微积分在现实中的应用

微积分在现实中的应用
微积分在现实中的应用

微积分的应用

微积分是研究函数的微分、积分以及有关概念和应用的数学分支。微积分是建立在实数、函数和极限的基础上的。微积分学是微分学和积分学的总称。它是一种数学思想,‘无限细分’就是微分,‘无限求和’就是积分。无限就是极限,极限的思想是微积分的基础,它是用一种运动的思想看待问题。微积分最重要的思想就是用"微元"与"无限逼近",好像一个事物始终在变化你不好研究,但通过微元分割成一小块一小块,那就可以认为是常量处理,最终加起来就行。微积分是与实际应用联系着发展起来的,它在天文学、力学、化学、生物学、工程学、经济学等自然科学、社会科学及应用科学等多个分支中,有越来越广泛的应用。特别是计算机的发明更有助于这些应用的不断发展。客观世界的一切事物,小至粒子,大至宇宙,始终都在运动和变化着。因此在数学中引入了变量的概念后,就有可能把运动现象用数学来加以描述了。

微积分建立之初的应用:第一类是研究运动的时候直接出现的,也就是求即时速度的问题。第二类问题是求曲线的切线的问题。第三类问题是求函数的最大值和最小值问题。第四类问题是求曲线长、曲线围成的面积、曲面围成的体积、物体的重心、一个体积相当大的物体作用于另一物体上的引力。

微积分学极大的推动了数学的发展,同时也极大的推动了天文学、力学、物理学、化学、生物学、工程学、经济学等自然科学、社会科学及应用科学各个分支中的发展。并在这些学科中有越来越广泛

的应用,特别是计算机的出现更有助于这些应用的不断发展。

微积分作为一种实用性很强的数学方法和根据,在数学发展中的地位是十分重要的。例如,微分可以解决近似计算问题。比如:求sin29°的近似值,求不规则图形面积或几何体体积的近似值等。通过微积分求极限、利用微分中值定理,能够及时的放缩多项式,有利于不等式的化简和证明。极限求和、导数求和、积分求和也都是解决求数列前n项和的好方法。其次,数理化不分家。而且微积分在不等式中也有很大的运用,我们可以运用微积分中值定理,泰勒公式,函数的单调性,极值,最值,凸函数法等来证明不等式。在物理问题上,通过解微分方程研究物体运动问题、气体问题、电路问题也是非常普遍的。已知位移——时间函数计算速度,已知速度——时间函数计算加速度(即生活中交通管理方面的应用);运动学中的曲线轨迹求解(即生活中在篮球投篮训练中的应用);求不规则物体的重心;力学工程中计算变力和非恒力做功等等。在化学领域,用气相色谱仪和液相色谱仪做样品化学成分分析时,我们得到的并不是直观的数字结果,而是一张色谱图。色谱图是由一个一个的峰组成的,而我们进行定量计算的根据,就是这些峰的面积。而求这些峰的面积,就需要用到积分。现在的仪器里都集成了自动积分仪,只要选定某一个峰,它就能把积分计算出来。最终得到的成分含量就是基于积分原理计算出来的

微积分的应用不仅仅遍及各个学科,也渗透到了社会的各个行业,甚至深入人们日常生活和工作。利用微积分进行边际分析(经济函数的

绝对改变量与绝对变化率)、弹性分析(相对改变量和相对变化率)、利用微积分中的导数进行最值分析,讨论最优化问题、以及利用微积分求经济总量及变动值都成为了微积分在经济工作中占据重要地位的有力证明。此外,对于不规则的东西求其精确值,也只能用微积分的方法解决。其基本思维方法都是:“化整为零、化零为整”(即1到0到1)。例如,在实际工作中,要把正六边形工件锉成圆形件,具体是6锉成12,24...再无限锉下去。直到工件边长极限为零,即一点。然后积点为边长的一个曲面。最优化问题是经济管理活动的核心,各种最优化问题也是微积分中最关心的问题之一,例如,在一定条件下,使成本最低,收入最多,利润最大,费用最省等等。在经济管理中,由边际函数求总函数(即原函数),一般采用不定积分来解决,或求一个变上限的定积分;如果求总函数在某个范围的改变量,则采用定积分来解决。所以对企业经营者来说,对其经济环节进行定量分析是非常必要的。将数学作为分析工具,不但可以给企业经营者提供精确的数值,而且在分析的过程中,还可以给企业经营者提供新的思路和视角,这也是数学应用性的具体体现。因此,作为一个合格的企业经营者,应该掌握相应的数学分析方法,从而为科学的经营决策提供可靠依据。

所以,为了更好的适应生活,我们需要了解、掌握微积分,学会从微积分的角度去分析问题、解决问题。让微积分在我们的生活中发挥越来越重要的作用,同时我们也要不断的探索和创新,从微积分中找到更多的解决问题的好办法,不断去发现微积分的奥妙,把微积

