智能型诱导通风排烟系统设计原理及案例分析_崔楠

智能型诱导通风排烟系统设计原理及案例分析_崔楠
智能型诱导通风排烟系统设计原理及案例分析_崔楠

实验室通风系统设计方案说明

实验室通风系统设计方案说明

水质监测站实验室设施改造方案 (一)通风系统 一、工程概况: 大楼共5层,实验室设于3、4、5楼。根据实验室资质认定和国家实验室认可的要求,对使用多年的通风系统进行更新改造。实验室 内通风柜的布置和数量规格见附件1(实验室设施改造平面图)及附 表1(通风柜规格一览表)。 二、总体要求: 1、根据实验室通风量的要求将通风系统切分为若干个子系统,每个子 系统应充分考虑实验室功能区域的要求以及实验室实际空间情况,根 据现场情况,拟将实验室排风工程分为11个子系统,子系统分别编号 为S1、S2、S3、S4、S5、S6、S7、S8、S9、S10、S11。排风系统考虑 防止雨水倒灌,每个子系统具体情况见附表2(通风子系统一览表)。 通风系统切分的方案可变动,但必须更优化方可。 2、根据每个实验室的通风要求和实验要求,充分考虑美观、 实用、降噪、防震等要求,设计实验室通风系统。整体改造 不得影响实验室检测要求。 3、施工过程应采取防震、防尘措施,避免实验室检测器材受到 污染。实验室内严禁吸烟。 4、施工方案应充分考虑工期问题,总体上现场工期应控制在十五天以 内,以免影响检测工作。 三、设计依据: 通风系统的设计应符合: (1)《通风与空调工程施工质量验收规范》(GB50243-2002) (2)《简明通风设计手册》 (3)《暖卫、通风、空调技术手册》 (4)《城市区域环境噪声排放标准》

(5)《机械工业环境保护设计规范》(JBJ 16-2000) (6)《中华人民共和国机械行业通风柜标准》 (7)水质监测站提供资料。 *四、设计参数: 1.实验室的通风换气次数取每小时8-20次。 2.支管内风速取6-12m/s,干管内风速取8-14m/s。 3、排毒柜的柜门高度为35-40cm时,柜门的表面风速为0.5m/s-0.8 m/s。 系统压力划分应符合国家有关规定。 五、通风系统设计要求: *1、风机选型:实验室通风系统风机全部采用玻璃钢风机,要求耐腐蚀、 寿命长、性能稳定、维护方便、噪声低。 *2、管材要求:本系统风管采用PVC管材或玻璃钢管材,风管采用矩形 管材,安装时风管的上测紧靠建筑物的横梁。风管板材厚度应大于6mm。 *3、噪声要求:根据国家有关标准,应安装消音装置,屋顶通风系统的 噪声须控制在65dB以下,实验室通风柜的噪声应控制在55dB以下。 4、减震要求:风机采取减振措施,加装橡胶减振器,风机进风口安装 减振软接头,风机底座为水泥基础,水泥基础的高度根据现场情况可做 适当调整,在条件允许的情况下风机基础高度不小于20cm。 5、安装要求: *1)风管固定应采用耐腐蚀材料,安装位置和方式应便于维修 和维护。 2)风机出口的风管管径只能变大,不能变小,出风口要安装杂物网, 偏向上出风时须增加风雨帽,采取措施防止风倒流。 3)外墙为200厚空心粘土砖,风管穿墙时需要考虑墙体渗漏处理问题。 4)每台通风柜与风管连接均应考虑电动调风阀,通风柜停止运行时, 电动风阀关闭,防止实验室交叉污染。 6、变频系统要求:采用智能变频控制系统,根据系统中通风柜开启的 数量自动跟踪、调节系统风量;通风柜等通风设备加装电动调风阀和手

看了这四个典型案例,对装配式建筑深化设计有了更深刻的认识!

看了这四个典型案例,对装配式建筑深化设计有了更深刻 的认识! 本文结合四个深化设计项目的实施案例进行分析,简要介绍预制建筑项目深化设计的特点和要求。案例涉及到公共建筑外墙挂板系统、体育建筑预制看台系统、居住建筑预制构件系统。 清水混凝土外墙挂板建筑方案优化设计研究 软通动力研发楼 本项目位于北京市海淀区中关村软件园,建筑高度为 20.7m,地上5层、地下2层,首层层高4.2m,二至五层层高3.9m。建筑平面为矩形布置,轴网间距8.4m,主体结构为钢筋混凝土框架剪力墙,外墙采用清水混凝土挂板系统。(图1,图2)▲ 图1-2 软通动力研发楼外景和细部 建筑外墙方案比较 此建筑外墙原设计方案拟采用石材幕墙系统,经过北京预制建筑工程研究院与业主及设计单位的协调,咨询方提出可采用预制混凝土外墙挂板系统方案,饰面为清水混凝土效果。通过对两种幕墙方案优缺点比较(表1),综合考虑外墙立面效果、墙身做法和性能、工程造价等因素,业主和设计单位一致认同咨询方的预制外墙方案。外墙方案优缺点比较

