第10章 湍流边界层

第10章 湍流边界层
第10章 湍流边界层

第10章 湍流边界层

10.1 壁面湍流特性和速度分布规律

当边界层内流体及管内流体处于层流流动状态时,流体受到壁面的限制仅仅表现在粘性切应力作用下,进行粘性旋涡的扩散;而当处于湍流流动状态时,流体受到壁面的限制则是在粘性切应力和湍流附加切应力的同时作用下,进行旋涡的扩散。 由于湍动旋涡的扩散速度远大于粘性旋涡扩散的速度,因此,在相同条件下,湍流速度边界层的厚度要比层流速度边界层厚。 但在高雷诺数的条件下,湍流速度边界层仍是贴近壁面的薄层,因此,建立湍流边界层方程的前提条件与层流时相同。

但是,由于两种切应力的作用,湍流速度边界层的结构要比层流速度边界层复杂得多。 因此,一定要先了解壁面湍流的分层结构和时均速度分布规律。

10.1.1 壁面湍流分层结构及其特性

在壁面湍流中,随着壁面距离的变化,粘性切应力和湍流附加切应力各自对流动的影响也发生变化。 以y 表示离开壁面的垂直距离,随着y 的增加,粘性切应力的影响逐渐减小,而湍流附加切应力的影响开始不断增大,而后逐渐减小。 这就形成了具有不同流动特征的区域。 壁面湍流速度边界层可以分为内层(壁面区),包括粘性底层、过度层(重叠层)和对数律层(完全湍流层);外层,包括尾迹律层和粘性顶层(间歇湍流层)。 定义

()ρ

τw

x v v =

=** (10.1.1) 因为*v 具有速度的量纲,故称为壁面切应力速度,它在湍流中是一个重要的特征速度。 以下对各层的划分做详细说明。

粘性底层:所在厚度约为*

5

0v y ν

≤≤,其内粘性切应力起主要作用,湍流附加切应力可以忽

略,流动接近于层流状态,因此在早期研究中称之为层流底层。 由于近期的实验研究,观察到该层内有微小旋涡及湍流猝发起源的现象,因此称为粘性底层。

过渡层:所在厚度约为*

*

30

5

v

y v

ν

ν

≤≤,其内粘性切应力和湍流附加切应力为同一数量级,流

动状态极为复杂。 由于其厚度不大,在工程计算中,有时将其并入对数律层的区域中。

对数律层:所在厚度约为()δν

ν

2.01030

*

3

*

≈≤≤v y v ,其内流体受到的湍流附加切应力大于粘

性切应力,因而流动处于完全湍流状态。

由这三层组成的内层,称为三层结构模式,若将过度层归入对数律层,则称为两层结构模式。 外层中的尾迹律层和粘性顶层所在厚度分别约为δν

4.010*

3

≤≤y v

和δδ≤≤y 4.0。 对于尾迹

律层,层内流体受到的湍流附加切应力远远大于粘性切应力,流动处于完全湍流状态,但与对数律层相比,湍流强度已明显减弱;对于粘性顶层,由于湍流的随机性和不稳定性,外部非湍流流体不断进入边界层内而发生相互掺混,使湍流强度显著减弱,同时,边界层内的湍流流体也不断进入临近的非湍流区,因此,湍流和非湍流的界面是瞬息变化的,具有波浪的形状。 因此,所谓湍流速度边界层厚度δ是平均意义上的厚度。 实际上,湍流峰可能伸到δ之外,而外流的势流也可以深入到δ之内。 这就是导致粘性顶层内的流动呈现间歇性的湍流,即在空间固定点上的流动有时是湍流,有时是非湍流。

10.1.2 光滑壁面内层的时均速度分布

这个区域一般假设为常应力区域。 若用ν

*

yv y =+

表示无量纲离壁面距离,则对于光滑壁面,

存在如下无量纲函数关系:

()

+

=y f v

v x * (10.1.2) 其中 x v 表示湍流的时均速度。

1.粘性底层(*

5

0v y ν

≤≤)

这一层紧贴壁面,在早期的研究中一度认为该层流态是层流,直到最近才在研究中发现这一层的流动中有小涡存在,湍流的猝发大都起始于该层。 该层中,湍流的附加切应力很小,通常可以忽略不记。 根据Prandtl 的混合长度理论,有:

d d x w t

v y

τμ= (10.1.3)

对上式进行积分,考虑到当y=0时,0=x v ,可以得到时均速度的分布式为:

y y v w w x ρν

τ

μτ==

(10.1.4) 注意到无量纲速度和无量纲离壁面距离:

*v

v v x

=+

, ν*yv y =+

所以有 ++=y v x

可见,速度分布是线性的。 因此,粘性底层又称为线性底层。

2.过渡层(*

*

30

5

v

y v

ν

ν

≤≤)

由于在该层中,两种切应力为同一数量级,流动现象极为复杂,分析起来也极为困难,因此,通常由实验来确定时均速度的分布:

***151ln 3.055ln 5x

v v y v y v νν??????=+=-+?? ? ??????

? (10.1.5)

3.对数律层(()δν

ν

2.01030

*

3

*

≈≤≤v

y v

该层处于内层的外部区域。 由理论和实验研究表明,该层中,湍流附加切应力远远大于粘性切应力,粘性切应力可以略去不计。 有:

y

v

y v x m x t

w ??=??=ρεμτ (10.1.6) 对于内层,通常假设y kv m *=ε,代入上式,并且考虑到()ρ

τw

x v v =

=**,整理可得: y

v ky

v x

??=* (10.1.7) 转换成相应的无量纲形式得

d 1

d x v y ky

++

+=

(10.1.8) 积分上式,得

C y k

v x +=

++ln 1

(10.1.9) 通常根据实验取k=0.4,C=5.5(或5),于是对数律层的速度分布为

5.5ln 5.2+=++y v x (10.1.10)

如果采用不计过度层的两层结构模式,可以认为粘性底层与对数律层的分界面在8.10=+y 处,由于该处也属于粘性底层,因此有

8.10==++y v x (10.1.11)

对式(10.1.8)进行积分得

10.810.811

d d x v y x v y k y +

++=?? (10.1.12)

8

.10ln 18.10+

+=-y k v x

(10.1.13)

取k=0.41,整理上式,可得

0.5ln 44.2+=++y v x (10.1.14)

可见,上式与式(2)相符合,这说明了内层若按两层划分,只要适当选取粘性底层与对数律层的分界面,所得的对数律层的速度分布与按三层划分的对数律层的分布是一致的。 可以看出对数律层内的时均速度分布是对数形式,虽然这是在某些限定的简化条件下得出的,但是却与实验相符合。

10.1.3 外层时均速度分布

根据实验观察,由于壁面的滞止作用,外层中的时均速度仍然低于边界层外的势流速度V ,但其受壁面的影响比内层要大大减弱,并且比较明显的受到沿壁面在流动方向上压力梯度

d d p

x

的影

响。 当引用亏损速度x v V -时,根据实验存在函数关系式:

d ,,,,d x w p V v f y x τρδ?

?-= ???

