机械制图和识图基础

机械制图与识图基础

一个模具是由若干个零部件组装而成,设计者根据冲压产品的不同,设计不同的模具。设计者是以图样来表达其设计思想的,模具结构中每一个零部件,设计者都将会以图样的形式(标准件常用编码表示)表达出来,即“以图示物”。作为模具修理工、改制工,在进行模具修理、变更和零部件及治具加工等工作时,图纸是作业的必要依据。因此,我们必须学会看懂各种常用的机械图样,正确理解设计要求,才能按照图纸加工出合格的模具零部件,确保修模质量,提高修模效率。

一、投影与视图

工程上常用的机械图样,都是以视图来表达机械零件和部件的结构形状。要看懂图样首先要知道图样上的视图是根据什么原理和方法画出来的。掌握这些原理,了解视图的形成及画法是看懂机械图的基础。

1、投影的概念

投影概念是从日常生活中抽象出来的,太阳或灯光照射物体所得到的影子都可以看作是物体在平面上的投影。这些投影现象经科学总结,形成了用来绘制工程图样的投影方法。工程上常用的投影方法有两种:

中心投影法:特点是所有的投影线均交于一点。

平行投影法:特点是所有的投影线均互相平行。

在平行投影法中,投影线垂直于投影面的投影称为正投影。由于它能正确表达物体的真实形状和大小,作图方便,故机械图样都是采用正投影法绘制的。

2、正投影的投影特性

物体的形状各有不同,但其表面都是以直线和平面围成。物体的投影就是这些线、面投影的组合。所以研究物体的正投影特性,只要研究直线和平面的投影特性即可。根据直线和平面相对于投影面的位置不同(平行、垂直、倾斜),其投影特性各有不同。

⑴直线的投影特性:

直线平行于投影面,投影等于实际长度;

直线垂直于投影面,投影积聚于一点;

直线倾斜于投影面,投影小于实际长度;

⑵平面的投影特性:

平面平行于投影面,投影成实际形状;

平面垂直于投影面,投影积聚于一线;

平面倾斜于投影面,投影为小于实际形状的类似形;

3、三视图的形成

在机械制图中,物体的正投影称为视图。由于物体在一个投影面上只能得到一个方向的视图,而一个视图不能唯一确定物体的空间形状,所以必须增加投影面,从物体的几个方向进行投影。一般较简单的物体,用三视图来表达物体的形状。三视图的形成过程是:

设定三个互相垂直的平面作为投影面,分别是正立投影面V(简称正面),水平投影面H(简称水平面),侧立投影面W(简称侧面)。将物体正放其中(正放是指物体的主要表面与投影面平行),然后用正投影法分别向三个投影面进行投影,得到物体的三视图。

4、三视图的投影规律

熟悉与掌握三视图的投影规律,找出图与图、图与物的关系,是制图与识图的关键。

⑴三视图与物体空间方位的关系,即图与物的关系:

主(前)视图反映物体上下、左右位置,即物体的高与长。

俯(顶)视图反映物体左右、前后位置,即物体的长与宽。

左(右)视图反映物体上下、前后位置,即物体的高与宽。

⑵三视图之间的三等关系,即图与图的关系:

从三视图的形成与图—物关系可以看出,物体各相应部分的三视图有以下关系:主(前)视图与俯(顶)视图之间应保持长度相等;主(前)视图与左(右)视图之间应保持高度相等;左(右)视图与俯(顶)视图之间应保持宽度相等。

5、物体上可见与不可见部分的表示法

根据国标规定:物体上可见部分的轮廓线用粗实线表示;不可见部分用虚线表示;孔的中心线和轴线用点划线表示;断裂处的边界线用波浪线或双折线表示;视图与剖视的分界面用波浪线表示。

6、六个基本视图

对于形状复杂的物体,只采用三个视图往往不能完整、清楚地表达出内、外形状,必须增加更多的投影面以得到更多的视图。按照国家标准规定,采用六面体的六个面作为基本投影面,将物体放在其中,从上、下、左、右、前、后六个方向分别向基本投影面投影,就得到六个基本视图。

在同一张图纸上,六个基本视图若按标准配置时,一律不标注视图名称,否则在视图上方注出视图名称“×向”,在相应的视图附近用箭头指明投影方向,并注上同样的字母。在画面中,并不是任何物体都需要画出六个基本视图,而应根据不同物体结构形状的特点,选用必要的几个基本视图。

7、尺寸的标注

视图只能表示物体的形状,物体的真实大小及各部分之间的相对位置,则要由尺寸来确定。根据国家标准规定,标注一个完整的尺寸,一般应由尺寸线、尺寸界线、尺寸数字和箭头四个部分组成。标注尺寸时应遵守下列三个基本规则:

⑴物体的真实大小应以图上所注尺寸数字为依据,与图样大小无关。

⑵图中尺寸以mm为单位时,在图上不需标注单位。若采用其它单位时,必须注明。

⑶物体的每一个尺寸,一般只标注一次,并且应标注在表示该结构最清晰

的图形上。

8、剖视图

剖视图的形成包括“剖”与“视”两个过程。“剖”就是用一个假想的剖切平面P,在物体有孔或槽的位置将其剖开。“视”就是移去剖切平面和观察者之间的部分,将剩下的部分向投影面投影,并在剖切平面与物体相接触的断面上画出剖面符号即45度的剖面线。包括全剖、半剖、局部剖三种剖视图。看图时要注意剖切的方向。

9、剖面图

只画出断面形状的图形称剖面图。包括移出剖面图(将剖面图画在视图轮廓线外面)和重合剖面图(将剖面图画在视图轮廓线以内)。

二、第一角投影法与第三角投影法

物体在空间上设立两个互相垂直的投影面体系V/H,这两个互相垂直的投影面可将空间分成四个分角Ⅰ、Ⅱ、Ⅲ、Ⅳ,将物体放在第Ⅰ分角进行投影,称为第一角投影法。将物体放在第Ⅲ分角进行投影,称为第三角投影法。ISO国际标准规定,在表达机件结构时,第一角投影法与第三角投影法等效。中国、德国等国家采用第一角投影法,美国、日本等国家采用第三角投影法。

1、两种投影法的相同之处

⑴视图都是在三个互相垂直的投影面进行正投影得到的。

⑵展开投影面时,都规定V面不动,将H面、W面旋转到与V面成一个平面。

⑶各视图间都遵循“长对正、高平齐、宽相等”的投影规律。

2、两种投影法的不同之处:

⑴第一角投影法是将物体放在观察者与投影面之间,保持“人—物—图”的关系;第三角投影法是将投影面放在观察者与物体之间,保持“人—图—物”的关系,并假想投影面是透明的,视图是观察者通过透明投影面看物体而得到的。

⑵将三视图表示在一个平面上,第一角投影法规定V面不动,将H面向下旋转90度,将W面向右旋转90度,与V面重合,得到视图;第三角投影法规定V面不动,将H面向上旋转90度,将W面向左旋转90度,与V面重合,得到视图。

一角投影法中,俯视图的下方和左视图的右方都表示物体的前面,而第三角投影法中,顶视图的下方和右视图的左方表示物体的前面。

⑸在ISO国际标准中,为区别两种画法,规定了两种画法的标记符号:

3、两种投影法具有对应关系。(从图中可以看出)

三、模具零部件图纸的查找:

每个人查找模具零部件图纸的方法,因客观条件、个人习惯等不同而各有不同。一般地说,查找模具零部件图纸需要经过以下步骤:

1、确定查找的对象:如图号、模号、零部件编码(部番)或零部件的大致形状

及其在模具中的(大致)位置(在哪块板、在哪个工位等)。

2、已知零部件编码(部番)的,可直接在图纸夹本或电脑图中查找部件图(零

件图)或零部件尺寸。

3、仅知零部件的大致形状和位置的,可先在零部件分布图、组立图或电脑中的

模具图中查找该部件图(零件图)该零部件的图形代码(部番),再根据图形代码(部番号)查找部件图(零件图)或零部件尺寸。

4、必要时对照模具零部件确认查找的图纸是否正确。

5、同一模具有多个相似图形时,要尤其注意做好确认工作。

四、模具图纸的识读

模具图纸是指导模具维修、加工、检验的技术资料。识读模具的零部件图纸,要根据零件图上一组视图分析和想象出零件的结构形状,通过图上标注的符号、代号、数字以及文字说明等,了解零件的尺寸和技术要求,

塑料知识

一、塑料的定义

塑料是以树脂为主要成分,在一定温度和压力下塑造成一定形状,并在常温下能保持既定形状的高分子有机材料。

树脂是指受热时通常有转化或熔融范围,转化时受外力作用具有流动性,常温下呈固态或半固态或液态的有机聚合物,它是塑料最基本的,也是最重要的成分。广义地讲,在塑料工业中作为塑料基本材料的任何聚合物都可称为树脂。

二、塑料的分类

塑料目前尚无确切的分类,一般分类如下:

1.按塑料的物理化学性能分

热塑性塑料:在特定温度范围内能反复加热软化和冷却硬化的塑料。如聚乙烯塑料、聚氯乙烯塑料。

热固性塑料:因受热或其它条件能固化成不熔不溶性物料的塑料。`如酚醛塑料、环氧塑料等。

2.按塑料用选分

通用塑料: -般指产量大、用途广、成型性好、价廉的塑料。如聚乙烯、聚丙烯、聚氯乙烯等。

工程塑料: -般指能承受一定的外力作用,并有良好的机械性能和尺寸稳定性,在高、低温下仍能保持其优良性. . 能,可以作为工程结构件的塑料。如ABS、尼龙、聚矾等。

特种塑料: -般指具有特种功能(如耐热、自润滑等),应用于特殊要求的塑料。如氟塑料、有机硅等。

3.按塑料成型方法分

模压塑料:供模压用的树脂混合料。如一般热固性塑料。

层压塑料:指浸有树脂的纤维织物,可经叠合、热压结合而成为整体材料。

注射、挤出和吹塑塑料: -般指能在料筒温度下熔融、流动,在模具中迅速硬化的树脂混合科。如一般热塑性塑料。

浇铸塑料:能在无压或稍加压力的情况下,倾注于模具中能硬化成一定形状制品的液态树脂混合料。如MC尼龙。

反应注射模塑料:一般指液态原材料,加压注入模腔内,使其反应固化制得成品。如聚氨脂类。

4.按塑料半制品和制品分

模塑粉:又称塑料粉,主要由热固性树脂(如酚醛)和填料等经充分混合、按压、粉碎而得。如酚醛塑料粉。

增强塑料:加有增强材料而某些力学性能比原树脂有较大提高的一类塑料。

泡沫塑料:整体内合有无数微孔的塑料。

薄膜:一般指厚度在O.25毫米以下的平整而柔软的塑料制品。

三、塑料的基本性能

1.质轻、比强度高。塑料质轻,一般塑料的密度都在0.9 ~ 2.3克/厘米3之间,只有钢铁的1/8 ~1/4、铝的1/2左右,而各种泡沫塑料的密度更低,约在0.01 ~ O.5克/厘米3之间。按单位质量计算的强度称为比强度,有些增强塑料的比强度接近甚至超过钢材。例如合金钢材,其单位质量的拉伸强度为160兆帕,而用玻璃纤维增强的塑料可达到170 ~ 400兆帕。