分更好的运用到我们的生活中去,生产中去,去发掘微积分的重大价值,从而造福人民,造福社会。

微积分在生活中的应用

龙源期刊网 https://www.360docs.net/doc/32323132.html, 微积分在生活中的应用 作者:曹红亚 来源:《数学大世界·中旬刊》2020年第01期 【摘要】微积分产生于十七世纪后期,完善于十九世纪。在现代社会中,微积分是高等数学中至关重要的组成部分,在数学领域中扮演着不可替代的角色,与此同时,微积分在现实生活中的应用也越来越广泛。本文将就微积分在生活中的应用进行深入的分析与探究。 【关键词】微积分;现实生活;实际应用 众所周知,微积分建立的基础是实数、函数以及极限。关于微积分的定义,其指的是微分学和积分学二者的总称,其更代表着一种数学思想。微积分的发展与现实生活的发展是密切相关的,现在的微积分已经广泛存在于诸多自然科学当中,如天文学、生物学、工程学以及经济学等等,在现实生活着发挥着越来越重要的作用。以下笔者结合自己多年的相关实践经验,就此议题提出自己的几点看法和建议。 一、微积分在日常工作中的应用 微积分不仅仅应用在科研领域,其更实实在在地存在于我们的生活当中。例如日常生活中,我们需要装修或者从事装修工作,都需要进行工程预算,这时我们便会不自觉地应用微积分原理,首先将整个装修工程科学划分成为多个小单元,然后对应用到的材料和工时进行计算,最终得出总的造价。再比如,现在很多人特别是年轻人都希望创造一份属于自己的事业,那么其在创业时可能会应用到微积分。如对所选地址处的车流量以及人流量进行了解,在一天的几个时间段,做一分钟的调查,测出经过的人数或车数,再通过计算得出每天或每月的人流量或车流量,这将是我们创业的一个重要参考面。 二、微积分在曲线领域中的应用 在微积分的现实应用中,最具代表性的便是求曲线的长度、切线以及不规则图形的面积。 如在当前社会中,相关数字音像制品或者正流行的数字油画,其都需要将图像和声音分解成为一个个像素或者音频,利用数字的方式来进行记录、完成保存。在重放的时候,再由设备用数字方式来解读还原,使我们听到或看到几乎和原作一模一样的音像。再比如,中央电视台新闻频道的时事报道中常看到地球转向某一点,放大,现出地名,播送最新动态的新闻画面。它的整体概貌是拼装的,是由卫星将地球分成一个个小区域进行拍照,最后拼接成地球的形状,才让我们形象地、跨时空地欣赏新闻报道的同步魅力。 三、微积分在买卖中的应用

生活中的微积分

生活中的微积分 姓名:骆雨 学号:2012212476 班级:国贸八班 公元3世纪,著名的数学家刘徽提出“割圆术”:割之弥细,所失越少。割之又割,以至于不可割,则与圆周合体而不可割矣。这就是现在所说的微积分。 微积分的基本原理,或者说是基本思想很简单,可以概括为:微分等于无限细分,积分等于无限求和,两者合并叫微积分。也就是说,对某些不太好测量、计算、把握、分析的东西,先把它拆解成一个个独立的小单元,加以研究计算,得出结论(即微分)。然后再把它们累计相加,得出总结论即积分。有了它,对繁杂、纷乱的世界,我们就有了精确把握的认识,并能对一些难于驾驭的东西进行顺利把握的应用。 微积分的应用范围非常广泛,最典型的应用是求多元曲线的切线和法平面方程,求不规则图形的面积。而且它在天文学、物理学、经济学、工程学、化学、生物学等各个领域都发挥着重要作用。在我们的日常生活中,比如谷歌地球、中央电视台新闻频道的时事报道也都是微积分的应用。常看到地球转向某一点,放大、现出地名,播送最新动态的新闻画面。它的整体概貌是拼装的,是由卫星将地球分成一个个小区域进行拍照,最后拼接成地球的形状,才让我们形象地、跨时空地欣赏新闻报道的同步魅力。 再比如,现在的数字音像制品以及正时兴的数字油画,都是把声音和图像分解成一个个音素或像素,用数字的方式来记录、保存,重放时再由设备用数字方式来解读还原,使我们

听到或看到几乎和原作一模一样的音像。诸如此类的应用比比皆是。 21世纪,我们生活在市场经济时代和信息时代,瞬时变化,不断更新的经济与信息和我们的学习、工作息息相关。微积分在经济学中的应用对我们的日常生活也有重大影响。 例如,某一种商品的价格会影响我们对于该商品的需求。对于需求函数Q=f (p),由于价格上涨时,商品的需求函数Q=f (p)为单调减函数, ?p 与?Q 异号,所以特殊定义需求对价格的弹性函数为)()(')(p f p p f p ?-=η。设某商品的需求函数为5 ^p e Q -=,求需求弹性函数;p=7,5,3时的需求弹性。 解: 5)()()(p p f p p f p =?'-=η, 6.0)3(=η<1,说明当p=3时,价格上涨%1,需求减少%0.6,需求变动的幅度小于价格变动的幅度; 1)5(=η=1,说明当5=p 时,价格上涨%1,需求也减少%1,需求变动的幅度与价格变动的幅度是一样的; 14.1)7(>=η,说明当 p=7时,价格上涨%1,需求减少%1.4,需求变动的幅度大 于价格变动的幅度。 当某种商品价格上涨时,我们通常会减少该商品的需求。并且,对于需求弹性不同的商品,比如生活必需品和高档消费品,我们往往在不自觉的情况下已经用导数即微分的知识来决定对它的消费量了。

微积分在现实中的应用

微积分的应用 微积分是研究函数的微分、积分以及有关概念和应用的数学分支。微积分是建立在实数、函数和极限的基础上的。微积分学是微分学和积分学的总称。它是一种数学思想,‘无限细分’就是微分,‘无限求和’就是积分。无限就是极限,极限的思想是微积分的基础,它是用一种运动的思想看待问题。微积分最重要的思想就是用"微元"与"无限逼近",好像一个事物始终在变化你不好研究,但通过微元分割成一小块一小块,那就可以认为是常量处理,最终加起来就行。微积分是与实际应用联系着发展起来的,它在天文学、力学、化学、生物学、工程学、经济学等自然科学、社会科学及应用科学等多个分支中,有越来越广泛的应用。特别是计算机的发明更有助于这些应用的不断发展。客观世界的一切事物,小至粒子,大至宇宙,始终都在运动和变化着。因此在数学中引入了变量的概念后,就有可能把运动现象用数学来加以描述了。 微积分建立之初的应用:第一类是研究运动的时候直接出现的,也就是求即时速度的问题。第二类问题是求曲线的切线的问题。第三类问题是求函数的最大值和最小值问题。第四类问题是求曲线长、曲线围成的面积、曲面围成的体积、物体的重心、一个体积相当大的物体作用于另一物体上的引力。 微积分学极大的推动了数学的发展,同时也极大的推动了天文学、力学、物理学、化学、生物学、工程学、经济学等自然科学、社会科学及应用科学各个分支中的发展。并在这些学科中有越来越广泛

