组别等技术数据。 2)辅助材料:电焊条,防锈漆,调和漆等均应符合设计要 求,并有产品合格证。 (3)作业条件 1)变压器室内、墙面、屋顶、地面工程等应完毕,屋顶防

水无渗漏,门窗及玻璃安装完好,地坪抹光工作结束,室外场地平整,设备基础按工艺配制图施工完毕。受电后无法进行再装饰的工程以及影响运行安全的项目施工完毕。 2)预埋件、预留孔洞等均已清理并调整至符合设计要求。3)保护性网门,栏杆等安全设施齐全,通风、消防设置安装完毕。 4)与电力变压器安装有关的建筑物、构筑物的建筑工程质量应符合现行建筑工程施工及验收规范的规定。当设备及设计有特殊要求时,应符合其他要求。 (4)开箱检查 1)变压器开箱检查人员应由建设单位、监理单位、施工安装单位、供货单位代表组成,共同对设备开箱检查,并做好记录。 2)开箱检查应根据施工图、设备技术资料文件、设备及附件清单,检查变压器及附件的规格型号,数量是否符合设计要求,部件是否齐全,有无损坏丢失。 3)按照随箱清单清点变压器的安装图纸、使用说明书、产品出厂试验报告、出厂合格证书、箱内设备及附件的数量等,与设备相关的技术资料文件均应齐全。同时设备上应设置铭牌,并登记造册。 4)被检验的变压器及设备附件均应符合国家现行有关规范的规定。变压器应无机械损伤,裂纹、变形等缺陷,油漆应

课程设计-电力变压器台数和容量的最佳方案设计

编号:1151401127 课程设计 (2011级本科) 题目:电力变压器台数和容量的最佳方案设计 系(部)院:物理与机电工程学院 专业:电气工程及其自动化 作者姓名:谭小峰 指导教师:刘永科职称:副教授 完成日期:2014 年7 月 1 日 二○一四年七月

目录 1 前言 1.1 设计任务书 (1) 1.2基础资料 (3) 2 主接线方案的选择 (4) 3变压器的选择 (5) 3.1 变压器容量的选择 (5) 3.2 变压器台数的选择 (5) 4方案中变压器容量的经济比较 (5) 4.1 变压器经济比较 (5) 4.2 综合费用比较 (7) 4.3 动态比较 (7) 附电气主接线图 (9) 全文总结 (10)

前言 变电站内变压器容量和台数是影响电网结构、供电安全可靠性和经济性的重要因素,而容量大小和台数多少的选择往往取决于区域负荷的现状和增长速度,取决于一次性建设投资的大小,取决于周围上一级电网或电厂提供负载的能力,取决于与之相联结的配电装置技术和性能指标,取决于负荷本身的性质和对供电可靠性要求的高低,取决于变压器单位容量造价、系统短路容量和运输安装条件等等,近几年随着变压器制造技术的不断提高,变压器自身质量和安全运行水平大幅度提高;变压器空载损耗下降的幅度大,变压器经济运行的负载率得到不断降低;又国家节能减排政策,鼓励企业开展经济运行工作;建设、扩建和变压器增容的台数和容量的选择,国内尚无明确具体的规定,也是随技术水平提高不断完善的一个系统工程,一般根据常规经验和规划者的观点来进行;结合相关规程制度,作者认为一般都应考虑如下因素: (1)变压器额定容量应能满足供电区域内用电负荷的需要,即满足全部用电设备总计算负荷的需要,避免变压器长期处于过负荷状态运行。新建变电站变压器容量应满足5-10年规划负荷的需要,防止不必要的扩建和增容,也减少因为扩建增容造成的大面积和长时间停电;对较高可靠性供电要求的变电站一次最好投入两台变压器,变压器正常的负载率不大于50%为最好。 (2)对于供电区域内有重要用户的变电站,应考虑一台变压器在故障或停电检修状态下,其它变压器在计及过负荷能力后的允许时间内,保证用户的一级和二级负荷,对一般负荷的变电站,任何一台变压器停运,应能保证全部负荷的70%-80%的电力供应不受影响,城区变电站变压器台数和容量应满足N-1的要求。