2.优异的电绝缘性能。几乎所有的塑料都具有优异的电绝缘性能,如极小的介电损耗和优良的耐电弧特性,这些性能可与陶瓷媲美。

3.优良的化学稳定性能。一般塑料对酸碱等化学药品均有良好的耐腐蚀能力,特别是聚四氟乙烯的耐化学腐蚀性能比黄金还要好,甚至能耐"王水"等强腐蚀性电解质的腐蚀,被称为"塑料王"。

4.减摩、耐磨性能好。大多数塑料具有优良的减摩、耐磨和自润滑特性。许多工程塑料制造的耐摩擦零件就是利用塑料的这些特性,在耐磨塑料中加入某些固体润滑剂和填料时,可降低其摩擦系数或进一步提高其耐磨性能。

5.透光及防护性能。多数塑料都可以作为透明或半透明制品,其中聚苯乙烯和丙烯酸酯类塑料象玻璃一样透明。有机玻璃化学名称为聚甲基丙烯酸甲酯,可用作航空玻璃材料。聚氯乙烯、聚乙烯、聚丙烯等塑料薄膜具有良好的透光和保暖性能,大量用作农用薄膜。塑料具有多种防护性能,因此常用作防护保装用品,如塑料薄膜、箱、桶、瓶等。

6.减震、消音性能优良。某些塑料柔韧而富于弹性,当它受到外界频繁的机械冲击和振动时,内部产生粘性内耗,将机械能转变成热能,因此,工程上用作减震消音材料。例如,用工程塑料制作的轴承和齿可减小噪音,各种泡沫塑料更是广泛使用的优良减震消音材料。

上述塑料的优良性能,使它在工农业生产和人们的日常生活中具有广泛用途;它已从过去作为金属、玻璃、陶瓷、木材和纤维等材料的代用品,而一跃成为现代生活和尖端工业不可缺少的材料。

然而,塑料也有不足之处。例如,耐热性比金属等材料差,一般塑料仅能在100℃以下温度使用,少数200℃左右使用;塑料的热膨胀系数要比金属大3 ~ 10倍,容易受温度变化而影响尺寸的稳定性;在载荷作用下,塑料会缓慢地产生粘性流动或变形,即蠕变现象;此外,塑料在大气、阳光、长期的压力或某些质作用下会发生老化,使性能变坏等。塑料的这些缺点或多或少地影响或限制了它的应用。但是,随着塑料工业的发展和塑料材料研究工作的深入,这些缺点正被逐渐克服,性能优异的新颖塑料和各种塑料复合材料正不断涌现。

磨具基础知识

一、磨料的特性

二、硬度

磨具的硬度是指磨具表面的的磨料在外力作用下脱落的难易程度。磨粒容易脱落的硬度低,不易脱落的硬度高。我国生产的磨具硬度等级共分为七大级、14小级。

选择磨具的硬度主要决定于被加工材料的硬度,此外还应根据磨具与工具接触面积大小,工件形状、磨削的方式、冷却方式,磨具的结合剂种类等因素来综合考虑。

三、组织

磨具的组织是指磨具中磨料颗料分布的疏密程度。一般都以磨具中磨料体积所占的百分数来表示。

较紧的组织、磨料不易脱落,有利于保持形状,适用于或型磨削、重荷磨削和间断磨削。

较松的组织,磨料不易钝化、切削力强、磨削过程中发热少、能减少工件烧伤、变形、适于质地软而韧性大的材料、热敏材料、薄形工件和接触面积大的磨削加工。

四、结合剂

结合剂在磨具中起着粘结磨料的作用,使磨粒互连结成具有一定几何开头的磨具。常用的结合剂有陶瓷、树脂、橡胶等。

陶瓷结合剂(旧代号A、新代号V)制成的磨具比其它结合剂的磨具气孔大磨削效率高、磨损小、能较好的保持砂轮几何形状。是使用最广泛的一种结合剂。

五、粒度

磨具粒度的选择主要取决于被加工工件的表面光洁度和磨削生产效率的要求。

平面铣削加工基础知识

证平面铣削的顺利进行,在开始铣削之前,应对整个过程有个清楚的估计。比如要进行的是粗铣还是精铣?所加工的表面是否将作为基准?铣削过程中表面粗糙度、尺寸精度会有多大变化?另外,还需要正确选择铣刀的切削参数。本文分析了需要考虑的重点内容。

铣刀刀体的选择

铣刀的价格比较贵,一把直径为100mm的面铣刀刀体价格可能要超过600美元,所以应慎重选择,以能达到真正适合具体的加工需要。

首先,在选择一把铣刀时,要考虑它的齿数。例如直径为100mm的粗齿铣刀只有6个齿,而直径为100mm的密齿铣刀却可有8个齿。齿距的大小将决定铣削时同时参与切削的刀齿数目,影响到切削的平稳性和对机床切率的要求。每个铣刀生产厂家都有它自己的粗齿、密齿面铣刀系列。

在进行重负荷粗铣时,过大的切削力可使刚性较差的机床产生振颤。这种振颤会导致硬质合金刀片的崩刃,从而缩短刀具寿命。选用粗齿铣刀可以减低对机床功率的要求。所以,主轴孔规格较小时(如R-8、30#、40#锥孔),可以用粗齿铣刀有效地进行铣削加工。

粗齿铣刀多用于粗加工,因为它有较大的容屑槽。如果容屑槽不够大,将会造成卷屑困难或切屑与刀体、工件摩擦加剧。在同样进给速度下,粗齿铣刀每齿切削负荷较密齿铣刀要大。

精铣时切削深度较浅,一般为0.25~0.64mm,每齿的切削负荷小(约0.05~0.15mm),所需功率不大,可以选择密齿铣刀,而且可以选用较大的进给量。由于精铣中金属切除率总是有限,密齿铣刀容屑槽小些也无妨。

对于锥孔规格较大、刚性较好的主轴,也可以用密齿铣刀进行粗铣。由于密齿铣刀同时有较多的齿参与切削,当用较大切削深度(1.27~5mm)时,要注意机床功率和刚性是否足够,铣刀容屑槽是否够大。排屑情况需要试验验证,如果排屑有问题,应及时调整切削用量。

刀片的选择

某些加工场合选用压制刀片是比较合适的,有时也需要选择磨制的刀片。粗加工最好选用压制的刀片,这可使加工成本降低。压制刀片的尺寸精度及刃口锋利程度比磨制刀片差,但是压制刀片的刃口强度较好,粗加工时耐冲击并能承受较大的切深和进给量。压制的刀片有时前刀面上有卷屑槽,可减小切削力,同时

但是压制的刀片表面不像磨制刀片那么紧密,尺寸精度较差,在铣刀刀体上各刀

对于精铣,最好选用磨制刀片。这种刀片具有较好的尺寸精度,所以刀刃在铣削中的定位精度较高,可得到较好的加工精度及表面粗糙度。另外,精加工所用的磨制铣刀片发展趋势是磨出卷屑槽,形成大的正前角切削刃,允许刀片在小进给、小切深上切削。而没有尖锐前角的硬质合金刀片,当采用小进给、小切深加工时,刀尖会摩擦工件,刀具寿命短。

磨过的大前角刀片,可以用来铣削粘性的材料(如不锈钢)。通过锋利刀刃的剪切作用,减少了刀片与工件材料之间的摩擦,并且切屑能较快地从刀片前面离开。

作为另一种组合,可以将压制刀片装在大多数铣刀的刀片座内,再配置一磨制的刮光刀片。刮光刀片清除粗加工刀痕,比只用压制刀片能得到较好的表面粗糙度。而且应用刮光刀片可减小循环时间、降低成本。刮光技术是一种先进工艺,已在车削、切槽切断及钻削加工领域广泛应用。

冷却和涂层

平面铣削是否要冷却,当用一个大直径面铣刀铣削时,冷却液难以喷到整个铣刀。特别是铣削属于断续加工。刀片在频繁地切入、切出,实际上冷却液达不到刀尖,而是刀尖切入时被加热,切出时被冷却。这种很快地加热、冷却,极易引起热裂纹。如果刀片出现裂纹,并且在切削时从刀片座中落下,刀体将会受到严重的损坏。

现代的刀具涂层能使温度裂纹产生的概率大大降低,更加促进了干式切削的发展。特别是TiAlN涂层刀具很适合于干式切削。因为当切入金属时,切削的热量使TiAlN表面发生化学变化,产生了更硬的物质。

干式切削的优点是,操作者可以看清切屑实际的形状和颜色,为操作者提供了评定切削过程的信息,由于工件的化学成分不同,发出的信息也不一样:当加工碳钢时,形成暗褐色切屑,说明采用切削速度适当;当速度进一步提高,褐色切屑将变成蓝色。如果切屑变黑,表明切削温度过高,此时应降低切削速度。

不锈钢的导热率较低,其热量不能很好地传至切屑,所以加工不锈钢应选用适当的切削速度,使切屑带有淡淡的棕褐色。如果切屑变成深褐色,表明其切削速度已达最高限度。有时,为避免刀瘤,加工不锈钢切削热又是需要的。另外,冷却液会使切屑冷却太快而熔合在刀片上,导致刀具寿命降低。

过高的进给量会引起材料的堆积,而进给量过低又会使刀具与工件发生摩擦,也会导致过热。

干切的目标是调整切削速度与进给量,使热传到切屑而不是工件或铣刀上。因此,应避免使用冷却液,以便观察飞溅的切屑,适当地调整主轴速度和进给量。热切屑意味着热量没有传到零件和刀具上,不会发生热裂纹,从而延长了刀具寿命。但当加工易燃性的材料(如镁和钛)时,应注意冷却并备好灭火设施。

值得一提的是,当干切时,在螺纹/铣刀体的结合面应涂少量防止“咬死”(难以拆卸)的化合物也很重要,但要注意不要带进污物,否则会影响铣刀的安装精度。

顺铣和逆铣

大多数平面铣削都是在带有丝杠或滚珠丝杠的轻型机床上用逆铣方式来完成。但是,应尽量采用顺铣,这样会取得更好的加工效果。因为逆铣时,刀片切入前产生强烈摩擦,造成加工表面硬化,使下一个刀齿难以切入。当顺铣时,应使铣削宽度大约等于2/3铣刀直径,这可保证刀刃一开始就能立即切入工件,几乎没有摩擦。如果小于1/2铣刀直径,则刀片又开始“摩擦”工件,因为切入时切削厚度变小,每齿进给量也将因径向切削宽度的变窄而减小。“摩擦”的结果使刀具寿命缩短,对于硬质合金刀具,增加每齿进给量和减小切削深度是比较有利的。所以粗铣时,若径向切削宽度小于铣刀半径时,增加走刀量,其刀具寿命将会提高,加工时间随之缩短。当然,精铣需要工件表面光洁,所以应限制走刀量。