的应用,特别是计算机的出现更有助于这些应用的不断发展。 微积分作为一种实用性很强的数学方法和根据,在数学发展中的地位是十分重要的。例如,微分可以解决近似计算问题。比如:求sin29°的近似值,求不规则图形面积或几何体体积的近似值等。通过微积分求极限、利用微分中值定理,能够及时的放缩多项式,有利于不等式的化简和证明。极限求和、导数求和、积分求和也都是解决求数列前n项和的好方法。其次,数理化不分家。而且微积分在不等式中也有很大的运用,我们可以运用微积分中值定理,泰勒公式,函数的单调性,极值,最值,凸函数法等来证明不等式。在物理问题上,通过解微分方程研究物体运动问题、气体问题、电路问题也是非常普遍的。已知位移——时间函数计算速度,已知速度——时间函数计算加速度(即生活中交通管理方面的应用);运动学中的曲线轨迹求解(即生活中在篮球投篮训练中的应用);求不规则物体的重心;力学工程中计算变力和非恒力做功等等。在化学领域,用气相色谱仪和液相色谱仪做样品化学成分分析时,我们得到的并不是直观的数字结果,而是一张色谱图。色谱图是由一个一个的峰组成的,而我们进行定量计算的根据,就是这些峰的面积。而求这些峰的面积,就需要用到积分。现在的仪器里都集成了自动积分仪,只要选定某一个峰,它就能把积分计算出来。最终得到的成分含量就是基于积分原理计算出来的 微积分的应用不仅仅遍及各个学科,也渗透到了社会的各个行业,甚至深入人们日常生活和工作。利用微积分进行边际分析(经济函数的

微积分在经济生活中的应用

微积分在经济生活中的应用 人们面对着规模越来越大的经济和商业活动,逐渐转向用数学方法来帮助自己进行分析和决策,而且正越来越广泛地应用数学理论进行经济理论研究.在经济生活中经常涉及成本、收入、利润等问题,解决这些问题与微积分有着紧密联系. 1 导数及微分的应用 导数及微分在经济生活中的应用主要有边际分析与弹性分析等. 1.1 边际问题[1](37)P - 1.1.1 边际成本 边际成本是指在一定产量水平下,增加或减少一个单位产量所引起成本总额的变动数. 设成本函数为()C C x =,产量从x 改变到x x +?时,成本相应改变 ()()C C x x C x ?=+?- 成本的平均变化率为 ()() C C x x C x x x ?+?-= ?? 若当0x ?→时,0lim x C x ?→??存在,则这个极限值就可反映出产量有微小变化时,成本的变化情 况.因此,产品在产量x 时的边际成本就是: 00()() ()lim lim x x dC C C x x C x C x dx x x ?→?→?+?-'= ==?? 如果生产某种产品100个单位时,总成本为5000元,单位产品成本为50元.若生产101个时,其总成本5040元,则所增加一个产品的成本为40元,即边际成本为40元. 在经营决策分析中,边际成本可以用来判断产量的增减在经济上是否合算.当企业的生产能力有剩余时,只要增加产量的销售单位高于单位边际成本,也会使得企业利润增加或亏损减少.或者说,只要边际成本低于平均成本,也可降低单位成本.由上面知当产量100x =时,这时候有 (100)40C '= (100) 50100 C = 即边际成本低于平均成本,此时提高产量,有利降低单位成本. 1.1.2 边际收入 边际收入是指在某一水平增加或减少销售一个单位商品的收入增加或减少的量.实际上就是收入函数的瞬时变化率.而从数学的角度来看,它是一个导数问题. 设收入函数为()R R x =,则边际收入函数就是

微积分在实际中的应用

微积分在实际中的应用 一、微积分的发明历程 如果将整个数学比作一棵大树,那么初等数学是树的根,名目繁多的数学分支是树枝,而树干的主要部分就是微积分。微积分堪称是人类智慧最伟大的成就之一。微积分是微分学和积分学的总称。它是一种数学思想,“无限细分”就是微分,“无限求合”就是积分。微分学包括求导的运算,是一套关于变化的理论。它使得函数、速度、加速度和曲线的斜率等均可以用一套通用的符号进行讨论。积分学,包括求积分的运算,为定义和计算面积、体积等提供一套通用的方法。微积分的产生一般分为三个阶段:极限概念、求面积的无限小方法、积分与微分的互逆关系。前两阶段的工作,欧洲及中国的大批数学家都做出了各自的贡献。 从17世纪开始,随着社会的进步和生产力的发展,以及如航海、天文、矿山建设等许多课题要解决,数学也开始研究变化着的量,数学进入了“变量数学”时代,即微积分不断完善成为一门学科。整个17世纪有数十位科学家为微积分的创立做了开创性的研究,但使微积分成为数学的一个重要分枝还是牛顿和莱布尼茨。 二、微积分的思想 从微积分成为一门学科来说,是在17世纪,但是,微分和积分的思想早在古代就已经产生了。公元前3世纪,古希腊的数学家、力学家阿基米德(公元前287~前212)的著作《圆的测量》和《论球与圆柱》中就已含有微积分的萌芽,他在研究解决抛物线下的弓形面积、球和球冠面积、螺线下的面积和旋转双曲线的体积的问题中就隐含着近代积分的思想。作为微积分的基础极限理论来说,早在我国的古代就有非常详尽的论述, 与此同时,战国时期庄子在《庄子·天下篇》中说“一尺之棰,日取其半,万世不竭”,体现了无限可分性及极限思想。公元3世纪,刘徽在《九章算术》中

微积分在生活中的应用论文

课程论文专业酒店管理

微积分在生活中的应用 摘要:我们学习了微积分,然而只学习不行的,学了的目的是为了应用,本篇论文主要讲微积分在生活中的应用,有哪些应用,怎么应用的。主要集中几何,经济以及我们在生活中的应用 关键词:微积分,几何,经济学,物理学,极限,求导

