衰减器

衰减器
衰减器

功率衰减器是一种能量损耗性射频/微波元件,元件内部含有电阻性材料。除了常用的电阻性固定衰减器外,还有电控快速调整衰减器。衰减器广泛使用于需要功率电平调整的各种场合。

原理

1.技术指标工作频带

2.衰减量

3.功率容量

4.回波损耗

5.功率系数

6.基本构成

7.主要用途

8.相关参数

9.种类位移型光衰减器

10.薄膜型光衰减器

11.衰减片型光衰减器

12.注意事项原理

13.技术指标工作频带

14.衰减量

15.功率容量

16.回波损耗

17.功率系数

18.基本构成

19.主要用途

20.相关参数

21.种类位移型光衰减器

22.薄膜型光衰减器

23.衰减片型光衰减器

24.注意事项

原理:

衰减器是在指定的频率范围内,一种用以引入一预定衰减的电路。一般以所引入衰减的分贝数及其特性阻衰减器抗的欧姆数来标明。在有线电视系统里广泛使用衰减器以便满足多端口对电平的要求。如放大器的输入端、输出端电平的控制、分支衰减量的控制。衰减器有无源衰减器和有源衰减器两种。有源衰减器与其他热敏元件相配合组成可变衰减器,装置在放大器内用于自动增益或斜率控制电路中。无源衰减器有固定衰减器和可调衰减器。

技术指标

工作频带

衰减器的工作频带是指在给定频率范围内使用衰减器,衰减器才能达到指标值。由于射频/

微波数字衰减器结构与频率有关,不同频段的元器件,结构不同,也不能通用。现代同轴结构的衰减器使用的工作频带相当宽,设计或使用中要加以注意。

衰减量

无论形成功率衰减的机理和具体结构如何,总是可以用下图所示的两端口网络来描述衰减器。图中,信号输入端的功率为P1,而输出端得功率为P2,衰减器的功率衰减量为A (dB)。若P1 、P2 以分贝毫瓦(dBm)表示,则两端功率间的关系为P2(dBm)=P1(dBm)-A(dB)可以看出,衰减量描述功率通过衰减器后功率的变小程度。衰减量的大小由构成衰减器的材料和结构确定。衰减量用分贝作单位,便于整机指标计算。

功率容量

衰减器是一种能量消耗元件,功率消耗后变成热量。可以想象,材料结构确定后,衰减器的功率容量就确定了。如果让衰减器承受的功率超过这个极限值,衰减器就会被烧毁。设计和使用时,必须明确功率容量。

回波损耗

回波损耗就是衰减器的驻波比,要求衰减器两端的输入输出驻波比应尽可能小。我们希望的衰减器是一个功率消耗元件,不能对两端电路有影响,也就是说,与两端电路都是匹配的。设计衰减器时要考虑这一因素。

功率系数

当输入功率从10mW变化到额定功率时,衰减量的变化系数表示为dB/(dB*W)。衰减量的变化值的具体算法是将系数乘以总衰减量功率(W)。如:一个功率容量50W,标称衰减量为40dB的衰减器的功率系数为0.001dB/(dB*W),意味着输入功率从10mW加到50W时,其衰减量会变化0.001*40*50=2dB之多!

基本构成

构成射频/微波功率衰减器的基本材料是电阻性材料。通常的电阻是衰减器的一大功率衰减器种基本形式,由此形成的电阻衰减器网络就是集总参数衰减器。通过一定的工艺把电阻材料放置到不同波段的射频/微波电路结构中就形成了相应频率的衰减器。如果是大功率衰减器,体积肯定要加大,关键就是散热设计。随着现代电子技术的发展,在许多场合要用到快速调整衰减器。这种衰减器通常有两种实现方式,一是半导体小功率快调衰减器,如PIN 管或FET单片集成衰减器;二是开关控制的电阻衰减网络,开关可以是电子开关,也可以是射频继电器。

衰减器有以下基本用途:1) 控制功率电平:在微波超外差接收机中对本振输出功率进行控制,获得光敏衰减器最佳噪声系数和变频损耗,达到最佳接收效果。在微波接收机中,实现自动增益控制,改善动态范围。2) 去耦元件:作为振荡器与负载之间的去耦合元

件。3) 相对标准:作为比较功率电平的相对标准。4) 用于雷达抗干扰中的跳变衰减器:是一种衰减量能突变的可变衰减器,平时不引入衰减,遇到外界干扰时,突然加大衰减。从微波网络观点看,衰减器是一个二端口有耗微波网络。它属于通过型微波元件。

相关参数

1)衰减:用于描述传输过程中从一端到另一端的信号减少的量值。可用倍数或同轴衰减器分贝数来表达。

2)VSWR:等于特性阻抗与连接在传输线输出端的负载阻抗的比值。

3)最大平均功率:在衰减器输出端接特性阻抗时,在指定的最高工作温度上可长期加到衰减器输入端的最大功率。当工作温度降至20ºC,输入功率降到10mW时,衰减器的其它指标不应该发生变化。

4)插入损耗的功率系数:当输入功率从10mW到额定功率时,插入损耗的变化值(dB)。5)最大峰值功率:在衰减器输出端接特性阻抗时,在指定的最高工作温度上,在指定的时间内,加到衰减器输入端的5ms脉冲宽度最大峰值功率。当工作温度降至20ºC,输入功率降到10mW时,衰减器的其它指标不应该发生变化。

6)温度系数:在最大工作温度范围内插入损耗的最大变化,用dB/ºC表示。

7)冲击和振动:衰减器必须承受三个方向的冲击和振动试验。

8)插入损耗的频率响应:在20ºC时,整个频率范围内损耗值的变化量(dB)。

9)工作温度上限:衰减器工作在最大输入功率时的最高温度(ºC)。

10)标称插入损耗的偏差:在20ºC,输入功率10mW时测得的插入损耗和标称值的偏差。

11)接头寿命:正常连接/断开的次数;在规定的寿命内所有的电气和机械指标应该满足指标要求。

12)互调失真:互调失真由杂散信号组成,它是由于器件中的非线性因素而产生的。尤其需要关注的是三阶互调失真,因为三阶互调产物最大而且不可被滤除。三阶互调电平的测试方法是将二个等幅的纯净信号(f1和f2)注入到被测器件中,三阶互调将出现在输出频谱的2f1-f2和2f2-f1处。三阶互调产物由相对于f1或f2的大小来定义,由-dBc来表示。