对比项目预制混凝土外墙挂板系统石材幕墙系统 1立面效果 墙面单元整体预制,清水混凝土装饰效果,拼缝较少,非常适合此项目立面分格方案石材分块较碎,不能体现立柱的挺拔感和整体单元的重复性 2造价方面清水混凝土板替代石材、龙骨、围护墙,安装简便,经济性好石材幕墙系统龙骨及预埋件用量大,保温材料要求高,综合造价较高 3防火性能230mm厚清水混凝土挂板耐火性能突出钢龙骨和预埋件防火性能较弱 4构造细节通过模板制作工艺将滴水、坡水、斜面、防水启口等细部整体预制细节做法较复杂 5安装方面节点简单便于操作,吊装一次便可完成安装,安装效率高因分块很碎、埋件龙骨较多,安装步骤复杂,工作量大,效率低

通风设计说明书要点

摘要 工业通风是通风工程的重要部分,其主要任务是,控制生产过程中产生的粉尘、有害气体、高温、高湿,创造良好的生产环境和保护大气。做好工业通风工作,一方面能够改善生产车间及其周围的空气条件,防止职业病的产生、保护人民健康、提高劳动生产率;另一方面可以保证生产正常运行,提高产品质量。随着工业的不断发展,散发的工业有害物的种类和数量日益增加,大气污染已经成为了一个全球性的问题。如何做好工业通风,职业安全健康管理以及环境保护是我们安全工作人员的一项重要职责。 本设计是对长春某电镀车间进行排风与送风系统设计,从而达到工作环境和排放浓度的要求。厂房分为发电机室、电镀车间、除锈车间及喷砂室。设计中通过对车间得失热量的计算、选择局部排风设备、计算局部排风量从确定最适合该厂的排风及送风方案,从而设计了合理的系统;然后,通过对风量的计算以及水力计算确定风机等各设备的型号规格;最后,总结以上的计算和系统设计完成了四张图纸的绘制,分别为设计说明、车间送风系统图、车间送风平面图、车间排风平面图和车间排风系统图。本文通过对各个槽的计算,对各个槽安装条缝式排风罩进行排风以及对各个车间进行系统送风的过程,以减少车间内的有害污染物,保证工作人员健康舒适的工作环境。 关键词:工业通风高温排风机械通风

目录 第一章原始资料 (3) 1.1气象条件 (3) 1.2 室外气象参数、土建资料 (3) 1.3 车间组成及生产设备布置 (4) 1.4 工艺资料 (5) 第二章排风罩设计及风量计算 (6) 2.1 喷砂部 (6) 2.2 除锈部和电镀部 (6) 2.3 发电机部 (11) 第三章排风系统设计 (13) 3.1 排风方案的确定 (13) 3.2 电镀部 (13) 3.2.1 水力计算 (13) 3.2.2 其他管路计算 (15) 3.2.3 选定风机型号和配套电机 (16) 3.3 除锈部 (16) 3.3.1 水力计算 (16) 3.3.2 其他管路计算 (18) 3.3.3 选定风机型号和配套电机 (19) 3.4 喷砂室 (19) 3.4.1 水力计算 (19) 3.4.2 选择风机 (19) 3.4.3 除尘器选择 (20) 3.5 发电部 (20) 3.5.1 水力计算 (20) 3.5.2 选定风机型号和配套电机 (22) 第四章送风系统设计 (23) 4.1 送风方案的确定 (23) 4.2 进风量的计算 (23) 4.3 管道水力计算 (24) 4.4 风机的选择 (25) 4.5 过滤器、加热器及消音器的选择 (25) 总结 (26) 参考文献 (27)