绪论 作为一个刚刚上大学的新生,高等数学是大学学习中十分重要的一部分,但在学习的过程中,我不禁慢慢产生了一个问题,老师都说微积分就是高等数学的精髓,那么微积分的意义又是什么呢?它对人类的生活造成的影响又是什么呢?存在必合理,微积分的应用一定很广,带着这个思想,我查找了一点资料,我想从几何,经济,物理三个角度来阐述关于微积分在我们生活中的应用,下面可能有些我在网上查找的题目,基本上都是直接摘录的,在此特向老师说明。 我了解到微积分是从生产技术和理论科学的需要中产生,又反过来广泛影响着生产技术和科学的发展。如今,微积分已是广大科学工作者以及技术人员不可缺少的工具。如果将整个数学比作一棵大树,那么初等数学是树的根,名目繁多的数学分支是树枝,而树干的主要部分就是微积分。微积分堪称是人类智慧最伟大的成就之一。 从17世纪开始,随着社会的进步和生产力的发展,以及如航海、天文、矿山建设等许多课题要解决,数学也开始研究变化着的量,数学进入了“变量数学”时代,即微积分不断完善成为一门学科。通过研究微积分能够在几何,物理,经济等方面的具体应用,得到微积分在现实生活中的重要意义,从而能够利用微积分这一数学工具科学地解决问题。 希望通过本文的介绍能使人们意识到微积分与其他各学科的密切关系,让大家能意识到理论与实际结合的重要性。 一、微积分在几何中的应用 微积分在我看来在几何中主要是为了研究函数的图像,面积,体积,近似值等问题,对工程制图以及设计有不可替代的作用。很高兴我在网上找到了一些内容与现在我们学的定积分恰巧联系上了。顿觉微积分应用真的很广! 1.1求平面图形的面积 (1)求平面图形的面积 由定积分的定义和几何意义可知,函数y=f(x)在区间[a,b]上的定积分等于由函数y=f(x),x=a ,x=b 和轴所围成的图形的面积的代数和。由此可知通过求函数的定积分就可求出曲边梯形的面积。 例如:求曲线2f x 和直线x=l ,x=2及x 轴所围成的图形的面积。 分析:由定积分的定义和几何意义可知,函数在区间上的定积分等于由曲线和直线,及轴所围成的图形的面积。 所以该曲边梯形的面积为

高等数学在实际生活中的应用

高等数学在实际生活中的应用 在学习高数之前,总是听学长、学姐提起,高数十分难学,我对高数的印象一直都是:高数是一门特别难、特别高深的学科。但在学习了高等数学之后,我发现了数学的美,同时我发现在实际生活中也时常可以看高数的身影。 高等数学在实际生活中的应用十分广泛,而且也特别有趣。我就简单的举几个生活中常见的,我所发现的高等数学在生活中的运用的例子分析一下。 首先,我发现在支付宝当中,有一个小功能,叫做蚂蚁森林,这个功能是模拟出了一颗树苗,当人们在生活中做出了一些绿色、低碳的行为时,对用户发放绿色能量进行奖励,当用户的绿色能量积累到一定的值时,支付宝模拟出的小树苗就会长成一颗大树,用户可以通过兑换,将这颗模拟出来的小树(电子数据)兑换成为一颗真实的、种植在沙漠里的树木,现在可以兑换的树木类型越来越丰富了,有梭梭树、沙柳、樟子松、胡杨树等一些树苗。 这个时候我就发现,不同的地区的树苗不尽相同,而且,肯定不同的树木类型各自的水土保持能力也不尽相同,因此,在什么地区选择什么样的树木类型、分别种植在哪里,可以起到最好的水土保持功能以及,每平方米需要种植几颗树苗,我相信,这些问题都离不开高等数学进行周密的计算。 首先,我们需要认真计算防护林需要种植多大面积、到底种植在哪里可以起到最佳的水土保持作用,我们需要了解到风沙的源地与我

们需要保护的地区的距离,同时量化考虑风沙的强度,将不同的树苗类型的水土保持力以及他们的防风沙能力量化考虑。我们所了解到的资料很少,因此只能做一下简单的模型的建立,以及一些较为简单的分析。当然,这只是我的个人想法,很不成熟,也很可能有错误。我是这样考虑的,比如:我们设距离风沙源地越远,风沙程度越弱,当风沙强度吹到我们所居住的地区时即为0,风沙的总强度为F,风沙源地与我们所居住地区的距离为f。因此可以得出结论,距离风沙源地越远,所需要的防护林面积就越小,设防护林种植地与风沙源地之间的距离为x,设所需要的防护林面积为y,同时将不同的树苗类型的水土保持能力量化:当种植了梭梭树之后,其每平米的水土保持力即可以阻挡的风沙的程度为a,沙柳为b,樟子松为c,胡杨树则为d。这时我们可以相应的依据量化关系列出一个方程式来:y=(F - F/f*x)/a(其中的a是指当所种的防护林是梭梭树时的方程式,相应的,当我们分析的是其他的树木,沙柳、樟子松以及胡杨树等,我们则可以将a替换为b、c以及d)。 根据上述所列的方程式,当我们了解了各种类型的树木的水土保持能力以及他们的防风沙的能力时,我们可以代入上述的方程式中进行计算,计算当距离风沙源地的距离不同时,所需要种植的防护林的面积也不尽相同。同时,我们可以分析得出,当x趋于无限小或者无穷大时,即防护林的种植地距离风沙源地极近或者极远时,这个方程式就转换为了一个极限问题的研究。 如果我们可以再多收集一些资料,具体了解到风沙强度与距离远

微积分在物理 中的简单应用

求解在立体斜面上滑动的物体的速度 一物体放在斜面上,物体与斜面间的摩擦因数μ恰好满足αμtg =,α为斜面的倾角。今使物体获得一水平速度 0V 而滑动,如图一,求: 物体在轨道上任意一点的速度V 与φ的关系,设φ为速度与水平线的夹角。 解:物体在某一位置所受的力有:重力G , 弹力N 以及摩擦力f 。摩擦力f 总是与运动速度V 的方向相反,其数值 ααααμμsin cos cos mg mg tg mg N f ==== 重力在斜面上的分力为1G ,如图二,将1 G 分解为两个分力:1G ''是1G 沿轨迹切线方向的分 力,φαφsin sin sin 11 mg G G =='' ;1G '是沿轨 迹 法 向 的 分 力 , φαφcos sin cos 11 mg G G ==',如图三。 根据牛顿运动定律,得运动方程为 τma f G =-''1 (1) n ma G ='1 (2) 由(1), )1(sin sin )sin sin sin (1 -=-= φααφατg mg mg m a 而 ,dt dV a = τ得到 ,)1(sin sin dt g dV -=φα (3)

