永磁直流电机设计

永磁直流电机设计
永磁直流电机设计

永磁直流電機設計

1.電機主要尺寸與功率,轉速的關系:

與異步電機相似,直流電機的功率,轉速之間的關系是:

D22*Lg=6.1*108*p’/(αP*A*Bg*Ky*n) (1)

D2 電樞直徑(cm) 電机初設計時的主要尺寸

Lg 電樞計算長度(cm) 根據電机功率和實際需要確定

p’計算功率(w) p’=E*Ia=(1+2η)*P N/3η

E=Ce*Φ*n*Ky=(P*N/60*a)*Φ2*n*Ky*10-8

Ce 電勢系數

a 支路數在小功率電機中取a=2

p 极數在小功率電機中取p=2

N 電樞總導体數

n 電机額定轉速

Ky 電樞繞組短矩系數小功率永磁電机p=2時,采用單疊繞組Ky=Sin[(y1/τ)*π/2] y1繞組第一節矩

αP 極弧系數一般取αP=0.6~0.75 正弦分布時αP=0.637

Φ每極磁通Φ=αP*τ*Lg*Bg

τ極矩(cm) τ=π*D2/P

Bg 氣隙磁密(Gs) 又稱磁負荷對鋁鎳Bg=(0.5~0.7) Br 對鐵氧体Bg=(0.7~0.85) Br, Br為剩磁密度

A 電樞線負荷 A=Ia*N/(a*π*D2)Ia電樞額定電流對連續運行的永磁電動机,一般取A=(30~80)A/cm另外電機負荷Δ= Ia/(a*Sd),其中Sd=π*d2/4 d為導線直徑.為了保証發熱因子A*Δ≦1400 (A/cm*A/mm2 )通常以電樞直徑D2和電樞外徑La作為電机主要尺寸,而把電動機的輸出功率和轉睦為電机的主要性能,在主要尺寸和主要性能的基礎上,我們就可以設計電機了.

在(1)式的基礎上經過變換可為:

D22*Lg*n/P’=(6.1*108/π2)*1/(αP*Bg*A)=C A

由上式可以看, C A的值並不取決於電機的容量和轉速,也不直接與電樞直徑和長度有關,它

僅取決於氣隙的平均磁密及電樞線負荷,而Bg和A的變化很小,它近似為常數,通常稱為電機

常數,它的導數K A=1/C A=(p’/n)/(D22* Lg)∞αP*Bg*A 稱為電機利用系數,它是正比於單位電

樞有效体積產生的電磁轉矩的一個比例常數.

2.直流電機定子的確定

2.1磁鋼內徑

根據電機電樞外徑D2確定磁鋼內徑

Dmi=D2+2g+2Hp

其中g為氣隙長度,小功率直流電機g=0.02-0.06cm ,鐵氧體時g可取得大些,鋁鎳鈷磁

鋼電機可取得較小,因鐵氧體H C較大.氣隙對電機的性能有很大的影響,較小的g可以使電樞

反應引起的氣隙磁場畸變加劇,使電機的換向不良加劇,及電機運行不穩定,主極表面損耗和

噪音加劇,以及電樞撓度加大,較大的氣隙,使電機效率下降,溫升提高.

有時電機磁鋼采用極靴,這樣可以起聚磁作用,提高氣隙磁密,還可稠節極靴

形狀以改善空載氣隙磁場波形,負載時交軸電樞反應磁通經極靴閉,合對永磁磁

極的影響較小.但這樣會使磁鋼結構复雜,制造成本增加,漏磁系數較大,外形尺

寸增加,負載時氣隙磁場的畸變較大.而無極靴時永磁體直接面向氣隙,漏磁系數小,能產生較多的磁通,材料利用率高,氣隙磁場畸變,而且結構簡單,便於生產.

其缺點是容易引起不可逆退磁現象.

Hp 極靴高(cm) 無極靴結構時Hp=0

2.2磁鋼外徑

Dm0=Dmi+2Hm (瓦片形結構)

Hm 永磁體磁路長度,它的尺寸應從滿足(1)有足夠的氣隙磁密(產生不可逆退磁),(2)在要求的任何情運行狀態下會形成永久性退磁等方面來確定,一般Hm=(5~15)g Hm越大,則氣隙磁密也越大,否則,則氣隙磁密也越小.

2.3磁鋼截面積Sm

對于鐵氧體由于Br小,則Sm取較大值,而對于鋁鎳鈷來說, Br較大,則Sm取小值.

環形鐵氧體磁鋼截面積:

Sm=αP*π*(Dmi+Hm)Lg/P (cm)

瓦片形鐵氧體磁鋼面積:

Sm=αP*π*(Dmi+Hm)Lm/P (cm)

瓦片形鐵氧體弧度角:

β=180?*αP*2/P

2.4 磁鋼軸向長度Lm

對鐵氧体由于Br小,為了增加磁鋼截面Sm,則Lm=(1.1~1.2)La

2.5磁鋼的選擇:

2.5.1磁鋼的材質

在永磁直流電機中,磁鋼相當于串激電中的定子線圈中,它在定子鐵殼中產生磁場,它和其它電機一樣,是利用電磁感應原理在磁場媒質中進行能量轉換的,磁場在能量轉換過程中起媒介作用,在永磁直流電機中產生磁場的磁源是充過磁的永磁體,也叫磁鋼)充過磁的磁石性能對電機的性能有很大的影響.

在現代電機制造中,磁鋼的材料有下列幾種:鐵氧體.鋁鎳鈷合金,稀士合金,釹鐵硼等.由于各種材料自身特點和本廠的實際,一般選用鐵氧體作為永磁材料.

2.5.2永磁材料的磁性能

磁鋼的退磁曲線如下:

永磁材料的磁性能可以用磁滯回線來反映和描述.即用B=f(H)曲線來反映永磁體的磁感應強度隨磁場強度來降改變的特性,該回線包含的面積隨最大充磁磁場強度H MAX增大而增大,當H MAX達到H S時回線面積漸近地達到一個最大值,而且這時磁性能也較穩定,面積最大的回線被稱為磁滯回線. 磁滯回線在第二象限的部分稱為退磁曲線,它是永磁材料的基本特性曲線,退磁曲線中磁感應強度Bm為正值而磁場強度Hm為負值,在退磁曲線過程中,永磁體相當于一個磁源.退磁曲線的兩個極限們位置是表征永磁材料磁性能的兩個重要參數(Br,Hc) 退磁曲線上任一點磁通密度與磁場強度的乘積被稱為磁能積,在退磁曲線中有一個最大值,這一最大值稱為最大磁能積(BH)MAX單位為J/m3 ,它是永磁材料磁性能的一個重要參數. Br對電機性能的影響很大,使用較大Br值的磁鋼可以增加扭矩,但會使電機空載轉速降低

2.6永磁材料的選擇.

2.6.1應保證電機氣隙中有中足夠的氣隙磁密和規定的電機性能指標

2.6.2在規定的環境條件.溫度條件和使用條件下電機性能穩定

2.6.3磁石要有良好的機械性能以便加工和裝配

2.6.4另外要經濟性

2.6.5盡量選擇最大磁能積大的磁鋼

2.6.6根據對電機性能的影響,選擇磁石的Br值

2.7永磁直流電動機的充磁

三種充磁方式:

1)電磁式充磁電源

2)電容式充磁電源

3)半周期式充磁電源

2.7.1電磁式充磁特點:

1)能產生很長的脈沖進行鋁鎳鈷充磁

2)由于充磁電流小,為了使充磁磁場達到要求,需增加充磁線圈匝數

3)不能有效地使充磁質量達到要求

2.7.2半周期式充磁特點:

1)它能在很快的循環速度下產生脈沖磁場

2)它能給充磁夾具提供大電流 ,且受交流電流承載能力的限制.

3)通常電源是一個固定裝置,因此該電器必須與較接近的變電場所

和較大的變壓器用大功率電線連接.

4)交流電壓110V~600V 單相50Hz或60Hz

2.7.3電容式充磁特點:

1)電容箱中的能量可以在一個很短的時間內釋放出一個很大幅值的電流脈沖(5000A) 這些電流能夠產生很大的磁場

2)對于充磁材料的几何尺寸或形狀限制了充磁夾具中的線圈數量, 利用電容式充磁電源可以滿足.

3)費用較高.