电力变压器课程设计

1 前言 随着工农业生产和城市的发展,电能的需要量迅速增加。为了解决热能资源(如煤田)和水能资源丰富的地区远离用电比较集中的城市和工矿区这个矛盾,需要在动力资源丰富的地区建立大型发电站,然后将电能远距离输送给电力用户。同时,为了提高供电可靠性以及资源利用的综合经济性,又把许多分散的各种形式的发电站,通过送电线路和变电所联系起来。这种由发电机、升压和降压变电所,送电线路以及用电设备有机连接起来的整体,即称为电力系统。 电力系统是有各种电力系统元件组成的,它们包括发电、输变电、负荷等机械、电气主设备以及控制、保护等二次辅助设备。WDT-Ⅲ型电力系统综合自动化试验系统是一个完整的电力系统典型模型,它为我们提供了一个自动化程度很高的多功能实验平台,是为了适应现代化电力系统对宽口径“复合型”高级技术人才的需要而研制的电力类专业新型教学试验系统。 本设计所要完成的工作是利用VC语言开发WDT电力系统综合自动化实验台监控软件,主要是完成准同期控制器监控软件的编写,它要求能显示发电机及无穷大系统的相关参数,如电压、频率和相位角,并能发送准同期合闸命令。

2 电力系统实验台 WDT-Ⅲ型电力系统综合自动化实验教学系统主要由发电机组、试验操作台、无穷大系统等三大部分组成(如图2.1所示)。 图 2.1 WDT-Ⅲ型电力系统综合自动化试验系统 2.1 发电机组 该系统的发电机组主要由原动机和发电机两部分构成,另外,它还包括了测速装置和功率角指示器(用于测量发电机电势与系统电压之间的相角 ,即发电机转子相对位置角),测得的发电机的相关数据传输回实验操作台,与无穷大系统的相关参数进行比较,从而确定系统是否满足了发电机并网条件。 2.1.1 原动机 在实际的发电厂中,原动机一般用的是水轮机、气轮机、柴油机或者其他形式的动力机械,将水流,气流,燃料燃烧或原子核裂变产生的能量转换为带动发电机轴旋转的机械能,从而带动发电机转子的旋转。 在WDT-Ⅲ型电力系统综合自动化试验台的发电机组中,原动机是由直流发电机(P N=2.2kW,U N=220V)模拟实现其功能的。直流电动机(模拟原动机)与发电机的结

(完整word版)焊接课程设计

焊接工艺课程设计题目1035铝板平板对接 指导教师石增敏 姓名陈卓学号2011106230 专业材料成型及控制工程班级20111062 完成日期2014 年 6 月25 日

目录 1、1035铝板焊接性分析 (3) 1.1、本次设计所用材料 (3) 1.2、1035铝板钢的化学成分及力学性能 (3) 1.3、铝与铝合金的焊接特点 (4) 1.4、1035铝板焊接方法的选择 (4) 2、MIG工作原理和工艺特点 (4) 2.1工作原理 (5) 2.2工作特点 (5) 2.3 焊接层数和坡口的选择 (5) 2.4焊接变形 (5) 3、MIG焊设备 (5) 3.1焊接电源 (6) 3.2控制系统 (6) 3.3送丝系统 (6) 3.4焊枪 (6) 3.5供气系统 (7) 3.6水冷系统 (7) 4、焊接工艺参数 (7) 4.1 .1焊接电流 (7) 4.1.2 电弧电压 (8) 4.1.3焊接速度 (8) 4.1.4 焊枪的操作 (8) 4.2焊前准备 (8) 4.2.1坡口制备 (8) 4.2.2清理 (9) 4.2.3预热 (9) 5焊接注意事项 (9) 6 外观检验 (10) 7无损检测 (10) 9参考文献: (11)

三峡大学课程设计任务书 (2013――2014学年) 课题名称焊接工艺课程设计 学生姓名陈卓班级20111062 指导教师石增敏 课题概述: 根据提供的原始资料,进行平板对接焊或环焊缝焊接工艺设计。设计人员制定焊接方法和焊接工艺,要求同一课题的学生使用不同的焊接方法进行设计,焊接工艺可靠、合理。 ⒈制定焊接工艺卡。⒉课程设计说明书包括:封面;目录;摘要;被焊接材料的基本数据与焊接性分析;焊接方法的选择;焊接工艺的制定和论证(具体项目可参考焊接工艺卡)、焊接操作注意事项和安全要求、焊后检验、参考文献等。 材料:35材料1035铝板两块,规格:—4×100×300,平板对接