通风系统的设计实例与步骤

通风系统的设计 第一步:确定风量 房间的洁净等级及换气次数的关系 A、B、C、D级这种等级的划分主要是针对的药厂等药监局主管的行业,而ISO为国际等级,主要是食品、电子等行业使用的。 需要注意的事项:在百级及百级以上的计算中,涉及到得层流面积的确定,应该是总面积减去筋条面积,用净面积作为层流面积! 例子: 我要怎么计算这个净化车间的进风量 工厂做了个净化车间工程等着验收,我去检查其进风量,将风速仪贴在风口的高效过滤器上测出了风速,然后应该乘以进风口的截面积即可。 现存在的问题是:高效过滤器是600mm*600mm的规格,也就是说面积是0.36平方米,但是高效过滤器中间其实是有很多筋条网的,如果把那些筋条的网所占的面积减去的话,那么这个高效过滤器真正用来通风的面积大概只有0.36平方米的一半.现在的问题是: 我究竟该用我测出来的风速*0.36平方米,还是乘以减去筋条网后的面积? 过滤器安装在最外面了?其实应该在后面接出来一段出风口,然后再测量最准确,但是如果没有接的话,我觉得还是应该算净面积,也就是说减去筋条的面积,因为风通过网格后风速要降低下来的,如果网格面积占一半,风速大概要降低为原来的一半,如果你使用网格出口的风速,那还是使用净面积比较准,如果接了一段出风口,就直接按出风口的面积计算!

第二步:确定风管所需要的截面积 通过以上步骤得到了,就知道了所需要的风量。比如是每小时需要5000m3。 接下来应该确定风管所需要的截面积 风道截面积公式:F=L/(V×3600) F——风管的截面积尺寸,单位是m3 L——所需要的风量,比如上面得到的5000m3/h。 V——所确定的风速,在主风道中风速为6—10m/s,一般在计算的时候取8m/s或者是取7m./s,需要注意的是,算出来的截面积尺寸一定要反算一次,算出来的风速,一定要小于等于9m/s,还有最后在选择截面积的时候要可以取大的,但是不能去小的。还是要考虑舒适度的问题,附表里面有不同的风速所对应的人体所对应的感受。 最后计算出来的值就是F,风道的截面积,这里可以得出来0.17m2,依据下表根据所计算出来的面积选择风道的尺寸,以矩形风管为例,需要注意的是长宽比例不得大于4:1,一般来说比例是越小越好,根据吊顶所调整,下表源于《通风与空调工程施工质量验收规范》 矩形风管规格(mm)

第七章---矿井通风系统与通风设计

第七章 矿井通风系统与通风设计 本章主要内容 1、矿井通风系统----类型、适应条件、主要通风机工作方式 、安装地点、通风系统的选择 2、采区通风----基本要求、进回风上山选择、采煤工作面通风系统 3、通风构筑物及漏风----风门、风桥、密闭、导风板;矿井漏风、漏风率、有效风量率、减少漏风措施 4、矿井通风设计----内容与要求、优选通风系统、矿井风量计算、阻力计算、通风设备选择 5、可控循环通风 第一节 矿井通风系统 矿井通风系统是向矿井各作业地点供给新鲜空气、排出污浊空气的通风网路、通风动力和通风控制设施的总称。 一、矿井通风系统的类型及其适用条件 按进、回井在井田内的位置不同,通风系统可分为中央式、对角式、区域式及混合式。 1、中央式 进、回风井均位于井田走向中央。根据进、回风井的相对位置,又分为中央并列式和中央边界式(中央分列式)。 2、对角式 1)两翼对角式 进风井大致位于井田走向的中央,两个回风井位于井田边界的两翼(沿倾斜方向的浅部),称为两翼对角式,如果 只有一个回风井,且进、回风分别位于井田的两翼称为单翼对角式。 2)分区对角式

进风井位于井田走向的中央,在各采区开掘一个不深的小回风井,无总回风巷。 在井田的每一个生产区域开凿进、回风井, 分别构成独立的通风系统。如图。 4、混合式 由上述诸种方式混合组成。例如,中央分列与两翼对角混合式,中央并列与两翼对角混合式等等。 二、主要通风机的工作方式与安装地点 主要通风机的工作方式有三种:抽出式、压入式、压抽混合式。 1、抽出式 主要通风机安装在回风井口,在抽出式主要通风机的作用下,整个矿井通风系统处在低于当地大气压力的负压状态。当主要通风机因故停止运转时,井下风流的压力提高,比较安全。 2、压入式 主要通风机安设在入风井口,在压入式主要通风机作用下,整个矿井通风系统处在高于当地大气压的正压状态。在冒落裂隙通达地面时,压入式通风矿井采区的有害气体通过塌陷区向外漏出。当主要通风机因故停止运转时,井下风流的压力降低。 3、压抽混合式 在入风井口设一风机作压入式工作,回风井口设一风机作抽出式工作。通风系统的进风部分处于正压,回风部分处于负压,工作面大致处于中间,其正压或负压均不大,采空区通连地表的漏风因而较小。其缺点是使用的通风机设备多,管理复杂。 三、矿井通风系统的选择 根据矿井设计生产能力、煤层赋存条件、表土层厚度、井田面积、地温、矿井瓦斯涌出量、煤层自燃倾向性等条件,在确保矿井安全、兼顾中、后期生产需要的前提下,通过对多种个可行的矿井通风系统方案进行技术经济比较后确定。 中央式通风系统具有井巷工程量少、初期投资省的优点。因此,矿井初期宜优先采 用。