种类

1、位移型光衰减器

当两段光纤进行连接时,必须达到相当高的对中精度,才能使光信号以较小的损耗衰减器传输过去。反过来,如果将光纤的对中精度做适当的调整,就可以控制其衰减量。位移型光衰减器就是根据这个原理,有意让光纤在对接时,发生一定的错位。使光能量损失一些,从而达到控制衰减量的目的,位移型光衰减器又分为两种:横向位移型光衰减器、轴向位移型光衰减器。横向位移型光衰减器是一种比较传统的方法,由于横向位移参数的数量级均在微米级,所以一般不用来制作可变衰减器,仅用于固定衰减器的制作中,并采用熔接或粘接法,到目前仍有较大的市场,其优点在于回波损耗高,一般都大于60dB。轴向位移型光衰减器在工艺设计上只要用机械的方法将两根光纤拉开一定距离进行对中,就可实现衰减的目的。这种原理主要用于固定光衰减器和一些小型可变光衰减器的制作。

衰减器培训投影片(PPT)

光纖衰減器功能屬性 (Fiber Optical Attenuator)?功能: 致光信號衰減,使光信號調節在光接收器動態範圍內,以確保光信號傳輸正確性之光被動元件. ?分類:(以衰減值型式) –固定值衰減器(Fixed Attenuator) –可變值衰減器(Variable Attenuator) ?連續式(Continuously): 0.5~30dB. ?階段式(Discretely): <5dB interval.

光纖衰減器分類方式 (Fiber Optical Attenuator) ?分類:(以結構型式) –引線式(In-Line type) ?將衰減器包裝在光纖引線中間,兩端再組裝不同 型式連接器稱之. ATTENUATOR –接頭式(Adaptor type) ?依兩端是插頭(Plug;Male)或插座(Receptacle;Female) 分為公對母(M/F);母對母(F/F);公對公(M/M)三種, 兩端亦可依不同插頭或插座型式設計稱之.

光纖衰減器製作原理 ---插座式固定值光纖衰減器--- ?光吸收原理: –濾光片式光纖衰減器 ?利用一片固定光吸收率的濾光片以浮動設計原理 置於光學基準面上,兩端以Ferrule接觸方式進行. –反射損失過大(約-17dB) –濾光片需具抗壓強度(800~1200gf) ?MoT(Sleeve) ?o¥ú¤ù

光纖衰減器製作原理 ---插座式固定值光纖衰減器--- ?光發散原理: –塑膠片式光纖衰減器 ?利用不同厚度造成光斑大小不同的塑膠片置於光 學基準面上,兩端以Ferrule接觸方式進行. ?塑膠片折射率約1.46(接近光纖Core的折射率). ?機械基準面隨塑膠片厚度變化而不同. –反射損失過大(約-30dB) –零件共通性差(零件尺寸隨衰減值變化而不同) –塑膠片需具抗壓強度(800~1200gf)

衰减器原理及其设计

衰减器原理及其设计 时间:2012-01-07 来源:作者: 关键字:衰减器原理 衰减器广泛地应用于电子设备中,它的主要用途是: (1)调整电路中信号的大小; (2)在比较法测量电路中,可用来直读被测网络的衰减值; (3)改善阻抗匹配,若某些电路要求有一个比较稳定的负载阻抗时,则可在此电路与实际负载阻抗之间插入一个衰减器,能够缓冲阻抗的变化。 通常,衰减器接于信号源和负载之间,衰减器是由电阻元件组成的四端网络,它的特性阻抗、衰减都是与频率无关的常数,相移等于零。 实际应用中,有固定衰减器和可变衰减两大类。 1、固定衰减器的设计 常用的固定衰减器有L型、T型、X型和桥T型等几种结构,其电路形式和计算公式见表5.1-16。

注:RC为特性阻抗;RC1、RC2为两侧特性阻抗,B为固有衰减值N=EB。 其中L型属于不对称衰减器,主要用于阻抗匹配,而T型、X型、桥T型属于对称衰减器,主要用于衰减。一端接地的衰减器称为不平衡衰减器;反之,两端不接地的衰减器称为平衡衰减器。 例:设计一衰减器,匹配于信号源内阻RS-600欧与负载电阻RL=150欧之间,其衰减量为30DB。 解计算过程: (1)因为RS、RL不相等,所以选用一节倒L型和一节对称T型号组成衰减器,如图5.1-19A所示 倒L型电路计算: (2)T型电路计算:由于总衰减量为30DB,所以T型衰减量为 (3)电路简化:对设计电路进行变换,进而得到简化电路,由图5.1-19A变换为图B及图C的形式。

2、可变衰减器的设计 可变衰减器,一般是指特性阻抗值恒定的,而它的衰减值是可变的衰减器,此外,还有一种分压式可变衰减器,由于它的负载往往是高阻抗,因此对这种分压式可变衰减器的特性阻抗就没有什么具体要求。 1)可变桥T型衰减器可变桥T型衰减器的电路结构如图5.1-20所示。

C8051F320在的数字可调光衰减器设计中的应用

C8051F320在的数字可调光衰减器设计中的应用 【摘要】为了在光通信中实现光信号的衰减,采用微处理器C8051F320和AGILTRON公司的MEMS型EVOA元器件,实现了一种结构简单,低成本的可调光衰减器。本可调光衰减器由EVOA控制电路、液晶显示电路、USB接口电路和UART接口电路组成。通过实验测量和批量应用于生产,表明本可调衰减器工作可靠,有良好的精度。 【关键词】C8051F320;MEMS;EVOA 0 概述 光衰减器(OA)是光通信中最基本的器件之一,其的主要功能是用来减低或控制光信号,即用于光通讯系统中指标测量,短距通信系统的信号衰减。光衰减器可分为固定光衰减器(FOA)和可调光衰减器(VOA)。固定衰减器成本低廉,但是使用不方便,灵活性差。随着WDM技术近几年的快速发展和应用,光衰减器,特别是可调光衰减器(VOA)在EDFA增益均衡、DWMD网络光功率控制、光通讯线路、系统评估以及各种实验中等方面起到越来越重要的作用。虽然目前国内外可调光衰减器种类较多,但是大多价格较贵,本文介绍一种造价低廉,高精度,稳定性较好的光衰减器设计方案。 关键元器件选用AGILTRON公司的MM系列MEMS可变衰减器,MM系列VOA是基于微电机械结构,驱动简单,可直接利用电压驱动,同时具有良好的光电特性,满足Telcordia 1209和1221标准。在微控制器的控制下即可实现不同的驱动电压从而实现光信号的衰减控制。 MM系列VOA的特性如下表: 波长范围为C和L波段,其衰减范围可达30dB左右,插入损耗小于0.5dB,基本上满足常规实验和测试要求。 表1 电气参数表 1 系统框图 本系统以具有51核的微控制器C8051F320为核心,通过数模转化DAC来控制EVOA实现光信号的衰减,输出显示部分为液晶模块,输入部分为四轻触按键,同时与上位机通讯接口采用USB和RS232两种接口。 2 硬件设计 本衰减器由两部分构成:微控制器(MCU)电路和衰减器(VOA)控制电路。