(10.1.15)

1.尾迹律层(δν

4.010*

3

≤≤y v

这一层中,流动已经完全进入湍流状态,湍流应力起主要作用。 湍流强度与对数律层相比已经明显减弱。 这一层中的时均速度分布用亏损速度来表示是:

A y

k v

v V x +-=-δln 1*

(10.1.16) 前面已经介绍过k=0.4,由实验研究表明,对于管内流动和边界层流动,k 都是此值。 而常数C 的数值对于这两种流动有明显的不同:对于管内的流动65.0≈C ,而对于边界层流动35.2≈C 。

2.粘性顶层(δδ≤≤y 4.0)

由于粘性顶层内流动呈现间歇性的湍流,流动现象十分复杂,时均速度分布主要由实验来确定,可表示为:

2

*16.9??

? ??

-=-δy v v V x (10.1.17)

10.1.4 通用速度分布公式

上面应用了湍流时均动量方程与Prandtl 混合长度理论的假设,以及量纲分析和实验材料,分别得出壁面湍流的各层速度分布。 实际上,这种机械地将湍流分层,所得到的时均速度分布表达式有可能使速度分布在某些层与层之间不连续,以致于当利用热量和动量比拟的方法求解温度分布时,在相应层间,温度梯度也可能是不连续的。 特别是温度分层公式在应用上是不方便的,因此,许多学者都力图求得适合整个内层的时均速度分布的表达式,进而可以求得相应的温度分布表达式。

湍流时均动量方程在某些简化条件下,利用壁面的边界条件及Prandtl 混合长度理论,得到

d d d d x x t

w v v y

y

μ

μτ+=

2

2d d d d x

x w v v l y y μρτ??

+= ???

(10.1.18) 由此式出发,若能给出混合长度l 或湍流粘度t ν的函数表达式,可以求出相应的时均速度分布。

范·德来斯特于1956年提出了适用于整个内层的混合长度表达式

1exp y l y A χ??

??=-- ??????

? (10.1.19)

将上式的l 表达式代入,则对整个内层有

2

2

22*2

d d 1exp d d x

x v v y y v y A y νχ??????+--= ? ????????? (10.1.20)

无量纲化为

()2

d d 10d d x x

v v a y y y ++

+++????+-= ? ?????

(10.1.21) 式中

()()2

2

ex p 1?????

????? ??--=++++A y y y a χ

ν

*

yv y =

+

, *

v v v x

x =

+

其中 41.0=χ或0.4,范·德来斯特通过实验确定3.25*

==+

ν

Av A

由式(10.1.21)得

d 12d x v a y ++

-+=

=

(10.1.22) 积分上式,并利用0=+y ,0=+

x v 的边界条件,得

1

22222d 1141exp 25.3y x y v y y χ+

+

+

++=??????-?

?++-????

???????

????

?

(10.1.23)

上式适用于粘性底层、过度层、对数层的整个内层区,称为内层关系式。 但是,由于它是积分形式,因此应用起来不太方便。

另外,1956年Coles.D 提出适合于整个边界层的时均速度分布关系式

??

?

??∏

+

+=

++

δχχ

y W B y v x ln 1

(10.1.24) 可以看出,上式是在内层的对数律层时均速度分布的基础上加一修正项,由于湍流边界层中,压力梯度对外层特性影响明显,显然修正项与压力梯度

d d p

x

成函数关系,称 1d d w p

x

δβτ=

为平衡参数,它反映了压力梯度的大小,将β为常数的湍流边界层称为平衡湍流边界层,否则为非平衡湍流边界层。 根据Coles.D 的设想,认为式(10.1.24)中的∏是反映压力梯度影响的剖面参数,

称为尾迹参数,()β∏=∏。 而??

?

??δy W 称为尾迹律函数。

Coles.D 通过实验和计算得出了??

?

??δy W 和()β∏=∏得近似函数拟合形式:

??

? ??-=??? ??≈??? ??δπδπδy y y W cos 12sin 22 (10.1.25) 对于平衡湍流边界层,当∞≤≤-β5.0时,()β∏=∏可以拟合为

各类边界条件fluent

Fluent技巧 边界条件 定义边界条件概述 边界条件包括流动变量和热变量在边界处的值。它是FLUENT分析得很关键的一部分,设定边界条件必须小心谨慎。 边界条件的分类:进出口边界条件:压力、速度、质量进口、进风口、进气扇、压力出口、压力远场边界条件、质量出口、通风口、排气扇;壁面、repeating, and pole boundaries:壁面,对称,周期,轴;内部单元区域:流体、固体(多孔是一种流动区域类型) ;内部表面边界:风扇、散热器、多孔跳跃、壁面、内部。(内部表面边界条件定义在单元表面,这意味着它们没有有限厚度,并提供了流场性质的每一步的变化。这些边界条件用来补充描述排气扇、细孔薄膜以及散热器的物理模型。内部表面区域的内部类型不需要你输入任何东西。) 下面一节将详细介绍上面所叙述边界条件,并详细介绍了它们的设定方法以及设定的具体合适条件。周期性边界条件在本章中介绍,模拟完全发展的周期性流动将在周期性流动和热传导一章中介绍。 使用边界条件面板 边界条件(Figure 1)对于特定边界允许你改变边界条件区域类型,并且打开其他的面板以设定每一区域的边界条件参数 菜单:Define/Boundary Conditions... Figure 1: 边界条件面板 改变边界区域类型 设定任何边界条件之前,必须检查所有边界区域的区域类型,如有必要就作适当的修改。比方说:如果你的网格是压力入口,但是你想要使用速度入口,你就要把压力入口改为速度入口之后再设定。 改变类型的步骤如下:: 1.在区域下拉列表中选定所要修改的区域 2.在类型列表中选择正确的区域类型 3.当问题提示菜单出现时,点击确认 确认改变之后,区域类型将会改变,名字也将自动改变 (如果初始名字时缺省的请参阅边界条件区域名字一节),设定区域边界条件的面板也将自动打开。 !注意:这个方法不能用于改变周期性类型,因为该边界类型已经存在了附加限制。创建边界条件一节解释了如何创建和分开周期性区域。需要注意的是,只能在图一中每一个类别中改变边界类型(注意:双边区域表面是分离的不同单元区域.) Figure 1: 区域类型的分类列表 设定边界条件 在FLUENT中,边界条件和区域有关而与个别表面或者单元无关。如果要结合具有相同边界条件的两个或更多区域请参阅合并区域一节。 设定每一特定区域的边界条件,请遵循下面的步骤: 1.在边界条件区域的下拉列表中选择区域。 2. 点击Set...按钮。或者,1.在区域下拉列表中选择区域。 2.在类型列表中点击所要选择的类型。或者在区域列表中双击所需区域.,选择边界条件区域将会打开,并且你可以指定适当的边界条件