式中φ是t 的函数,但是这个函数是个未知函数,因此还不能对上式积分,要设法在φ与t 中消去一个变量,才能积分,注意到 φφ d d ds V V dS dt 1== (4) 而φ d ds 表示曲线在该点的曲率半径ρ,根据(2)式, ρ φα2 cos sin V m mg = (5) 由式(3)(4)(5),可得到 ,)sec (φφφd tg V dV -= φφφφ d tg V dV V V ??-=00)sec (, 积分,得到 )sin 1ln()ln(sec cos ln ln φφφφ+-=+--=tg V V , .sin 10 φ += V V 运用积分法求解链条的速度及其时间 一条匀质的金属链条,质量为m ,挂在一个光滑的钉子上,一边长度为1L ,另一边长度为,2L 而且120L L <<,如图一。试求: 链条从静止开始滑离钉子时的速度和所需要的时间。 解:设金属链条的线密度为.2 1L L m += λ当一边长度为 x L +1,另一边长度为x L -2时受力如图二所示,则根据牛 顿运动定律,得出运动方程 ,)()(11a x L T g x L λλ+=-+

定积分在生活中的应用

PINGDINGSHAN UNIVERSITY 院系 : 经济与管理学院 题目 : 定积分在生活中的应用 年级专业: 11级市场营销班 学生姓名 : 孙天鹏

定积分在生活中的应用 定积分作为大学里很重要的一部分,在生活有广泛的应用。微积分是与应用联系发展起来的,最初牛顿应用微积分是为了从万有引力导出行星三定律,此后,微积分极大的推动了数学的发展,同时也极大的推动了天文学、物理学、化学、工程学、经济学等自然科学的发展,而且随着人类知识的不断发展,微积分正指引着人类走向认知的殿堂。 一、定积分的概述 1、定积分的定义: 设函数()f x 在区间[],a b 上有界. ①在[],a b 中任意插入若干个分点011n n a x x x x b -=<< <<=,把区间[],a b 分成 n 个小区间[][][]01121,,,, ,,,n n x x x x x x -且各个小区间的长度依次为110x x x ?=-, 221x x x ?=-,…,1n n n x x x -?=-。 ②在每个小区间[]1,i i x x -上任取一点i ξ,作函数()i f ξ与小区间长度i x ?的乘积 ()i i f x ξ?(1,2, ,i n =) , ③作出和 ()1 n i i i S f x ξ==?∑。记{}12max ,,,n P x x x =???作极限()0 1 lim n i i P i f x ξ→=?∑ 如果不论对[],a b 怎样分法,也不论在小区间[]1,i i x x -上点i ξ怎样取法,只要当 0P →时,和S 总趋于确定的极限I ,这时我们称这个极限I 为函数()f x 在 区间[],a b 上的定积分(简称积分),记作()b a f x dx ?,即 ()b a f x dx ?=I =()0 1 lim n i i P i f x ξ→=?∑, 其中()f x 叫做被积函数,()f x dx 叫做被积表达式,x 叫做积分变量,a 叫做积分下限,b 叫做积分上限,],a b ??叫做积分区间。

微积分及经济学应用

第3章 微积分及其经济学应用 3、1 一元函数与多元函数 在数学上,函数的定义为:如果在一个变化过程中有两个变量x 与y ,对任意给定的x 值,仅存在一个y 值与其对应,则称y 就是x 的函数,表示为)(x f y =。 其中x 为自变量,y 为因变量。由于函数关系中仅有一个自变量,因此该函数称为一元函数。x 能够取得的所有值的集合称为函数定义域,y 能够取得的所有值的集合称为函数值域。 在对经济问题的分析过程中,我们通常用函数来描述经济变量之间的变化关系。例如,在商品的供求关系中,定义某种商品价格为P ,需求量为D Q ,供给量为S Q 。那么,需求与价格的函数关系可以表示为:)(P f Q D =,)(P g Q S =。 然而我们所处的经济环境就是非常复杂的,每一个经济变量都要受到多种因素的影响。因此,采用一元函数来分析经济问题就会有很大的局限性。所以我们常常采用多元函数来研究经济问题。多元函数就是在一个函数关系中函数值就是由多个变量确定的,用 ),,,(21n x x x f y K =的形式来表示,它表示因变量y 的值取决于n 个自变量n x x x ,,,21K 的 大小。 例如在消费理论的基本假设中,每个消费者都同时对多种商品有需求,“效用”取决于所消费的各种商品的数量,效用函数就可以表示为),,,(21n x x x f U K =,其中U 表示消费者的效用,n x x x ,,,21K 就是对n 种商品的消费量。这个函数称为效用函数。同样,生产函数常表示为),(K L f y =,y 为产出水平,K 表示资本,L 表示劳动力。它说明产出水平既取决于劳动力又取决于资本。 Q=A*L^ alpha *K^ belta A=1;alpha=0、5;belta=0、5;

高等数学在生活中的应用

高等数学在生活中的应 用 -CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN

对高等数学的认识及它在生活中的应用当今世界,国际竞争日趋激烈,而竞争的焦点又是人才的。竞争21世纪哪个国家具有人才优势,哪个国家将占据竞争的制高点。而现在的社会需要的人才已经不是从前那种简单的一个文凭就可以了,而是需要全面的人才,全方位的人才,一种高素质高能力的人才! 与此同时,高等数学恰恰在这方面发挥着巨大的作用!数学培养的就是你的思维能力,是分析问题、解决问题的思维方式。许多实际问题都需要建立数学模型来解决,而你建立模型地基础就是你怎样把实际问题转化为数学问题。再把复杂的问题简单化!这样就更容易的去解决问题、处理问题! 在现代大学课程设置中,大部分学生要学习高等数学这门课程,只是很多学生不知道学这门课程有什么用途,缺乏学习的动力和兴趣,最后逐渐认为数学是一门非常枯燥的学科。这样不能够激发学生学习数学的兴趣。使学生们慢慢的不重视数学的重要性! 高等数学在当今社会有着广泛的应用。如:计算机方面、电子应用方面、航天技术方面、医学方面等等众多领域都起着巨大的作用! 在计算机领域,计算机中许多地方要用到数学模型,特别是算法复杂度,人工智能、业务领域的数学建模等等,都需要有一定的数学功底。 随着现代科学技术的发展和电子计算机的应用与普及,数学方法在医药学中的应用日益广泛和深入。医药学科逐步由传统的定性描述阶段向定