衰减器课程设计的基本原理及电路图

信号衰减器原理及设计 衰减器是在指定的频率范围内,一种用以引入一预定衰减的电路,一般以所引入衰减的分贝数及其特性阻抗的欧姆数来标明。 衰减器广泛地应用于电子设备中,它的主要用途是: (1)调整电路中信号的大小;(2)改善阻抗匹配,若某些电路要求有一个比较稳定的负载阻抗时,则可在此电路与实际负载阻抗之间插入一个衰减器,能够缓冲阻抗的变化。 通常,衰减器接于信号源和负载之间,衰减器是由电阻元件组成的二端口网络,它的特性阻抗、衰减量都是与频率无关的常数,相移等于零。 实际应用中,有固定衰减器和可变衰减两大类。 1、固定衰减器的设计 常用的固定衰减器有对称型的T型、∏型、桥T型和倒L型(不对称型)等几种结构,其电路形式和计算公式如下。 图1. T型衰减器 图2. ∏型衰减器 1 2 1 1 2 2 1- = + - = N N R R N N R R C C 1 1 2 1 2 2 1- + = - = N N R R N N R R C C 1 )1 ( 2 1- = - = N R R N R R C C

图3. 桥T 型衰减器 图4. 倒L 型衰减器 式中,Rc 为二端口网络的特性阻抗(对称时),即输入输出阻抗,Rc1和Rc2两侧特性阻抗,分别为非对称衰减器的输入输出阻抗;20 10A N =,为输入电压与输出电压之比,A 为衰减的分贝数。 电压比分贝:dB=20lg (Uo/Ui ) 以上衰减器中,T 型、∏型、桥T 型属于对称衰减器,主要用于衰减。而倒L 型属于不对称衰减器,主要用于阻抗匹配。 倒L 型不对称衰减器构成阻抗匹配器,与对称衰减器所不同的是,不能指定衰减量,其输入输出阻抗确定后,其衰减量也就确定了。其衰减值见下表。 表1 倒L 型衰减器衰减值与输入输出阻抗比的关系 值得注意的是,桥T 型衰减器中,有两个电阻的值即为特性阻抗(输入输出电阻),且计算公式简洁,用于组成可调衰减器非常方便。 例1:设计一衰减器,匹配于信号源内阻R S =800欧与负载电阻R L =150欧之间,其衰减量为30dB 。 解:因为RS 、RL 不相等,所以选用一节倒L 型和一节对称T 型构成衰减器,如图5所示。 (1)倒L 型电路计算: 10.14 8001501111166.41150 800800 150721.11)150800(800)(1 1 1 2 12112 22111=???? ??--=??? ? ? ?--=Ω =-=-=Ω=-?=-=--C C C C C C C C C R R N R R R R R R R R R (2)T 型电路计算: 由于总衰减量A=30dB ,N=10^(30/20)=31.62;所以桥T 型衰减量N 2为 N 2=N/N 1=31.62/10.14=3.1184 计算R1和R2 1 122 11 2 2111112)(-? ???? ?--=-=-=C C C C C C C C C R R N R R R R R R R R R

程控衰减器使用说明及应用软件

说明书 在使用前,首先参考一下使用说明书,熟悉产品的硬件结构和使用方法,以便更好更快的应用本系统。 系统概述 (1) 技术指标 (2) 硬件连接 (3) 软件安装设置 (4)

(一)系统概述 LY1002型二进二出程控衰减器系统由两个步进可编程衰减器组成二进二出测试系统,频率范围DC~3.8GHz,衰减范围0~63dB;通过网口与电脑连接,实现同时控制两路衰减量,在不中断电路的情况下以 1dB 步进形式调节电路的信号电平,用于调节测试系统中的功率电平,具有精度高、稳定可靠、操作简便等特点。同时可按客户要求提供各种形式的M(≥1)进N(≥1)出产品。 外形图(前视)

(二) 技术指标 1)工作频率: DC~3.8GHz 2)衰减调节范围:0~63dB 3)衰减最小步进:1dB(特殊要求可改为0.5dB) 4)插入损耗: ≤7dB(详见产品测试表格) 5)系统阻抗: 50Ω 6)驻波比: ≤1.5 7)衰减精度: ±(0.2+衰减设置值×3%)dB @(DC~1GHz) ±(0.25+衰减设置值×3%)dB @(1~2.2GHz) ±(0.3+衰减设置值×3%)dB @(2.2~3GHz) ±(0.35+衰减设置值×5%)dB @(3~3.8GHz) 8)最大输入功率:2W(工作在+25℃时) 0.5W(工作在+85℃时) 9)工作电压: 交流220V(最大功耗5W) 10)射频接口: SMA(female) 11)控制接口: 网口(RJ45,符合TCP/IP协议) 12)控制方式: 虚拟串口通信模式,提供电脑控制界面程序 13)温度范围: 0~+60℃(工作) -20~+100℃(存储) 14)湿度: 5~95% 15)外形尺寸: 铝屏蔽外壳 320×280×75㎜(不含连接器) 16)重量: 2㎏(不含附件) 17)附件: 交流电源电缆一根、软件光盘一张、网线一根

衰减器原理

衰减器原理,用途及设计 - 衰减器原理,用途及设计 衰减器广泛地应用于电子设备中,它的主要用途是: (1)调整电路中信号的大小; (2)在比较法测量电路中,可用来直读被测网络的衰减值; (3)改善阻抗匹配,若某些电路要求有一个比较稳定的负载阻抗时,则可在此电路与实际负载阻抗之间插入一个衰减器,能够缓冲阻抗的变化。 通常,衰减器接于信号源和负载之间,衰减器是由电阻元件组成的四端网络,它的特性阻抗、衰减都是与频率无关的常数,相移等于零。 实际应用中,有固定衰减器和可变衰减两大类。 1、固定衰减器的设计 常用的固定衰减器有L型、T型、X型和桥T型等几种结构,其电路形式和计算公式见表5.1-16。

注:RC为特性阻抗;RC1、RC2为两侧特性阻抗,B为固有衰减值N=EB。 其中L型属于不对称衰减器,主要用于阻抗匹配,而T型、X型、桥T型属于对称衰减器,主要用于衰减。一端接地的衰减器称为不平衡衰减器;反之,两端不接地的衰减器称为平衡衰减器。 例:设计一衰减器,匹配于信号源内阻RS-600欧与负载电阻RL=150欧之间,其衰减量为30DB。 解计算过程: (1)因为RS、RL不相等,所以选用一节倒L型和一节对称T型号组成衰减器,如图5.1-19A

所示倒L型电路计算: (2)T型电路计算: 由于总衰减量为30DB,所以T型衰减量为 (3)电路简化: 对设计电路进行变换,进而得到简化电路,由图5.1-19A变换为图B及图C的形式。