价值工程基本原理及案例分析

1 价值工程的基本原理 1.1价值工程的产生与发展 1.1.1价值工程的产生 价值工程(Value Engineering简称VE)是一种新兴的科学管理技术,是降低成本提高经济效益的一种有效方法。它40年代起源于美国。第二次世界大战结束前不久,美国的军事工业发展很快,造成原材料供应紧缺,一些重要的材料很难买到。当时在美国通用电气公司有位名叫麦尔斯(L· D· M iles)的工程师,他的任务是为该公司寻找和取得军工生产用材料。麦尔斯研究发现,采购某种材料的目的并不在于该材料的本身,而在于材料的功能。在一定条件下,虽然买不到某一种指定的材料,但可以找到具有同样功能的材料来代替,仍然可以满足其使用效果。当时轰动一时的所谓“石棉板事件”就是一个典型的例子。该公司汽车装配厂急需一种耐火材料——石棉板,当时,这种材料价格很高而且奇缺。迈尔斯想:只要材料的功能(作用)一样,能不能用一种价格较低的材料代替呢?他开始考虑为什么要用石棉板?其作用是什么?经过调查,原来汽车装配中的涂料容易漏洒在地板上,根据美国消防法规定,该类企业作业时地板上必须铺上一层石棉板,以防火灾。麦尔斯弄清这种材料的功能后,找到了一种价格便宜且能满足防火要求的防火纸来代替石棉板。经过试用和检验,美国消防部门通过了这一代用材料。 麦尔斯从研究代用材料开始,逐渐摸索出一套特殊的工作方法,把技术设计和经济分析结合起来考虑问题,用技术与经济价值统一对比的标准衡量问题,又进一步把这种分析思想和方法推广到研究产品开发、设计、制造及经营管理等方面,逐渐总结出一套比较系统和科学的方法。1947年,麦尔斯以《价值分析程序》为题发表了研究成果,“价值工程”正式产生。 麦尔斯在长期实践过程中,总结了一套开展价值工程的原则,用于指导价值工程活动的各步骤的工作。这些原则是(l)分析问题要避免一般化,概念化,要作具体分析。(2)收集一切可用的成本资料。(3)使用最好、最可靠的情报。(4)打破现有框框,进行创新和提高。(5)发挥真正的独创性。(6)找出障碍,克服障碍。(7)充分利用有关专家,扩大专业知识面。(8)对于重要的公差,要换算成加工费用来认真考虑。(9)尽量采用专业化工厂的现成产品。(l0)利用

防排烟系统及机械排烟系统设计原理及施工安装技术图文并茂页

防排烟系统及机械排烟系统设计原理及施工安装技术图文 并茂页 第一节防烟排烟系统的分类、组成及工作原理高层建筑发生火灾烟雾是阻碍人们逃生和进行灭火行动、导致人员死亡的主要原因之一。 一.火灾烟气的危害主要有三个方面:1.毒害性:烟气包含高浓度的一氧化碳(CO)及其他各类有毒气体如氢氰酸(HCN)氯化氢(HCI)对人体产生的直接危害。 2.减光性:烟气极大降低可见度使人易于失去正确的疏散方向降低了人们在疏散过程中的行进速度3.恐怖性:火灾现场往往使人感到惊慌失措秩序混乱形成巨大的心理恐惧使人失去正常的行为能力严重影响人们的迅速疏散重则导致伤亡轻则影响人们身心健康。 二.防烟、排烟设计的目的是: 将火灾产生的大量烟气及时予以排除以及阻止烟气向防烟分区以外扩散以确保建筑物内人员的顺利疏散安全避难和为消防队员创造有利扑救条件。 因此防烟、排烟是进行安全疏散的必要手段。 设置自然防排烟设施利用烟气的热浮力特性采用自然排烟和防烟。 设置机械送风、机械排烟系统对保护区域的实行正压送风防烟和机械排烟。 对建筑进行防烟分隔或建立防烟封闭避难区。