性、定量分析相结合的新阶段发展。数学方法为医药科学研究的深入发展提供了强有力的工具。高等数学是医学院校开设的重要基础课程,用高等数学基础知识解决医学中的一些实际问题的例子,旨在启发学生怎样正确理解和巩固加深所学的知识,并且强化应用数学解决实际问题的意识。使我国的医术在前有的基础上再创辉煌! “神舟”六号载人飞船成功升空,是我国航天事业科学求实精神的结晶,是坚定不移走自主创新之路的结果。载人航天是当今世界最复杂、最庞大、最具风险的工程,是技术密集度高、尖端科技聚集的高科技系统工程。而这些庞大的工程都离不开数学,复杂的数字计算、精确的时间等等这些都在数学范围内! 其次,数学建模是一种培养学生综合素质的有效手段,在教学实践中给学生树立建模的思想对学生的综合素质发展有很大的帮助,也有助于提高我们的学习积极性。把数学建模的思想方法融入数学分析课程教学是培养学生创新能力和实践能力的一条有效途径,是当前大学数学课程改革的一个重要方向. 我们大学生的思维处于由形式逻辑思维向辨证逻辑思维过渡的阶段,数学建模不仅要求学生在实验、观察和分析的基础上,对实际问题的主要方面做出合理的简化与假设,并且要求他们应用数学的语言和方法将实际问题形成一个明确的数学问题。因此,在高等数学中渗透建模思想,运用运动的、变化的、全面的、发展的观点去观察、分析和解决问题,不仅发展了我们大学生的一般思维能力,还发展了我们的辨证逻辑思维能

微积分在物理学上的应用复习过程

微积分在物理学上的 应用

微积分在物理学上的应用 1 引言 微积分是数学的一个基本学科,内容包括微分学,积分学,极限及其应用,其中微分学包括导数的运算,因此使速度,加速度等物理元素可以使用一套通用的符号来进行讨论。而在大学物理中,使用微积分去解决问题是及其普遍的。对于大学物理问题,可是使其化整为零,将其分成许多在较小的时间或空间里的局部问题来进行分析。只要这些局部问题分的足够小,足以使用简单,可研究的方法来解决,再把这些局部问题的结果整合起来啊,就可以得到问题的结果。而这种将问题无限的分割下去,局部问题无限的小下去的方法,即称为微分,而把这些无限个微分元中的结果进行求和的方法,即是积分。这种解决物理问题的思想和方法即是微积分的思想和方法。 2 微积分的基本概念及微分的物理含义 微积分是一种数学思想,其建立在函数,实数和极限的基础上,其主要探讨的就是连续变量。在运用微积分去解决物理问题时,可以将我们所需要得出的结果看成是一个整体,再将这个整体先微分,即将其分成足够小的个体,我们可以将这个个体的变量看成衡量,得出个体结果后,再将其积分,即把个体的结果累积起来进行求和。例如,在我们研究匀变速直线运动时,我们就可以在其运动过程中选取一个微小的时间dt,而这一时间内的位移为dt,在每一段时间内速度的变化量非常小,可以近似忽略,那么我们就可以将这段时间内的运动近似看成匀速直线运动,再把每段时间内的位移相加,无限求和,就可以得出总的位移。

在物理学中,每个物理公式都是某些物理现象和规律的数学表示,因此,我们在使用这些公式时,面对物理量和公式的微分形式我们不能仅仅从数学方面去考虑,更要从物理含义上去考虑。在我们使用微分符号时,不能只从数学角度去理解其为无限小,更要结合具体 的物理量和角度去判断他的正确含义。 例:如图所示,一通有交流电流i=的长直导线旁有一共面的单匝矩形线圈ABCD,试求线圈中的感应电动势大小。 解:设在某个时刻,长直导线电流产生的磁场为 B= 在图中做一个微元面dS,dS=ldx,则该面元上的磁场可以近似于均匀磁场,微元面dS上的磁通量为 d 线圈围成的面上通过的磁通量为 线圈中的感应电动势为

微积分在经济中的应用分析

一、经济分析中常用的函数 (一)需求函数和供给函数】【2 1.需求函数。需求函数是描述商品的需求量与影响因素,其影响因素很多,例如收入、价格、消费者的喜好等。我们这里先不考虑其他因素,假设商品的需求量只受市场价格的影响,记Q=Q (p )(Q 表示某种商品的需求量,P 表示此种商品的价格)一般来说,需求函数为价格p 的单调减少函数.例如,某鸡蛋的价格从10元/千克降到8元/千克时,相应的需求量就从1500千克增到2000千克,显然需求是和价格相关的一个变量。一般来说,需求函数为价格p 的单调减少函数(如图一)。 需求曲线是从左上方向右下方倾斜的具有负斜率的曲线;曲线表明了需求量与价格之间呈反方向变动的关系。当价格下降时,需求量上升;当价格上升时,需求量下降。 2.供给函数。一种商品的市场供给量与商品的价格存在一一对应的关系,记S=S (p ),例如,当鸡蛋收购价为4.5元/千克时,某收购站每月能收购5 000 kg .若收购价每4.6元/千克时,收购量为5400kg 。一般来说,供给函数为价格的单调增加函数。(如图二)