上一页1 2 下一页 2、可变衰减器的设计 可变衰减器,一般是指特性阻抗值恒定的,而它的衰减值是可变的衰减器,此外,还有一种分压式可变衰减器,由于它的负载往往是高阻抗,因此对这种分压式可变衰减器的特性阻抗就没有什么具体要求。 1)可变桥T型衰减器

衰减器基础知识

衰减器基础知识 同轴衰减器、射频衰减器、衰减器、高功率衰减器 衰减器,射频微波中简单的一个附件之一,要说哪个射频实验室没有,估计大家都不相信,当然,衰减器的大用户是用来衰减功率或者保护后级。 衰减器按照组成类型来分的话,主要有同轴、波导、PIN二极管等多种形式。同轴衰减器以吸收式也就是我们的衰减片为主。所以在衰减器厂商中能把衰减片做好可是一门绝活,据称一般不外传。 衰减片 先不表IC衰减器,同轴衰减器从应用类型来分,可以分为固定衰减器、手动可调衰减器、可编程衰减器等。在这里要多叨叨一句,如果是可编程衰减器,分为“make before break”(先合后断)和“break before make”(先断后合)两种。如果想衰减值之间无中断地切换的话,应该选择“make before break”类型,否则可能会出现开关切换时的开路状态哈! 衰减器的主要射频指标 1) 频率范围:这个不用说,大家都明白,还是和其它器件一样,越高频越难做。一般6G以下除了比较高的功率外,我们倾向于认为国产品牌已经做的不错了。 2) 承载功率:这个很讲究。 大家看指标书的时候请务必看一下,标出的一般都是25℃下连续波功率。所以大家在遇到脉冲功率的时候,请务必换算一下脉冲占空比哦。 这里请大家注意哦,如果是同轴衰减器的话,因为是无源功率器件,需要考虑一个温度系数,单位为dB/℃,表征随着温度变化标称衰减值的变化量: 一般随着温度的升高,承载功率是线性下降的。所以如果衰减器的应用环境是室外的高温环境的话,请一定记得提高承载功率,否则衰减器烧毁估计就是妥妥的了。 3)衰减值 既然作为衰减器,衰减值当然是重要的了。一般我们常见到的是3,6,10,20,30,40,50dB。所以如果亲想要一个2.5dB的精密衰减器,这八成就得订做了。

Pi型衰减器设计

低成本的表面贴PIN管的Pi型衰减器 简介 模拟衰减器在射频以及微波网络方面得到了很广泛的应用。无论是采用砷化镓微波集成电路(GaAs MMICs)还是采用PIN管的网络,它们都是通过电压来控制射频信号的功率的。在商业应用中,比如蜂窝电话网,个人通信网络,无线局域网以及便携式无线电等,衰减器的造价是设计中的一个重要因素。本文描述了一种利用塑胶封装的表面贴片设计的低造价、宽频带的PIN管Pi型衰减器。 背景 型衰减器以及它的设计方程。调整分Pi1描绘了基本的图,同时提A=20 log(K)R3以满足衰减值流电阻R1和串联电阻管工作在高PIN供与系统特性阻抗匹配的输入输出阻抗。当)时,它可以用作为流控可变电Afc(见附录于其截止频率型电路中的固定电阻来构造一PiPIN管代替阻。故可用三个个可变衰减器。管构成的衰给出了一个由三个PIN作为一个例子,图2的频率范围内有良好的到 500MHZ减器,这个电路在10MHZ管作为三个可变电阻型电路中用三个PIN性能。然而,在Pi 导致了网络的不对称,这就使偏置电路相当复杂。Pi型衰减器个PIN管组成的4,会有很多好管来代替电阻R33,如果用两个PIN如图 管决定PIN处。首先,由于网络的最大隔离度是由串联的管取代一个管子将提高衰减的最大值,或是PIN的,用两个度反相工作,180在一定的衰减量下使频率上限增加一倍。第二,代替串联电阻的两个PIN管使得偶数阶的非线性产物得以抵消。第三,构成的衰减器网络是对称的,而且偏置电路非常简管代替一个管子的PIN是一固定电压,Vc是控制网络衰减量的可变电压。采用两个串联单。V+和D2PIN管。R1和R2分别作为串联唯一负面影响就是导致插损的轻微增加,

光衰减器知识

光衰减器知识 一、概述 (一)用途 光衰减器是光纤通信设备检测中必不可少的测试仪器之一,主要用于光信号的衰减,广泛应用于光纤通信系统、设备和仪器在研制、开发和生产过程中的检测与调试,还可以应用于误码率测量、接收机灵敏度测量、EDFA特性、功率均衡、系统损耗模拟和功率校准及验证等方面。 (二)分类与特点 光衰减器按衰减原理分可分为挡光式和滤光片式两种类型。挡光式光衰减器衰减范围较窄,且线性度较差;而滤光片式光衰减器具有衰减范围大、线性度好、平坦度好,重复性好等特点,在实际使用中得到了广泛的应用。 光衰减器按功能和用途的不同,可分为机械式光衰减器、智能程控式光衰减器和功率控制型智能程控光衰减器。 ●机械式光衰减器的特点 机械式光衰减器的优点是简单易用,价格便宜,但衰减准确度低、重复性和稳定度较差,衰减调节速度慢,只能满足简单的测试需求。 ●智能程控式光衰减器 智能程控式光衰减器的优点是衰减自动调节、针对不同波长衰减数据可进行补偿、具备GPIB远程控制功能,因此其衰减准确度高、重复性好、稳定性高、衰减调节速度快,能够满足科研和生产的需求,并可配合其它光测试仪器搭建自动测试系统,提高测试效率。 ●功率控制型智能程控光衰减器 功率控制型智能程控光衰减器在智能程控光衰减器的基础上增加了输出光功率控制功能,因此其不仅具备了智能程控光衰减器的所有优点,而且还可以对输出光功率实时监视,并对衰减值进行实时调整,进一步提高了测试的准确度和稳定性。 (三)产品国内外现状 国内生产光衰减器的厂家主要有:如中国电子科技集团41所、中国电子科技集团公司第34所等单位。国产光衰减器的衰减准确度和重复性指标都不太高,中国电子科技集团41所的衰减准确度≤±0.4dB,衰减重复性≤±0.04dB。国外的光衰减器主要以Agilent、EXFO和JDSU居多,衰减准确度≤±0.1dB、重复率≤±0.01dB。 (四)技术发展趋势 ●高准确性、高重复性是光衰减器追求的目标; ●集成化、模块化是光衰减器产品主要的发展趋势; ●光功率监视技术将会得到进一步的推广应用。 二、基本工作原理 智能程控光衰减器主要由主控CPU电路、光控CPU电路、操作/显示面板、GPIB接口和光机组件组成。主控CPU电路,用于控制显示和按键,处理GPIB;光控CPU,用于控制光机组件的运行。