要使電機有較小的充磁電壓,一般使用電容式充磁,但費用較高,故根据實際情況而定.同樣磁鋼采用雙半圓內充磁時,可以使氣隙磁密的波形為正弦波,雙半圓內充磁磁頭的尺寸如下:

β=90°~115°

A=Dmi-(0.1~0.2)mm

R=(0.5~0.7)A 環形

R=(0.7~0.78)A 瓦形

β=180°*2p/(p/2)=135°

L=L M+(2~4)mm

L M 為磁鋼軸向長度(cm)

Dmi 磁鋼內徑(cm)

充磁夾具中的條形極,,硅鋼片或碳鋼的絕緣用合成的玻璃纖維纏繞或環繞氧樹脂通過流化進行環氧樹脂處理而成.充磁夾具按要求的循環速率和運行條件進行常規的四個小時的常規測試,它是通過安裝銅散熱片或鋼制條形極上開通風口并在其中通入水或空氣來進行冷卻的.充磁夾具的絕緣耐壓試驗: 2倍工作電壓+1000V

2.8永磁電機定子鐵殼的選擇

2.8.1機殼厚度h j選取時要考慮不應使定子軛部磁密B K太高一般應使B K=1.5~1.8T 則機殼厚度h j

h j =σ*Φ/(l k*B k)

l k機殼長度根据主要尺寸和實際需要確定,一般為0.1~0.3cm

B k 機殼磁密如若B K太高,則增大h j以減小B K值,有些電機使用增磁環,就是這一道理.Φ 每極磁通即氣隙磁通

σ 磁鋼漏磁系數σ=1.1~1.3

2.8.2機殼外徑

D j=Dm0+2h j

3.電機電樞的選擇

3.1電樞尺寸的確定

電樞外徑和長度根据同型號電機或根椐電機功率確定

3.2槽數選擇

根据D2選擇槽數Q. Q通常為奇數,因為奇數槽能減小由電樞齒產生的主

磁通脈動,有利於減少定位力矩.但在大批量生產中,一般采用偶數槽.偶數槽有

利於轉子繞線,減小生產成本.

槽數選擇一般從以下几個方面考慮:

1.元件總數一定時,選擇較多的槽數,可以減小每槽元件數.從而降低槽中各換向

元件的電抗電動勢,有利於換向,同時槽數增多后,繞組接触鐵心的面積增加,有

利于散熱. 但Q增加,槽絕緣相應增加,使槽面積利用率低,改善電機的換向, 減

小由脈動磁通引起的損耗和噪音.

2. Q增加,電樞齒矩t2減小齒根容易損坏, 齒矩一般控制在當D2<30cm,

t2>1.5cm, 當Da>30cm, t2>2.0cm

3.電樞槽數應符合繞組的繞制規則和對稱條件.

4.根據同號選擇

3.3電機線負荷和電磁負荷對電機的影響

電機線負荷

A=Ia*N/(a*π*D2) (A/cm)

Ia 電樞額定電流

電機電磁負荷是指氣隙磁密最大值,其值為

Bg=Φ/αp*τ*Lg(T)

3.3.1選用較高的電磁負荷,可以節約材料,縮小電机体積,A過高,會產生不利影響,

電抗電動勢增加,使電機換向性能惡化,電樞反應增強,使電機工作特性變差;若電密不孌,將使電機用銅量增加,銅耗和溫升增高等,Bg增大,使空氣隙及電樞磁場所需的勵磁安匝增加,從而增加了銅耗,也使電樞電損耗增加,效率降低,並使電機的溫升升高.

所以在選擇A和Bg值時,都不宜選得過高,需要綜合考慮.選擇電磁負荷值,除應考虙A和Bg外,還應考虙A,Bg的乘積以及A,Bg的比例關系,由于電機的電抗電動勢正比於電負荷,所以常用較小的A值和較大Bg值,以改善電機的換向性能,同時A值的減小也使電樞的用銅量降低,對於低轉速直流電機鐵損耗較小,Bg可選用較大值,而對於高轉速電機,鐵損耗較大會,Bg應選用較小值.

3.3.2電磁負荷對電機性能和對經濟性的影響

3.3.2.1線負荷A較高,氣隙磁密Bg不變

(1)電機的尺寸和体積將變小,可節省鋼鐵材料. (2)Bg一定時,由於鐵心重量減小,鐵耗隨之減小. (3)繞組用鋼(鋁)量將增加,這是由于電機的尺寸小了,在Bg不變的條件下,每极磁通將變小,為了產生一定的感應電勢,繞組匝數必須增多. (4)增大了電樞單位表面上的鋼(鋁)耗,使繞組溫升增高. (5)影響電機參數與電機特性.

3.3.2.2氣隙磁密Bg較高,線負荷A不變

(1)電機的尺寸和體積將較小,可以節省鋼鐵材料. (2)使電樞鐵耗增大.這是因為Bg提高後在其它條件不變時,雖會使D2Lg與電樞鐵心重量減小,但因電樞鐵心中的磁密與Bg間有一定的比例關系,鐵內磁密將相應增加,鐵的比損耗(即單位重量鐵心中的損耗)是與鐵內的磁密的平方成正比的.因此隨著Bg的提高,比損耗增加的速度比電影樞鐵重量減小的速度為快.而電樞的基本鐵耗卻等于其鐵心重量和損耗的乘積,因此Bg提高後,將導致電樞鐵耗加,效率降低,在泠卻條件不變時,溫升也將升高. (3)氣隙磁位降和磁路的飽和程度將增加.Bg提高後,一方面直接增大了氣隙磁位降的數值;另一方面.由于鐵內磁密增大而使磁路飽和程度增加.這樣,對于直流電機和同步電機,會因勵磁磁勢增大而引起勵磁繞組用銅量與勵磁損耗增加,效率降低;在冷卻條件不變時使勵磁繞組溫升增高.還會因為勵磁繞組體積過大而使布置發生困難(內極式電機)或導致磁極與電機外形尺寸加大(外極式電機).對于感應電機,會因勵磁電流增加而使功率因數變壞. (4)影響電氣參數與電機特性,隨著Bg 的增大,繞組電抗的標麼值將減小, 從而影響電機的起動特性和運行特性.

3.3.2.3電機所用的材料與絕緣結構的等級也直接影響電磁負荷的選擇

所用絕緣結構的耐熱等級越高,電機允許的溫升也越高.電磁負荷可選高些; 導磁材料(包括兼起磁路作用的某些結構部件的材料)性能越好,允許選用的磁密也越高, 電樞繞組采用鋁線時,由于其電阻率較大,為保證足夠的安全放空間以免電損耗過大,往往采用比銅線時較低的電磁負荷.

3.3.2.4 A,Bg的選擇和電機的功率及轉速有關

確切地說是與電樞直徑(或極距)及轉子的園周速度有關.園周速度較高的電機其轉子與氣隙中泠卻介質的相對速度較大,因而泠卻條件有所改善, A,Bg可選取得大些. 電樞直徑(或極距)越小,所選取的A和Bg也應越小.

3.3.2.5 A,Bg的選擇和電樞槽的關系

在內電樞的電機(如直流電機)中,電樞直徑越小,則在平行槽壁時,為保證一定的槽空間.齒根將越窄;在平行齒壁時,為保證一定的齒截面積,槽尺寸將受限制.因此,當電機功率較小時(通常直徑也越小),若為平行槽壁,則Bg的數值將因受齒根磁密限制而不能取得過高,因為通常齒部磁密最大值有一定限制,超過此值後,勵磁電流和鐵耗將迅速增加;同時,還因齒根磁密的限制而使槽不能太深,從而限制了槽空間的大小和線負荷A的數值.若為平行齒槽.則在齒距齒寬和槽深一定的情況下,直徑小的電機中,槽的空間比直徑大的電機要小,A也就選得較小.

3.3.2.6電樞的外徑和線負荷,電磁負荷間的關如圖:

對絕緣等級較高的電機,在不影響電機的換向的情況下,可高於圖異曲線值約10%~20%

電機線負荷與電樞直徑的關系:

4

3

2

1

10 20 30 40 50 60 60

氣隙磁密與電樞直徑的關系:

10 20 30 40 50 60 60

3.4直流電機換向器的計算

3.4.1換向器直徑的計算

Dc=(0.5~0.9)D2

D2 電樞直徑

Dc的選取應考慮換向器表面圓周速度不大于50m/s.即

Vc= *Dc*Nn*10-2/60<(50~55)m/s

3.4.2換向片數K

K=(1-3)Q

微型電機取K=Q

3.4.3換向片寬bc

bc=tc-δc (cm)

tc=π*Dc/k

δc=0.4~0.5 (mm)

3.4.4.換向器長度

一般電机Lc=Lb+(1~2.5)cm

Lb 電刷長度 (cm)

4.直流電機用電刷

4.1電刷截面積

Sb=2*IN/P*△b (cm2)

式中△b----電流密度,當采用金屬石墨電刷時△b可取為15~20A/cm2

4.2電刷寬度

bb=(1~2.5)tc (cm) 在少槽電機中為了限制換向區寬度bb

電刷長度Lb=Sb/bb

4.3電刷材料

電刷材料一般有三種:石墨電刷,電化石墨電刷,金屬石墨電刷

4.3.1石墨電刷

這種電刷適用于換向條件正常,負載均勻的電機.