对建材和家具进行阻燃、消烟处理喷洒化学消烟剂或水雾消除烟气中的有毒成分及烟尘粒子。 三防火分区、防烟分区的概念1.防火分区的目的是:防止火灾的扩大设置防火墙、防火门、防火卷帘等设备。 防火分区按方向可分为:垂直防火分区及水平防火分区.2.防烟分区是烟气控制的基础手段防烟分区内不能防止火灾的扩大只能有效地控制火灾产生的烟气流动是为有利于建筑物内人员安全疏散和有组织排烟而采取的技术措施主要依靠采用挡烟垂壁(帘)挡烟梁(墙)等形式来实现。 规范规定:每个防烟分区建筑面积不应超过m且防烟分区不得跨越防火分区。 分隔区内的排烟量在人员疏散的短时间内必须大于或等于该区内产生烟的数量。 四、防排烟系统分类防、排烟系统一般分为四种方式:1自然排烟: 利用火灾产生的烟气流的浮力和外部风力作用通过建筑物的对外开口把烟气排至室外的排烟方式.实质是热烟气和冷空气的对流运动。 在自然排烟中必须有冷空气的进口和热烟气的排出口。 烟气排出口可以是建筑物的外窗也可以是专门设置在侧墙上部的排烟口。 对高层的建筑来说可采用专用的通风排烟竖井2.机械排烟

新风系统设计说明

空调通风系统设计说明 第一部分:新风系统 一、设计依据: 1、甲方提供的相关资料及现场情况; 2、暖通空调设计标准,设计手册。 二、工程概况: 本工程为办公用会议室,建筑面积为220平方米,层高为3.20米,人数约105人。 三、新风量确定: 按照采暖通风和设计规范并参照实用供热空调设计手册,将需要新风量计算如下: 1、按每平米地板面积新风量指标计算:20X220=4400m3/h; 2、按每人最小新风量计算(考虑有一些吸烟状况): 105X40=4200m3/h; 3、按保证室内环境换气次数计(考虑有一些吸烟状况): 220X3.2X6=4224m3/h; 四、设备选型及说明 以本工程实际情况及上述计算结果为依据,综合考虑确定总新风量为4000m3/h—4500m3/h满足要求,根据现场尺寸,选用一台或两台新风换气机。这样既可以保证向室内提供经过过滤的新鲜空气,同时将等量的室内烟雾等污浊空气排到室外,双向换气还可以减少室内冷热量损失,起到明显的节能效果。

第二部分:空调系统 一、设计参数 (一)、室外计算参数 1、冬季空调计算温度:-12℃ 空调计算相对湿度:45% 2、夏季空调计算干球温度:33.2℃ 空调计算相对湿度:60% (二)、室内计算参数 夏季:温度:25±2℃相对湿度:55% 冬季:温度:18±2℃相对湿度:45% 二、负荷的确定 1、本工程空调负荷包括建筑负荷、人体负荷、照明负荷、新 风负荷及其他符合: 其中:建筑负荷为50w/m2,人体负荷为65w/m2,灯光负荷为40w/m2,新风和其他负荷为150w/m2; 2、根据以上单位面积负荷计算出总空调负荷为: 230X305=70150w。 三、空调设备选型 1、根据现场情况,可以安装11台风机盘管; 2、根据上述空调负荷计算结果,每台风机盘管负担6.3KW, 因此选用11台型号为FP-12(008型)的风机盘管,单台参数

浅谈化工厂房通风系统设计

浅谈化工厂房通风系统设计 摘要:文章介绍了石油化工企业厂房正常和事故通风系统的设计,通过工程实例,结合相关规范的要求,对含有各种不同有害易燃易爆气体的化工厂房进行风量的确定,通过技术经济的比较,对通风机的选择、通风气流组织形式及风道材质的选择提出了看法和建议。 关键词:化工厂房;通风系统设计;报警仪 概述 近年来,随着工业经济的迅速发展,工艺流程的日新月异,企业生产能力的扩大,石油化工厂房的通风设计也要求越来越高,通风的设计不仅仅是为满足生产要求,也与人民生命和国家财产安全密切相关,不少企业在项目建设过程中也逐渐把厂房内的环境质量作为一项重要的设计内容来考虑。本文就这方面问题,结合一些工程实际经验,做一些分析和讨论,提出自己的观点和意见,仅供大家参考。 1 化工厂房通风系统设计原则 1.1 化工厂房通风系统设计依据 化工厂房的通风系统设计分为两个目的:一是为保证生产工艺系统的正常运行、消除工艺设备生产中产生的余热及易燃易爆等有害气体而进行的正常通风;二是为爆炸危险性气体大量散发时而进行的事故通风。根据我国目前规范,对化工厂房通风做出的相关要求条文内容如下: 1)《石油化工采暖通风与空气调节设计规范》第3.3条及第3.4条中对化工厂房正常通风及事故通风做出了原则性的规定,第3.4.2中强调:“事故排风量应根据有害气体或爆炸危险性气体的性质和散发量,通过计算确定。当缺乏资料时,可按正常排风与事故排风总量不小于8次/h换气计算;但对甲、乙类生产的泵房和压缩机室,应在正常排风量外,再附加不小于8次/h的事故排风量”。 2)《化工采暖通风与空气调节设计规定》附录D 放散化学物质车间的换气次数及附录E 压缩机厂房换气次数做出了规定。 1.2 正常通风量的确定 化工厂房正常通风换气量计算有三种方法,当余热量及有害气体的散发量能确定时,前两种计算方法取最大值,作为为正常通风换气依据,当余热量及有害气体的散发量无法确定时,参照同等工艺按换气次数法计算,计算公式如下: 1)按照消除厂房内的余热确定通风换气量;厂房内的余热主要为设备本体