衰减器

功率衰减器是一种能量损耗性射频/微波元件,元件内部含有电阻性材料。除了常用的电阻性固定衰减器外,还有电控快速调整衰减器。衰减器广泛使用于需要功率电平调整的各种场合。 原理 1.技术指标工作频带 2.衰减量 3.功率容量 4.回波损耗 5.功率系数 6.基本构成 7.主要用途 8.相关参数 9.种类位移型光衰减器 10.薄膜型光衰减器 11.衰减片型光衰减器 12.注意事项原理 13.技术指标工作频带 14.衰减量 15.功率容量 16.回波损耗 17.功率系数 18.基本构成 19.主要用途 20.相关参数 21.种类位移型光衰减器 22.薄膜型光衰减器 23.衰减片型光衰减器 24.注意事项 原理: 衰减器是在指定的频率范围内,一种用以引入一预定衰减的电路。一般以所引入衰减的分贝数及其特性阻衰减器抗的欧姆数来标明。在有线电视系统里广泛使用衰减器以便满足多端口对电平的要求。如放大器的输入端、输出端电平的控制、分支衰减量的控制。衰减器有无源衰减器和有源衰减器两种。有源衰减器与其他热敏元件相配合组成可变衰减器,装置在放大器内用于自动增益或斜率控制电路中。无源衰减器有固定衰减器和可调衰减器。 技术指标 工作频带 衰减器的工作频带是指在给定频率范围内使用衰减器,衰减器才能达到指标值。由于射频/

微波数字衰减器结构与频率有关,不同频段的元器件,结构不同,也不能通用。现代同轴结构的衰减器使用的工作频带相当宽,设计或使用中要加以注意。 衰减量 无论形成功率衰减的机理和具体结构如何,总是可以用下图所示的两端口网络来描述衰减器。图中,信号输入端的功率为P1,而输出端得功率为P2,衰减器的功率衰减量为A (dB)。若P1 、P2 以分贝毫瓦(dBm)表示,则两端功率间的关系为P2(dBm)=P1(dBm)-A(dB)可以看出,衰减量描述功率通过衰减器后功率的变小程度。衰减量的大小由构成衰减器的材料和结构确定。衰减量用分贝作单位,便于整机指标计算。 功率容量 衰减器是一种能量消耗元件,功率消耗后变成热量。可以想象,材料结构确定后,衰减器的功率容量就确定了。如果让衰减器承受的功率超过这个极限值,衰减器就会被烧毁。设计和使用时,必须明确功率容量。 回波损耗 回波损耗就是衰减器的驻波比,要求衰减器两端的输入输出驻波比应尽可能小。我们希望的衰减器是一个功率消耗元件,不能对两端电路有影响,也就是说,与两端电路都是匹配的。设计衰减器时要考虑这一因素。 功率系数 当输入功率从10mW变化到额定功率时,衰减量的变化系数表示为dB/(dB*W)。衰减量的变化值的具体算法是将系数乘以总衰减量功率(W)。如:一个功率容量50W,标称衰减量为40dB的衰减器的功率系数为0.001dB/(dB*W),意味着输入功率从10mW加到50W时,其衰减量会变化0.001*40*50=2dB之多! 基本构成 构成射频/微波功率衰减器的基本材料是电阻性材料。通常的电阻是衰减器的一大功率衰减器种基本形式,由此形成的电阻衰减器网络就是集总参数衰减器。通过一定的工艺把电阻材料放置到不同波段的射频/微波电路结构中就形成了相应频率的衰减器。如果是大功率衰减器,体积肯定要加大,关键就是散热设计。随着现代电子技术的发展,在许多场合要用到快速调整衰减器。这种衰减器通常有两种实现方式,一是半导体小功率快调衰减器,如PIN 管或FET单片集成衰减器;二是开关控制的电阻衰减网络,开关可以是电子开关,也可以是射频继电器。 衰减器有以下基本用途:1) 控制功率电平:在微波超外差接收机中对本振输出功率进行控制,获得光敏衰减器最佳噪声系数和变频损耗,达到最佳接收效果。在微波接收机中,实现自动增益控制,改善动态范围。2) 去耦元件:作为振荡器与负载之间的去耦合元

可调光衰减器设计

课程设计 课程名称光通信原理课程设计题目名称可调光衰减器的设计学院 专业班级 学号 学生姓名 指导教师 2014年10月24日

一、引言 提出了一种基于热光调节的可调光衰减器结构。该衰减器通过腐蚀光纤包层到一定厚度和长度后,在表面涂覆较大热光系数的聚合物材料得到。从模场变化角度分析了传输光束的衰减与涂覆材料折射率的关系,并从实验上测试了使用不同涂覆材料时的衰减。理论分析与实验结果均表明在涂覆材料折射率略大于原光纤包层材料折射率时,涂覆材料折射率微小的变化将引起传播光束衰减的大幅度变化,并且光纤被腐蚀的长度越长或包层材料剩余厚度越小,衰减越大。因此,由热光系数大、折射率略大于光纤包层的聚合物材料所组成的可调光纤衰减器,具有衰减调节范围大且功耗小、插入损耗小、成本低、低偏振特性、易于与其它光纤器件祸合或集成等特点。 可调光衰减器(V OA)的用途是降低或控制光信号,按其工作原理大致可分为以下几类:机械型分立式微光学衰减器、液晶型可调光衰减器、光纤可调光衰减器、微机电系统(MEMS)光衰减器和平面波导型光衰减器等。其中,光纤可调光衰减器具有结构简单、插入损耗小、成本低、可直接与光纤或作为尾纤与其它波导器件对接等突出的优点而具有广泛的应用前景,但有关光纤模场(热光)控制的可调光衰减器研究却很少。 光波导的光场分布主要是由折射率的空间分布和波导的几何结构所决定,因此改变光纤包层折射率,将改变光纤中光束的传输特性。据此本文提出一种结构简单的光纤型热光可调光衰减器的设计方案:通过腐蚀光纤包层,使包层剩余厚度少于一定值后,在其表面涂覆较大热光系数的聚合物材料得到。 二、方案论证 1.工作原理 将单模光纤中某一段的包层腐蚀到一定厚度以后,在其外部涂覆上折射率热光可调的材料。当材料折射率受热光调节发生变化时,经过上述处理的光纤模场发生变化,从而引起模场失配甚至导模能量泄漏衰减。下面从模场变化的角度分析涂覆材料折射率与衰减的关系。 通常用高斯模型来近似描述单模光纤中光能量的分布。模场直径(MFD)定义为光能量降低到exp(-2)时的光斑直径,用符号2w。表示,r为离开光轴的距离,则光纤截面上的光强I(r)按下式分布:

功率衰减器

信电学院 CDIO一级项目设计 说明书 (2014/2015学年第一学期) 课程名称: CDIO一级项目 题目:基于Multisim电路设计仿真 专业班级:通信工程11-02 学生姓名: 学号: 指导教师: 设计成绩: 2015年1月10日

目录 1、CDIO设计目 (1) 2、CDIO设计正文 (1) 2.1功率衰减器介绍 (1) 2.1.1 T型功率衰减器 (3) 2.1.2 π型功率衰减器 (4) 2.2 功率衰减器设计 (5) 2.2.1 功率衰减器设计要求 (5) 2.2.3 基本设计思想 (5) 2.2.4 设计步骤及仿真结果 (5) 4、设计心得 (8) 5、参考文献 (8) 6、附录表格 (9)

1、CDIO设计目的 (1)通过该项目,充分体现CDIO的教学模式,以学生为认知主体,充分调动学生的积极性和能动性,重视学生自学能力的培养。 (2)完成本项目后对本专业与社会政治经济的关系和和谐互动形成一个较清楚的认识。培养学生CDIO能力,巩固查阅文献、查课外书籍的习惯,为后续项目、课程学习等其它内容的开展打下一个良好的基础。 (3)CDIO的设计内容: ①设计一个功率衰减器; ②掌握T型同阻式功率衰减器和π型同阻式功率衰减器的各个参数计算; ③熟悉各单元电路测试点的正常参数; ④学习基本复杂电路的设计原理和具体方法步骤,并对其进行multism仿真; ⑤加深对电路设计技巧及电子电路原理的理解。 2、CDIO设计正文 2.1功率衰减器介绍 功率衰减器是一种能量损耗性射频/微波元件,元件内部含有电阻性材料。衰减器广泛用于需要功率电平调整的各种场合。 衰减器的技术指标 (1) 工作频带。衰减器的工作频带是指在给定频率范围内使用衰减器,衰减量才能达到指标值。由于射频/微波结构与频率有关,不同频段的元器件,结构不同,也不能通用。现代同轴结构的衰减器使用的工作频带相当宽,设计或使用中要加以注意。 (2) 衰减量。衰减量描述功率通过衰减器后功率的变小程度。衰减量的大小由构成衰减器的材料和结构确定。衰减量用分贝作单位,便于整机指标计算。 图1 功率衰减器模型

可变光衰减器的闭环控制设计(自动衰减控制和自动功率控制)

可变光衰减器的闭环控制设计(自动衰减控制和自动功率控制)在密集波分复用(DWDM)网络中实现紧密的信道间隔需要精确控制频谱发射和功率。这需要连续监视和调整网络元素,例如传输激光源,光学插件,光放大器和可变光衰减器(VOA)。这些最后的元素通常用于调整DWDM频谱的功率电平,以最大限度地减少串扰并保持所需的信噪比。 例如,VOA可以与级联掺铒光纤放大器(EDFA)有助于均衡放大器的非均匀增益与波长分布,提高线性度并增强整个系统的控制。递归测量和控制算法可用于提供快速准确的动态闭环控制,从而确保可重复性并最大限度地减少生产校准和修整。对数放大器前端调节宽范围输入信号,从而允许在下游使用分辨率较低,成本较低的信号处理元件。 经典混合信号解决方案经典解决方案结合了线性跨阻抗放大器(TIA)和高分辨率信号处理,以测量和控制VOA的吸光度。起初,由于TIA前端的低成本,这似乎是一个有吸引力的解决方案。然而,TIA是线性的,因此计算VOA上的分贝(对数)衰减需要对测量信号进行后处理。以数字方式执行,这需要浮点处理器来处理计算中涉及的除法和取幂过程。或者,可以使用在生产校准期间生成的穷举查找表来执行基于整数的处理。这两种方法通常都需要具有至少14位分辨率和中等高处理器速度的模数转换器,以最小化由固有处理开销导致的测量延迟。选择线性TIA前端所寻求的成本优势通常被获得测量信号和计算衰减所需的更高价格的转换器和处理器的成本所淹没。如果在生产测试期间需要生成冗长的查找表,则会产生额外的成本(和生产延迟)。 可变光学衰减器的自适应控制图1说明了围绕自适应控制的VOA应用的这种经典解决方案。放大后的信号经过低通滤波,有助于降低测量噪声。然后将滤波的信号数字化并计算衰减器的吸光度。 如果使用线性放大将测量的光电流转换为比例电压,则需要计算测量信号的比率,然后进行反幂运算,乘以计算VOA的实际吸光度。 如果探测器前端的响应度和跨阻抗增益相等,那么

电调衰减器设计指导

可以用三个二极管来代替电路中的固定电阻,构造一个可变衰减器,不过,这样会导致网络中的不对称,从而导致产生一个相当复杂的偏压网络。用两个PIN二极管来代替其中的串联电阻可以获得几个性能方面的好处。首先,由于串联二极管具有容性电抗而使网络与其它部分相隔离,用两个二极管代替一个电阻可以提高最大衰减值或在一定衰减值的条件下使频率上限翻倍。其二,代替串联电阻的两个二极管是180度反接的,这样就抑制了偶数次信号畸变的产生。其三,由此而得到的衰减器网络是对称的,从而可以大大简化偏压网络。电源电压V+是一固定电压,Vc是控制网络衰减的可变电压,用两个二极管代替电阻的唯一缺点是可能会增加介入损耗。 四元二极管pi型衰减器需要一个恒定的电压V+和一个可变的控制电压Vc。对于1.25V的V+,可变控制电压的范围为0V到大约5V。电压V+的值代表了回程损耗与控制电压范围之间的一个折衷,更低的V+可以降低回程电压,但同时也会使控制电压的工作范围缩小。 本文中介绍的衰减器是在8mm厚的RF4型印刷电路(PCB)上实现的。RF4具有良好的机械稳定性和耐久性,成本低,但其损耗大,难于控制,而且介质系数与工作频率密切相关。另一方面,玻璃纤维增强型聚四氟乙烯(PTEE)PCB材料具有良好的高频特性,但是相对昂贵一些,机械稳定性也比较差,不适合于某些表面贴装工艺。选用针对高频工作要求进行了优化的PCB基底材料可以改善高频性能,各种测量参数对频率的依赖程度受到与HSMP-381 6二极管四元组、PCB、其它元件及连接器相关的寄生效应的影响。