试调这一径向铣削宽度,确定铣刀直径与径向铣削宽度之比的工作,最好在高精度机床上进行,以便在调整比率的同时,观察其工件表面粗糙度的变化。

铣削效率的评价

面铣工作效率可以用多种方式衡量,一种是通过确定每分钟金属切除量,即:WOC(切削宽度)×DOC(切削深度)×FR(走刀量)。如:3(WOC)×0.150英寸(DOC)×3.5英寸/minFR=15.75立方英寸/分。金属切除率表示的是切下的金属体积,所用的机床功率能否达到这个切除率要取决于被加工金属的硬度。因而有另外一种衡量方法,就是直接计算铣削所需动率。它等于:金属切除率×材料硬度系数。如:铝硬度系数约为0.3,则所需功率为15.75×0.3=4.725(马力);4140钢硬度系数约为0.7,所需功率为15.75×0.7=11(马力),硬度系数可查有关手册、资料

金属热处理的工艺及硬度表示一、热处理工艺

热处理工艺一般包括加热、保温、冷却三个过程,有时只有加热和冷却两个过程。这些过程互相衔接,不可间断。

加热是热处理的重要工序之一。金属热处理的加热方法很多,最早是采用木炭和煤作为热源,进而应用液体和气体燃料。电的应用使加热易于控制,且无环境污染。利用这些热源可以直接加热,也可以通过熔融的盐或金属,以至浮动粒子进行间接加热。

金属加热时,工件暴露在空气中,常常发生氧化、脱碳(即钢铁零件表面碳含量降低),这对于热处理后零件的表面性能有很不利的影响。因而金属通常应在可控气氛或保护气氛中、熔融盐中和真空中加热,也可用涂料或包装方法进行保护加热。

加热温度是热处理工艺的重要工艺参数之一,选择和控制加热温度,是保证热处理质量的主要问题。加热温度随被处理的金属材料和热处理的目的不同而异,但一般都是加热到相变温度以上,以获得高温组织。另外转变需要一定的时间,因此当金属工件表面达到要求的加热温度时,还须在此温度保持一定时间,使内外温度一致,使显微组织转变完全,这段时间称为保温时间。采用高能密度加热和表面热处理时,加热速度极快,一般就没有保温时间,而化学热处理的保温时间往往较长。

冷却也是热处理工艺过程中不可缺少的步骤,冷却方法因工艺不同而不同,主要是控制冷却速度。一般退火的冷却速度最慢,正火的冷却速度较快,淬火的冷却速度更快。但还因钢种不同而有不同的要求,例如空硬钢就可以用正火一样的冷却速度进行淬硬。

金属热处理工艺大体可分为整体热处理、表面热处理和化学热处理三大类。根据加热介质、加热温度和冷却方法的不同,每一大类又可区分为若干不同的热处理工艺。同一种金属采用不同的热处理工艺,可获得不同的组织,从而具有不同的性能。钢铁是工业上应用最广的金属,而且钢铁显微组织也最为复杂,因此钢铁热处理工艺种类繁多。

整体热处理是对工件整体加热,然后以适当的速度冷却,以改变其整体力学性能的金属热处理工艺。钢铁整体热处理大致有退火、正火、淬火和回火四种基本工艺。

退火是将工件加热到适当温度,根据材料和工件尺寸采用不同的保温时间,然后进行缓慢冷却,目的是使金属内部组织达到或接近平衡状态,获得良好的工艺性能和使用性能,或者为进一步淬火作组织准备。正火是将工件加热到适宜的温度后在空气中冷却,正火的效果同退火相似,只是得到的组织更细,常用于改善材料的切削性能,也有时用于对一些要求不高的零件作

为最终热处理。

淬火是将工件加热保温后,在水、油或其他无机盐、有机水溶液等淬冷介质中快速冷却。淬火后钢件变硬,但同时变脆。为了降低钢件的脆性,将淬火后的钢件在高于室温而低于650℃的某一适当温度进行长时间的保温,再进行冷却,这种工艺称为回火。退火、正火、淬火、回火是整体热处理中的“四把火”,其中的淬火与回火关系密切,常常配合使用,缺一不可。

“四把火”随着加热温度和冷却方式的不同,又演变出不同的热处理工艺。为了获得一定的强度和韧性,把淬火和高温回火结合起来的工艺,称为调质。某些合金淬火形成过饱和固溶体后,将其置于室温或稍高的适当温度下保持较长时间,以提高合金的硬度、强度或电性磁性等。这样的热处理工艺称为时效处理。

把压力加工形变与热处理有效而紧密地结合起来进行,使工件获得很好的强度、韧性配合的方法称为形变热处理;在负压气氛或真空中进行的热处理称为真空热处理,它不仅能使工件不氧化,不脱碳,保持处理后工件表面光洁,提高工件的性能,还可以通入渗剂进行化学热处理。

表面热处理是只加热工件表层,以改变其表层力学性能的金属热处理工艺。为了只加热工件表层而不使过多的热量传入工件内部,使用的热源须具有高的能量密度,即在单位面积的工件上给予较大的热能,使工件表层或局部能短时或瞬时达到高温。表面热处理的主要方法有火焰淬火和感应加热热处理,常用的热源有氧乙炔或氧丙烷等火焰、感应电流、激光和电子束等。

化学热处理是通过改变工件表层化学成分、组织和性能的金属热处理工艺。化学热处理与表面热处理不同之处是后者改变了工件表层的化学成分。化学热处理是将工件放在含碳、氮或其他合金元素的介质(气体、液体、固体)中加热,保温较长时间,从而使工件表层渗入碳、氮、硼和铬等元素。渗入元素后,有时还要进行其他热处理工艺如淬火及回火。化学热处理的主要方法有渗碳、渗氮、渗金属。

热处理是机械零件和工模具制造过程中的重要工序之一。大体来说,它可以保证和提高工件的各种性能,如耐磨、耐腐蚀等。还可以改善毛坯的组织和应力状态,以利于进行各种冷、热加工。

例如白口铸铁经过长时间退火处理可以获得可锻铸铁,提高塑性;齿轮采用正确的热处理工艺,使用寿命可以比不经热处理的齿轮成倍或几十倍地提高;另外,价廉的碳钢通过渗入某些合金元素就具有某些价昂的合金钢性能,可以代替某些耐热钢、不锈钢;工模具则几乎全部需要经过热处理方可使用

二、硬度表示

硬度表示材料抵抗硬物体压入其表面的能力。它是金属材料的重要性能指标之一。一般硬度越高,耐磨性越好。常用的硬度指标有布氏硬度、洛氏硬度和维氏硬度。

1.布氏硬度(HB)

以一定的载荷(一般3000kg)把一定大小(直径一般为10mm)的淬硬钢球压入

材料表面,保持一段时间,去载后,负荷与其压痕面积之比值,即为布氏硬度值(HB),单位为公斤力/mm2 (N/mm2)。

2.洛氏硬度(HR)

当HB>450或者试样过小时,不能采用布氏硬度试验而改用洛氏硬度计量。它是用一个顶角120°的金刚石圆锥体或直径为1.59、3.18mm的钢球,在一定载荷下压入被测材料表面,由压痕的深度求出材料的硬度。根据试验材料硬度的不同,分三种不同的标度来表示:

∙HRA:是采用60kg载荷和钻石锥压入器求得的硬度,用于硬度极高的材料(如硬质合金等)。

∙HRB:是采用100kg载荷和直径1.58mm淬硬的钢球,求得的硬度,用于硬度较低的材料(如退火钢、铸铁等)。

∙HRC:是采用150kg载荷和钻石锥压入器求得的硬度,用于硬度很高的材料(如淬火钢等)。

3 维氏硬度(HV)

以120kg以内的载荷和顶角为136°的金刚石方形锥压入器压入材料表面,用材料压痕凹坑的表面积除以载荷值,即为维氏硬度HV值(kgf/mm2)。

塑料模具的抛光处理

随着塑料制品日溢广泛的应用,外观的需要往往要求塑料模具型腔的表面达到镜面抛光的程度。而生产光学镜片、镭射唱片等模具对表面粗糙度要求极高,因而对抛光性的要求也极高。抛光不仅增加工件的美观,而且能够改善材料表面的耐腐蚀性、耐磨性,还可以使模具拥有其它优点,如使塑料制品易于脱模,减少生产注塑周期等。因而抛光在塑料模具制作过程中是很重要的一道工序。

目前常用的抛光方法有以下几种:

1.1 机械抛光

机械抛光是靠切削、材料表面塑性变形去掉被抛光后的凸部而得到平滑面的抛光方法,一般使用油石条、羊毛轮、砂纸等,以手工操作为主,特殊零件如回转体表面,可使用转台等辅助工具,表面质量要求高的可采用超精研抛的方法。超精研抛是采用特制的磨具,在含有磨料的研抛液中,紧压在工件被加工表面上,作高速旋转运动。利用该技术可以达到Ra0.008μm的表面粗糙度,是各种抛光方法中最高的。光学镜片模具常采用这种方法。

1.2 化学抛光

化学抛光是让材料在化学介质中表面微观凸出的部分较凹部分优先溶解,从而得到平滑面。这种方法的主要优点是不需复杂设备,可以抛光形状复杂的工件,可以同时抛光很多工件,效率高。化学抛光的核心问题是抛光液的配制。化学抛光得到的表面粗糙度一般为数10μm。

1.3 电解抛光

电解抛光基本原理与化学抛光相同,即靠选择性的溶解材料表面微小凸出部分,使表面光滑。与化学抛光相比,可以消除阴极反应的影响,效果较好。电化学抛光过程分为两步:

(1)宏观整平溶解产物向电解液中扩散,材料表面几何粗糙下降,Ra>1μm。

(2)微光平整阳极极化,表面光亮度提高,Ra<1μm。

1.4 超声波抛光

将工件放入磨料悬浮液中并一起置于超声波场中,依靠超声波的振荡作用,使磨料在工件表面磨削抛光。超声波加工宏观力小,不会引起工件变形,但工装制作和安装较困难。超声波加工可以与化学或电化学方法结合。在溶液腐蚀、电解的基础上,再施加超声波振动搅拌溶液,使工件表面溶解产物脱离,表面附近的腐蚀或电解质均匀;超声波在液体中的空化作用还能够抑制腐蚀过程,利于表面光亮化。

1.5 流体抛光

流体抛光是依靠高速流动的液体及其携带的磨粒冲刷工件表面达到抛光的目的。常用方法有:磨料喷射加工、液体喷射加工、流体动力研磨等。流体动力研磨是由液压驱动,使携带磨粒的液体介质高速往复流过工件表面。介质主要采用在较低压力下流过性好的特殊化合物(聚合物状物质)并掺上磨料制成,磨料可采用碳化硅粉末。