什么是边界层

什么是边界层?广义讲:在流体介质中,受边界相对运动以及热量和物质交换影响最明显的那一层流体。具体到大气边界层,是指受地球表面摩擦以及热过程和蒸发显著影响的大气层。大气边界层厚度,一般白天约为1.0km,夜间大约在0.2km左右,地表提供的物质和能量主要消耗和扩散在大气边界层内。大气边界层是地球-大气之间物质和能量交换的桥梁。全球变化的区域响应以及地表变化和人类活动对气候的影响均是通过大气边界层过程来实现的。 什么是湍流?英文湍流为“turbulence”,日文为“乱流”,湍流简单定义:流体微团进行的有别于一般宏观运动的不规则的随机运动,从宏观上看,它没有稳定的运动方向,但它能够象分子运动一样通过其随机运动过程有规律地传递物质和能量。从1915年由Taylor[1]提出大气中的湍流现象到1959年Priestley[2]提出自由对流大气湍流理论,可以说,到20世纪50年代以前经典的湍流理论基本上已经形成。以后,湍流理论基本上再没有出现大的突破。1905年Ekman[3]从地球流体力学角度提出了著称于世的Ekman螺线,在此基础上形成了行星边界层的概念,他的基本观点仍沿用至今。1961年,Blackadar[4]引入混合长假定,用数值模式成功地得到了中性时大气边界层具体的风矢端的螺旋图象。行星边界层的提出使人们认识到了大气边界层在大气中的特殊性和一些奇妙的规律。从20世纪50年代开始,由于农业、航空、大气污染和军事科学的需要,掀起了大气边界层研究的高潮。1954年, Monin和Obukhov[5]提出了具有划时代意义的Monin—Obukhov相似性理论,建立了近地层湍流统计量和平均量之间的联系。1982年,Dyer[6]等利用1976年澳大利亚国际湍流对比实验ITCE对其进行完善使得该理论有了极大的应用价值。1971年Wyngaard[7]提出了局地自由对流近似,补充了近地面层相似理论在局地自由对流时的空白。从20世纪70年代开始,随着大气探测技术和研究方法的发展,特别是雷达技术,飞机机载观测, 系留气球和小球探空观测以及卫星遥感和数值模拟等手段的出现,大气边界层的研究开始从近地层向整个边界层发展。简洁地概括,对大气边界层物理结构研究贡献最突出的是两大野外实验和一个数值实验,即澳大利亚实验的Wanggara和美国的Min-nesota实验以及Deardorff的大涡模拟实验。相似性理论是大气边界层气象学中最主要的分析和研究手段之一,在建立了比较成熟的用于描述大气近地面层的Monin—Obukhov相似性理论以后,人们开始寻求类似的全边界层的相似性理论。国际上,除Neuwstadt[8]、Shao[9]等做了大量工作外,我国胡隐樵等以野外实验验证了局地相似性 理论,并建立了各种局地相似性理论之间的关系。张强等还对局地相似性理论在非均匀下垫面近地面层的适应性做了一些研究。自1895年雷诺平均方程建立以来,该方程组的湍流闭合问题是至今未解决的一个跨两个世纪的科学难题。人们发展湍流闭合理论,以达到能够数值求解大气运动方程,实现对大气的数值模拟。闭合理论有一阶局地闭合理论即K闭合。1990年HoIt-sIag[12]在1972年理论框架的基础上,用大涡模拟资料对K理论做了负梯度输送的重大修正。为更精确地求解大气运动方程,也为了满足中小尺度模式,特别是大气边界层模式刻画边界层湍流通量和其它高阶矩量的目的,高阶湍流闭合技术也开始被模式要求。由于大气边界层研究是以野外探测实验为基础的实验性很强的科学,我国以往由于经济落后,无法得到第一手的实验资料,研究相对落后,与国外相比,总体上差距在20a左右,但我国学者在大气边界层的研究中也有其特殊贡献:1940年周培源先生[13]提出的湍流应力方程模式理论,被认为是湍流模式理论开始的标志,这一工作奠定了他在国际湍流研究领域的崇高地位。苏从先等在上世纪50年代给出的近地面层通量廓线与当时国外同类研究同步,被国外学者称为“苏氏定律”,在上世纪80年代苏从先等首次发现了干旱区边界层的绿洲“冷岛效应”结构。上世纪70年代周秀骥[16]提出的湍流分子动力学理论也很有独特的见解。1981年周 明煜[17]提出的大气边界层湍流场团块结构是对湍流结构的新认识。上世纪80~90年代赵鸣[18]对边界层顶抽吸作用的研究是对Charney—Eiassen公式的很好发展。在20世纪90年代的“黑河实验”中,胡隐樵等和张强[19]首次发现了邻近绿洲的荒漠大气逆湿,并总结提出了绿洲与荒漠相互作用下热力内边界层的特征等等。国内外有关大气边界层和大气湍流的专著

fluent湍流设置

湍流边界条件设置 在流场的入口、出口和远场边界上,用户需要定义流场的湍流参数。在FLUENT 中可以使用的湍流模型有很多种。在使用各种湍流模型时,哪些变量需要设定,哪些不需要设定以及如何给定这些变量的具体数值,都是经常困扰用户的问题。本小节只讨论在边界上设置均匀湍流参数的方法,湍流参数在边界上不是均匀分布的情况可以用型函数和UDF(用户自定义函数)来定义,具体方法请参见相关章节的叙述。 在 大多数情况下,湍流是在入口后面一段距离经过转捩形成的,因此在边界上设置均匀湍流条件是一种可以接受的选择。特别是在不知道湍流参量的分布规律时,在边 界上采用均匀湍流条件可以简化模型的设置。在设置边界条件时,首先应该定性地对流动进行分析,以便边界条件的设置不违背物理规律。违背物理规律的参数设置 往往导致错误的计算结果,甚至使计算发散而无法进行下去。 在Turbulence Specification Method (湍流定义方法)下拉列表中,可以简单地用一个常数来定义湍流参数,即通过给定湍流强度、湍流粘度比、水力直径或湍流特征长在边界上的值来定义流场边界上的湍流。下面具体讨论这些湍流参数的含义,以保证在设置模型时不出现违背流动规律的错误设置: (1)湍流强度(Turbulence Intensity) 湍流强度I的定义为:I=Sqrt(u’*u’+v’*v’+w’*w’)/u_avg (8-1) 上式中u',v' 和w' 是速度脉动量,u_avg是平均速度。 湍流强度小于1%时,可以认为湍流强度是比较低的,而在湍流强度大于10%时,则可以认为湍流强度是比较高的。在来流为层流时,湍流强度可以用绕流物体的几何特征粗略地估算出来。比如在模拟风洞试验的计算中,自由流的湍流强度可以用风洞的特征长度估计出来。