4.3.2電化石墨電刷

這種電刷耐磨性良好易于加工,適用于廣泛場合.

4.3.3金屬石墨電刷

這種電刷具有良好的導電性,電刷與換向器的接觸壓降小,適用于低電壓電機,常用于UN<12V電機中.

由于電刷材質與電機性能和電機換向有很大的關系,所以在選用電刷時一定要小心.

5.永磁直流微型電機噪音分類及產生部位

5.1機械噪音

5.1.1轉子不平衡振動

5.1.2轉子軸向竄動

5.1.3電刷與換向器或滑環之間摩擦噪聲

5.1.4軸承噪聲或軸承不良

5.1.5定子與轉子加工精度差,不同軸度超差

5.1.6裝配不良

5.2電磁噪音產生原因

5.2.1.低頻主波噪音

5.2.2齒諧波及高次諧波噪音

5.2.3定子磁極位置不對稱或兩塊磁瓦性能不一致

5.2.4直槽轉子徑向磁力過大

5.2.5轉子兩端調整墊圈分布不當,軸向磁場分力過大.

5.2.6機殼表面輻射或共振

5.3空氣動力噪音

5.3.1齒槽啞鈴聲

5.3.2氣流道哨聲

5.3.4.自冷風扇渦流聲(小電機不存在)

6.永磁電動機的轉矩脈動和低速平穩性

在某些場合,常要求電動機在低速時輸出較大的轉矩,且運行平穩,影響它的因素是轉矩脈動. 1.換向引起的轉矩脈動 2.齒槽效應引起的脈動.

6.1為了減小換向引起的轉矩脈動,主要在結构上采取措施:

6.1.1采用多槽

6.1.2增加元作數和換向片數

6.1.3使電刷的寬度減小

6.1.4電樞繞組采用單波繞組(多极電机)

6.2對於由電樞齒槽引起的轉矩脈動,可采取下列措施加以改善:

6.2.1盡可增加電樞槽數,適當加大電動機氣隙,以降低氣隙磁陰不均勻度,減小由此產生轉矩脈動

6.2.2減小槽口寬度,采用磁性槽楔,以減磁阻的變化,削弱磁阻轉矩.

6.2.3用奇數槽,削弱電轉動時引起的電動機磁場場的波,動減小的轉動.

6.2.4采用斜槽.以削弱消或削除齒諧波磁場所引起的轉矩脈動

7.直流電機的換向

7.1改善直流電機換向的方法

7.1.1移刷: 發電機應順轉向移刷. 電動機應逆轉向移刷. 采用移刷換向相時,換向區內的氣隙磁場將隨電樞電流的增加而減弱.某一刷位只能在某一特定負載的情況下,才能獲得較好的換向.

7.1.2采用適合性能之換向極的光潔度

7.1.3選用接觸電降較大,特別是伏安性陡的電刷,可以有效地改善換向對額定電壓較向的電機使用.

7.1.4采用偏心氣隙空氣隙由主極中心線兩側逐漸大, 使電樞磁動勢較大處相應具有較大的氣隙, 可降低由電樞反應所引起的磁場畸變程度,使片間電壓最大值減小.

7.1.5采用極尖削角的方法

建筑电气设计计算简明方法

建筑电气设计计算简明方法 建筑电气设计计算简明方法(一) 一、常用的需要系数负荷计算方法 1、用电设备组的计算负荷(三相): 有功计算负荷Pjs=K x·P e(Kw); 无功计算负荷 =Pjs·tgψ(Kvar); 视在功率计算负荷Sjs=√ ̄Pjs2+Qjs2(KVA); 计算电流 Ijs=Sjs/√ ̄3·U x·Cosψ(A)。 式中:P e---用电设备组额定容量(Kw); Cosψ---电网或供电的功率因数余弦值(见下表); tgψ---功率因数的正切值(见下表); U x---标称线电压(Kv)。 K x---需要系数(见下表) 提示:有感抗负荷(电机动力)时的计算电流,即: Ijs=Sjs/√ ̄3·U x·Cosψ·η(A) η---感抗负荷效率系数,一般取值0.65~0.85。 民用建筑(酒店)主要用电设备需要系数K x及Cosψ、tgψ的取值表:

注:照明负荷中有感抗负荷时,参见照明设计。 2、配电干线或变电所的计算负荷: ⑴、根据设备组的负荷计算确定后,来计算配电干线的负荷,方法如下: 总有功计算负荷∑Pjs=K∑·∑(K x·P e); 总无功计算负荷∑Qjs= K∑·∑(Pjs·tg); 总视在功率计算负荷∑Sjs=√ ̄(∑Pjs)2+(∑Qjs)2。 配电干线计算电流∑Ijs=∑Sjs/√ ̄3·U x·Cosψ(A)。 式中:∑---总矢量之和代号; K∑---同期系数(取值见下表1)。 ⑵、变电所变压器容量的计算,根据低压配电干线计算负荷汇总后进行 计算,参照上述方法进行。即: ∑Sjs变= K∑·∑Sjs干线(K∑取值范围见下表2)。 变压器容量确定:S变=Sjs×1.26= (KVA)。 (载容率为80﹪计算,百分比系数取1.26,消防负荷可以不计在内)。 变压器容量估算S变= Pjs×K×1.26= Pjs×1.063×1.26= (Kva)。 同期系数K∑值表:

直流电机设计程序

直流电机设计程序 3.1 主要指标 1. 额定电压 2. 额定功率 3. 额定转速 4. 额定效率 3.2 主要尺寸的确定 5. 结构型式的选择 6. 永磁材料的选择 选用烧结钕铁硼 7. 极弧系数 8. 电负荷 9. 长径比 10. 计算功率 11. 电枢直径 12. 极数 p=4 13. 极距 14. 电枢长度 cm D L a a 5.10157.0=?==λW P p N N N 76678.0378.021321'=??+=+=ηηcm D cm n B A p D a N i a 151.157.06006.0906.0766101.6'''101.63333==??????=??=取 λαδcm p D 89.54 21514.32=??==πτ

15. 气隙 δ=0.06cm 16. 电枢计算长度 3.3 绕组设计 17. 绕组形式 选用单叠绕组 18. 绕组并联支路对数 a=p=4 19. 槽数 20. 槽距 21. 预计气隙磁通 22. 电枢电动势 23. 预计导体总数 24. 每槽导体数 25. 每槽元件匝数 式中 每槽元件数 u=2 26. 实际每槽导体数 cm L L a ef 62.1006.025.102=?+=+=δ45 1533=?==a D Q cm Q D t a 05.145 1514.32=?==πwb B L ef i 34 4 1025.2106.062.1089.56.010''-?=????=?=ΦδταδV U E N N a 48.203 78 .021321=?+=+=η910 600 1025.2448 .20460'60'3=?????=Φ= -N a n p aE N δ2 .2045 910''===Q N N s 5 05.52 22.202''==?== s s W u N W 取20 5222=??==s s uW N

化工设备课程设计计算书(板式塔)

《化工设备设计基础》 课程设计计算说明书 学生姓名:学号: 所在学院: 专业: 设计题目: 指导教师: 2011年月日 目录 一.设计任务书 (2)

二.设计参数与结构简图 (4) 三.设备的总体设计及结构设计 (5) 四.强度计算 (7) 五.设计小结 (13) 六.参考文献 (14) 一、设计任务书 1、设计题目 根据《化工原理》课程设计工艺计算内容进行填料塔(或板式塔)设计。

设计题目: 各个同学按照自己的工艺参数确定自己的设计题目:填料塔(板式塔)DNXXX设计。 例:精馏塔(DN1800)设计 2、设计任务书 2.1设备的总体设计与结构设计 (1)根据《化工原理》课程设计,确定塔设备的型式(填料塔、板式塔); (2)根据化工工艺计算,确定塔板数目(或填料高度); (3)根据介质的不同,拟定管口方位; (4)结构设计,确定材料。 2.2设备的机械强度设计计算 (1)确定塔体、封头的强度计算。 (2)各种开孔接管结构的设计,开孔补强的验算。 (3)设备法兰的型式及尺寸选用;管法兰的选型。 (4)裙式支座的设计验算。 (5)水压试验应力校核。 2.3完成塔设备装配图 (1)完成塔设备的装配图设计,包括主视图、局部放大图、焊缝节点图、管口方位图等。 (2)编写技术要求、技术特性表、管口表、明细表和标题栏。 3、原始资料 3.1《化工原理》课程设计塔工艺计算数据。 3.2参考资料: [1] 董大勤.化工设备机械基础[M].北京:化学工业出版社,2003. [2] 全国化工设备技术中心站.《化工设备图样技术要求》2000版[S]. [3] GB150-1998.钢制压力容器[S]. [4] 郑晓梅.化工工程制图化工制图[M].北京:化学工业出版社,2002. [5] JB/T4710-2005.钢制塔式容器[S]. 4、文献查阅要求