将PIN二极管用做衰减元件时,PIN二极管具有比等效的GaAs MESFETs更高的线性度,通过使用具有厚I层及低介质张弛频率(fdr)的多个PIN二极管就可以将信号畸变减小到最低程度。在Avago公司PIN二极管产品线中HSMP-381x系列产品的I层最厚。在低衰减状态,大部分RF能量仅仅是从输入端传输到输出端而已。不过在高衰减状态,更多的RF能量被倾入衰减器,会使信号失真度上升。当Vc接近0时,几乎没有电流流过两个串联的二极管,它们接近于零偏压状态,其结电容将随RF电压同步变化,幸运的是,由于两个二极管是反向串联的,所以可以抑制由受RF调制的电容所产生的某些失真或畸变。由于封装的两个反串二极管具有完全互相匹配的特性,因此可以得到最佳的失真抑制能力。 Pi衰减器的相位偏移随衰减值而变化。总的相位偏移接近90度,在三个相隔较远的工作频率点(100、900和1800 MHz)测试时此相位偏移表现相当稳定。

几种可变光衰减器技术及其比较

几种可变光衰减器技术及其比较 为了实现DWDM系统的长距离高速无误码传输,必须使各通道信号光功率一致,即需要对多通道光功率进行监控和均衡。因此出现了动态信道均衡器(DCE)、可调功率光复用器(VMUX)、光分插复用器(OADM)等光器件,这些器件的核心部件都是阵列可变光衰减器(VOA)。灵活地调节VOA,可以使各个通道的功率处于理想的大小。 近年来,出现了多种制造可变光衰减器的新技术,包括可调衍射光栅技术、MEMS技术、液晶技术、磁光技术、平面光波导技术等。 高分子可调衍射光栅VOA 高分子可调衍射光栅的制作基于一种薄膜表面调制技术。起初,这种技术的开发是为了替代放映机和投影仪中的液晶显示屏(LCD)和数字光处理器(DLP)。这种可调衍射光栅(图1)的顶层是玻璃,下面一层是铟锡氧化物(ITO),中间是空气、聚合物和ITO阵列,底层是玻璃基底。在未加电信号时,空气与聚合物层的交界面是与结构表面平行的平面。当入射光进入该平面时,不发生衍射。在加电信号后,空气和聚合物的界面随电极阵列的分布而发生周期变化,形成了正弦光栅。当入射光入射至该表面时,形成衍射。施加不同的电信号可以形成不同相位调制度的正弦光栅。 高分子可调衍射光栅。 采用高分子可调衍射光栅的VOA的工作机制是:通过调制表面一层薄的聚合物,使其表面近似为正弦形状,形成正弦光栅。利用这种技术,可以制作出一种周期为10微米,表面高度h随施加的电信号变化并且最高可到300纳米的正弦光栅。当光入射到被调制的表面上时,形成衍射。施加不同的电信号改变正弦光栅的振幅,即改变h时,可以得到不同的相位调制度,而不同相位调制度下的衍射光强的分布是不同的。当相位调制度由零逐渐变大时,衍射光强度从零级向更高衍射级的光转移。这种调制可以使零级光的光强从100%连续的改变到0%,从而,实现对衰减量的控制。并且这种调制的响应时间非常快,在微秒级。 磁光VOA 磁光VOA是利用一些物质在磁场作用下所表现出的光学性质的变化,例如利用磁致旋光效应(法拉第效应)实现光能量的衰减,从而达到调节光信号的目的。一种典型的偏振无关磁光VOA结构如图2左图所示。

MEMS VOA光衰减器的工作原理

MEMS VOA光衰减器的工作原理 文章导读: VOA的优势、类型 MEMS Shutter型VOA MEMS微镜型VOA MEMS微镜型VOA中的WDL问题 MEMS微镜型VOA的WDL优化 MEMS(Micro Electro Mechanical System,微机电系统)技术被广泛应用于光纤通信系统中,MEMS技术与光学技术的结合,通常称作MOEMS技术。最为常用的MOEMS器件包括光衰减器VOA、光开关OS、可调光学滤波器TOF、动态增益均衡器DGE、波长选择开关WSS和矩阵光开关OXC。 VOA在光纤通信系统中常用于光功率均衡,在各种技术方案中,MEMS VOA具有尺寸小、成本低和易于制造的优势。最常用的MEMS VOA有两类:MEMS Shutter型和MEMS微镜型,前者通常以热效应驱动,后者通常以静电力驱动。 MEMS Shutter型VOA 基于MEMS Shutter的VOA结构如图1所示,MEMS Shutter被插入两根光纤之间的光路,衰减量取决于被阻挡的光束截面大小。在实际应用中,这种VOA也可以设计成反射型。 图1.基于MEMS shutter的VOA结构 MEMS微镜型VOA 如图2所示为基于MEMS扭镜的VOA结构,它以双光纤准直器的两根尾纤作为输入/输出端口,准直光束被MEMS微镜反射偏转,从而联通输入/输出端口之间的光路。扭动微镜让光束发生偏转,从而产生光功率的衰减。

图2.基于MEMS扭镜的VOA结构 MEMS扭镜通常有两种结构,即平板电极和梳齿电极,如图3所示。考虑0~20dB的衰减范围,前者通常需要>10V的驱动电压,后者可将驱动电压降至5V以下。然而,仅仅一个微小的粉尘颗粒就会卡住梳齿电极,因此其生产良率较低。采用梳齿电极的MEMS微镜,通常需要在超净环境下封装。 图3.两类MEMS扭镜:平板电极和梳齿电极 MEMS微镜型VOA中的WDL问题 基于MEMS shutter和MEMS微镜的VOA均有广泛应用,前者性能指标较好,但装配工艺相对复杂;后者易于装配但WDL(波长相关损耗)相对较大。在宽带应用中,此类VOA 会对不同波长产生不同的衰减量,此现象定义为WDL。宽带应用中,要求WDL指标越小越好。 WDL问题源于单模光纤SMF中的模场色散,我们知道,光纤中的不同波长具有不同的模场直径,长波的模场直径更大一些。图4所示为光纤中模场的色散情况。

数控衰减器设计报告

数控衰减器设计报告 1. 设计要求 设计一个数控衰减器,要求交实物和设计报告。 2. 原理图设计 1) 基本原理 图1. 基本原理图 上面的放大器电路的增益特性 N N B D D R R K 2 -=- = (1) 为了提高输入阻抗,在信号输入端接入了一个跟随器。 2) 用protel 设计原理图 采用Protel 的原理图设计系统(Schematic Document )设计详细的原理图(.sch )。 3. 印刷电路板设计(Printed Circuit Board ) 用protel 的印刷电路板设计系统根据设计原理图(.sch )上提供的网络关系自动布线,对结 果稍作修改,生成PCB 图(.pcb ),即可用于制作电路板。 4. 电路板测试结果 1) K-D N 曲线 根据理论分析,K-D N 有下面的关系(下文中K 取绝对值),