湍流边界条件参数的设置

2011-8-30蓝色流体|流体专业论坛专注流体 - Pow… 标题: [fluent相关]湍流边界条件参数的设置 作者: ifluid 时间: 2009-4-14 15:02 标题: 湍流边界条件参数的设置 在流场的入口、出口和远场边界上,用户需要定义流场的湍流参数。在FLUENT 中可以使用的湍流模型 有很多种。在使用各种湍流模型时,哪些变量需要设定,哪些不需要设定以及如何给定这些变量的具 体数值,都是经常困扰用户的问题。本小节只讨论在边界上设置均匀湍流参数的方法,湍流参数在边 界上不是均匀分布的情况可以用型函数和UDF(用户自定义函数)来定义,具体方法请参见相关章节的 叙述。 在大多数情况下,湍流是在入口后面一段距离经过转捩形成的,因此在边界上设置均匀湍流条件是一种可以接受的选择。特别是在不知道湍流参量的分布规律时,在边界上采用均匀湍流条件可以简 化模型的设置。在设置边界条件时,首先应该定性地对流动进行分析,以便边界条件的设置不违背物 理规律。违背物理规律的参数设置往往导致错误的计算结果,甚至使计算发散而无法进行下去。在 Turbulence Specification Method (湍流定义方法)下拉列表中,可以简单地用一个常数来定义湍 流参数,即通过给定湍流强度、湍流粘度比、水力直径或湍流特征长在边界上的值来定义流场边界上 的湍流。下面具体讨论这些湍流参数的含义,以保证在设置模型时不出现违背流动规律的错误设置: (1)湍流强度(Turbulence Intensity) 湍流强度I的定义为: I=Sqrt(u’*u’+v’*v’+w’*w’)/u_avg 上式中u',v' 和w' 是速度脉动量,u_av g是平均速度。 湍流强度小于1%时,可以认为湍流强度是比较低的,而在湍流强度大于10%时,则可以认为湍流强 度是比较高的。在来流为层流时,湍流强度可以用绕流物体的几何特征粗略地估算出来。比如在模拟 风洞试验的计算中,自由流的湍流强度可以用风洞的特征长度估计出来。在现代的低湍流度风洞中, 自由流的湍流强度通常低于0.05%。 内流问题进口处的湍流强度取决于上游流动状态。如果上游是没有充分发展的未受扰流动,则进口处可以使用低湍流强度。如果上游是充分发展的湍流,则进口处湍流强度可以达到几个百分点。如 果管道中的流动是充分发展的湍流,则湍流强度可以用公式(8-2)计算得到,这个公式是从管流经验公 式得到的: I=u’/u_avg=0.16*Re_DH^-0.125 其中Re_DH是Hy draulic Diameter(水力直径)的意思,即式(8-2)中的雷诺数是以水力直径为特 征长度求出的。 (2)湍流的长度尺度与水力直径 湍流能量主要集中在大涡结构中,而湍流长度尺度l则是与大涡结构相关的物理量。在充分发展的管流中,因为漩涡尺度不可能大于管道直径,所以l 是受到管道尺寸制约的几何量。湍流长度尺度l 与管道物理尺寸L关系可以表示为: l = 0.07L 式中的比例因子0.07是充分发展管流中混合长的最大值,而L则是管道直径。在管道截面不是圆形 时,L可以取为管道的水力直径。

第10章 湍流边界层

第10章 湍流边界层 10.1 壁面湍流特性和速度分布规律 当边界层内流体及管内流体处于层流流动状态时,流体受到壁面的限制仅仅表现在粘性切应力作用下,进行粘性旋涡的扩散;而当处于湍流流动状态时,流体受到壁面的限制则是在粘性切应力和湍流附加切应力的同时作用下,进行旋涡的扩散。 由于湍动旋涡的扩散速度远大于粘性旋涡扩散的速度,因此,在相同条件下,湍流速度边界层的厚度要比层流速度边界层厚。 但在高雷诺数的条件下,湍流速度边界层仍是贴近壁面的薄层,因此,建立湍流边界层方程的前提条件与层流时相同。 但是,由于两种切应力的作用,湍流速度边界层的结构要比层流速度边界层复杂得多。 因此,一定要先了解壁面湍流的分层结构和时均速度分布规律。 10.1.1 壁面湍流分层结构及其特性 在壁面湍流中,随着壁面距离的变化,粘性切应力和湍流附加切应力各自对流动的影响也发生变化。 以y 表示离开壁面的垂直距离,随着y 的增加,粘性切应力的影响逐渐减小,而湍流附加切应力的影响开始不断增大,而后逐渐减小。 这就形成了具有不同流动特征的区域。 壁面湍流速度边界层可以分为内层(壁面区),包括粘性底层、过度层(重叠层)和对数律层(完全湍流层);外层,包括尾迹律层和粘性顶层(间歇湍流层)。 定义 ()ρ τw x v v = =** (10.1.1) 因为*v 具有速度的量纲,故称为壁面切应力速度,它在湍流中是一个重要的特征速度。 以下对各层的划分做详细说明。 粘性底层:所在厚度约为* 5 0v y ν ≤≤,其内粘性切应力起主要作用,湍流附加切应力可以忽 略,流动接近于层流状态,因此在早期研究中称之为层流底层。 由于近期的实验研究,观察到该层内有微小旋涡及湍流猝发起源的现象,因此称为粘性底层。 过渡层:所在厚度约为* * 30 5 v y v ν ν ≤≤,其内粘性切应力和湍流附加切应力为同一数量级,流 动状态极为复杂。 由于其厚度不大,在工程计算中,有时将其并入对数律层的区域中。 对数律层:所在厚度约为()δν ν 2.01030 * 3 * ≈≤≤v y v ,其内流体受到的湍流附加切应力大于粘 性切应力,因而流动处于完全湍流状态。 由这三层组成的内层,称为三层结构模式,若将过度层归入对数律层,则称为两层结构模式。 外层中的尾迹律层和粘性顶层所在厚度分别约为δν 4.010* 3 ≤≤y v 和δδ≤≤y 4.0。 对于尾迹

(整理)FLUENT边界条件(2)—湍流设置.

FLUENT边界条件(2)—湍流设置 (fluent教材—fluent入门与进阶教程于勇第九章) Fluent:湍流指定方法(Turbulence Specification Method) 2009-09-16 20:50 使用Fluent时,对于velocity inlet边界,涉及到湍流指定方法(Turbulence Specification Method),其中一项是Intensity and Hydraulic Diameter (强度和水利直径),本文对其进行论述。 其下参数共两项, (1)是Turbulence Intensity,确定方法如下: I=0.16/Re_DH^0.125 (1) 其中Re_DH是Hydraulic Diameter(水力直径)的意思,即式(1)中的雷诺数是以水力直径为特征长度求出的。 雷诺数 Re_DH=u×DH/υ(2) u为流速,DH为水利直径,υ为运动粘度。 水利直径见(2)。 (2)水利直径 水力直径是水力半径的二倍,水力半径是总流过流断面面积与湿周之比。 水力半径 R=A/X (3) 其中,A为截面积(管子的截面积)=流量/流速 X为湿周(字面理解水流过各种形状管子外圈湿一周的周长) 例如:方形管的水利半径 R=ab/2(a+b) 水利直径 DH=2×R (4) 举例如下: 如果水流速度u=10m/s,圆形管路直径2cm,水的运动粘度为1×10-6 m2/s。 则 DH=2×3.14*r^2/(2*3.14*r)=2*3.14*0.01^2/(3.14*0.02)=0.01 r为圆管半径 Re_DH=u×DH/υ=10*0.02/10e-6=20000 I=0.16/Re_DH^0.125=0.16/20000^0.125=0.0463971424017634≈5%

fluent边界条件(一)