矿井通风系统设计

课程设计说明书 设计题目: 矿井通风系统设计 助学院校: 理工大学 自考助学专业: 采矿工程 姓名: 自考助学学号: 成绩: 指导教师签名: 理工大学成人高等教育 2O 年月日

前言 矿井通风指借助于机械或自然风压,向井下各用风点连续输送适量的新鲜空气,供给人员呼吸,降低井下工作面的温度,稀释并排出各种粉尘及有毒有害气体,创造良好的气候条件,为井下作业人员提供安全舒适的工作环境。随着浅部矿产资源的日渐枯竭,矿产资源开采向纵深发展是必然的趋势。随着开采深度的增加,矿井必将出现岩温增高、风路延长、阻力增大、风流压缩放热、风量调节困难、漏风突出、有毒有害物质和热湿排除受阻等问题。因此,矿井通风与安全的意义将更加重大。 80年代以来,随着煤矿机械化水平的提高,采煤方法和巷道布置及支护的改革,电子和计算机技术的发展,我国矿井通风技术有了长足的进步。通风管理日益规化、系列化、制度化,通风新技术和新装备越来越多地投入应用,以低耗、高效、安全为准则的通风系统优化改造在许多煤矿得以实施,使矿井通风更好地为高产、高效、安全的集约化生产提高安全保障。 近年来,为适应综合机械化采煤的要求,原煤炭工业部在总结建设经验、借鉴国外先进技术的基础上于1984颁发了《关于改革矿井开拓部署的若干技术规定》,作为新井建设、生产矿井技术改造和开拓延深的依据。为适应生产集中化,开采深度增加、瓦斯涌出量大的情况,以“针对现实、着眼长远、因地制宜、对症下药、综合治理、节能增风”为指导思想,对数百座国有煤矿进行通风系统优化改造,配合一批有条件的生产矿井通过合并井田、扩大开采围、增加储量进行改扩建的任务。

通风设计说明书 宋建政

目录 第一章原始资料 (2) 1.1 厂址 (2) 1.2 室外气象参数、土建资料 (2) 1.3 车间组成及生产设备布置见附图,生产设备如表1-3: (3) 1.4 工艺资料 (4) 1.5 工作班制 (4) 第二章排风罩设计及计算 (6) 2.1 喷砂部 (6) 2.2 除锈部和电镀部 (6) 2.3 发电机部 (10) 2.4 进风量的计算 (10) 第三章排风系统设计 (12) 3.1 系统划分 (12) 3.1.1 通风管道的水力计算 (12) 3.1.2 风机型号和配套电机 (15) 3.2 除锈部的水力计算 (16) 3.2.1 风机型号和配套电机 (18) 3.3 喷砂室的水力计算 (19) 3.3.1 选择风机 (19) 3.4 发电部的设计计算 (19) 3.4.1 选定风机型号和配套电机 (20) 第四章送风系统的通风计算 (22) 参考文献 (24)

第一章原始资料 1.1 厂址 建筑物所在地区:长春市郊区 1.2 室外气象参数、土建资料 表1-1 (1)外墙 外墙:普通红砖、内表面抹灰0.015m,墙厚度按下表一采用 表1-2 建筑结构基本情况 (2)屋面 (3)磁砖地面 (4)门和窗;外门:单层木窗尺寸1.5X2.5m 外窗:中悬式木窗2.0X3.0m 开窗:中悬式单层木窗高为1.2m仅在2-7柱间有开窗 (5)大门开后及材料运输情况 ①大门不常开启 ②材料用小车从机械加工车间运来 4.动力资料