最新变压器设计及计算要点

变压器设计及计算要 点

变压器设计及计算要点 —蒋守诚— 一概述 1. 变压器发展史 (1) 发明阶段(1831~1885) 变压器是利用电磁感应原理来变换电能的设备,故变压器一定在电磁感应原理发现后出现。 1831年英国人法拉第(M.Farady)在铁环上缠绕两个闭合线圈, 在一个线圈中突然接上或断开电池, 另一个线圈所接仪表指针发生偏转, 从而发现电磁感应原理。 1837年英国人曼生(Masson)用薄铁片做电磁线圈的铁心, 从而减少损耗。 1881年法国人爱维(Jaewin) 发现磁滞现象, 美国人斯坦曼茨(C.P.Steimetz)发现磁滞损耗是磁密的1.6次方成正比例。 1882年英国人格拉特 ( Goulard)和吉普斯(J.D.Jibbs)制成15kVA1.5kV的开路铁心的单相变压器。同年法栾(S.Z.Ferranti)和汤姆生 (A.Tomson) 制成电流互感器。 1884年英国人戈普生兄弟开始采用具有闭合铁心的变压器作照明电源。 1884年9月16日匈牙利人布拉提(O.Blathy)和但利(M.Dery)和齐彼尔斯基K.Zipernovsky)在匈牙利的甘兹(Ganz)工厂制造一台1400 VA 120 / 72 V 40 Hz单相闭合磁路的变压器。至1887年底甘兹(Ganz)工厂就生产24台总容量达3000 kVA。 1885年才把这种电器叫做”变压器”。 (2) 完善阶段(1886~1930) 1887年英国人配莱(Belry)发明了单相多轭的分布式铁心。 1888年俄国人多利沃—多勃罗沃尔斯基 ( M.O.Dolivo-Dobrowolsky ) 提出交流三相制。并于1890年发明了三相变压器。同年布朗(Brown)又制造出第一台油冷、油绝缘变压器。 1890年德国人威士顿(Wenstrom)做成对称三相铁心。 1891年德国西门子(Siemens Sohucrerf) 做成不对称三相铁心。美国人斯汀兰(W.Stanley)在西屋公司(Westing House) 做成单相壳式铁心。瑞士的勃朗—鲍佛利(B.B.C)公司的创始人勃朗(E.F.Brown) 做成三相壳式铁心。 1891年德国生产30kVA的油浸变压器(1878年美国人勃劳克斯(D.Brdoks)开始用油做绝缘。) 1900年德国人夏拉(Schalley)做成三相五柱式铁心。 1900年英国人哈特菲尔德(Hodfeild)发明了硅钢片, 1903年开始用硅钢片制造变压器铁心。 (德国在1904年, 美国在1906年, 俄国在1911年, 日本在1922年分别用硅钢片制造变压器铁心) 1905年德国人洛果夫斯基(W. Rowgowski)研究漏磁场提出漏磁系数。 1915年华纳(K.W.Wagner)研究线圈内部电磁振荡的基本理论,提出了过电压保护一种方式。 1922年美国人维特(J. M. Weed)研究过电压理论时, 提出了过电压保护另一种方式。 1930年前后变压器的基本理论已基本形成。 (3) 提高阶段(1930~至今) 1930年以后变压器进入改进提高阶段, 即采用新材料、改进结构、改进工艺、不断扩大变压器的使用范围。

焊接工艺课程设计指导书

材料成形及控制工程专业课程设计 焊接工艺设计指导书 一、设计目的 1.通过实际产品的焊接工艺设计,使学生了解焊接结构的生产工艺过程; 2.掌握焊接工艺的设计方法及工艺文件的制定; 3.培养学生运用专业理论知识解决实际焊接生产问题的能力,锻炼查阅文献资料及工具书籍的基本技能。 二、设计内容 在规定时间内,完成由教师指定的某一个结构件的焊接工艺设计任务,主要内容包括: 1. 焊接结构件的设计简图与技术要求; 2. 产品的制造工艺性能分析; 3. 主要接头的焊接方法选择与说明,坡口型式及尺寸的设计与说明; 4. 主要部件(筒节、封头等)的加工工艺过程卡; 5. 产品的装焊工艺过程卡; 6. 壳体的焊接工艺卡。 三、设计要求 1.手绘产品的结构设计简图,标注出产品的主要结构尺寸;主要零件的名称、材质与规格;设计技术要求(包括制造技术要求与检验要求)等。 2.产品的制造工艺性能分析主要包括容器主体材料的焊接性分析与结构的装焊工艺性能分析。容器主体材料的焊接性能主要分析材质的焊接裂纹倾向及产生其它焊接缺陷的倾向,说明为保证焊接质量应采取的工艺措施,如合理选用焊接方法、焊接材料、焊前预热、焊后热处理、层间温度等;结构的装焊工艺性能分析主要针对特殊、复杂容器结构,分析需要采用的装焊顺序与方法。 2. 接头焊接方法的选择和坡口型式的设计应包括纵焊缝、环焊缝、封头拼缝、 人孔接管与筒体的焊缝等,绘制接头的局部放大图。选择与设计的依据主要从容器结构尺寸、接头位置、材质及厚度、施焊条件与可操作性、焊接变形与应力、装焊顺序等方面考虑。 3. 主要部件(筒节、封头等)的加工过程卡要求制定部件从原材料备料至组 装焊接之前的全部加工工艺过程,包括各加工工序的名称、加工内容、所用的工装设备与检验要求等,必要时绘制出加工工艺简图; 4. 壳体的装焊工艺设计包括装焊工艺顺序、工序名称与内容、各工序所涉及