边界条件 定义边界条件概述 边界条件包括流动变量和热变量在边界处的值。它是FLUENT分析得很关键的一部分,设定边界条件必须小心谨慎。 边界条件的分类:进出口边界条件:压力、速度、质量进口、进风口、进气扇、压力出口、压力远场边界条件、质量出口、通风口、排气扇;壁面、repeating, and pole boundaries:壁面,对称,周期,轴;内部单元区域:流体、固体(多孔是一种流动区域类型) ;内部表面边界:风扇、散热器、多孔跳跃、壁面、内部。(内部表面边界条件定义在单元表面,这意味着它们没有有限厚度,并提供了流场性质的每一步的变化。这些边界条件用来补充描述排气扇、细孔薄膜以及散热器的物理模型。内部表面区域的内部类型不需要你输入任何东西。) 下面一节将详细介绍上面所叙述边界条件,并详细介绍了它们的设定方法以及设定的具体合适条件。周期性边界条件在本章中介绍,模拟完全发展的周期性流动将在周期性流动和热传导一章中介绍。 使用边界条件面板 边界条件(Figure 1)对于特定边界允许你改变边界条件区域类型,并且打开其他的面板以设定每一区域的边界条件参数 菜单:Define/Boundary Conditions... Figure 1: 边界条件面板 改变边界区域类型 设定任何边界条件之前,必须检查所有边界区域的区域类型,如有必要就作适当的修改。比方说:如果你的网格是压力入口,但是你想要使用速度入口,你就要把压力入口改为速度入口之后再设定。 改变类型的步骤如下:: 1.在区域下拉列表中选定所要修改的区域

2.在类型列表中选择正确的区域类型 3.当问题提示菜单出现时,点击确认 确认改变之后,区域类型将会改变,名字也将自动改变(如果初始名字时缺省的请参阅边界条件区域名字一节),设定区域边界条件的面板也将自动打开。 !注意:这个方法不能用于改变周期性类型,因为该边界类型已经存在了附加限制。创建边界条件一节解释了如何创建和分开周期性区域。需要注意的是,只能在图一中每一个类别中改变边界类型(注意:双边区域表面是分离的不同单元区域.) Figure 1: 区域类型的分类列表 设定边界条件 在FLUENT中,边界条件和区域有关而与个别表面或者单元无关。如果要结合具有相同边界条件的两个或更多区域请参阅合并区域一节。 设定每一特定区域的边界条件,请遵循下面的步骤: 1.在边界条件区域的下拉列表中选择区域。 2. 点击Set...按钮。或者,1.在区域下拉列表中选择区域。 2.在类型列表中点击所要选择的类型。或者在区域列表中双击所需区域.,选择边界条件区域将会打开,并且你可以指定适当的边界条件 在图像显示方面选择边界区域 在边界条件中不论你合适需要选择区域,你都能用鼠标在图形窗口选择适当的区域。如果你是第一次设定问题这一功能尤其有用,如果你有两个或者更多的具有相同类型的区域而且你想要确定区域的标号(也就是画出哪一区域是哪个)这一功能也很有用。要使用该功能请按下述步骤做: 1.用网格显示面板显示网格。 2.用鼠标指针(默认是鼠标右键——参阅控制鼠标键函数以改变鼠标键的功能)在图形窗口中点击边界区域。在图形显示中选择的区域将会自动被选入在边界条件面板中的区域列表中,它的名字和编号也会自动在控制窗口中显示改变边界条件名字 每一边界的名字是它的类型加标号数(比如pressure-inlet-7)。在某些情况下你可能想要对边界区域分配更多的描述名。如果你有两个压力入口区域,比方说,你可能想重名名它们

第8章湍流边界层中的动量传递

第八章湍流边界层中的动量传递 首先明确可用雷诺数表述层流与湍流的转折,以及该转折下的雷诺数的具体数值;其次,指出层流与湍流在微分方程的表述上的差异体现在湍流应力项,普朗特混合长度模型和Van Driest 模型均被用来解决湍流应力项;Couette 流动假设对于求解微分方程起了至关重要的作用;还讨论了有散逸和表面粗糙度的处理。 §8.1边界层流动现象的物理分析 流动:是成群的流体微团的运动。边界层内流动过程中的小扰动随机出现,由于小扰动的能量有限,因此仅仅会影响到个别流体微团的初始运动状况,但也因此而引发整体微团的流动状态。 层流:个体流体微团的流动方向,在整体上具有一致性的流动现象。个别流体微团因小扰动而引发的初始流动方向的改变,因为受到与相邻流体微团之间存在着的粘性力作用的影响,使得这种外界扰动的作用随着时间的推移而减小,最终使流动稳定。因此,层流流动的特点,很大程度上归因于流体微团之间存在着的粘性力,当层流受到外界扰动时,粘性力具有使层流恢复到初始未扰动状态的效应。 湍流:个体流体微团的流动方向,在整体上不具有一致性的流动现象。虽然小扰动影响的依然是个别流体微团,但此时微团之间的粘性力的作用,已经不足以消除小扰动造成的影响;反之,个别受扰动流体微团的不稳定流动,又将影响到周围流体微团,进而造成更大范围内的流体微团的不稳定流动。分析这种不稳定流动现象形成的因素,只能是因为流体微团的流动动能而引发,即所谓的流体的惯性力。因此,湍流流动的特点,在于流体微团自身的惯性力,它使得局部扰动扩大,造成整体流动的不稳定。 雷诺数:雷诺数就是惯性力与粘性力之比, μ ρux = = 粘性力惯性力Re 因此人们预料:层流流动的稳定性,在很大程度上和雷诺数的数值有关,稳定层流流动和低雷诺数值相联系。 流动沿程的定性结构: 由雷诺数的定义可知,边界层流动的初始前缘,必然是层流流动;以后,随着流动长度的增加,惯性力渐增,随机随处存在的小扰动而引发的个别微团的不稳定流动,也因此有逐渐扩大的可能性;当惯性力远大于粘性力后,湍流流动最终形成。在由层流最后扩展到完全湍流的过程中,必然存在一个过渡区,在这个区域内,惯性力和粘性力具有相同的数量级。 因此,流动沿程的定性结构为:首先是层流区,其次是过渡区,最后是湍流区。 临界雷诺数:因此,我们可以用雷诺数来描述流体流动的结构。于是必然存在某一临界雷诺数,该值确定了层流流动的上限或湍流流动的下限。现在通常讨论的是层流流动的上限。 临界雷诺数的一般性判据: 实验现象: ① 无压力梯度/光滑表面/简单层流:长度雷诺数=300,000—500,000时,发生过渡; ② 零压力梯度/层流:长度雷诺数<60,000时,仍保持稳定层流结构; ③ 管道中层流:水力直径雷诺数<2300时,层流流动仍然稳定。 上述临界雷诺数是在一定实验条件下获取的。希望建立与实验条件基本无关的关于临界雷诺数的一般性判据,假定过渡现象是局部的(小扰动随处存在,但只有在临界雷诺数出现的地方,才会出现过渡现象),则局部雷诺数判据具有一般性,这时我们已经忽略了平板流