民用建筑电气设计手册(学习笔记)

民用建筑电气设计手册 ——学习笔记 一、民用建筑电气工程设计的内容 1、变配电所设计 (1)根据变配电所供电的负荷性质及其对供电可靠性的要求,进行负荷分级,从而确定所需的独立供电电源个数与供电电压等级,并确定是否设置应急备用发电机组。 (2)进行变配电所负荷计算与无功功率补偿计算,确定无功补偿容量。 (3)确定变压器形式、台数、容量。进行主接线方案选择。 (4)变配电所选址。为了节约电能与减少有色金属耗量,通常应尽可能使高压深入负荷中心。但在建筑高度甚高和大容量负荷相当分散的情况下,也可分散设置多处变电所,其布置方案应经过技术经济进行比较确定。 (5)短路电流计算与开关设备选择。 (6)二次回路方案的确定,继电保护的选择和整定计。操作电源的选择。计量与测量。(7)防雷保护与接地装置设计。 (8)变配电所电气照明设计。 高压与低压配电所的设计、除不需进行变压器选择之外,其余部分的设计内容与变电所设计基本相同。 2、高低压供配电系统设计 (1)输电线路设计 包括:线路路径及线路结构型式(架空线路还是电缆线路)的确定,导线截面选择,架空线路杆位确定及标准电杆绝缘子、金具的选择,弧垂的确定与荷载的校验,电缆敷设方式的确定,线路的导线或电缆及配电设备和保护设备选择,架空线路的防雷保护及接地装置的设计等。 (2)高压配电系统设计 高压配电多采用放射式系统,以增强其供电可靠性与控制的灵活性。对于有多处变压器分散设置的高层建筑,高压配电网络也可以采用环网结构。 主要任务:确定配电电压与网络结构;进行配电线负荷计算;选择开关设备并进行短路校验;拟定二次回路方案并进行继电保护整定计算;选择高压电缆截面、形式,确定配电干线路径与敷设方式。 还应做好防雷击与电气防火设计,以确保安全。 (3)、低压配电系统设计 主要任务:确定低压配电方式与配电网络的结构,其主要内是竖直配电干线与水平配电干线的个数,位置与走向。进行分干线与干线的负荷计算,选择开关设备及导线、电缆、封闭式母线的截面与形式。选择保护装置,进行保护整定计算并保证其级间的选择性配合,以防止穿越性跳闸。确定线路敷设方式,进行电气竖井与配电小间的设计。低压无功补偿容量计算,补偿方式与调节方式的选择。按需配置电气测量与电能计量装置。保护接地、重复接地系统的设计。 3、电力设计 电力设计通常指动力负荷的供电设计。 主要内容:在建筑平面图上确认各动力负荷的位置、容量;按各动力负荷的性质及其对供电可靠性的要求,进行负荷分级,并采取相应的供电保证措施(如双电源互投的供电方式);确定动力负荷的配电网络形式,通常多采用放射式供电。确定配电装置的位置、选择

民用建筑电气设计规范完整版

民用建筑电气设计规范 HEN system office room 【HEN16H-HENS2AHENS8Q8-HENH1688】

民用建筑电气设计规范 25 住宅(小区)电气设计 一般规定 本章适用于城镇普通及康居住宅的电气设计,住宅电气设计除应符合本规范外,尚应符合国家现行的有关强制性标准的规定。 普通住宅套型按居住空间个数和使用面积分为一、二、三、四类。 康居住宅分为:基本型(1A)、提高型(2A)、先进型(3A)。 住宅电气设计应与国家同期经济发展水平相适应。 住宅电气设计一般包括:供配电系统;电力、照明系统;火灾自动报警及联动控制系统;安全防范系统;通信网络系统;信息网络系统;建筑设备监控与管理系统;家庭智能控制器;线路敷设及防雷、接地等。 负荷等级 住宅楼的负荷等级应遵守本规范第3 章表3.2.2 常用用电负荷分级表的规定,消防电梯、应急照明等消防用电设备的负荷等级应符合消防电源的供电要求。 建筑装修标准高和设有空调系统的高级住宅、19 层及以上普通住宅的消防供电系统应按一级负荷要求设计。 10层至18层的普通住宅的消防供电系统应按二级负荷要求设计。 供配电系统 供配电系统设计应符合下列要求:

1 住宅小区的10kV供电系统宜采用环网方式。 2 住宅小区的220/380V配电系统,宜采用放射式、树干式、或是二者相结合的方式。 3 住宅小区供电系统宜留有发展的备用回路。 4 住宅小区内重要的集中负荷宜由变电所设专线供电。 5 住宅供电系统的设计,应采用TT、TN-S、TN-C-S接地方式,并进行总等电位联结。 6 每幢住宅的总电源进线断路器,应能同时断开相线和中性线,应具有剩余电流动作保护功能。 剩余电流动作值的选择应符合下列要求: 1)当住宅的电源总进线断路器整定值不大于250A 时,断路器的剩余电流动作值宜为300mA。 2)当住宅的电源总进线断路器整定值为250~400A 时,断路器的剩余电流动作值宜为500mA。 3)当住宅的电源总进线断路器整定值大于400A 时,宜在总配电柜的出线回路上分别装设若干组具有剩余电流动作保护功能的断路器,其剩余电流动作值按本款1)、2)项设定。 4)消防设备供电回路的剩余电流动作保护装置不应作用于切断电源,只应作用于报警。 5)电源总进线处的剩余电流动作保护装置的报警除在配电柜上有显示外,还宜在小区值班室设声光报警。 7 住宅小区路灯的供电电源,宜由专用变压器或专用回路供电。 8 供配电系统应考虑三相用电负荷平衡。 9 单元(层)应设电源检修断路器一个。 10 只有单相用电设备的用户,其计算负荷电流小于等于40A 时应单相供电;计算负荷电流大于40A 时应三相供电。

无刷直流永磁电动机设计流程和实例

无刷直流永磁电动机设计实例 .主要技术指标 1. 额定功率:P N=30W 2. 额定电压:U N =48V,直流 3. 额定电流:l N:::1A 3. 额定转速:n N =10000r/min 4. 工作状态:短期运行 5. 设计方式:按方波设计 6. 外形尺寸:0.036 0.065m ?主要尺寸的确定 1. 预取效率—-0.63、 2. 计算功率p 直流电动机P' - =0.85 30-40.48W ,按陈世坤书 n N 0.63 长期运行P u丄丄P N 3叩 短期运行P -?丄P N 4们 3. 预取线负荷A =11000A/m 4?预取气隙磁感应强度B§=0.55T 5. 预取计算极弧系数:-=0.8 6. 预取长径比(L/D)入’=2

7 ?计算电枢内径 根据计算电枢内径取电枢内径值 。衬=1.4 10 ° m 8. 气隙长度:=0.7 10 "m 9. 电枢外径 D j =2.95 10,m 10. 极对数p=1 11. 计算电枢铁芯长 L 、,D i1=2 1.4 10^ =2.8 10^m 根据计算电枢铁芯长取电枢铁芯长 L= 2.8 10^m 2 ■ Di1 3.14 1.4 10 T = ---------------------------------- = 2p 2 13.输入永磁体轴向长Lm =L =2.8 10,m ?定子结构 1. 齿数 Z=6 2. 齿距 3 "「 4 10 J .733 10% 3. 槽形选择 梯形口扇形槽, 见下 图。 4. 预估齿宽:b t = d 』 733 汩 °. 55 7294 10讣,B t 可由 1.43 0.96 BZ 5. 设计者经验得 1.43T , b t 由工艺取 0.295 10'm 预估轭高:h j1 礙 22 0.8 O. 55 = O .323 10,m 2IB j1K Fe 2K Fe B j1 2 0.96 1.56 B j1可由设计者经验得1.53T , h j1由工艺取0.325 10'm 根据齿宽和轭高作出下图,得到具体槽形尺寸 6.1P 「 6.1 40.48 ‘■: ?工 i A s B/ n N 3 10.8 11000 0.55 2 10000 = 1.37 10-m 12.极距 __2 = 2.2 10 m 3