400A动铁心分磁式弧焊变压器课程设计要点

目录 绪论 ................................................................................................. 错误!未定义书签。第一章动铁心分磁式弧焊变压器简介 (4) 1.1 结构和原理 (4) 1.2 用途及特点 (5) 1.3 安全使用规则 (6) 1.4 故障与处理方法 (7) 1.5 注意事项 (7) 第二章动铁分磁式弧焊变压器设计 (9) 2.1 原始数据 (9) 2.2 初步参数计算 (9) 2.3 初步决定铁心主要尺寸 (10) 2.4 计算初、次级绕组尺寸 (12) 2.5 确定变压器尺寸 (14) 2.6 核算焊接电流 (15) 2.7 验算变压器经济指标 .................................................... 错误!未定义书签。结束语 ............................................................................................. 错误!未定义书签。参考文献 . (20)

绪论 1、弧焊电源在电弧焊中的作用 不同材料、不同结构的工件,需要采用不同的电弧焊工艺方法,而不同的电弧焊工艺方法则需用不同的电弧焊机。例如:操作方便、应用最为广泛的焊条电弧焊,需要由对电弧供电的电源装置、和焊钳组成的手弧焊机;锅炉、化工、造船等工业广为使用的埋弧焊,需要由电源装置和、控制箱和焊车等组成的埋弧焊机;适用于焊接化学性活泼金属的气体保护电弧焊,需要由电源装置、控制箱、焊车(自动焊)或送丝机构(半自动焊)、焊枪、气路和水路系统等组成的气体保护电弧焊;适用于焊接高熔点金属的等离子弧焊,则需要由电源装置、控制系统、焊枪或焊车(自动焊)、气路和水路系统等组成的等离子弧焊机。 由上述可知,各种电弧焊方法所需的供电装置即弧焊电源是电弧焊机的重要组成部分,是对焊接电弧供给电能的装置,它应满足电弧焊所要求的电气特性,这正是本课程将要系统讲述的内容。与弧焊电源配套的其它装置和设备部分,将在《焊接方法和设备》课程中讲述。 显然,弧焊电源电气性能的优劣,在很大程度上决定了电弧焊机焊接过程的稳定性。没有先进的弧焊电源,要实现先进的焊接工艺和焊接过程自动化也是难以办到的。因此,应该对弧焊电源的基本理论、结构特点和电气性能进行深入的研究,真正了解和正确使用弧焊电源,进而研制出新型的弧焊电源,使焊接质量 和生产效率得到进一步提高。[][]5数据来源参考文献 。 2、常见弧焊电源的特点和用途 1、交流弧焊电源 交流弧焊电源包括工频交流弧焊电源(弧焊变压器)、矩形波交流弧焊电源。下面分述其特及用途。 工频交流弧焊电源 即是弧焊变压器,它把电网的交流电变成适合于电弧焊的低电压交流电,它由变压器、电抗器等组成。弧焊变压器具有结构简单、易造易修、成本低、磁偏吹小、空载损耗小、噪声小等优点。但其输出电流波形为正弦波,因此,电弧稳定性较差,功率因数低,一般用于焊条电弧焊、埋弧焊和钨极惰性气体保护电弧焊等方法。 矩形波交流弧焊电源 它是利用半导体控制技术来获得矩形交流电流的。由于输出电流过零点时间短,电弧稳定性好,正负半波通电时间和电流比值可以自由调节,此特点适合于铝及铝合金钨极氩弧焊。 2、直流弧焊电源 直流弧焊发电机

焊接工艺学课程设计

课程设计论文(说明书) 课程:焊接工艺学课程设计 题目:09MnD钢焊接性试验设计 院、系:材化学院 学科专业:金属材料工程 学生: / 学号: / 校对: / 指导教师: / 2012年 11月