第9章湍流边界层中的传热

第九章 湍流边界层中的传热 在层流边界层的处理中,只要粘性耗散项可以忽略不计,则能量方程就有着与动量方程相同的数学形式。这时,能量方程的解可直接引用动量方程的解。 在湍流边界层的处理中,我们已经有了动量方程的解。仿层流边界层中能量方程的解法,我们似乎也可以走直接引用湍流动量方程的解的解决途径。 与湍流动量方程一样,湍流能量方程中也有着类似的“封闭”问题。我们可以提出一种模型,以解决湍流能量方程存在着的“封闭”问题的过程中;我们也可以直接引用湍流动量方程解决封闭问题的结论,考察湍流能量方程的类似结论与湍流动量结论之间的关系。本章中的雷诺比拟就属于后一种处理方法。 §9.1湍流边界层能量方程的求解 §9.1.1动量-能量方程的比较 在定常、恒定自由流、全部流体物性处理成常数、忽略体积力和粘性耗散项可以忽略的情况下,湍流动量方程可以表为, 0''=???? ??-????-??+??v u y u y y u v x u u ρμ 湍流能量方程可以表为, 0''=??? ? ??-????-??+??v t y t c k y y t v x t u ρ 以上表示湍流边界层中的动量方程和能量方程在数学表述上具有类似的形式。 §9.1.2 雷诺比拟 在求解湍流动量方程“封闭”问题时,引入了普朗克混合长度理论,以计算' 'v u , y u l u ??='最大 和 y u kl v ??=' 最大 2 2' '''22 ??? ? ????=?= y u l k v u v u 最大 最大 混合长度定义式如下, 2 2''??? ? ????-=y u l v u 并且有, y l κ= 在求解湍流能量方程的“封闭”问题时,我们也可以引入一种计算' 'v t 的理论。 鉴于动量方程和能量方程在数学表述上具有相似性,我们还可以探索' 'v t 与' 'v u 之间是否存在着一种简单的关系,如果能够找到两者之间所存在的关系,就可以直接引用动量方程求解的结论。 ①因y 方向上脉动速度' v 的存在而引起的有效剪切应力和有效热通量的计算: 动量:() ()v u G G V G y x ++=?

最新fluent湍流设置

1 湍流边界条件设置 2 在流场的入口、出口和远场边界上,用户需要定义流场的湍流参数。在 3 FLUENT 中可以使用的湍流模型有很多种。在使用各种湍流模型时,哪些变量需4 要设定,哪些不需要设定以及如何给定这些变量的具体数值,都是经常困扰用5 户的问题。本小节只讨论在边界上设置均匀湍流参数的方法,湍流参数在边界6 上不是均匀分布的情况可以用型函数和UDF(用户自定义函数)来定义,具体方7 法请参见相关章节的叙述。 8 在 9 大多数情况下,湍流是在入口后面一段距离经过转捩形成的,因此在边界10 上设置均匀湍流条件是一种可以接受的选择。特别是在不知道湍流参量的分布11 规律时,在边 12 界上采用均匀湍流条件可以简化模型的设置。在设置边界条件时,首先应13 该定性地对流动进行分析,以便边界条件的设置不违背物理规律。违背物理规14 律的参数设置 15 往往导致错误的计算结果,甚至使计算发散而无法进行下去。 16 在Turbulence Specification Method (湍流定义方法)下拉列表中,可17 以简单地用一个常数来定义湍流参数,即通过给定湍流强度、湍流粘度比、水18 力直径或湍流特征长在边界上的值来定义流场边界上的湍流。下面具体讨论这19 些湍流参数的含义,以保证在设置模型时不出现违背流动规律的错误设置:20 (1)湍流强度(Turbulence Intensity) 21 湍流强度I的定义为:22 I=Sqrt(u’*u’+v’*v’+w’*w’)/u_avg

24 (8-1) 25 上式中u',v' 和w' 是速度脉动量,u_avg是平均速度。 26 湍流强度小于1%时,可以认为湍流强度是比较低的,而在湍流强度大于27 10%时,则可以认为湍流强度是比较高的。在来流为层流时,湍流强度可以用28 绕流物体的几何特征粗略地估算出来。比如在模拟风洞试验的计算中,自由流29 的湍流强度可以用风洞的特征长度估计出来。在现代的低湍流度风洞中,自由30 流的湍流强度通常低于0.05%。 31 内流问题进口处的湍流强度取决于上游流动状态。如果上游是没有充分发32 展的未受扰流动,则进口处可以使用低湍流强度。如果上游是充分发展的湍流,33 则进口处湍流强度可以达到几个百分点。如果管道中的流动是充分发展的湍流,34 则湍流强度可以用公式(8-2)计算得到,这个公式是从管流经验公式得到的:35 I=u’/u_avg=0.16*Re_DH^-0.125 36 (8-2) 37 其中Re_DH是Hydraulic Diameter(水力直径)的意思,即式(8-2)中的雷38 诺数是以水力直径为特征长度求出的。 39 (2)湍流的长度尺度与水力直径 40 湍流能量主要集中在大涡结构中,而湍流长度尺度l则是与大涡结构相关41 的物理量。在充分发展的管流中,因为漩涡尺度不可能大于管道直径,所以l 是42 受到管道尺寸制约的几何量。湍流长度尺度l 与管道物理尺寸L关系可以表示43 为: 44 45 l =

湍流边界条件的设置

1、湍流强度 定义:速度波动的均方根与平均速度的比值 小于1%为低湍流强度,高于10%为高湍流强度。 计算公式: I=0.16*(re)^(-1/8) 式中:I—湍流强度,re—雷诺数 2、湍流尺度及水力直径 湍流尺度(turbulence length):a physical quantity related to the size of the large eddies that contain the energy in turbulent flows。 通常计算方式: l=0.07L L为特征尺度,可认为是水力直径,因数0.07是基于充分发展的湍流管流中的混合长度的最大值。 湍流参数的选取: (1)充分发展的内部流动,选取湍流强度(intensity)和水力直径(hydraulic diameter) (2)导流叶片流动、穿孔板等流动,选取强度(intensity)和长度尺度(length scale)。 (3)四周为壁面引起湍流边界层的流动,选取强度(intensity)和长度尺度(length scale),使用边界层厚度,特征长度等于0.4倍边界层,输入此值到turbulence length scale中。 3、湍动能(Kinetic energy) 湍流模型中最常见的物理量(k)。利用湍流强度估算湍动能: k=3/2*(u*I)^2 其中:u—平均速度,I—湍流强度 4、湍流耗散率(turbulent disspipation rate)

湍流耗散率即传说中的ε。通常利用k和湍流尺度l估算ε计算公式为: cu通常取0.09,k为湍动能,l为湍流尺度 5、比耗散率ω 计算公式为: ω=k^0.5/(l*c^0.25) 式中:k为湍动能,l为湍流尺度,c为经验常数,常取0.09