永磁直流电机设计

永磁直流電機設計 1.電機主要尺寸與功率,轉速的關系: 與異步電機相似,直流電機的功率,轉速之間的關系是: D22*Lg=6.1*108*p’/(αP*A*Bg*Ky*n) (1) D2 電樞直徑(cm) 電机初設計時的主要尺寸 Lg 電樞計算長度(cm) 根據電机功率和實際需要確定 p’計算功率(w) p’=E*Ia=(1+2η)*P N/3η E=Ce*Φ*n*Ky=(P*N/60*a)*Φ2*n*Ky*10-8 Ce 電勢系數 a 支路數在小功率電機中取a=2 p 极數在小功率電機中取p=2 N 電樞總導体數 n 電机額定轉速 Ky 電樞繞組短矩系數小功率永磁電机p=2時,采用單疊繞組Ky=Sin[(y1/τ)*π/2] y1繞組第一節矩 αP 極弧系數一般取αP=0.6~0.75 正弦分布時αP=0.637 Φ每極磁通Φ=αP*τ*Lg*Bg τ極矩(cm) τ=π*D2/P Bg 氣隙磁密(Gs) 又稱磁負荷對鋁鎳Bg=(0.5~0.7) Br 對鐵氧体Bg=(0.7~0.85) Br, Br為剩磁密度 A 電樞線負荷 A=Ia*N/(a*π*D2)Ia電樞額定電流對連續運行的永磁電動机,一般取A=(30~80)A/cm另外電機負荷Δ= Ia/(a*Sd),其中Sd=π*d2/4 d為導線直徑.為了保証發熱因子A*Δ≦1400 (A/cm*A/mm2 )通常以電樞直徑D2和電樞外徑La作為電机主要尺寸,而把電動機的輸出功率和轉睦為電机的主要性能,在主要尺寸和主要性能的基礎上,我們就可以設計電機了. 在(1)式的基礎上經過變換可為:

D22*Lg*n/P’=(6.1*108/π2)*1/(αP*Bg*A)=C A 由上式可以看, C A的值並不取決於電機的容量和轉速,也不直接與電樞直徑和長度有關,它 僅取決於氣隙的平均磁密及電樞線負荷,而Bg和A的變化很小,它近似為常數,通常稱為電機 常數,它的導數K A=1/C A=(p’/n)/(D22* Lg)∞αP*Bg*A 稱為電機利用系數,它是正比於單位電 樞有效体積產生的電磁轉矩的一個比例常數. 2.直流電機定子的確定 2.1磁鋼內徑 根據電機電樞外徑D2確定磁鋼內徑 Dmi=D2+2g+2Hp 其中g為氣隙長度,小功率直流電機g=0.02-0.06cm ,鐵氧體時g可取得大些,鋁鎳鈷磁 鋼電機可取得較小,因鐵氧體H C較大.氣隙對電機的性能有很大的影響,較小的g可以使電樞 反應引起的氣隙磁場畸變加劇,使電機的換向不良加劇,及電機運行不穩定,主極表面損耗和 噪音加劇,以及電樞撓度加大,較大的氣隙,使電機效率下降,溫升提高. 有時電機磁鋼采用極靴,這樣可以起聚磁作用,提高氣隙磁密,還可稠節極靴 形狀以改善空載氣隙磁場波形,負載時交軸電樞反應磁通經極靴閉,合對永磁磁 極的影響較小.但這樣會使磁鋼結構复雜,制造成本增加,漏磁系數較大,外形尺 寸增加,負載時氣隙磁場的畸變較大.而無極靴時永磁體直接面向氣隙,漏磁系數小,能產生較多的磁通,材料利用率高,氣隙磁場畸變,而且結構簡單,便於生產. 其缺點是容易引起不可逆退磁現象. Hp 極靴高(cm) 無極靴結構時Hp=0 2.2磁鋼外徑 Dm0=Dmi+2Hm (瓦片形結構) Hm 永磁體磁路長度,它的尺寸應從滿足(1)有足夠的氣隙磁密(產生不可逆退磁),(2)在要求的任何情運行狀態下會形成永久性退磁等方面來確定,一般Hm=(5~15)g Hm越大,則氣隙磁密也越大,否則,則氣隙磁密也越小. 2.3磁鋼截面積Sm 對于鐵氧體由于Br小,則Sm取較大值,而對于鋁鎳鈷來說, Br較大,則Sm取小值. 環形鐵氧體磁鋼截面積: Sm=αP*π*(Dmi+Hm)Lg/P (cm)

塔设备设计说明书精选文档

塔设备设计说明书精选 文档 TTMS system office room 【TTMS16H-TTMS2A-TTMS8Q8-

《化工设备机械基础》 塔设备设计 课程设计说明书 学院:木工学院 班级:林产化工0 8 学号: 035 036 姓名:万永燕郑舒元 分组:第四组

目录

前言 摘要 塔设备是化工、石油等工业中广泛使用的重要生产设备。塔设备的基本功能在于提供气、液两相以充分接触的机会,使质、热两种传递过程能够迅速有效地进行;还要能使接触之后的气、液两相及时分开,互不夹带。因此,蒸馏和吸收操作可在同样的设备中进行。根据塔内气液接触部件的结构型式,塔设备可分为板式塔与填料塔两大类。板式塔内沿塔高装有若干层塔板(或称塔盘),液体靠重力作用由顶部逐板流向塔底,并在各块板面上形成流动的液层;气体则靠压强差推动,由塔底向上依次穿过各塔板上的液层而流向塔顶。气、液两相在塔内进行逐级接触,两相的组成沿塔高呈阶梯式变化。填料塔内装有各种形式的固体填充物,即填料。液相由塔顶喷淋装置分布于填料层上,靠重力作用沿填料表面流下;气相则在压强差推动下穿过填料的间隙,由塔的一端流向另一端。气、液在填料的润湿表面上进行接触,其组成沿塔高连续地变化。目前在工业生产中,当处理量大时多采用板式塔,而当处理量较小时多采用填料塔。蒸馏操作的规模往往较大,所需塔径常达一米以上,故采用板式塔较多;吸收操作的规模一般较小,故采用填料塔较多。 板式塔为逐级接触式气液传质设备。在一个圆筒形的壳体内装有若干层按一定间距放置的水平塔板,塔板上开有很多筛孔,每层塔板靠塔壁处设有降液管。气液两相在塔板内进行逐级接触,两相的组成沿塔高呈阶梯式变化。板式塔的空塔气速很高,因而生产能力较大,塔板效率稳定,造价低,检修、清理方便

民用建筑电气设计强条(强弱电)

民用建筑电气设计强条 强电强条 《民用建筑电气设计规范》JGJ16-2008 : 3.2.8 一级负荷应由两个电源供电,当一个电源发生故障时,另一个电源不应同时受到损坏。 3.3.2 应急电源与正常电源之间必须采取防止并列运行的措施。 4.3.5 设置在民用建筑中的变压器,应选择干式、气体绝缘或非可燃性液体绝缘的变压器。当单台变压器油量为100kg及以上时,应设置单独的变压器室。 4.7.3 当成排布置的配电屏长度大于6m时,屏后面的通道应设有两个出口。当两出口之间的距离大于15m时,应增加出口。 4.9.1 可燃油油浸电力变压器室的耐火等级应为一级。非燃或难燃介质的电力变压器室、电压为10(6)kV的配电装置室和电容器室的耐火等级不应低于二级。低压配电装置室和电容器室的耐火等级不应低于三级。 4.9.2 配变电所的门应为防火门,并应符合下列规定: 1 配变电所位于高层主体建筑(或裙房)内时,通向其他相邻房间的门应为甲级防火门,通向过道的门应为乙级防火门; 2 配变电所位于多层建筑物的二层或更高层时,通向其他相邻房间的门应为甲级防火门,通向过道的门应为乙级防火门; 3 配变电所位于多层建筑物的一层时,通向相邻房间或过道的门应为乙级防火门; 4 配变电所位于地下层或下面有地下层时,通向相邻房间或过道的门应为甲级防火门; 5 配变电所附近堆有易燃物品或通向汽车库的门应为甲级防火门; 6 配变电所直接通向室外的门应为丙级防火门。 7.4.2 低压配电导体截面的选择应符合下列要求: 1)按敷设方式、环境条件确定的导体截面,其导体载流量不应小于预期负荷的最大计算电流和按保护条件所确定的电流; 2)线路电压损失不应超过允许值; 3)导体应满足动稳定与热稳定的要求; 4)导体最小截面应满足机械强度的要求,配电线路每一相导体截面不应小于表7.4.2的规定。 表7.4.2 7.4.6 外界可导电部分,严禁用作PEN导体。 7.5.2 在TN--C系统中,严禁断开PEN导体,不得装设断开PEN导体的电器。 7.6. 2 配电线路的短路保护应在短路电流对导体和连接件产生的热效应和机械力造成危险之前切断短路电流。7.6.4 配电线路的过负荷保护,应在过负荷电流引起的导体温升对导体的绝缘、接头、端子或导体周围的物质造成损害前切断负荷电流。对于突然断电比过负荷造成的损失更大的线路,该线路的过负荷保护应作用于信号而不应切断电路。