(1)蒸汽:由厂区热网供应 P=7kgf/c㎡ 工业设备用汽 P=2 kgf/c㎡ 0.6T/h 采暖通风设备用汽 P=3 kgf/c㎡ 回水方式:开式.无压.自流回锅炉房 (2)电源:交流电 220/280伏 电镀用 6/12伏直流电 (3)水源:城市自来水 利用井水的厂区自来水 (4)冷源:12℃低温冷冻水 1.3 车间组成及生产设备布置见附图,生产设备如表1-3: 表1-3

空调及通风系统设计方案

11 洁净空调与通风 本工程为赣州章源钨业高性能、高精度涂层刀片一期年产1000万片技术改造项目,本次设计为全厂各生产厂房及主楼暖通、空调设计。 11.1 专业设计依据 采暖通风与空气调节设计规范(GB50019-2003) 洁净厂房设计规范(GB 50073-2001) 工业企业设计卫生标准(GBZ1-2010) 大气污染物综合排放标准(GB16297-1996) 建筑设计防火规范(GB 50016-2006) 有色金属工业环境保护设计技术规范(YS5017-2004) 11.2 工程概况 (1)本次技术改造项目全厂各生产厂房空调面积:14528m2,其中混合料车间:1682.1m2、压制车间:1243.5m2、烧结车间:1729.4m2、研磨珩磨车间:1873.5m2、CVD化学涂层车间:1063.5m2、PVD物理涂层车间:1063.5m2、模具切削实验中心:1710m2、主办公楼:5747m2。考虑到年产400吨棒材项目棒材车间(计算空调面积:1293.3m2)空调冷(热)源由本次技术改造项目统一输送,则全厂各生产厂房空调面积增为17514m2。 空调夏季总冷负荷约为:7029.1kW,空调冬季总热负荷约为:4912.7kW。 按工艺对冷冻循环水温度要求,设置中温工艺冷冻循环水制冷站一座,低温工艺冷冻循环水制冷站-1一座,低温工艺冷冻循环水制冷站-2一座。工艺冷冻循环水制冷站亦同时考虑年产400吨棒材项目棒材车间工艺冷冻循环水制冷容量。 (2)设计范围: 本工程暖通专业设计范围:全厂供暖、通风、空调及暖通管网设计: a.对工艺有要求的场所设置通风、事故排风装置、微正压温湿度控制空调系统及洁净空调系统设计。 b.按空调冬、夏季负荷要求设置空调冷(热)媒循环水主机站房,利用生产

矿井通风设计范例.

4 矿井通风 4.1 通风系统 4.1.1 通风系统 4.1.1.1 通风方式和通风方法 根据煤层赋存条件,矿井采用平硐开拓,根据矿井开拓方式,本矿井走向较短,只有一个采区的走向长度,采用分列式通风方式,抽出式通风方法,采煤工作面利用全矿井负压通风,采用“U”型通风方式,掘进工作面采用局部通风机压入式通风。 4.1.1.2 通风系统 根据矿井开拓部署,该矿为平硐开拓方式,主平硐、副平硐和后期排水进风行人平硐进风,回风平硐回风。 矿井初期主要通风线路为: 主平硐/副平硐→+1690m水平运输巷/+1690m双龙炭运输巷 /+1728m运输巷/+1728m双龙炭运输巷→+1690m运输石门/+1728m运输石门→一采区轨道上山/一采区行人上山→+1756m运输石门→11011工作面运输巷→11011采煤工作面→11011工作面回风巷→回风石门 →+1798m正炭回风巷→总回风斜巷→+1788m总回风巷→回风平硐→ 地面。 矿井后期主要通风线路为: 主平硐/副平硐/排水进风行人平硐→+1690m水平运输大巷/+1728m运输巷和通风行人斜巷/+1630m排水行人巷→二采区轨道上山/二采区行人上山→+1548m水平运输巷→三采区轨道上山/三采区行人上山→区段运输石门→23013工作面运输巷→23013采煤工作面→23013工作面回风巷→区段回风石门→三采区回风上山→回风暗斜井→总回风斜巷→+1788m总回风巷→回风平硐→地面。

矿井初期开采一采区时为通风容易时期,后期二、三采区同采时为通风困难时期。通风系统图(初、后期)和通风网络图(初、后期)详见图C1795-171-1(修改)、C1795-171-2(修改)。 4.1.1.3 井筒数目、位置、服务范围及时间 矿井开采一采区时有3个井筒,即:主平硐、副平硐和回风平硐,主平硐、副平硐进风,回风平硐回风。矿井二、三采区开采时4个井筒,即主平硐、副平硐、排水进风行人平硐和回风平硐。主平硐、副平硐和排水进风行人平硐进风,回风平硐回风。各井筒均位于井田东部。主平硐为改造利用原基地一号井主平硐;副平硐为改造利用原基地一号井副主平硐;回风平硐为改造利用原基地一号井回风平硐;排水进风行人平硐为改造利用原顺风煤矿主平硐。矿井回风平硐井口坐标为:X=3278284,Y=18267648,Z=+1788.867,服务于全矿井生产期间。 通风系统(初、后期)详见图4-1-1、4-1-2; 通风网络(初、后期)详见图4-1-3、4-1-4。