N N D K 2 (2) 用上式(2)计算的结果和实际测试结果如表1所示。 表1. K 随D N 的变化 根据表1的数据和公式(1)可以作出如图2所示的K-D N 曲线,图中的离散点是实验测量点。简单计算可得,测量得到的K 和理论值的最大相对误差随着衰减倍数的增加而增加,在衰减倍数为0.0033时,误差最大,是15.5% 。 2) K-f 曲线 测试得到表2所示的的数据(D N =128)。 表2.不同频率下的K(D N =128) 根据表2的数据和理论值(D N =128时,理论值K=0.5)可以作出如图3所示的K-f 曲线,图中的离散点是实验测量点。简单计算可得,测量得到的K 和理论值的最大相对误差随着被衰减信号频率的增加而增加,在信号频率为2000 时,误差最大,是22‰ 。 K D N K f /Hz 图 2. K-D N 曲线 图 3. K-f 曲线 3) 输入输出阻抗 输入阻抗,用加压求流的方法测量,测量值是 K Ω。 输出阻抗,用串接电阻方法测量,测量值是 Ω。

光衰减器的原理及应用

光衰减器的原理及应用 作者:钱青、唐旭东 日期:2006-1-6 (上海光城邮电通信设备有限公司) 光纤通信是用光作为信息的载体,以光纤作为传输介质的一种通信方式。由于其比传统的其他通信方式有着巨大的优势,随着信息技术的不断发展和信息化进程的加快,光纤及其光器件的使用范围越来越广,如光纤通信系统、光纤数据网、光纤CATV 等。 信号无论在哪种传输介质中传输都会有损耗,这种损耗可以定义为信号的衰减。光通信中光纤衰减的特性用衰减系数α表示,光信号在光纤中传输时,其功率P 随着传输距离的增加按指数形式衰减,即 = -αP 设起始处(z=0)的信号光功率为P(0),则在光纤中经过距离z 的传播后,其值为衰减系数 α= ln 在同一种介质中传输时,信号的衰减系数比较稳定,一旦介质有所转换,衰减就有突变。 在通常情况下,我们都希望传输线的损耗越小越好,但在有些情况下,由于信号源及传输距离的不确定,线路中的信号强度可能过大,这就需要采取某种措施减小信号。光衰减器就是这样一种用于消除线路中过大信号的器件。 一、光纤衰减的特性 要研制光衰减器,首先要了解光纤传输的基本特性。光在光纤中传输,是通过全反射的原理,确保光不外泄。如图1所示全反射临界入射角为θc ,αc 为临界传播角,纤芯的折射率为n 1,包层的折射率为n 2。 图1 光纤内部光传输 为满足光线在纤芯内的全反射条件,要求n 1>n 2。αc 是光线发生全发射时与光纤纵向轴线之间的夹角,有 αc =arcsin ?????????n n 1212 dP dZ P(z) P(0) 1 Z sin θc = n 1 n 2

数控衰减器

5(9 ) Product Features 6LQJOH SRVLWLYH VXSSO\ YROWDJH 9 ,PPXQH WR ODWFK XS ([FHOOHQW DFFXUDF\ G% 7\S 6HULDO FRQWURO LQWHUIDFH /RZ ,QVHUWLRQ /RVV +LJK ,3 G%P 7\S 9HU\ ORZ '& SRZHU FRQVXPSWLRQ ([FHOOHQW UHWXUQ ORVV G% 7\S 6PDOO VL]H [ PP Typical Applications %DVH 6WDWLRQ ,QIUDVWUXFWXUH 3RUWDEOH :LUHOHVV &$79 '%6 00'6 :LUHOHVV /$1 :LUHOHVV /RFDO /RRS 81,, +LSHU /$1 3RZHU DPSOLàHU GLVWRUWLRQ FDQFHOLQJ ORRSV General Description 7KH '$7 63 LV D : 5) GLJLWDO VWHS DWWHQXDWRU WKDW RIIHUV DQ DWWHQXDWLRQ UDQJH XS WR G% LQ G% VWHSV 7KH FRQWURO LV D ELW VHULDO LQWHUIDFH RSHUDWLQJ RQ D VLQJOH YROW VXSSO\ 7KH '$7 63 LV SUR GXFHG XVLQJ D XQLTXH &026 SURFHVV RQ VLOLFRQ RIIHULQJ WKH SHUIRUPDQFH RI *D$V ZLWK WKH DGYDQWDJHV RI FRQYHQWLRQDO &026 GHYLFHV Digital Step Attenuator G% G% 6WHS %LW 6HULDO &RQWURO ,QWHUIDFH 6LQJOH 3RVLWLYH 6XSSO\ 9ROWDJH 9 : '& 0+] 5KORNK?GF 5EJGOCVKE + RoHS compliant in accordance with EU Directive (2002/95/EC) 6JG 5WH?Z KFGPVK?GU 4Q*5 %QORNKCPEG 5GG QWT YGD UKVG HQT 4Q*5 %QORNKCPEG OGVJQFQNQIKGU CPF SWCNK?ECVKQPU &$6( 67

如何利用光衰减器测试

如何利用光衰减器 测试光纤收发器的灵敏度 了解如何测试光纤接收器的灵敏度是一项重要技能。当光输入功率在一定范围内时,光纤接收器的性能最佳。但是如何来判断光纤收发器是否会在最低光输入功率时,提供最佳性能呢?常用的一种方法是使用光衰减器,例如隔板衰减器。通常只需要两个值即可完成测试。该过程包括如下所示的三个步骤。 1.使用功率计测量光纤发射器的光输出功率。请记住,工业标准定义了特定网络标准的发射器和接收器的光输入功率。如果您正在测试100BASE-FX收发器,则应使用100BASE-FX发射器,且发射器的光输出功率应在制造商的数据表所规定的范围内。 2.将发射器连接到接收器,并在发射器可提供的最大光输出功率下验证其是否正常工作。您需要以接收器可以接受的最小光输入功率测试接收器,同时接收器仍然提供最佳性能。为此,您需要从制造商的数据表中获取最低的光输入功率值。

3.计算测试所需的衰减水平。例如:发射器的光输出功率为-17dBm,接收器的最小光功率电平为-33dBm。它们之间的差值为16dB。您可以在接收器的输入端使用16dB的隔板衰减器,并重新测试接收器。如果接收器仍能正常工作,则在规格范围内。 注意:在上面的例子中不考虑光损耗。假设发射器位于接收器10公里处,并且整个光纤链路(包括互连)的损耗为6dB,那么对于您的测试,应使用10dB的隔板衰减器,而不是16dB 的。

光衰减器是一种非常重要的光纤无源器件,它可按用户的要求将光信号能量进行预期地衰减,也可以用来测试光纤收发器的灵敏度。飞速光纤(https://www.360docs.net/doc/32722351.html,)提供种类齐全的光衰减器,为光通信的用户带来了方便。

相关文档
最新文档