小型永磁直流电机设计

小型永磁直流电机设计(部分) Ap1008331谢志恒 1.电机主要尺寸与功率,转速的关系: 与异步电机相似,直流电机的功率,转速之间的关系是: D22*Lg=6.1*108*p’/(αP*A*Bg*Ky*n) (1) D2 电枢直径(cm) 电机初设计时的主要尺寸 Lg 电枢计算长度(cm) 根据电机功率和实际需要确定 p’计算功率(w) p’=E*Ia=(1+2η)*P N/3η E=Ce*Φ*n*Ky=(P*N/60*a)*Φ2*n*Ky*10-8 Ce 电势系数 a 支路数在小功率电机中取a=2 p 极数在小功率电机中取p=2 N 电枢总导体数 n 电机额定转速 Ky 电枢绕组短矩系数小功率永磁电机p=2时,采用单叠绕组Ky=Sin[(y1/τ)*π/2] y1绕组第一节矩 P 极弧系数一般取αP=0.6~0.75 正弦分布時αP=0.637 Φ每极磁通Φ=αP*τ*Lg*Bg τ极矩(cm) τ=π*D2/P Bg气隙磁密(Gs) 又称磁负荷,对铝镍Bg=(0.5~0.7) Br,对铁氧体Bg=(0.7~0.85) Br, Br为剩磁密度 A 电枢线负荷A=Ia*N/(a*π*D2)Ia电枢额定电流对连续运行的永磁电动机,一般取A=(30~80)A/cm另外电机负荷Δ= Ia/(a*Sd),其中Sd=π*d2/4,d为导线直径。为了保证发热因子A*Δ≦1400 (A/cm*A/mm2 )通常以电枢直径D2和电枢外径La作为电机主要尺寸,而把电动机的输出功率和转速为电机的主要性能,在主要尺寸和主要性能的基础上,我们就可以设计电机了。

在(1)式的基础上经过变换可为: D22*Lg*n/P’=(6.1*108/π2)*1/(αP*Bg*A)=C A 由上式可以看, CA的值并不取决於电机的容量和转速,也不直接与电枢直径和长度有关,它仅取决於气隙的平均磁密及电枢线负荷,而Bg和A的变化很小,它近似为常数,通常称为电机常数,它的导数K A=1/C A=(p’/n)/(D22* Lg)∞αP*Bg*A称为电机利用系数,它是正比於单位电枢有效体积产生的电磁转矩的一个比例常数。 2.磁钢的选择: 2.1磁钢的材质 在永磁直流电机中,磁钢相当于串激电中的定子线圈中,它在定子铁壳中产生磁场,它和其它电机一样,是利用电磁感应原理在磁场媒质中进行能量转换的,磁场在能量转换过程中起媒介作用,在永磁直流电机中产生磁场的磁源是充过磁的永磁体,也叫磁钢,充过磁的磁石性能对电机的性能有很大的影响。 在现代电机制造中,磁钢的材料有下列几种:铁氧体.铝镍鈷合金,稀士合金,釹铁硼等.由于各种材料自身特点和本公司的实际,一般选用铁氧体作为永磁材料。 2.2永磁材料的磁性能 磁钢的退磁曲线如下: 永磁材料的磁性能可以用磁滞回线来反映和描述.即用B=f(H)曲线来反映永磁体的磁感应强度随磁场强度来降改变的特性,该回线包含的面积随最大充磁磁场强度HMAX增大而增大,当HMAX达到HS时回线面积渐近地达到一个最大值,而且这时磁性能也较稳定,面积最大的回线被称为磁滞回线. 磁滞回线在第二象限的部分称为退磁曲线,它是永磁材料的基本特性曲线,退磁曲线中磁感应强度Bm 为正值而磁场强度Hm为负值,在退磁曲线过程中,永磁体相当于一个磁源.退磁

塔设备设计说明书

《化工设备机械基础》 塔设备设计 课程设计说明书 学院:木工学院 班级:林产化工0 8 学号: 姓名:万永燕郑舒元 分组:第四组 目录 前言............................................................... 错误!未定义书签。 摘要 (2) 关键字 (2) 第二章设计参数及要求 (2) 1.1符号说明 (2) 1.2.设计参数及要求 (3) 3 3 第二章材料选择 (4) 2.1概论 (4) 2.2塔体材料选择 (4) 2.3 裙座材料的选择 (4) 第三章塔体的结构设计及计算 (5) 3.1 按计算压力计算塔体和封头厚度 (5) 3.2 塔设备质量载荷计算 (5) 3.3 风载荷和风弯矩 (6) 3.4 地震弯矩计算 (7) 3.5 各种载荷引起的轴向应力 (7) 3.6 塔体和裙座危险截面的强度与稳定校核 (8) 3.7 塔体水压试验和吊装时的应力校核 (9) 3.7.1 水压试验时各种载荷引起的应力 (9) 9 3.8塔设备结构上的设计 (10) 10 10 板式塔的总体结构 (11) 小结 (11) 附录 (11) 附录一有关部件的质量 (11)

附录二矩形力矩计算表 (12) 附录三螺纹小径与公称直径对照表 (12) 参考文献 (12) 前言 摘要 塔设备是化工、石油等工业中广泛使用的重要生产设备。塔设备的基本功能在于提供气、液两相以充分接触的机会,使质、热两种传递过程能够迅速有效地进行;还要能使接触之后的气、液两相及时分开,互不夹带。因此,蒸馏和吸收操作可在同样的设备中进行。根据塔内气液接触部件的结构型式,塔设备可分为板式塔与填料塔两大类。板式塔内沿塔高装有若干层塔板(或称塔盘),液体靠重力作用由顶部逐板流向塔底,并在各块板面上形成流动的液层;气体则靠压强差推动,由塔底向上依次穿过各塔板上的液层而流向塔顶。气、液两相在塔内进行逐级接触,两相的组成沿塔高呈阶梯式变化。填料塔内装有各种形式的固体填充物,即填料。液相由塔顶喷淋装置分布于填料层上,靠重力作用沿填料表面流下;气相则在压强差推动下穿过填料的间隙,由塔的一端流向另一端。气、液在填料的润湿表面上进行接触,其组成沿塔高连续地变化。目前在工业生产中,当处理量大时多采用板式塔,而当处理量较小时多采用填料塔。蒸馏操作的规模往往较大,所需塔径常达一米以上,故采用板式塔较多;吸收操作的规模一般较小,故采用填料塔较多。 板式塔为逐级接触式气液传质设备。在一个圆筒形的壳体内装有若干层按一定间距放置的水平塔板,塔板上开有很多筛孔,每层塔板靠塔壁处设有降液管。气液两相在塔板内进行逐级接触,两相的组成沿塔高呈阶梯式变化。板式塔的空塔气速很高,因而生产能力较大,塔板效率稳定,造价低,检修、清理方便 关键字 塔体、封头、裙座、。 第二章设计参数及要求 1.1符号说明 Pc ----- 计算压力,MPa; Di ----- 圆筒或球壳内径,mm; [Pw]-----圆筒或球壳的最大允许工作压力,MPa; δ ----- 圆筒或球壳的计算厚度,mm; δn ----- 圆筒或球壳的名义厚度,mm; δe ----- 圆筒或球壳的有效厚度,mm;