1.6 磁研磨抛光

磁研磨抛光是利用磁性磨料在磁场作用下形成磨料刷,对工件磨削加工。这种方法加工效率高,质量好,加工条件容易控制,工作条件好。采用合适的磨料,表面粗糙度可以达到Ra0.1μm。

在塑料模具加工中所说的抛光与其他行业中所要求的表面抛光有很大的不同,严格来说,模具的抛光应该称为镜面加工。它不仅对抛光本身有很高的要求并且对表面平整度、光滑度以及几何精确度也有很高的标准。表面抛光一般只要求获得光亮的表面即可。镜面加工的标准分为四级:AO=Ra0.008μm,A1=Ra0.016μm,A3=Ra0.032μm,A4=Ra0.063μm,由于电解抛光、流体抛光等方法很难精确控制零件的几何精确度,而化学抛光、超声波抛光、磁研磨抛光等方法的表面质量又达不到要求,所以精密模具的镜面加工还是以机械抛光为主。

2.1 机械抛光基本程序

要想获得高质量的抛光效果,最重要的是要具备有高质量的油石、砂纸和钻石研磨膏等抛光工具和辅助品。而抛光程序的选择取决于前期加工后的表面状况,如机械加工、电火花加工,磨加工等等。机械抛光的一般过程如下:

(1)粗抛经铣、电火花、磨等工艺后的表面可以选择转速在35 000—40 000 rpm的旋转表面抛光机或超声波研磨机进行抛光。常用的方法有利用直径Φ3mm、WA # 400的轮子去除白色电火花层。然后是手工油石研磨,条状油石加煤油作为润滑剂或冷却剂。一般的使用顺序为#180 ~ #240 ~ #320 ~ #400 ~ #600 ~ #800 ~ #1000。为了节约时间,一般选择从#400开始。

(2)半精抛半精抛主要使用砂纸和煤油。砂纸的号数依次为:#400 ~ #600 ~ #800 ~ #1000 ~ #1200 ~ #1500。实际上#1500砂纸只用适于淬硬的模具钢(52HRC 以上),而不适用于预硬钢,因为这样可能会导致预硬钢件表面烧伤。

(3)精抛精抛主要使用钻石研磨膏。若用抛光布轮混合钻石研磨粉或研磨膏进行研磨的话,则通常的研磨顺序是9μm(#1800)~ 6μm(#3000)~3μm (#8000)。9μm的钻石研磨膏和抛光布轮可用来去除#1200和#1500号砂纸留下的发状磨痕。接着用粘毡和钻石研磨膏进行抛光,顺序为1μm(#14000)~ 1/2μm(#60000)~1/4μm(#100000)。

精度要求在1μm以上(包括1μm)的抛光工艺在模具加工车间中一个清洁的抛光室内即可进行。若进行更加精密的抛光则必需一个绝对洁净的空间。灰尘、烟雾,头皮屑和口水沫都有可能报废数个小时工作后得到的高精密抛光表面。

2.2 机械抛光中要注意的问题

用砂纸抛光应注意以下几点:

(1)用砂纸抛光需要利用软的木棒或竹棒。在抛光圆面或球面时,使用软

木棒可更好的配合圆面和球面的弧度。而较硬的木条像樱桃木,则更适用于平整表面的抛光。修整木条的末端使其能与钢件表面形状保持吻合,这样可以避免木条(或竹条)的锐角接触钢件表面而造成较深的划痕。

(2)当换用不同型号的砂纸时,抛光方向应变换45°~ 90°,这样前一种型号砂纸抛光后留下的条纹阴影即可分辨出来。在换不同型号砂纸之前,必须用100%纯棉花沾取酒精之类的清洁液对抛光表面进行仔细的擦拭,因为一颗很小的沙砾留在表面都会毁坏接下去的整个抛光工作。从砂纸抛光换成钻石研磨膏抛光时,这个清洁过程同样重要。在抛光继续进行之前,所有颗粒和煤油都必须被完全清洁干净。

(3)为了避免擦伤和烧伤工件表面,在用#1200和#1500砂纸进行抛光时必须特别小心。因而有必要加载一个轻载荷以及采用两步抛光法对表面进行抛光。用每一种型号的砂纸进行抛光时都应沿两个不同方向进行两次抛光,两个方向之间每次转动45°~ 90°。

钻石研磨抛光应注意以下几点:

(1)这种抛光必须尽量在较轻的压力下进行特别是抛光预硬钢件和用细研磨膏抛光时。在用#8000研磨膏抛光时,常用载荷为100~200g/cm2,但要保持此载荷的精准度很难做到。为了更容易做到这一点,可以在木条上做一个薄且窄的手柄,比如加一铜片;或者在竹条上切去一部分而使其更加柔软。这样可以帮助控制抛光压力,以确保模具表面压力不会过高。

(2)当使用钻石研磨抛光时,不仅是工作表面要求洁净,工作者的双手也必须仔细清洁。

(3)每次抛光时间不应过长,时间越短,效果越好。如果抛光过程进行得过长将会造成“橘皮”和“点蚀”。

(4)为获得高质量的抛光效果,容易发热的抛光方法和工具都应避免。比如:抛光轮抛光,抛光轮产生的热量会很容易造成“橘皮”。

(5)当抛光过程停止时,保证工件表面洁净和仔细去除所有研磨剂和润滑剂非常重要,随后应在表面喷淋一层模具防锈涂层。

由于机械抛光主要还是靠人工完成,所以抛光技术目前还是影响抛光质量的主要原因。除此之外,还与模具材料、抛光前的表面状况、热处理工艺等有关。优质的钢材是获得良好抛光质量的前提条件,如果钢材表面硬度不均或特性上有差异,往往会产生抛光困难。钢材中的各种夹杂物和气孔都不利于抛光。

3.1 不同硬度对抛光工艺的影响

硬度增高使研磨的困难增大,但抛光后的粗糙度减小。由于硬度的增高,要达到较低的粗糙度所需的抛光时间相应增长。同时硬度增高,抛光过度的可能性相应减少。

3.2 工件表面状况对抛光工艺的影响

钢材在切削机械加工的破碎过程中,表层会因热量、内应力或其他因素而损坏,切削参数不当会影响抛光效果。电火花加工后的表面比普通机械加工或热处理后的表面更难研磨,因此电火花加工结束前应采用精规准电火花修整,否则表面会形成硬化薄层。如果电火花精修规准选择不当,热影响层的深度最大可达0.4mm。硬化薄层的硬度比基体硬度高,必须去除。因此最好增加一道粗磨加工,彻底清除损坏表面层,构成一片平均粗糙的金属面,为抛光加工提供一个良好基

础。

注塑成型常见问题及原因分析

一.龟裂

龟裂是塑料制品较常见的一种缺陷,产生的主要原因是由于应力变形所致。主要有残余应力、外部应力和外部环境所产生的应力变形。

(-)残余应力引起的龟裂

残余应力主要由于以下三种情况,即充填过剩、脱模推出和金属镶嵌件造成的。作为在充填过剩的情况下产生的龟裂,其解决方法主要可在以下几方面入手:

(1)由于直浇口压力损失最小,所以,如果龟裂最主要产生在直浇口附近,则可考虑改用多点分布点浇口、侧浇口及柄形浇口方式。

(2)在保证树脂不分解、不劣化的前提下,适当提高树脂温度可以降低熔融粘度,提高流动性,同时也可以降低注射压力,以减小应力。

(3)一般情况下,模温较低时容易产生应力,应适当提高温度。但当注射速度较高时,即使模温低一些,也可减低应力的产生。

(4)注射和保压时间过长也会产生应力,将其适当缩短或进行Th次保压切换效果较好。

(5)非结晶性树脂,如 AS树脂、 ABS树脂、 PMMA树脂等较结晶性树脂如聚乙烯、聚甲醛等容易产生残余应力,应予以注意。

脱模推出时,由于脱模斜度小、模具型胶及凸模粗糙,使推出力过大,产生应力,有时甚至在推出杆周围产生白化或破裂现象。只要仔细观察龟裂产生的位置,即可确定原因。

在注射成型的同时嵌入金属件时,最容易产生应力,而且容易在经过一段时间后才产生龟裂,危害极大。这主要是由于金属和树脂的热膨胀系数相差悬殊产生应力,而且随着时间的推移,应力超过逐渐劣化的树脂材料的强度而产生裂纹。

通用型聚苯乙烯基本上不适于宜加镶嵌件,而镶嵌件对尼龙的影响最小。由于玻璃纤维增强树脂材料的热膨胀系数较小,比较适合嵌入件。

另外,成型前对金属嵌件进行预热,也具有较好的效果。

(二)外部应力引起的龟裂

这里的外部应力,主要是因设计不合理而造成应力集中,特别是在尖角处更需注意。

(三)外部环境引起的龟裂

化学药品、吸潮引起的水降解,以及再生料的过多使用都会使物性劣化,产生龟裂。

二、充填不足

充填不足的主要原因有以下几个方面:

⑴树脂容量不足。

⑵型腔内加压不足。

⑶树脂流动性不足。

⑷排气效果不好。

作为改善措施,主要可以从以下几个方面入手:

1)加长注射时间,防止由于成型周期过短,造成浇口固化前树脂逆流而难于充满型腔。

2)提高注射速度。

3)提高模具温度。

4)提高树脂温度。

5)提高注射压力。

6)扩大浇口尺寸。一般浇口的高度应等于制品壁厚的1/2~l/3。

7)浇口设置在制品壁厚最大处。

8)设置排气槽(平均深度0.03mm、宽度3~smm)或排气杆。对于较小工件更为重要。

9)在螺杆与注射喷嘴之间留有一定的缓冲距离。

10)选用低粘度等级的材料。

11)加入润滑剂。

三、皱招及麻面

产生这种缺陷的原因在本质上与充填不足相同,只是程度不同。因此,解决方法也与上述方法基本相同。特别是对流动性较差的树脂(如聚甲醛、PMMA 树脂、聚碳酸酯及PP树脂等)更需要注意适当增大浇口和适当的注射时间。

四、缩坑

缩坑的原因也与充填不足相同,原则上可通过过剩充填加以解决,但却会有产生应力的危险,应在设计上注意壁厚均匀,应尽可能地减少加强肋、凸柱等地方的壁厚。

五、溢边

对于溢边的处理重点应主要放在模具的改善方面。而在成型条件上,则可在降低流动性方面着手。具体地可采用以下几种方法:

1)降低注射压力。

2)降低树脂温度。

4)选用高粘度等级的材料。

5)降低模具温度。

6)研磨溢边发生的模具面。

7)采用较硬的模具钢材。

8)提高锁模力。

9)调整准确模具的结合面等部位。

10)增加模具支撑柱,以增加刚性。

ll)根据不同材料确定不同排气槽的尺寸。

六、熔接痕

熔接痕是由于来自不同方向的熔融树脂前端部分被冷却、在结合处未能完全融合而产生的。一般情况下,主要影响外观,对涂装、电镀产生影响。严重时,对制品强度产生影响(特别是在纤维增强树脂时,尤为严重)。可参考以下几项予以改善:

l)调整成型条件,提高流动性。如,提高树脂温度、提高模具温度、提高注射压力及速度等。

2)增设排气槽,在熔接痕的产生处设置推出杆也有利于排气。

3)尽量减少脱模剂的使用。

4)设置工艺溢料并作为熔接痕的产生处,成型后再予以切断去除。

5)若仅影响外观,则可改变烧四位置,以改变熔接痕的位置。或者将熔接痕产生的部位处理为暗光泽面等,予以修饰。

七、烧伤

根据由机械、模具或成型条件等不同的原因引起的烧伤,采取的解决办法也不同。

1)机械原因,例如,由于异常条件造成料筒过热,使树脂高温分解、烧伤后注射到制品中,或者由于料简内的喷嘴和螺杆的螺纹、止回阀等部位造成树脂的滞流,分解变色后带入制品,在制品中带有黑褐色的烧伤痕。这时,应清理喷嘴、螺杆及料筒。

2)模具的原因,主要是因为排气不良所致。这种烧伤一般发生在固定的地方,容易与第一种情况区别。这时应注意采取加排气槽反排气杆等措施。

3)在成型条件方面,背压在300MPa以上时,会使料筒部分过热,造成烧伤。螺杆转速过高时,也会产生过热,一般在40~90r/min范围内为好。在没设排气槽或排气槽较小时,注射速度过高会引起过热气体烧伤。

八、银线

银线主要是由于材料的吸湿性引起的。因此,一般应在比树脂热变形温度低10~15C的条件下烘干。对要求较高的PMMA树腊系列,需要在75t)左右的条件下烘干4~6h。特别是在使用自动烘干料斗时,需要根据成型周期(成型量)及干燥时间选用合理的容量,还应在注射开始前数小时先行开机烘料。

另外,料简内材料滞流时间过长也会产生银线。不同种类的材料混合时,例如聚苯乙烯和ABS树脂、AS树脂,聚丙烯和聚苯乙烯等都不宜混合。

九、喷流纹

喷流纹是从浇口沿着流动方向,弯曲如蛇行一样的痕迹。它是由于树脂由浇口开始的注射速度过高所导致。因此,扩大烧四横截面或调低注射速度都是可

机械制图与识图从入门到精通

机械制图与识图从入门到精通 机械制图与识图是一门涉及到工程设计和制造的重要学科,它是通 过图纸来传达和记录产品的形状、尺寸、材料和制造工艺等信息。 下面是一个从入门到精通的机械制图与识图的学习路径: 1. 学习基础知识: - 了解机械制图的基本概念和术语,如尺寸、标注、投影等。 - 学习机械制图的基本符号和标准,如ISO制图标准。 - 掌握常用的制图工具和软件,如AutoCAD、SolidWorks等。 2. 学习制图方法: - 学习常用的制图方法,如正投影、轴测投影、剖视图等。 - 掌握制图的基本步骤和规范,如选择适当的视图、标注尺寸等。 - 学习如何绘制常见的零件图,如轴、齿轮、螺纹等。 3. 学习图纸阅读与解析: - 学习如何读懂机械图纸,包括视图的识别、尺寸的解读等。 - 学习如何解析图纸中的特殊要求和要点,如公差、装配关系等。 - 学习如何根据图纸进行零件的加工和装配。 4. 提高实践能力: - 进行大量的练习,绘制各类零件图和装配图。 - 参与实际的工程项目,学习如何将设计图纸转化为实际产品。 - 学习如何进行图纸的修订和更新,以适应设计变更和工艺改进。 5. 深入研究专业领域: - 学习特定领域的制图和识图技术,如模具设计、机械结构设计等。 - 学习如何应用计算机辅助设计和制图软件进行高级设计和分析。 - 深入研究相关领域的最新技术和发展趋势,保持学习和进步。 总结起来,机械制图与识图的学习过程需要通过理论学习、实践操

作和不断提高的方式来进行。只有不断学习和实践,才能掌握机械制图与识图的技能,并且在实际工程项目中能够独立完成设计和制造任务。

机械制图基础知识

机械识图基础知识 1、机械图样的概念 (1)工程图样:工程技术上根据投影方法并遵照国家标准的规定绘制成的用于工程施工或产品制造等用途的图叫做工程图样,简称图样。 ◆工程图样可分为:机械图样、建筑图样、水利工程图样等。 (2)机械图样:是专门研究绘制机械图样理论和方法。是生产中最基本的技术文件;是设计、制造、检验、装配产品的依据;是进行科技交流的工程技术语言。它的主要内容为一组用正投影法绘制成的机件视图,还有加工制造所需的尺寸和技术要求。 2、投影 (1)投影的基本概念 ◆用灯光或日光照射物体,在地面或墙面上就会产生影子,这种现象就叫投影。 ◆正投影:当投射线互相平行,并与投影面垂直时,物体在投影面上所得的投影叫正投影。 (2)三面视图:指物体在正投影面所得主视图、在水平投影面所得的俯视图、在侧投影面所得左视图的总称。(亦为常说的三视图). ◆主视图:表示从物体的前方向后看的形状和长度、高度方向的尺寸以及左右、上下方向的位置。 ◆俯视图:表示从物体上方向下俯视的形状和长度、宽度方向的尺寸以及左右、前后方向的位置。 ◆左视图:表示从物体左方向右看的形状和宽度、高度方向的尺寸以及前后、上下方向的位置。 3、图纸视角 (1)视角定义图样的画法:两种形式:“第一视角”和“第三视角” ◆ISO国际标准规定:在表达机件结构中,第一角和第三角投影法同等有效。 我国则侧重第一角画法(英国、德国等),有些公司则侧重第三角画法,(美国、日本及港资台资企业) ◆视角定义 第一视角:是按人(观察者)--物(机件)--面(投影面)的相对位置,作正投影所得的图形的方法。 第三视角:是按人--面--物的相对位置关系,作正投影所得的图形的方法。 (2)在图纸上视角识别 ◆第一视角:first angle ◆第三视角:third angle

技能高考系列-机械制图与识图

技能高考系列-机械制图与识图 名称。例如:角度为30度10分5秒,则在图样上应标注成 “30o10′5″”。③图样中所标注的尺寸,为该图样所示机件的最后完工尺寸,否则应另加说明。④机件的每一尺寸,一般只标注一次,并应标注在反映该结构最清晰的图形上。2、尺寸标注的三要素 ①尺寸界线用来表示所注尺寸的范围界限,应用细实线绘制。 ②尺寸线应用细实线绘制,标注线性尺寸时,应与被注长度平行,与尺寸界线垂直相交,但不应超出尺寸界线外。③尺寸数字 尺寸数字一般注写在尺寸线的中部。水平方向的尺寸,尺寸数字要写在尺寸线的上面,字头朝上;竖直方向的尺寸,尺寸数字要写在尺寸线的左侧,字头朝左;倾斜方向的尺寸,尺寸数字的方向应按下图规定注写。应尽可能避免在图中所示30°影线范围内标注尺寸数字,当无法避免时可按下面的形式注写。对于非水平方向的尺寸数字,在不致引起误解时,其数字也可水平地注写在尺寸线的中断处,但在同一图样中,应采用同一种方法注写尺寸数字。 尺寸数字的注写方向非水平方向的尺寸数字的注写方向 3、常用尺寸标注方法 -33- -34- 4、尺寸标注常用符号名称板厚度45°倒角正方形深度沉孔或锪平埋头孔均布符号tC□VEQS 5、尺寸标注的注意事项(1)标注时,尺寸数字

不可被任何图线所通过;否则必须将图线断开。(2)标注参考尺寸时, 应将尺寸数字加上圆括弧。6、特定要求的尺寸注法 -35- 巩固练习:填空: 1、图纸的幅面分为幅面和幅面两类,基本幅面按尺寸大小可分为种,其代号分别为。 2、图纸格式分为和种,按照标题栏的方位又可将图纸格式分为和两种。 3、标题栏应位于图纸的,标题栏中的文字方向为。 4、比例是指图中 与其之比。图样上标注的尺寸应是机件的尺寸,与所采用的比例关。 5、常用比例有、和三种;比例1:2是指是的2倍,属于比例。 6、图时应尽量采用比例,需要时也可采用或的比例。无论采用何种 比例,图样中所注的尺寸,均为机件的。 7、图样中汉字应用体书写,数字和字母应书写为体或体,字号指字 体的。 8、标注尺寸的三要素是、。 -36-

机械制图,识图

机械识图,制图 一.制图的基本知识; 1.基本本制图标准; .图纸幅面和格式. 纸基本幅面和代号 2 3 4. 1)机件的真实大小应以图样上所注的尺寸数值为依据,与图形的大小及绘图的准确度无关; 2)图样上的尺寸以毫米为单位,不需标注计量单位的代号或名称,如采用其它单位,则必须注明相应的计量单位的代号或名称; 3)机件的每一个尺寸,一般只标注一次,并应标注在反映该结构最清晰的图形上;

,如: 6.标注方法及简化标注附图 7.弧连接 斜度 2锥度 2 2 2d D tg C -= =α 二. 投影的基本特性. 5)中心投影法:光源较近 6)平行投影法:投射中心无限运 ① 正投影:投影方向与投影平面垂直 ② 斜投影:投影方向与投影平面成一定的倾斜角 7)立视图:正面,正立投影面V 8)俯视图:水平面,水平投影面H 9)侧视面:侧面,侧立投影面W 10) 投影轴:投影面之交线,OX 、OY 、OZ

11)原点:三根投影轴相互垂直交为一点 2、视图的“三等”规律:长对正、交平齐、高相等; 3、视图与物体之关系;第一角投影 1)主视图反映物体的上、下和左、右 2)俯视图反映物体的左、右和前、后 3)左视图反映物体的上、下和前、后 4、投影的特性 1)相拟性 2)积聚性 5、物体的截交线几何体被平面称为截平面截切,在其表面上产生的交线 1)截交线是截平面与被截立体表面的共有线 2)截交线是一个闭合的平面图形 6、几何体的尺寸注法 1)平面立体,一般标注长、宽、高三方面的尺寸 2)正棱柱、正棱锥、标注高度及底部的外接圆直线 3)圆柱、圆台,则标出高度和底圆直径 4)球只标注其直径或半径 7、轴测图 1)概念: a.轴测图; b.轴测轴; c.轴间角; d.轴向伸缩系数 2)正等测图 ①、三轴类角为1200 ②、伸缩系数为,实际作图时取为1 3)斜二测图 ①、OX与OZ夹角为900,伸缩系数为1 ②、OY与OZ平角及DY与OX夹角为135°,伸缩系数为 ③、图在OXY面上一中心线与OX夹角7°1ˊ 8、组合体正形体分析法 1)组合形式: ①、叠加 a.堆积平面与平面 b.相切平面、圆与圆 c.相贯相交 ②、切割 ③、综合即有叠加,又有切割 2)组合体的画法 ①、三视图 a.形体分析 b.选择主视图主要特征及正常位置 c.选比例定图幅 d.布置视图 e.绘制底稿1