供给函数特征:横轴S为供给量,纵轴P为自变量价格;供给曲线是从左下方向右上方倾斜的具有正斜率的曲线。当价格上升时,供给增加;当价格下降时,供给减少。 (二)、市场均衡 在市场中,当一种商品满足Q=S即需求量等于供给量时,这种商品就达到了市场均衡,当Q=S时的价格称为均衡价格,当市场价格高于均衡价格时,供给量就会增加而需求量就会减少,这是出现“供过于求”的现象;当市场价格低于均衡价格时,需求量就会增加而供给量减少,这是出现“供不应求”的现象。 (三)、价格函数、收入函数、利润函数 1.价格函数。一般来说,价格是销售量的函数。在我们的生活中是随处可见的,就像我们去买东西,买的越多就可以把价格讲得越低。例如,平和一家茶叶批发公司,批发50千克茶叶给零售商,批发价是50元每千克,若每次多批发20千克茶叶,那么相应的批发价格就可以降低4元,很明显价格和销售量是相关的一个变量。在厂商理论中,强调的是既定需求下的价格。在这种情况下,价格是需求量的函数,表示为P=P(Q)。要注意的是需求函数 Q=f(P)与价格函数 P=P(Q)是互为反函数的关系。 2.收入函数。在商业活动中,一定时期内的收益,就是指商品售出后的收入,记为R。销售某商品的总收入取决于该商品的销售量和价格。因此,收入函数为R=R(Q)=PQ。其中 Q 表示销售量,P表示价格。 3.利润函数。利润是指收入扣除成本后的剩余部分,记为L。则L=L(Q)=R (Q)-C(Q)。其中Q 表示产品的的数量,R(Q)表示收入,C(Q)表示成本。总收入减去变动成本称为毛利,再减去固定成本称为纯利润。 三、导数的经济学意义及其在经济分析中的应用 (一)、边际分析 经济学中的“边际”这一术语是指“新增”的或“额外”的意思。例如,当 【3。消费者多吃一单位的冰淇淋时,会获得“新增”的效用或满足,即边际效用】【4:设函数y=f(x)可导,则导函数f'(x)在经济学中称为边际函数。 定义】 在经济学中,我们经常用到边际函数,例如边际成本函数、边际收益函数、边际利润函数,它们都是表示一种经济变量相对于另一种经济变量的变化率问题,都反映了导数在经济学中的应用。成本函数C(P)表示生产P个单位某种产品时的总成本。平均成本函数c(P)表示生产P个单位某种产品时平均每个单位的成本,即c(P)=c(P)/P。边际成本函数是成本函数C(P)相对于P的变化率,即C(x)的导函数) (p C 。 边际成本的变动规律:最初在产量开始增加时由于各种生产要素的效率为得到充分发挥,所以,产量很小;随着生产的进行,生产要素利用率增大,产

高等数学的矩阵在实际生活中的应用

矩阵在实际生活中的应用 一.【摘要】 随着科学技术的发展,数学的应用越来越广泛,可以说和我们的生活息息相关。而高等数学中的线性代数,也同样有着广泛的应用。本篇论文中,我们就对线性代数中的矩阵在生产成本、人口流动、加密解密、计算机图形变换等方面的应用进行研究。 【关键词】 高等数学矩阵实际应用 二.应用举例 1.生产成本计算:在社会生产管理中经常要对生产过程中产生的很多数据进行统计、处理、分析,以此来对生产过程进行了解和监控,进而对生产进行管理和调控,保证正常平稳的生产以达到最好的经济收益。但是得到的原始数据往往纷繁复杂,这就需要用一些方法对数据进行处理,生成直接明了的结果。在计算中引入矩阵可以对数据进行大量的处理,这种方法比较简单快捷。 例1.某工厂生产三种产品A、B、C。每种产品的原料费、支付员工工资、管理费和其他费用等见表1,每季度生产每种产品的数量见表2。财务人员需要用表格形势直观地向部门经理展示以下数据:每一季度中每一类成本的数量、每一季度三类成本的总数量、四个季度每类成本的总数量。 表1.生产单位产品的成本(元)表2.每种产品各季度产量(件)

解 我们用矩阵的方法考虑这个问题。两张表格的数据都可以表示成一个矩阵。如下所示: 通过矩阵的乘法运算得到 MN 的第一行元素表示了四个季 度中每个季度的原料总成本; MN 的第二行元素表示了四个季度中每个季度的支付工资总成本; MN 的第三行元素表示了四个季度中每个季度的管理及其他总成本。 MN 的第一列表示了春季生产三种产品的总成本; MN 的第二列表示了夏季生产三种产品的总成本; MN 的第三列表示了秋季生产三种产品的总成本; MN 的第四列表示了冬季生产三种产品的总成本。 对总成本进行汇总,每一类成本的年度总成本由矩阵的每一行元素相加得到,每一季度的总成本可由每一列相加得到。如下表: 表3. 总成本汇总表 ????? ??=200040003500250030003700480028002000250030002000N

微积分在经济学中的应用分析.doc

微积分在经济学中的应用分析 李博 西南大学数学与统计学院,重庆 400715 摘要:本文从经济学与数学的紧密联系出发,分析了数学,尤其是微积分在经济学研究中的地位和作用。 关键词:微积分;经济学;边际分析 Calculus’s Applied Analysis in Economics Li bo School of Mathematics and Statistics, Southwest University, Chongqing 400715, China Abstract: Based on the close relationship between economics and maths,this paper analyzes the role and function of maths especially calculus in economics. Key words: calculus; Economics; marginal analysis 1.数学与经济学的紧密联系 经济学与数学之间有天然的联系, 经济学从诞生之日起便与数学结下了不解之缘。 经济学应用数学有客观基础。经济学研究的对象是人与人之间的“物的交换”,是有量化规则的。经济学基本范畴如需求、供给、价格等是量化的概念。经济学所揭示的规律性往往需要数量的说明。特别是经济学的出发点是“理性经纪人”。由于经纪人在行为上是理性的,经纪人能够根据自己的市场处境判断自身利益,且在若干不同的选择场合时,总是倾向于选择能给自己带来最大利益的那一种。所以,数学中所有关于求极值和最优化的理论,都适用于分析各种各样的最优经济效果问题,而很多求极值的数学理论和概念,也只能在最优经济效果中找到原型。 数学方法本身所提供的可能性。多变量微积分的理论特别适用于研究以复杂

高等数学在实际生活中的应用72690

高等数学知识在实际生活中的应用 (4)对模型进行分析、检验和修改。建立模型后,要对模型进行分析,即用解方程、推理、图解、计算机模拟、定理证明、稳定性讨论等数学的运算和证明得到数量结果,将此结果与实际问题进行比较,以验证模型的合理性。一般地,一个模型要经过反复地修改才能成功。 (5)模型的应用。用已建立的模型分析、解释已有的现象,并预测未来的发展趋势,以便给人们的决策提供参考。 归纳起来,数学建模的主要步骤可以用下面的框图来说明: 图1 (二)数学建模的范例 例教室的墙壁上挂着一块黑板,学生距离墙壁多远,能够看得最清楚? 这个问题学生在实际中经常遇到,凭我们的实际经验,看黑板上、下边缘的视角越大,看得就会越清楚,当我们坐得离黑板越远,看黑板上、下边缘的视角就会越小,自然就看不清楚了,那么是不是坐得 越近越好呢? 先建立一个非常简单的模型: 模型1: A 黑 板 a B b D C 图2.3-1