新手如何学习建筑电气设计

新手如何学习建筑电气设计 从事建筑电气设计工作,到如今已经将近两年。虽然是电气工程及其自动化专业毕业,但是电气这个专业实在太大,在学校里没有接触过建筑电气的内容,几乎所有的知识都是在工作之后一点一点重新学习的。正好总结一下这一年多来自己的学习之路,不敢说是指南,只能说是经验,一家之见,浅薄得很。 什么是建筑电气设计,这可是一篇大文章,我们先说「建筑」,后说「电气」,最后说「设计」。 建筑按功能分,可以分为民用建筑和工业建筑,民用建筑又分为公共建筑和居住建筑,往下还可以细分。按照高度可以分成低层、多层、中层(小高层)、高层、超高层。不同的分类对应不同的设计要求,确定了建筑的类别,是设计的第一步。 对于建筑设计来说,主要分为五大专业:建筑、结构、给排水、暖通、电气,每次建筑设计都是所有专业合作的结果,其他专业的设计会影响电气的设计,而电气的设计也会影响其他专业,所以要想做好建筑电气设计,至少要对其他各个专业都有基本的了解。 这方面的内容,推荐马志溪主编的《建筑电气工程》,在第一部分《基础篇》对各个专业均有介绍,而且特别强调出电气专业需要特别关注的内容。 说过了其他专业,接下来再来说回本专业「电气」,电气的一大特点就是涉及的内容多而杂,每个工程最后的图纸里,电气差不多总是最厚的那一摞。单单一个工程内,电气设计就可能包括照明、配电、防雷、接地、电视、电话、网络、消防、安防、广播等等十余个小系统,要想成为一名优秀的建筑电气设计师,要学的东西还是挺多的。还记得我一开始接触建筑电气的时候,真是觉得千头万绪,无处下手,很是苦恼了一段时间,才算渐渐摸对门路。 首先,我建议你先对建筑电气的知识体系有个总体的认知,不求都明白,至少要知道都有啥,哪些是基本的,哪些是附加的,就像车一样,哪些算是「低配」,哪些算是「高配」。知识体系建立了,再去学习就不会盲目了。所以这个阶段就需要一本能有总论性质的教材,如果你的专业有相关的课程那自然是极好的,如果没有,那么依然推荐上边那本马志溪主编的《建筑电气工程》。 学校的课程还是建议好好学的。理论扎实对于一名建筑电气设计师,是相当有好处的,所以本专业的课程,类似电路、模电、数电、电力电子、电力拖动、电磁场,对今后的工作都是有帮助的。甚至于高度数学、大学物理、大学化学这样的课程也别小看,建筑电气设计师最有价值的一个证书是注册电气工程师证,以上这些都是考试的范围之内。我的考试复习过程,就被高数折磨得痛苦不堪。 有一门课叫「供配电设计」,对于建筑电气设计相当重要,不过反正我本科的时候没有接触过,还是后来工作以后自学的,看的是翁双安主编的《供配电工程设计指导》。 行了,以上都是准备内容,下边正式介绍电气设计师的几大法宝:规范、图集、手册、图纸。 规范,是建筑设计最重要的依据之一,它规定了什么是对的,什么是错的,什么是好的,什么是差的。对于建筑电气设计来说,「符合规范」是基本的要求。但是真正实施起来,却未必那么容易,因为相关的规范实在是太多了。 规范分四种:国家标准、行业标准、地方标准、企业标准。注册电气工程师考试考到的常用国家标准就有六七十种,摞起来应该比我还高。不同的地区因为发展程度不同,还会各自出台各自的地方标准,有些企业(比如大型房地产公司、高级酒店、大型工业企业)也有自己成熟的企业标准。

无刷直流永磁电动机设计流程和实例

无刷直流永磁电动机设计实例 一. 主要技术指标 1. 额定功率:W 30P N = 2. 额定电压:V U N 48=,直流 3. 额定电流:A I N 1< 3. 额定转速:m in /10000r n N = 4. 工作状态:短期运行 5. 设计方式:按方波设计 6. 外形尺寸:m 065.0036.0?φ 二. 主要尺寸的确定 1. 预取效率63.0='η、 2. 计算功率i P ' 直流电动机 W P K P N N m i 48.4063 .030 85.0'=?= = η,按陈世坤书。 长期运行 N i P P ?'' += 'ηη321 短期运行 N i P P ?'' += 'η η431 3. 预取线负荷m A A s /11000'= 4. 预取气隙磁感应强度T B 55.0'=δ 5. 预取计算极弧系数8.0=i α 6. 预取长径比(L/D )λ′=2

7.计算电枢内径 m n B A P D N s i i i 233 11037.110000 255.0110008.048 .401.61.6-?=?????=''''='λαδ 根据计算电枢内径取电枢内径值m D i 21104.1-?= 8. 气隙长度m 3107.0-?=δ 9. 电枢外径m D 211095.2-?= 10. 极对数p=1 11. 计算电枢铁芯长 m D L i 221108.2104.12--?=??='='λ 根据计算电枢铁芯长取电枢铁芯长L= m 2108.2-? 12. 极距 m p D i 22 1 102.22 104.114.32--?=??==πτ 13. 输入永磁体轴向长m L L m 2108.2-?== 三.定子结构 1. 齿数 Z=6 2. 齿距 m z D t i 22 1 10733.06 104.114.3--?=??==π 3. 槽形选择 梯形口扇形槽,见下图。 4. 预估齿宽: m K B tB b Fe t t 2210294.096 .043.155 .010733.0--?=???==δ ,t B 可由 设计者经验得1.43T ,t b 由工艺取m 210295.0-? 5. 预估轭高: m B K B a K lB h j Fe i Fe j j 211110323.056 .196.0255 .08.02.222-?=????=≈Φ= δδτ

民用建筑电气设计规范

民用建筑电气设计规范公司内部编号:(GOOD-TMMT-MMUT-UUPTY-UUYY-DTTI-

民用建筑电气设计规范 中华人民共和国行业标准 民用建筑电气设计规范 Code for Electrical Design of Civil Buildings JGJ 16-2008 主编单位:中国建筑东北设计研究院 批准部门:中华人民共和国建设部 施行日期:2008年8月1日 1 住宅(小区)电气设计 一般规定 本章适用于城镇普通及康居住宅的电气设计,住宅电气设计除应符合本规范外,尚应符合国家现行的有关强制性标准的规定。 普通住宅套型按居住空间个数和使用面积分为一、二、三、四类。 康居住宅分为:基本型(1A)、提高型(2A)、先进型(3A)。

住宅电气设计应与国家同期经济发展水平相适应。 住宅电气设计一般包括:供配电系统;电力、照明系统;火灾自动报警及联动控制系统;安全防范系统;通信网络系统;信息网络系统;建筑设备监控与管理系统;家庭智能控制器;线路敷设及防雷、接地等。 负荷等级 住宅楼的负荷等级应遵守本规范第3 章表常用用电负荷分级表的规定,消防电梯、应急照明等消防用电设备的负荷等级应符合消防电源的供电要求。 建筑装修标准高和设有空调系统的高级住宅、19 层及以上普通住宅的消防供电系统应按一级负荷要求设计。 10层至18层的普通住宅的消防供电系统应按二级负荷要求设计。 供配电系统 供配电系统设计应符合下列要求:

1 住宅小区的10kV供电系统宜采用环网方式。 2 住宅小区的220/380V配电系统,宜采用放射式、树干式、或是二者相结合的方式。 3 住宅小区供电系统宜留有发展的备用回路。 4 住宅小区内重要的集中负荷宜由变电所设专线供电。 5 住宅供电系统的设计,应采用TT、TN-S、TN-C-S接地方式,并进行总等电位联结。 6 每幢住宅的总电源进线断路器,应能同时断开相线和中性线,应具有剩余电流动作保护功能。 剩余电流动作值的选择应符合下列要求: 1)当住宅的电源总进线断路器整定值不大于250A 时,断路器的剩余电流动作值宜为300mA。 2)当住宅的电源总进线断路器整定值为250~400A 时,断路器的剩余电流动作值宜为500mA。 3)当住宅的电源总进线断路器整定值大于400A 时,宜在总配电柜的出线回路上分别装设若干组具有剩余电流动作保护功能的断路器,其剩余电流动作值按本款1)、2)项设定。

板式塔设计计算说明书

一、设计任务 1. 结构设计任务 完成各板式塔的总体结构设计,绘图工作量折合A1图共计4张左右,具体包括以下内容: ⑴各塔总图1张A0或A0加长; ⑵各塔塔盘装配及零部件图2张A1。 2. 设计计算内容 完成各板式塔设计计算说明书,主要包括各塔主要受压元件的壁厚计算及相应的强度校核、稳定性校核等内容。 二、设计条件 1. 塔体内径mm 2000=i D ,塔高m 299.59H i =; 2.设计压力p c =2.36MPa ,设计温度为=t 90C ?; 3. 设置地区:山东省东营市,基本风压值q 0=480Pa ,地震设防烈度8度,场地土类别III 类,地面粗糙度是B 类; 4. 塔内装有N=94层浮阀塔盘;开有人孔12个,在人孔处安装半圆形平台12个,平台宽度B=900m m ,高度为1200m m ; 5. 塔外保温层厚度为δs =100m m ,保温层密度ρ2=3503m /kg ; 三、设备强度及稳定性校核计算 1. 选材说明 已知东营的基本风压值q 0=480Pa ,地震设防烈度8度,场地土类别III 类;塔壳与裙座对接;塔内装有N=94层浮阀塔盘;塔外保温层厚度为δs =100m m ,保温层密度ρ 2=350 3m /kg ;塔体开有人孔12个,在人孔处安装半圆形平台12个,平台宽度B=900m m , 高度为1200m m ;设计压力 p c =2.36MPa ,设计温度为=t 90C ?;壳 3m m ,裙座厚度附加量2m m ;焊接接头系数取为0.85;塔内径mm 2000=i D 。 通过上述工艺条件和经验,塔壳和封头材料选用Q345R 。对该塔进行强度和稳定计算。 2. 主要受压元件壁厚计算