边界条件中湍流设置

在入口、出口或远场边界流入流域的流动,FLUENT 需要指定输运标量的值。本节描述了对于特定模型需要哪些量,并且该如何指定它们。也为确定流入边界值最为合适的方法提供了指导方针。 使用轮廓指定湍流参量 在入口处要准确的描述边界层和完全发展的湍流流动,你应该通过实验数据和经验公式创建边界轮廓文件来完美的设定湍流量。如果你有轮廓的分析描述而不是数据点,你也可以用这个分析描述来创建边界轮廓文件,或者创建用户自定义函数来提供入口边界的信息。一旦你创建了轮廓函数,你就可以使用如下的方法: ● Spalart-Allmaras 模型:在湍流指定方法下拉菜单中指定湍流粘性比,并在在湍流粘性 比之后的下拉菜单中选择适当的轮廓名。通过将m_t/m 和密度与分子粘性的适当结合, FLUENT 为修改后的湍流粘性计算边界值。 ● k-e 模型:在湍流指定方法下拉菜单中选择K 和Epsilon 并在湍动能(Turb. Kinetic Energy )和湍流扩散速度(Turb. Dissipation Rate )之后的下拉菜单中选择适当的轮廓名。 ● 雷诺应力模型:在湍流指定方法下拉菜单中选择K 和Epsilon 并在湍动能(Turb. Kinetic Energy )和湍流扩散速度(Turb. Dissipation Rate )之后的下拉菜单中选择适当的轮廓名。在湍流指定方法下拉菜单中选择雷诺应力部分,并在每一个单独的雷诺应力部分之后的下拉菜单中选择适当的轮廓名。 湍流量的统一说明 在某些情况下流动流入开始时,将边界处的所有湍流量指定为统一值是适当的。比如说,在进入管道的流体,远场边界,甚至完全发展的管流中,湍流量的精确轮廓是未知的。 在大多数湍流流动中,湍流的更高层次产生于边界层而不是流动边界进入流域的地方,因此这就导致了计算结果对流入边界值相对来说不敏感。然而必须注意的是要保证边界值不是非物理边界。非物理边界会导致你的解不准确或者不收敛。对于外部流来说这一特点尤其突出,如果自由流的有效粘性系数具有非物理性的大值,边界层就会找不到了。 你可以在使用轮廓指定湍流量一节中描述的湍流指定方法,来输入同一数值取代轮廓。你也可以选择用更为方便的量来指定湍流量,如湍流强度,湍流粘性比,水力直径以及湍流特征尺度,下面将会对这些内容作一详细叙述。 湍流强度I 定义为相对于平均速度u_avg 的脉动速度u^'的均方根。 小于或等于1%的湍流强度通常被认为低强度湍流,大于10%被认为是高强度湍流。从外界,测量数据的入口边界,你可以很好的估计湍流强度。例如:如果你模拟风洞试验,自由流的湍流强度通常可以从风洞指标中得到。在现代低湍流风洞中自由流湍流强度通常低到0.05%。. 对于内部流动,入口的湍流强度完全依赖于上游流动的历史,如果上游流动没有完全发展或者没有被扰动,你就可以使用低湍流强度。如果流动完全发展,湍流强度可能就达到了百分之几。完全发展的管流的核心的湍流强度可以用下面的经验公式计算: ()81Re 16.0-?'≡H D avg u u I

对管内湍流边界层结构与流动阻力特性的数值研

收稿日期:1999209224;修改稿收到日期:22001204204.基金项目:上海市青年科技启明星计划(98Q F14040); 曙光计划(2000SG14040)资助1 作者简介:潘卫国(19672),男,教授,博士1文章编号:100724708(2001)0420393204 对管内湍流边界层结构与流动阻力特性的数值研究 潘卫国1, 聂雪军1, 雷俊智1, 岑可法2 (11上海电力学院热能与环保工程研究所,上海200090;21浙江大学,杭州310027)摘 要:在研究紊流边界层的过程中,本文考虑了分子粘性对紊流产生的作用、雷诺数以及壁面附近脉动动能的耗散不是各向同性对紊流产生的影响,采用Jones2L aunder模型对管内紊流流动边界层厚度、边界层内的脉动动能K,动能耗散E,管壁切应力S o以及由此可得的管内流动摩擦阻力系数K 进行了数值计算,计算结果与实验值、理论计算值具有较好的一致性。 关键词:湍流;边界层;数值计算 中图分类号:O35 文献标识码:A 1 引 言 空气在管内流动时,管壁附近有一极薄的边界 层,在这一薄层内,气流的速度由固壁处的零逐渐增 加到相应的无摩擦外流原有的值,当雷诺数R e< 2300时,边界层内为层流流动,此时流动阻力压力 降与速度的一次方成正比,摩擦阻力系数为K= 64R e,其边界层厚度D=5M L u;而工程上一般碰 到的管内流动其R e数都很大,流动为湍流流动,管 内流动压力降近似与流速的平方成正比。由于湍流 混合,使得接近管轴的流体和接近壁面的流体层之 间进行着动能和质量交换,边界层内结构就比较复 杂[1],为此,本文试用数值计算的方法探讨管内湍流 边界层结构与流动阻力特性。 2 低Re数的K-E双方程模型的建立 高R e数的K2E双方程模型对旺盛的管内紊流 区作了较好数值模拟,而对研究紊流边界层,必须要 考虑分子粘性对紊流产生的作用、雷诺数以及壁面 附近脉动动能的耗散不是各向同性这些影响。根据 Jones和L aunder的观点,对高R e数K2E双方程中相 应的项乘上f L、f1和f2因子所得的低R e数K-E双 方程模型可以模拟紊流边界层的结构[2,3],其方程如 下: 5(Q uK) 5x+5(Q M K) 5y= 5 5x[ (L+ L t R E ) 5K 5x]+ 5 5y[ (L+ L t R k ) 5K 5y]+ L t G-Q E+D - (1) 5(Q u E) 5x+ 5(Q M E) 5y= 5 5x[ (L+ L t R E ) 5E 5x]+ 5 5y[ (L+ L t R E ) 5E 5y]+ E K C1f -1 L t G- C2f2 - Q E2 K +E - L t=C L f -L Q K 2 E (2) 以上三式中下划线的部分就是低R e数K2E模 型区别于高R e数K2E模型的部分,其中f L、f1、f2、D 和E由不同的研究者得出不同的数学表达式[4~9], Jones和L aunder认为:f L=exp -215 1+0102R L, f1=110,f2=1-013exp(-R2L),D=2L5K 5y 2 , E=2 LL t Q 52u 5y2 2 式中R L=K 2 M E;  R k=K 12y M;  y+=u T y M;u T =S W Q;未注明的其它参数C L=0109,C D= 110,C1=1144,C2=1192, R K=110,R E=113。 低R e数K2E模型是对高R e数K2E方程的修正, 即考虑了高阶张量在低R e数时的影响,引入f L、f1 和f2的目的分别是为了模拟在壁面处分子粘性对 切应力的影响、考虑壁面附近湍流脉动动能耗散率 的变化以及湍流边界层内各向同性特性的减弱。 Patel[10]等曾采用多种低R e数K2E模型计算了 二维边界层流动与换热并作了比较,结果表明,采用 Jones2L aunder模型得出的计算值与实验结果的符 合程度比其它模型要好,因此下面采用 Jones2L aunder模型对管内紊流流动边界层厚度、边 第18卷第4期计算力学学报V o l.18N o14 2001年11月CH I N ESE JOU RNAL O F COM PU TA T I ONAL M ECHAN I CS N ovem ber2001

第五章,边界条件

第五章,边界条件 5-1, FLUENT 程序边界条件种类 进口 出口 壁面 orifice (interior) orifice_plate and orifice_plate-shadow 流体 Example: Face and Cell zones associated with Pipe Flow through orifice plate FLUENT 的边界条件包括: 1, 流动进、出口边界条件 2, 壁面,轴对称和周期性边界 3, Internal cell zones: fluid, solid (porous is a type of fluid zone ) 4, Internal face boundaryies: fan, radiator, porous jump, wall, interior 5-2,流动进口、出口边界条件 FLUENT 提供了10种类型的流动进、出口条件,它们分别是:

一般形式: 可压缩流动: 压力进口 质量进口 压力出口 压力远场 不可压缩流动: 特殊进出口条件: 速度进口 进口通分,出口通风 自由流出 吸气风扇,排气风扇 1, 速度进口:给出进口速度及需要计算的所有标量值 2, 压力进口:给出进口的总压和其它需要计算的标量进口值 3, 质量流进口:主要用于可压缩流动,给出进口的质量流量。对于不可压缩流动,没有必要 给出该边界条件,因为密度是常数,我们可以用速度进口条件。 4, 压力出口:给定流动出口的静压。对于有回流的出口,该边界条件比outflow 边界条件更 容易收敛。 5, 压力远场:该边界条件只对可压缩流动适合。 6, outflow : 该边界条件用以模拟在求解问题之前,无法知道出口速度或者压力;出口流动 符合完全发展条件,出口处,除了压力之外,其它参量梯度为零。该边界条件不适合可压缩流动。 7, inlet vent :进口风扇条件需要给定一个损失系数,流动方向和环境总压和总温。 8, intake fan :进口风扇条件需要给定压降,流动方向和环境总压和总温。 9, out let vent :排出风扇给定损失系数和环境静压和静温。 10, exhaust fan.:排除风扇给定压降,环境静压。 5-3 压力进口边界条件 压力进口边界条件通常用于给出流体进口的压力和流动的其它标量参数,对计算可压和不可压问题都适合。压力进口边界条件通常用于不知道进口流率或流动速度时候的流动,这类流动在工程中常见,如浮力驱动的流动问题。压力进口条件还可以用于处理外部或者非受限流动的自由边界。 压力边界条件需要表压输入。 5-1 operating gauge absolute p p p +=Operating pressure 输入: Define-operating conditions

边界层重要知识点归纳

边边界界层层重重要要知知识识点点归归纳纳 第第一一章章 大气边界层的定义:大气的最低部分受下垫面(地面)影响的层次,或者说大气与 下垫面相互作用的层次。大气边界层的厚度差异很大,平均厚度为地面以上约1km 的范围,以湍流运动为主要特征。还可细分为近地层(大气边界层下部约1/10的厚度内)和Ekman 层。 大气边界层的主要特征:(1)大气边界层的主要运动形态一般是湍流:不规则性和 脉动性(2)大气边界层的日变化:气象要素的空间分布具有明显的日变化。 【大气边界层湍流:①机械湍流:风切变,机械运动;②热力湍流:辐射特性的差异;】 大气边界层的分层:(1)粘性副层(微观层)(2)近地层(常通量层)(3)Ekman 层(上 部摩擦层) 【(1).粘性副层(微观层):分子输送过程处于支配地位,分子切应力远大于湍流切应力。(2).近地层(常通量层):大气受地表动力和热力影响强烈,气象要素随高度变化激烈,运动尺度小,科氏力可略。(3).Ekman 层(上部摩擦层):在这一层里,湍流粘性力、科氏力和气压梯度力同等重要,需要考虑风随高度的切变。】 大气边界层厚度:边界层厚度的时空变化很大,空间范围从几百米到几千米。海洋 上:由于海水上层强烈混合使海面温度日变化很小。 陆地上,边界层具有轮廓分明、周日循环发展的结构。 大气边界层结构:(1)混合层: (2)残留层:日落前半小时,湍流在混合层中 衰减形成的空气层,属中性层结。 (3)稳定边界层:夜间,与地面接触的残留层底部逐渐变为稳定边界层。其特点为在静力稳定大气中有零散的湍流,虽然夜间近地面层风速常常减弱或静风,但高空200m 左右,风却由于低空急流或夜间急流能达到超地转风。 第二章 湍流:流体运动杂乱而无规律性(运动具有脉动性),不同层次的流体质点发生激烈的混合现象,流体质点的运动轨迹杂乱无章,其对应的物理量随空间激烈变化。 雷诺数:——湍流判据,特征Re 数定义: =特征惯性力/特征粘性力;它表示了流体粘性在流动中的相对重要性: (1)Re 》1,粘性力相对小(可忽略),大Re 数流体,弱粘性流; (2)Re 《1,惯性力相对小(可忽略),小Re 数流体,强粘性流; ν /Re UL ≡

湍流边界条件的设置

在流场的入口、出口和远场边界上,用户需要定义流场的湍流参数。在FLUENT 中可以使用的湍流模型有很多种。在使用各种湍流模型时,哪些变量需要设定,哪些不需要设定以及如何给定这些变量的具体数值,都是经常困扰用户的问题。本小节只讨论在边界上设置均匀湍流参数的方法,湍流参数在边界上不是均匀分布的情况可以用型函数和UDF(用户自定 义函数)来定义,具体方法请参见相关章节的叙述。 在大多数情况下,湍流是在入口后面一段距离经过转捩形成的,因此在边界上设置均匀湍流条件是一种可以接受的选择。特别是在不知道湍流参量的分布规律时,在边界上采用均匀湍流条件可以简化模型的设置。在设置边界条件时,首先应该定性地对流动进行分析,以便边界条件的设置不违背物理规律。违背物理规律的参数设置往往导致错误的计算结果,甚至使计算发散而无法进行下去。 在Turbulence Specification Method (湍流定义方法)下拉列表中,可以简 单地用一个常数来定义湍流参数,即通过给定湍流强度、湍流粘度比、水力直径或湍流特征长在边界上的值来定义流场边界上的湍流。下面具体讨论这些湍流参数的含义,以保证在设置模型时不出现违背流动规律的错误设置: (1)湍流强度(Turbulence Intensity) 湍流强度I的定义为:I=Sq rt(u’*u’+v’*v’+w’*w’)/u_avg (8-1) 上式中u',v' 和w' 是速度脉动量,u_avg是平均速度。 湍流强度小于1%时,可以认为湍流强度是比较低的, 而在湍流强度大于10%时,则可以认为湍流强度是比较高的。 在来流为层流时,湍流强度可以用绕流物体的几何特征粗略地估算出来。比如在模拟风洞试验的计算中,自由流的湍流强度可以用风洞的特征长度估计出来。在现代的低湍流度风洞中,自由流的湍流强度通常低于0.05%。 内流问题进口处的湍流强度取决于上游流动状态。如果上游是没有充分发展的未受扰流动,则进口处可以使用低湍流强度。如果上游是充分发展的湍流,则进口处湍流强度可以达到几个百分点。 如果管道中的流动是充分发展的湍流,则湍流强度可以用公式(8-2)计算得到,这个公式是从管流经验公式得到的: I=u’/u_avg=0.16*Re_DH^-0.125 (8-2) 其中Re_DH是Hydraulic Diameter(水力直径)的意思,即式(8-2)中的雷诺数是以水力直径为特征长度求出的。 (2)湍流的长度尺度与水力直径 湍流能量主要集中在大涡结构中,而湍流长度尺度l则是与大涡结构相关的物理量。在充分发展的管流中,因为漩涡尺度不可能大于管道直径,所以l 是受到 管道尺寸制约的几何量。湍流长度尺度l 与管道物理尺寸L关系可以表示为: l = 0.07L (8-3) 式中的比例因子0.07 是充分发展管流中混合长的最大值,而L则是管道直径。在管道截面不是圆形时,L可以取为管道的水力直径。 湍流的特征长取决于对湍流发展具有决定性影响的几何尺度。在上面的讨论中,管道直径是决定湍流发展过程的唯一长度量。如果在流动中还存在其他对流动影响更大的物体,比如在管道中存在一个障碍物,而障碍物对湍流的发生和发展过程起着重要的干扰作用。在这种情况下,湍流特征长就应该取为障碍物的特征长度。

相关文档
最新文档