机械制图基础知识大全

机械制图基础知识大全 1. 纸幅面按尺寸大小可分为5种,图纸幅面代号分别为A0 A1、A2、A3 A4。图框右 下角必须要有一标题栏,标题栏中的文字方向为与看图方向一致。 2. 图线的种类有粗实线、细实线、波浪线、双折线、虚线、细点划线、粗点划线、 双点划线等八类 3. 图样中,机件的可见轮廓线用粗实线画出,不可见轮廓线用虚线画出,尺寸线 和尺寸界线用细实线画出来,对称中心线和轴线用细点划线画出。虚线、细实线和细点划线的图线宽度约为粗实线的1/3。 4. 比例是指图中图形尺寸与实物尺寸之比。 5. 比例1:2是指实物尺寸是图形尺寸的2倍,属于缩小比例。 6. 比例2:1是指图形尺寸是实物尺寸的2倍,属于放大比例。 7. 在画图时应尽量采用原值比例的比例,需要时也可采用放大或缩小的比例,其中 1:2为缩小比例,2:1为放大比例无论采用那种比例图样上标注的应是机件的实际尺寸。 8. 图样中书写的汉字、数字和字母,必须做到字体工整,笔画清楚,间隔均匀, 排列整齐,汉字应用长仿宋体书写。 9. 标注尺寸的三要素是尺寸界限、尺寸线、尺寸数字。 10. 尺寸标注中的符号:R表示圆半径,巾表示圆直径,S巾表示球直径。 11. 图样上的尺寸是零件的实际尺寸,尺寸以毫米为单位时,不需标注代号或名称。 12. 标准水平尺寸时,尺寸数字的字头方向应向上;标注垂直尺寸时,尺寸数字的 字头方向应朝左。角度的尺寸数字一律按水平位置书写。当任何图线穿过尺寸数字时都必须断开。 13. 斜度是指斜线对水平线的倾斜程度,用符号/表示,标注时符号的倾斜方向应 与所标斜度的倾斜方向一致。 所标锥度方向一致。 15. 符号1: 10”表示斜度1:10,符号“八-1:5”表示锥度1:5。 16. 平面图形中的线段可分为已知线段、中间线段、连接线段三种。它们的作图顺 序应是先画出已知线段,然后画中间线段,最后画连接线段。 17. 已知定形尺寸和定位尺寸的线段叫已知线段;有定形尺寸,但定位尺寸不全的线 段叫中间线段;只有定形尺寸没有定位尺寸的线段叫连接线段。 18. 主视图所在的投影面称为正投影面,简称正面,用字母V表示。俯视图所在的 投影面称为水平投影面,简称水平面,用字母H表示。左视图所在的投影面称为侧投影面,简称侧面,用字母W表示。 19. 三视图的投影规律是,主视图与俯视图等长;主视图与左视图等高;俯视图与 左视图等宽。 20. 零件有长、宽、高三个方向的尺寸,主视图上能反映零件的长和高,俯视图上

CAD机械制图识图八大基础知识

CAD机械制图识图八大基础知识! 机械制图是机械工程语言,用图样表示机械产品的结构形状、尺寸大小、工作原理和技术要求,是机械设计与机械制造的基础学科,每一个从事机械行业的人员都应该懂机械制图。但是很多人知道机械制图原理,却不知道如何用CAD制图软件去实现它,下面给大家简单讲解CAD机械制图入门知识点: 在学习机械CAD软件前,要先学好机械制图,因为机械制图是基础。 1、学习机械制图,要注意培养自己空间想象力,要多看物体,最好是根据物体的图纸分析物体。 2、要常练习,制图的方法和技巧是在平时一点点积累起来的,练熟了,到用时才能游刃有余。 3、把复杂的问题简单化。在平时去积累一些结构,先把简单结构的三视图搞懂,再尝试着把它们组合。我们可以把一个复杂的组合体看成是由简单的结构组合成,复杂的图,只要你从深层次去观察,就只剩下你头脑中的简单结构啦。 4、学好标准件与常用件的画法,标准件与常用件的画法往往是简单化了的,但要注意它们的画法,对于初学者来说,这是最容易出错的地方,比如,螺纹和螺纹联接就是一个值得注意的地方。 5,注意学好剖视图,断面图,局部放大图的表达方法! 6,细心,制图是一个细致活儿。条线的位置、长度,都要求认真画好;不要漏画线条也不要多画线条,这是最高要求也是最基础的要求! 7、多看标准,学习致用,实践出真知。

8、常和业内人士交流,到网上看看相关内容,这有助于开拓视野,得到意想不到的知识。 一、零件图的内容 1)标题栏:位于图中的右下角,标题栏一般填写零件名称、材料、数量、图样的比例,代号和图样的责任人签名和单位名称等。标题栏的方向与看 图的方向应一致。 2)一组图形:用以表达零件的结构形状,可以采用视图、剖视、剖面、规定画法和简化画法等表达方法表达。 3)必要的尺寸:反映零件各部分结构的大小和相互位置关系,满足零件制造和检验的要求。 4)技术要求:给出零件的表面粗糙度、尺寸公差、形状和位置公差以及材料的热处理和表面处理等要求。 二、比例 比例:图中机件要素的线性尺寸与实际尺寸之比。绘图时尽量采用 1 :1 的比例。同一张图纸上,各图比例相同时,在标题栏中标注即可,采用 不同的比例时,应分别标注。 三、字体 图样中书写的汉字、数字、字母必须做到:字体端正、笔划清楚、排 列整齐、间隔均匀。字体的书写成长仿宋体,并采用国家正式公布的简化字。 四、图线 1 .图线型式及应用机件的图样是用各种不同粗细和型式的图线画成的。

机械制图与识图培训课件

机械制图与识图培训课件 一、引言 机械制图与识图是机械工程领域中非常重要的技能之一。通过掌握 机械制图的基本原理和技巧,能够帮助工程师更好地理解和表达设计 方案,有效地进行工程设计和工作过程中的沟通。本课程旨在为学员 提供机械制图与识图的基础知识和技能,帮助他们成为优秀的机械工 程师。 二、机械制图基础 2.1 机械制图的定义和作用 机械制图是用图形符号和文字来表达机械零件和装配体形状、尺寸、位置及其相互关系的技术手段。它是机械设计的重要工具,能够帮助 工程师准确地描述设计意图,便于生产制造和工程实施。

2.2 机械制图的分类 机械制图可以分为工程制图和设计制图两大类。工程制图主要用于 产品的制造和加工过程中,设计制图则侧重于产品的构思和设计过程。在本课程中,我们将重点介绍工程制图的基础知识和技巧。 2.3 机械制图的基本要素 机械制图主要由线条、符号、尺寸、标注和文字等要素组成。线条 用于表示零件的形状和轮廓,符号用于表示零件的特性和功能,尺寸 用于表示零件的尺寸和位置,标注用于说明零件的特征和要求,文字 用于表示信息和说明。 2.4 机械制图的基本图形 机械制图中常用的基本图形有直线、圆、弧和样条线等。掌握这些 基本图形的绘制方法和规范,是进行机械制图的基本要求。

三、机械制图工具和软件 3.1 机械制图工具 机械制图需要使用一些基本的绘图工具,例如铅笔、直尺、量具、曲线板等。这些工具能够帮助工程师精确地绘制图形和尺寸,提高制图的质量和效率。 3.2 机械制图软件 随着计算机技术的发展,机械制图也逐渐由手工制图向计算机辅助制图转变。目前,常用的机械制图软件有AutoCAD、SolidWorks、Pro/E等,它们提供了丰富的功能和工具,能够极大地简化制图工作流程。

机械制图与识图

机械制图与识图 机械制图与识图是机械工程中非常重要的两个方面,它们相互关联,以帮助工 程师准确地设计和生产机器或设备。机械制图是通过绘制图纸,把一个三维物体转化为二维的平面图形,以便于后续的制造和加工;而识图则是通过解读机械制图中的各种符号和标记,以识别和理解机械构件的形状、尺寸和材料等信息。 机械制图 机械制图通常是由工程师、设计师或制图员根据客户或产品需求,绘制出来的。在制图过程中,机械工程师需要了解机械制图的各种符号和标记,以及它们具有的含义。制图时需要按照国际标准或客户要求,采用相应的制图体系和标准符号,以确保图纸的专业性和可读性。 机械制图的类型分为平面图、剖面图、装配图等多种。平面图是将零件在一个 平面上进行投影绘图,以呈现它们的形状和尺寸。而剖面图则是在平面图的基础上,对零件进行截面描绘,以便于所需材料和加工工艺的选择。装配图则是用于描绘多个零件如何组成一个整体机器或装配件。 机械制图需要专业的绘图软件支持,如AutoCAD、SolidWorks、Pro/E等常用 的工具。这些软件可以帮助机械工程师用计算机绘制、编辑、存储和输出各种类型的机械制图。 识图 机械制图的理解与识别是另一个重要的方面,这需要机械工程师了解不同零件 和装配件中的各种标记和符号,以便于解析它们所表示的含义和尺寸。机械工程师不仅需要识别每个零件的尺寸和材料,还需要理解它们如何组装在一起以达到预期的功能。 在实际生产场景中,机械工程师需要依靠工具或设备来识别机械图纸。例如, 量具是用于测量物体尺寸的工具,卡尺和游标卡尺可以用来测量小尺寸零件的长度、宽度和深度。显微镜则可以用于检查零件表面是否光滑,以分辨出材料的不同。 识图与机器学习 识图在机械制图领域中的应用也随着技术的发展而不断增长。机器学习算法通 过对大量机械制图数据的学习,可以自动识别成千上万种不同的零件和装配件。这种算法可以帮助机械工程师快速地分析和评估机械图纸,并提供相应的建议。 例如,当机器学习算法检测到某个零件符号时,它可以将该零件与基准库进行 比较,然后自动提取必要的尺寸数据和材料信息。这可以大大提高机械工程师的工作效率。