民用建筑电气设计规范

民用建筑电气设计规 25 住宅(小区)电气设计 25.1 一般规定 25.1.1 本章适用于城镇普通及康居住宅的电气设计,住宅电气设计除应符合本规外,尚应符合国家现行的有关强制性标准的规定。 25.1.2 普通住宅套型按居住空间个数和使用面积分为一、二、三、四类。 25.1.3 康居住宅分为:基本型(1A)、提高型(2A)、先进型(3A)。 25.1.4 住宅电气设计应与国家同期经济发展水平相适应。 25.1.5 住宅电气设计一般包括:供配电系统;电力、照明系统;火灾自动报警及联动控制系统;安全防系统;通信网络系统;信息网络系统;建筑设备监控与管理系统;家庭智能控制器;线路敷设及防雷、接地等。 25.2 负荷等级 25.2.1 住宅楼的负荷等级应遵守本规第3 章表3.2.2 常用用电负荷分级表的规定,消防电梯、应急照明等消防用电设备的负荷等级应符合消防电源的供电要求。 25.2.2 建筑装修标准高和设有空调系统的高级住宅、19 层及以上普通住宅的消防供电系统应按一级负荷要求设计。 25.2.3 10层至18层的普通住宅的消防供电系统应按二级负荷要求设计。 25.3 供配电系统 25.3.1 供配电系统设计应符合下列要求: 1 住宅小区的10kV供电系统宜采用环网方式。 2 住宅小区的220/380V配电系统,宜采用放射式、树干式、或是二者相结合的方式。 3 住宅小区供电系统宜留有发展的备用回路。 4 住宅小区重要的集中负荷宜由变电所设专线供电。 5 住宅供电系统的设计,应采用TT、TN-S、TN-C-S接地方式,并进行总等电位联结。 6 每幢住宅的总电源进线断路器,应能同时断开相线和中性线,应具有剩余电流动作保护功能。

无刷直流永磁电动机设计流程和实例

无刷直流永磁电动机设计实例 . 主要技术指标 1. 额定功率: P N 30W 2. 额定电压: U N 48V ,直流 3. 额定电流: I N 1A 3. 额定转速: n N 10000r /min 4. 工作状态:短期运行 5. 设计方式:按方波设计 6. 外形尺寸: 0.036 0.065m . 主要尺寸的确定 1. 预取效率 0.63 、 2. 计算功率 P i 直流电动机 Pi ' K m P N 0.85 30 40.48W ,按陈世坤书 i N 0.63 12 长期运行 P i 132 P N 13 短期运行 P i 1 3 P N 4 3. 预取线负荷 A s ' 11000 A / m 4. 预取气隙磁感应强度 B ' 0.55T 5. 预取计算极弧系数 i 0.8 6. 预取长径比( L/D )λ′=2

7.计算电枢内径 根据计算电枢内径取电枢内径值 D i1 1.4 10 2 m 8. 气隙长度 0.7 10 3 4 m 9. 电枢外径 D 1 2.95 10 2 m 10. 极对数 p=1 11. 计算电枢铁芯长 L D i1 2 1.4 10 2 2.8 10 2 m 根据计算电枢铁芯长取电枢铁芯长 L= 2.8 10 2 m 13. 输入永磁体轴向长 L m L 2.8 10 2 m 定子结构 1. 齿数 Z=6 设计者经验得 1.43T , b t 由工艺取 0.295 10 2 m 3 槽形选择 梯形口扇形槽,见下图 D i1 3 i A 6s . B 1P i n N 6.1 40.48 0.8 11000 0.55 2 10000 1.37 10 2 m 4. 预估齿宽 : b t tB B t K Fe 0.733 10 2 0.55 1.43 0.96 0.294 10 2m , B t 可由 12. 极距 D i1 2p 3.14 1.4 10 2 2 2.2 10 2 m 2. 齿距 i1 3.14 1.4 10 2 0.733 10 2m 5. 预 估 轭 高 : h j1 a i B 2lB j1K Fe 2K Fe B j1 2.2 0.8 0.55 0.323 10 2m

永磁有刷直流电动机课程设计

永磁直流有刷电动机课程设计 目录 摘要 一、设计背景及其发展状况 二、有刷直流电动机的组成结构和工作原理 1.永磁直流电动机的结构、起动和转动机理 2.永磁有刷直流电动机的反电动势和转矩、转速、调速范围 3.永磁有刷直流电动机的功率和效率 三、永磁有刷直流电动机的设计 1.永磁有刷直流电动机主要尺寸的确定 2.永磁有刷直流电动机的绕组设计 3.永磁有刷直流电动机换向器的设计 四、磁路计算 1.组抗参数 2.损耗参数 3.外特性 4.效率特性 五、个人总结 参考文献

摘要 永磁有刷直流电机是在直流电机的基础上用永磁铁代替原有磁体材料建立的主磁场。直流电动机采用了永磁励磁后,因省去了励磁绕组,降低了励磁损耗,使其具有结构简单、体积小、效率高、用铜量少等优点。本文分析了永磁有刷直流电机的工作原理,研究了永磁有刷直流电机电磁的特点, ,运用解析计算的方法分析出电机的各项参数。为设计永磁有刷直流电动机,我们依据Matlab强大的数据计算能力建立起了永磁有刷直流电机的数学模型并进行了仿真进而对控制系统进行了一定的分析,同时还对比了在不同的参数下电机的工作性能,为电机系统的设计及其工作的稳定性提供了一定的依据。经设计出的200W永磁有刷直流电动机具有简便高效的特点。 关键词永磁直流电机有刷设计电机

一、设计背景及其发展状况 1820年,丹麦物理学家奥斯特发现了电流在磁场中受机械力的作用,即电流的磁效应。 1821年,英国科学家法拉第总结了载流导体在磁场内受力并发生机械运动的现象,法拉第的试验模型可以认为是现代直流电动机的雏形。 1822年,法国人吕萨克发现电磁铁,,即用电流流过绕在铁芯上的线圈的方法可以产生磁场。在这些发现与发明的基础上,1831年法拉第发现了电磁感应定律,发明了盘式电机。 1831年,法拉第发现了电磁感应定律,并发明了盘式电机。同年,亨利制作了振荡电机。1832年,斯特金发明了换向器,并对亨利的振荡电机进行了改进,制作了世界上第一台能连续旋转运动的电机。 1833年,法国发明家皮克西制成了第一台旋转磁极式直流发电机,主要利用了磁铁和线圈之间的相对运动和一个换向装置,这就是现代直流发电机的雏形。楞次已经证明了电机的可逆原理。 1834年,俄国物理学家雅可比设计并制成了第一台实用的直流电动机。 1838年,雅可比把改进的直流电动机装在一条小船上。 1845年,英国人惠斯通用电磁铁代替天然磁铁矿石,用于制造电机并取得了专利权。1857年,他发明了自励的电励磁发电机,开创了电励磁方式的新纪元。19世纪70年代,爱迪生发明了电灯,开始了商业目的的直流发电机的研制。1871年,凡.麦尔准发明了交流发电机。 1879年,拜依莱(Bailey)首次用电的办法获得了旋转磁场,采用依次变动四个磁极上的励磁电流的方法,如果在四个磁场的中间放一个铜盘,由于感应涡流的作用,铜盘将随着磁场的变动而旋转,这就是最初的感应电动机。 1888年,特斯拉发明了三相异步电机,并申请了专利。 1900年,可靠的卷铁芯式变压器的问世,开创了长距离输电的新纪元。 1967年,钐钴永磁材料的出现,开创了永磁电机的新纪元。由于稀土钴永磁材料价格昂贵,研究重点是航空航天等要求高性能而价格不是主要因素的高科技领域。 1983年,磁性能更高而价格相对较低的钕铁硼永磁材料问世后永磁电机的研究转移到了工业和民用电机上。 进入20世纪90年代,随着永磁材料性能的不断提高和完善,和永磁电机研究开发经验的逐步成熟,永磁电机在日常生活的各个方面获得了越来越广泛的应用。现今,永磁直流电机广泛应用于各种便携式的电子设备或器具中,如录音机、VCD 机、电唱机、电动按摩器及各种玩具,也广泛应用于汽车、摩托车、干手器、电动自行车、蓄电池车、船舶、航空、机械等行业,在一些高精尖产品中也有广泛应用,如录像机、复印机、照相机、手机、精密机床、银行点钞机、捆钞机等。

相关文档
最新文档