先对问题进行如下假设: 1.假设这是一个普通的教室(不是阶梯教室),黑板的上、下边缘在学生水平视线的上方a 米和b 处。 2.看黑板的清楚程度只与视角的大小有关。 设学生D 距黑板x 米,视黑板上、下边缘的的仰角分别为βα,。 由假设知: ab b a x a b x b a ab x x b a tna x b x a 2)(tan 1tan tan )tan(,tan ,tan 2-≤ + -=+-=+-=-∴= βαβαβαβα 所以,当且仅当ab x = 时,)tan(βα-最大,从而视角βα-最大。 从结果我们可以看出,最佳的座位既不在最前面,也不在最后面。坐得太远或太近,都会影响我们的视觉,这符合我们的实际情况。 下面我们在原有模型的基础上,将问题复杂一些。 模型2:设教室是一间阶梯教室,如图2.3-2所示。为了简化计算我们将阶梯面看成一个斜面,与水平面成γ角,以黑板所在直线为y 轴,以水平线为x 轴,建立坐标系(见图2.3-2)。则直线O E 的方程(除原点)为: γtan x y = )0(>x 若学生D 距黑板的水平距离为x ,则D 在坐标系中的坐标为 )tan ,(γx x , 图2.3-2

微积分在经济中应用

·406 · 第十二章 微积分在经济中的应用 §1.1 微积分在经济中的应用内容网络图 §1.2内容提要与例题 一、极限在经济中的应用 1.复利. 例1 X 银行提供每年支付一次,复利为年利率8%的银行帐户,Y 银行提供每年支付四次,复利为年利率8%的帐户,它们之间有何差异呢? 解 两种情况中8%都是年利率,一年支付一次,复利8%表示在每年末都要加上当前余额的8%,这相当于当前余额乘以1.08.如果存入100元,则余额A 为 一年后:A=100(1.08), 两年后:A=100(1.08)2,…,t 年后:A=100(1.08)t . 而一年支付四次,复利8%表示每年要加四次(即每三个月一次)利息,每次要加上当前余额的8%/4=2%。因此,如果同样存入100元,则在年末,已计入四次复利,该帐户将拥有100(1.02)4 元,所以余额B 为 一年后:B =100(1.02)4,二年后:B =(1.02)4×2,…,t 年后:B =(1.02)4t 。 注意这里的8%不是每三个月的利率,年利率被分为四个2%的支付额,在上面两种复利方式下, 微积分在经济中的应用 数列在经济中的应用 复利 年有效收益 极限在经济中的应用 连续复利 导数在经济中的应用 成本函数 平均最小成本 需求函数 供给函数 均衡价格 收益函数 利润函数 边际函数 弹性函数 最大利润 供给弹性 需求弹性 积分在经济中的应用 收入流的现值 收入流的将来值 消费者剩余 生产者剩余 偏导数在经济中应用 求最大利润 常微分方程与差分方程 在经济中的应用 把经济中的某些问题转化为常微方程来求解

·407· 计算一年后的总余额显示 一年一次复利:A=100(1.08)=108.00,一年四次复利:B=100(1.02)4=108.24.因此,随着年份的延续,由于利息赚利息,每年四次复利可赚更多的钱.所以,付复利的次数越频繁可赚取的钱越多(尽管差别不是很大). 2.年有效收益 由上面的例子,我们可以测算出复利的效果,由于在一年支付四次,复利为年利率的8%的条件下投100元,一年之后可增加到108.24元,我们就说在这种情况下年有效收益为8.24%. 我们现在有两种率来描述同一种投资行为:一年支付四次的8%复利和8.24%的年有效收益,银行称8%为年百分率(或年利率)或APR (aannual percentage rate ),我们也称为票面利率(票面的意思是“仅在名义上”).然而,正是年有效收益确切地告诉你一笔投资所得的利息究意有多少.因此,为比较两种银行帐户,只须比较年收益. 例2 银行X 提供每月支付一次,年利率为7%的复利,而银行Y 银供每天支付一次,年利率为6.9%的复利,哪种收益好?若分别用100元投资于二个银行,写出t 年后每个银行中所存余额的表达式. 解 由题意知,设在银行X 的一年后的余额为A 1,t 年后的余额为A t ;设在银行Y 的一年后的余额为B 1,t 年后的余额为B t .由题意知 ),3072.1(100)286072.1(100)833005.1(100)12 07.01(1001212 1≈==+ =A ),4071.1(100)413071.1(100)189000.1(100)365 069.01(100365365 1≈==+=B 所以银行X 帐户年有效收益%23.7≈,银行Y 帐户年有效收益%14.7≈.因此,银行X 提供的 投资行为效益好.t 年后每个银行中所存余额则为 .)4071.1(100)413071.1(100,)3072.1(100)286072.1(100t t t t t t B A ≈=≈= 由此,我们可以得出:如果年利率为r (票面利率)的利息一年支付n 次,那么当初始存款为P 元时,t 年后余额A t 则为).()1(是票面利率r n r P A nt t + = 3. 连续复利 在上式中,令n ∞→,得,rt t Pe A =如果初始存款为P 元的利息水平是年率利为r 的连续复利,则t 年后,余额B 可用以下公式计算:.rt Pe B =在解有关复利的问题时,重要的是弄清利率是票面利率还是年有效收益,以及复利是否为连续的. 在现实世界中,有许多事情的变化都类似连续复利.例如,放射物质的衰变;细胞的繁殖;物体被周围介质冷却或加热;大气随地面上的高度的变化;电路的接通或切断时,直流电流的产生或消失过程等等. 例3 设某酒厂有一批新酿的好酒,如果现在(假定t=0)就售出,总收入为0R (元),如果窖藏起来待来日按陈酒价格出售,t 年末总收入为.5 2 0t e R R = 假定银行的年利率为r ,并以连续复利计息,试求窖藏多少年售出可使总收入的现值最大,并求06.0=r 时的t 值. 解 根据连续复利公式,这批酒在窖藏t 年末售出总收入R 的现值为rt t A -=Re )(,而

相关文档
最新文档