机械识图的基础知识

机械识图的基础知识 1、机械图样的概念(1)工程图样:工程技术上根据投影方法并遵照国家标准的规定绘制成的用于工程施工或产品制造等用途的图叫做工程图样,简称图样。 ◆工程图样可分为:机械图样、建筑图样、水利工程图样等。 (2)机械图样:是专门研究绘制机械图样理论和方法。是生产中最基本的技术文件;是设计、制造、检验、装配产品的依据;是进行科技交流的工程技术语言。它的主要内容为一组用正投影法绘制成的机件视图,还有加工制造所需的尺寸和技术要求。 2、投影 (1)投影的基本概念 ◆用灯光或日光照射物体,在地面或墙面上就会产生影子,这种现象就叫投影。 ◆正投影:当投射线互相平行,并与投影面垂直时,物体在投影面上所得的投影叫正投影。 (2)三面视图:指物体在正投影面所得主视图、在水平投影面所得的俯视图、在侧投影面所得左视图的总称。 ◆主视图:表示从物体的前方向后看的形状和长度、高度方向的尺寸以及左右、上下方向的位置。 ◆俯视图:表示从物体上方向下俯视的形状和长度、宽度方向的尺寸以及左右、前后方向的位置。 ◆左视图:表示从物体左方向右看的形状和宽度、高度方向的尺寸以及前后、上下方向的位置。3、图纸视角 (1)视角定义图样的画法:两种形式:“第一视角”和“第三视角” ◆ISO国际标准规定:在表达机件结构中,第一角和第三角投影法同等有效。 我国则侧重第一角画法(英国、德国等),我们公司则侧重第三角画法,(美国、日本及港资台资企业) ◆视角定义 第一视角:是按人(观察者)--物(机件)--面(投影面)的相对位置,作正投影所得的图形的方法。 第三视角:是按人--面--物的相对位置关系,作正投影所得的图形的方法。 (2)视角举例识别 ◆第一视角: ◆第三视角:

机械制图与识图从入门到精通

机械制图与识图从入门到精通 概述 机械制图是一种通过图形和符号来表示物体形状、尺寸、位置和关系的方法。它是机械设计的重要环节,用于传达设计意图,制造零件和装配物体。 识图,则是对机械制图的解读能力。它包括理解和解读绘制出来的图纸以及从图纸上获取必要信息的能力。 本文将带领你从机械制图的入门到进阶,以及如何提高识图能力,使你在机械设计领域更加从容自信。 机械制图的基础知识 1. 机械制图的分类 机械制图分为工程制图和技术制图两种类型。 •工程制图:用于传达设计意图和制造信息,包括装配图、零件图、布局图、剖视图等。

•技术制图:用于制作工艺文件和加工工艺卡,包括 工艺流程图、切削加工图、焊接工艺图等。 2. 机械制图的基本要素 •线条:用于表示物体的轮廓、边缘等,常见的线条 有实线、虚线、点线等。 •尺寸与标注:用于表示物体的尺寸大小和位置关系,常见的标注形式有直线标注、径向标注、角度标注等。 •符号:代表特定零部件、特定加工工艺等,常见的 符号有螺纹、孔穴、润滑等。 3. 常用的机械制图软件 •AutoCAD:功能强大的二维绘图和三维建模软件, 是机械设计师常用的绘图工具。 •SolidWorks:用于三维实体建模和装配设计的CAD 软件,具有广泛的应用领域。 •Pro/E(Creo):专业的三维实体建模和装配设计 软件,适用于机械设计和工业设计。

机械制图的进阶技巧 1. 了解ISO制图标准 ISO制图标准是国际上通用的制图规范,掌握ISO制图标 准可以使你的图纸更加规范、易读。 •了解常用符号和注释的意义,例如螺纹符号、投影 符号等。 •熟悉标准尺寸系列,例如ISO正常系列、ISO基准 系列等。 2. 掌握常见的图纸视图 图纸视图是表达物体形状和尺寸的主要手段,掌握常见的 图纸视图可以更好地理解和读取图纸。 •正投影视图:表示物体的正面、侧面和顶面等视图。 •剖视图:表示物体的内部结构和特征。 •展开视图:用于展示折叠件和圆筒体等的展开图。

机械制图基础知识入门

机械制图基础知识入门 第一篇:机械制图基础知识入门 机械制图是机械设计的必备技能之一。它可以帮助工程师将设计构想转化为具体的三维模型,并制作出详细的工程图纸。本篇文章将介绍机械制图的基础知识,包括基本图形、投影方法、尺寸标注和符号等。 一、基本图形 机械制图中最基本的图形是直线、圆和弧线。直线有水平线和垂直线之分,圆则有正圆和圆弧之分。此外,机械制图中还经常使用椭圆、梯形和多边形等图形。 二、投影方法 制图时,首先需要选择一种投影方法。常见的投影方法有正投影、轴测投影、透视投影等。其中,正投影是最常用的方法,可以将三维物体投影到一个平面上,并且不失真。 三、尺寸标注 尺寸标注是机械制图中必不可少的元素,它可以显示出零件的具体大小和尺寸,是工程制图中最基本的要素之一。制图时,需要给出零件的长度、宽度、高度、直径、半径、孔径等详细的尺寸标注。 四、符号 符号是机械制图中的重要组成部分,它可以表示出零件的种类、特征、用途等信息。常见的符号包括螺纹、键槽、油孔、法兰、阀门等。在制图时,需要选择正确的符号,并按规定使用。

以上介绍了机械制图的基础知识,包括基本图形、投影 方法、尺寸标注和符号等。掌握这些基础知识,可以帮助工程师更好地进行机械设计和制图。 第二篇:机械制图的常用命令和技巧 除了掌握机械制图的基础知识外,还需要熟练掌握一些 常用的命令和技巧,才能更高效地进行制图。本篇文章将介绍机械制图中常用的命令和技巧,包括画线、偏移、阵列、旋转、镜像、辅助线等。 一、画线命令 画线是机械制图中最常用的操作之一。可以使用直线命 令来画直线、圆弧命令来画圆弧、多边形命令来画多边形等。使用画线命令时,需要先选择所需的命令,再根据需要输入起点和终点、半径、角度等参数。 二、偏移命令 偏移命令可将已有的线条或图形向内或向外平移,并沿 原有直线保持等距离。使用偏移命令时,需要先选择所需的命令,再选择线条或图形,并输入偏移距离。 三、阵列命令 阵列命令可将已有的线条或图形按照一定的规律进行复制,并沿某一轴线对称、旋转或平移。使用阵列命令时,需要先选择所需的命令,再选择要阵列的图形,并输入阵列数量、间距、旋转角度等参数。 四、旋转和镜像命令 旋转命令可将已有的线条或图形进行旋转,根据需求可 选择固定角度或输入任意角度。镜像命令可将已有的线条或图形进行水平或垂直镜像,可以快速地创建对称的构造。 五、辅助线命令

机械制图基本知识讲义,太全了!

机械制图基本知识讲义,太全了! 一:机械制图基本知识: 1:零件尺寸的读数及测量:车间测量零件尺寸的基本工具:卷尺和游标卡尺。 1.1:卷尺一格的距离为1mm . 1.2:游标卡尺的读数方法。 1.2.1以10分游标卡尺的读数为列: 正确读法:分三个步骤 1. 先读主尺的刻度值, 精密度为 1 mm 附尺“0”刻度位於主尺刻度“13” 与“14” 之间, 所以主尺刻度为 13 mm 2. 再看附尺与主尺重叠的刻度. 精密度为 0.1 mm(附尺右下角标注)附尺上“4”刻度与主尺重叠, 所以附尺刻度為 0.1X4=0.4 mm 3. 將主尺与附尺数值相加上面刻度代表 13.4 mm 所以该游标卡尺的读数为:13.4mm. 1.2.2游标卡尺的归零。 1.3 简单说明标注了尺寸公差的零件的合格尺寸的读法:钣金零件的尺寸标注了公差后的合格尺寸读数。通过以下几个例子来具体讲 解。例如1: ,它的意思表示如下:+0.3表示取上公差。-0.5标识取下公差。故合格尺寸为:80-0.5到80+0.3 即79.5到80.3为合格尺寸。再 如2: ,它的意思表示合格尺寸在64-0.5到64+0.5之间。即:63.5到64.5为合格尺寸。其它尺寸读法类推。 1.4下面为一份图纸的标题栏内容。标题栏位于图框的右下角,零件的名称、图号、设计者、材料

等都要在标题栏里表达清楚。 2:机械制图知识及对照图纸,翻转零件的快捷识图法: 2.1机械图概念:产品或机械设备在设计、制造、检验、安装等过程中所使用的工程图样总称为机械制造图,简称机械图,它是工业生产中必不可少的技术文件。 2.2要看懂机械图样,首先要看懂图样中的视图,因为它表达了物体的形状。要了解视图是怎样形成的,就必须先认识一下投影。投影需要有光源、投射线、物体和投影面四个条件才能得到。太阳照射树木,阳光在地面上投下了树木的影子,这其中,太阳叫做光源,太阳的光线叫做投射线,受光线照射的树木叫做物体,出现影子的地面叫做投影面,投影面上的影子即投影。利用这个原理将空间物体反映到平面上的方法叫投影法。如果假设光源在无限远处,因此投射线之间可看成互相平行,并且垂直于投影面,这种投影法就称为正投影法。正投影法能准确地表达物体的形状,度量性好,画图方便,在工程上得到广泛运用。视图:用正投影法绘制的物体的图形称为视图。 我们在日常生活中看到的物体的投影都是黑影。如图1-1(a)所示,定位板采用正投影法,得到的投影就呈黑影。它只能表达定位板外形轮廓,故正对物体前面去看,前面的中间凸起部分就表达不清。因此,我们在利用正投影原理时,要以视线代替投射线,把物体所有的轮廓,用规定的图线画出来,这样所得的平面图形就叫视图,如图1-1(b)所

机械制图识图基本知识1

机械制图基本知识 一.零件图的作用与内容 1.零件图的作用 任何机械都是由许多零件组成的,制造机器就必须先制造零件。零件图就是制造和检验零件的依据,它依据零件在机器中的位置和作用,对零件在外形、结构、尺寸、材料和技术要去等方面都提出了一定的要求。 2.零件图的内容 一张完整的零件图应该包括以下内容,如图1所示 图1 INT7 2”的零件图 (1)标题栏 位于图中的右下角,标题栏一般填写零件名称、材料、数量、图样的比例,代号和图样的责任人签名和单位名称等。标题栏的方向与看图的方向应一致。 (2)一组图形 用以表达零件的结构形状,可以采用视图、剖视、剖面、规定 标题栏 技术要求

画法和简化画法等表达方法表达。 (3)必要的尺寸反映零件各部分结构的大小和相互位置关系,满足零件制造和检验的要求。 (4)技术要求给出零件的表面粗糙度、尺寸公差、形状和位置公差以及材料的热处理和表面处理等要求。 二、视图 基本视图:物体向6个基本投影面(物体在立方体的中心,投影到前后左右上下6个方向)投影所得的视图,他们是他们是: 前视图(主视图)、左视图、右视图、顶视图、底视图及后视图。 三、全剖半剖 为了辅助了解物体内部结构及相关参数,有时候需要对物体进行剖切所得的视图