1.前言 09MnD属于无镍低温钢,常用于石油、化工技术和压力容器设备,用于制造使用温度在-50℃的压力容器构件、重要锻件,石油化工中的压力容器。含碳量为0.2%,硅含量在0.17%到0.35%之间,锰含量在0.95%到1.35%之间,磷含量和硫含量均小于0.25%,钒含量小于等于0.03%。其化学成分见:表1.1,其机械性能见:表1.2。 牌号化学成分(质量分数)(%) C Si Mn P S V 09MnD ≤0.12 0.17-0.35 0.95-1.35 ≤0.025 ≤0.025 ≤0.03 表1.1 09MnD的化学成分 牌号抗拉强度/MPa 屈服强度/MPa 伸长率(%)冲击功/J 09MnD 400-540 ≥240 ≥26 ≥21 表1.2 09MnD的机械性能 本实验主要通过熔化极混合气体保护焊对焊接材料为09MnD厚度为10mm 板材的焊接性及焊接特点进行探索,在制出实验试板后,根据国家的一系列标准对此次焊接工艺进行焊后组织及力学性能进行评定,进而分析09MnD的焊接性能。 2.焊接工艺 2.1 09MnD的焊接特点 焊接材料的选择应保证接头与母材有同样的低温性能,焊条、焊丝、焊剂都必须保证焊缝中的油含杂质S、P、N、O最少。焊接时需要最大限度地减小过热程度,防止出现粗大的铁素体或粗大的马氏体组织。 2.2 焊接方法及焊丝的确定 低温钢的焊接方法可选焊条电弧焊、埋弧焊及熔化极气体保护焊。采用含Ni低温焊条电弧焊,虽可保证低温韧性,但成本高、生产效率低且焊缝成形差。故选用普通的焊丝H08Mn2SiA,用混合气体保护半自动焊,其生产成本为焊条电弧焊的55%-60%,生产率高2-3倍。焊材选择见:表2.2.1。

电力变压器设计原则

电力变压器设计原则 1.铁心设计 1.1铁心空载损耗计算:P 0=k p ?p 0?G W 其中:k p ——铁心损耗工艺系数,见表2; p 0——电工钢带单位损耗(查材料曲线),W/kg ; G ——铁心重量,kg 。 1.2铁心空载电流计算 空载电流计算中一般忽略有功部分。 (1)三相容量≤6300 kV A 时: 1230()10t f N G G G k q S n q I S ++??+??= ? % 其中:G 1、G 2、G 3——分别为心柱重量、铁轭重量、角重,kg ; k ——铁心转角部分励磁电流增加系数,全斜接缝k=4; q f ——铁心单位磁化容量(查材料曲线),V A/ kg ; S ——心柱净截面积,cm 2; S N ——变压器额定容量,k V A ; n ——铁心接缝总数,三相三柱结构n=8; q j ——接缝磁化容量,V A/ cm 2,根据B m 按表1进行计算。

(2)三相容量>6300 kV A :010i t N k G q I S ??= ? % k i ——空载电流工艺系数,见表2; G ——铁心重量,kg ; q t ——铁心单位磁化容量(查材料曲线),V A/ kg ; S N ——变压器额定容量,k V A 。 表2 铁心性能计算系数(全斜接缝) 注(1)等轭表示铁心主轭与旁轭的截面相等。 1.3铁心圆与纸筒之间的间隙见表3 表3 铁心圆与纸筒间隙 1.4铁心直径与撑条数量关系见表4 表4 铁心直径与撑条数量关系 续表4 铁心直径与撑条数量关系

1.5铁心直径与夹件绝缘厚度关系见表5 2.绝缘结构 2.1 10kV级变压器 2.1.1纵绝缘结构 (1)高压绕组(LI75 AC35) 1)饼式结构 导线匝绝缘0.45,绕组不直接绕在纸筒上,所有线段均垫内径垫条1.0mm;各线饼轴向油道宽度见表15;分接段位于绕组中部。 中断点油道 4.0mm,分接段之间(包括分接段与正常段之间)油道2.0mm,正常段之间0.5mm纸圈。整个绕组增加9.0mm调整油道。 2)层式结构 层式绝缘:首层加强0.08×2,第2层与末层加强0.08×1。当绕组不直接绕在纸筒上时,所有线段均垫内径垫条1.0mm。 (2)低压绕组(AC5) 当绕组不直接绕在纸筒上时,所有线段垫内径垫条 1.0mm,所有线段之间垫0.5mm纸圈。。 当高压绕组为饼式结构时,对应高压分接段处应注意安匝平衡。 2.1.2主绝缘结构 (1)铁心圆与纸筒之间的间隙见表3;低压绕组内纸筒厚2.0mm。当

相关文档
最新文档