分为全剖视图和半剖视图。 全剖视图:用剖切面完全的剖开物体所得到的剖视图称为全剖试图 半剖视图:当物体具有对称平面时,向垂直于对称平面的投影面上投影所得的图形,可以对中心线为界,一半画成剖视图,另一半画成视图,称为半剖视图。 四、尺寸及其标注 1、尺寸的定义:以特定单位表示线性尺寸值的数值 2、尺寸的分类: 1)基本尺寸通过它应用上、下偏差可计算出极限尺寸的尺寸。 2)实际尺寸通过测量获得的尺寸。 3)极限尺寸一个尺寸允许的两个极端,其中最大的一个称为最大极限尺寸;较小的一个称为最小极限尺寸。 4)尺寸偏差最大极限尺寸减其基本尺寸的所得的代数差称为上偏差;最小极限尺寸减其基本尺寸所得代数差称为下偏差。上下偏差统称为极限偏差,偏差可正可负。 5)尺寸公差简称公差最大极限尺寸减去最小极限尺寸之差,它是允许尺寸的变动量。尺寸公差永为正值 ;其中Φ20为基本尺寸,0.81为公差。0.5为上偏差,-0.31例如:Φ200.5 -0.31 为下偏差。20.5和19.69分别为最大最小极限尺寸。 6)零线 在极限与配合图中,表示基本尺寸的一条直线,以其为基准确定偏差和公差。 7)标准公差 极限与配合制中,所规定的任一公差。国家标准中规定,对于一定的基本尺寸,其标准公差共有20个公差等级。 公差分为CT 、IT、JT 3个系列标准。CT系列为铸造公差标准,IT是ISO国

机械制图和识图基础

机械制图与识图基础 一个模具是由若干个零部件组装而成,设计者根据冲压产品的不同,设计不同的模具。设计者是以图样来表达其设计思想的,模具结构中每一个零部件,设计者都将会以图样的形式(标准件常用编码表示)表达出来,即“以图示物”。作为模具修理工、改制工,在进行模具修理、变更和零部件及治具加工等工作时,图纸是作业的必要依据。因此,我们必须学会看懂各种常用的机械图样,正确理解设计要求,才能按照图纸加工出合格的模具零部件,确保修模质量,提高修模效率。 一、投影与视图 工程上常用的机械图样,都是以视图来表达机械零件和部件的结构形状。要看懂图样首先要知道图样上的视图是根据什么原理和方法画出来的。掌握这些原理,了解视图的形成及画法是看懂机械图的基础。 1、投影的概念 投影概念是从日常生活中抽象出来的,太阳或灯光照射物体所得到的影子都可以看作是物体在平面上的投影。这些投影现象经科学总结,形成了用来绘制工程图样的投影方法。工程上常用的投影方法有两种: 中心投影法:特点是所有的投影线均交于一点。 平行投影法:特点是所有的投影线均互相平行。 在平行投影法中,投影线垂直于投影面的投影称为正投影。由于它能正确表达物体的真实形状和大小,作图方便,故机械图样都是采用正投影法绘制的。 2、正投影的投影特性

物体的形状各有不同,但其表面都是以直线和平面围成。物体的投影就是这些线、面投影的组合。所以研究物体的正投影特性,只要研究直线和平面的投影特性即可。根据直线和平面相对于投影面的位置不同(平行、垂直、倾斜),其投影特性各有不同。 ⑴直线的投影特性: 直线平行于投影面,投影等于实际长度; 直线垂直于投影面,投影积聚于一点; 直线倾斜于投影面,投影小于实际长度; ⑵平面的投影特性: 平面平行于投影面,投影成实际形状; 平面垂直于投影面,投影积聚于一线; 平面倾斜于投影面,投影为小于实际形状的类似形; 3、三视图的形成 在机械制图中,物体的正投影称为视图。由于物体在一个投影面上只能得到一个方向的视图,而一个视图不能唯一确定物体的空间形状,所以必须增加投影面,从物体的几个方向进行投影。一般较简单的物体,用三视图来表达物体的形状。三视图的形成过程是: 设定三个互相垂直的平面作为投影面,分别是正立投影面V(简称正面),水平投影面H(简称水平面),侧立投影面W(简称侧面)。将物体正放其中(正放是指物体的主要表面与投影面平行),然后用正投影法分别向三个投影面进行投影,得到物体的三视图。 4、三视图的投影规律

机械制图(识图培训)

一.零件图的作用与内容 1.零件图的作用任何机械都是由许多零件组成的,制造机器就必须先制造零件。零件图就是制造和检验零件的依据,它依据零件在机器中的位置和作用,对零件在外形、结构、尺寸、材料和技术要求等方面都提出了一定的要求。 2.零件图的内容 一张完整的零件图应该包括以下内容: (1)标题栏位于图中的右下角,标题栏一般填写零件名称、材料、数量、图样的比例,代号和图样的责任人签名和单位名称等。标题栏的方向与看图的方向应一致。 (2)一组图形用以表达零件的结构形状,可以采用视图、剖视、剖面、规定画法和简化画法等表达方法表达。 (3)必要的尺寸反映零件各部分结构的大小和相互位置关系,满足零件制造和检验的要求。 (4)技术要求给出零件的表面粗糙度、尺寸公差、形状和位置公差以及材料的热处理和表面处理等要求。 二、视图

三、全剖半剖 为了辅助了解物体内部结构及相关参数,有时候需要对物体进行剖切所得的视图分为全剖视图和半剖视图。 全剖视图:用剖切面完全的剖开物体所得到的剖视图称为全剖视图

半剖视图:当物体具有对称平面时,向垂直于对称平面的投影面上投影所得的图形,可以对中心线为界,一半画成剖视图,另一半画成视图,称为半剖视图。

四、尺寸及其标注 1、尺寸的定义:以特定单位表示线性尺寸值的数值 2、尺寸的分类: 1)基本尺寸通过它应用上、下偏差可计算出极限尺寸的尺寸。 2)实际尺寸通过测量获得的尺寸。 3)极限尺寸一个尺寸允许的两个极端,其中最大的一个称为最大极限尺寸;较小的一个称为最小极限尺寸。 4)尺寸偏差最大极限尺寸减其基本尺寸的所得的代数差称为上偏差;最小极限尺寸减其基本尺寸所得代数差称为下偏差。上下偏差统称为极限偏差,偏差可正可负。 5)尺寸公差简称公差最大极限尺寸减去最小极限尺寸之差,它是允许尺寸的变动量。尺寸公差永为正值 例如:Φ20(+0.5~-0.31);其中Φ20为基本尺寸,0.81为公差。0.5为上偏差,-0.31为下偏差。20.5和19.69分别为最大最小极限尺寸。

机械制图识图基本知识

机械制图识图基本知识 一.零件图的作用与内容 1.零件图的作用任何机械都是由许多零件组成的,制造机器就必须先制造零件。零件图就是制造和检验零件的依据,它依据零件在机器中的位置和作用,对零件在外形、结构、尺寸、材料和技术要去等方面都提出了一定的要求。 2.零件图的内容 一张完整的零件图应该包括以下内容,如图1所示 图1箱盖的零件图 (1)标题栏位于图中的右下角,标题栏一般填写零件名称、材料、数量、图样的比例,代号和图样的责任人签名和单位名称等。标题栏的方向与看图的方向应一致。 (2)一组图形用以表达零件的结构形状,可以采用视图、剖视、剖面、规定画法和简化画法等表达方法表达。 (3)必要的尺寸反映零件各部分结构的大小和相互位置关系,满足零件制造和检

验的要求。 (4)技术要求给出零件的表面粗糙度、尺寸公差、形状和位置公差以及材料的热处理和表面处理等要求。 二.零件图中的技术要求 1.公差与配合 公差反映的是零件的精度要求,配合反映的是零件之间相互结合的松紧关系。 (1)尺寸公差 1)尺寸以特定单位表示线性尺寸值的数值如图2所示 -, q 卜) ‘必”&图2尺寸公差概念 2)基本尺寸通过它应用上、下偏差可计算出极限尺寸的尺寸。 3)实际尺寸通过测量获得的尺寸。 4)极限尺寸一个尺寸允许的两个极端,其中最大的一个称为最大极限尺寸;较小的一个称为最小极限尺寸。 5)尺寸偏差最大极限尺寸减其基本尺寸的所得的代数差称为上偏差;最小极限尺寸减其基本尺寸所得代数差称为下偏差。上下偏差统称为极限偏差,偏差可正可负。 6)尺寸公差简称公差最大极限尺寸减去最小极限尺寸之差,它是允许尺寸的变动量。尺寸公差永为正值 例如:①20 0.5 ;其中e20为基本尺寸,0.81为公差。0.5为上偏差,-0.31

IQC管理实务机械制图基础与识图

IQC管理实务机械制图基础与识图 一、国家标准的基本规定 (一)图纸幅面、格式及标题栏 1、图纸幅面(GB/T14689—93) 为了便于图纸的装订和保存,国家标准对图纸幅面作了统一的规定。 必要时允许加长。 2、图框格式 (1)需要装订的图样:一般采用A4竖装或A3横装,其图框格式如下图所示。 2)不需要装订的图样(2)

注意:无论是否留有装订边,都应在图幅内画出图框。图框用粗实线绘制。 3、 标题栏(GB/T10609.1—89) 标题栏用来填写零部件名称、所用材料、图形比例、图号、单位名称及设计、审核、批准等有关人员的签字。 每张图纸的右下角都应有标题栏 。 标题栏的方向一般为看图的方向。 国家标准规定的标题栏 在正规的图纸上,标题栏的格式和尺寸应按GB10609.1-89的规定绘制,如下图所示。 (二)、比例(GB/T14690-93) 1、比例定义 图中图形与其实物相应要素的线性尺寸之比,称为比例。 比例分原值比例、放大比例和缩小比例。 2、比例系列表 (4)

3、比例的选用 (1) 为了在图样上直接获得实际机件大小的真实概念,应尽量采用1:1的比例绘图。 (2) 如不宜采用1:1的比例时,可选择放大或缩小的比例。但标注尺寸一定要注写实际尺寸。 (3) 应优先选用“比例系列一”中的比例。 4、比例的应用举例 同一机件用不同比例画出的图形 (三)字体(GB/T14691-93) 1、字体的一般要求 图样中除了用视图表示机件的结构形状外,还要用文字和数字说明机件的技术要求和大小。 国家标准对图样中的汉字、拉丁字母、希腊字母、阿拉伯数字、罗马数字的形式作了规定。 图样上所注写的汉字、数字、字母必须做到:字体工整、笔划清楚、间隔均匀、排列整齐。这样要求的目的是使图样清晰,文字准确,便于识读,便于交流,给生产和科研带来方便。 2、字体的具体规定 字体的字号规定了八种:20,14,10,7,5,3.5,2.5,1.8。字体的号数即是字体高度。如10号字,它的字高为10mm。字体的宽度一般是字体高度的2/3左右。

相关主题
相关文档
最新文档