BIM案例分析简答题

第一套第一题 1、简述机电BIM深化设计时使用真实设备构件库的意义? 真实设备构件模型的外形尺寸和现实使用尺寸一致,在深化设计阶段布置的设备构件尺寸和实际使用尺寸相一致可以为建筑施工时的预留预埋提供依据;真实设备构件模型拥有设备运行的工况曲线参数,可以为设计师的设备选型提供依据,也可以供施工单位在后期系统调试中进行校核计算。 2、简述机电专业使用BIM技术深化设计的必要性? 智能化建筑的普及,对于机电安装施工的要求越来越高,传统深化设计已经无法满足施工要求,使用BIM进行机电深化设计可以避免施工过程中的交叉返工、材料浪费等的发生。 3、请问机电专业BIM设计深化的应用成效及价值? (1)技术提升: BIM技术辅助施工模拟、复杂节点方案展示,现场施工交底更直观、准确、易懂,提升了生产力,最终获得鲁班奖。 (2)节省成本: 应用BIM碰撞检查发现图纸错误2800余个,提高了施工质量、避免返工,预计节省成本350万元。 (3)管理提升: 基于BIM的进度管理、成本管理应用,是对传统的工作方式、工作流程、管理模式的一种变革,大大提升了现场管理能力。目前项目总体进度提前合同工期40天。 (4)数据积累: 结合企业物资采购准入名单,利用软件特有功能,初步建立了企业级机电BIM构件库。

(5)应用提升: 利用模型提取物资清单,加快物资计划――进厂――使用动态管理,实现“零库存”。 (6)人才培养: 项目BIM全面应用为企业培育了众多优良火种,培养的BIM人才已经分布到各个项目为全面推广BIM技术奠定了基石。 第一套第二题 1、本工程项目中应该从哪些方面应用BIM技术? 本案例工程中主要在两方面应用了BIM技术。一方面是建模基础应用: 主要体现在管线综合、碰撞检查、净高优化、高大模架模拟、工程量计算、总平面布置规划。一方面是模型的综合应用,体现在施工的动态进度管理、图纸管理、合同与成本管理、劳务管理等。 2、本工程采用BIM技术施工将能够带来哪些效益? BIM技术对投资方、设计方、建设方、运维方等参建各方都具有非常多的价值,针对建筑施工企业在工程施工全过程的关键价值主要有: 虚拟施工、方案优化;碰撞检查、减少返工;形象进度、4D虚拟;精确算量、成本控制;现场整合、协同工作;数字化加工、工厂化生产;可视化建造、集成化交付(IPD)。 3.如何使用BIM算量结果直接用于报量结算? BIM算量结果可以直接用于报量结算。在本项目中,应用的是某BIM系统,可以直接用于报量的前提在于: ①BIM模型是不断随着设计图纸及变更变化更新的,并且项目现场是根据BIM模型来施工的;②系统平台中流水段的划分与现场流水施工一致;③系统中清单与业主报量中清单保持一致;④系统中进度计划与现场进度情况保持一

通风排烟设计原理[001]

五、暖通消防 5.1 地下车库排烟系统: A区地下一层车库设有两个防火分区,B区地下一层车库设有三个防火分区。每个防火分区设两个防烟分区,每个防烟分区设一套独立的机械排烟系统,机械送风(A区防火分区1、2和B区防火分区2、3利用车道自然进风)。排烟量按防烟分区体积(以实际高度计算)乘以6次/时换气次数计算。排烟系统与平时排风系统合用。排烟风机采用双速风机。火灾时,由消防控制中心信号控制平时排风机高速运转,利用平时排风口进行强制排烟。送风机继续运转,进行机械补风。当烟气温度达到280℃时,设于排烟主管上的280℃防火阀自动关闭,同时联动关闭排烟风机,停止排烟。联动关闭送风风机,停止送风。 5.2 商场排烟系统设计: 负一层至四层商场设置机械排烟系统,机械补风。商场每层均设置若干个防烟分区,排烟量按最大防烟分区面积乘以120m3/h.m2计算,送风量按排烟量的60-70%计算。排烟风机设于大楼屋顶。平时组合式空调机组兼消防补风机,送风管及送风口与平时合用。各防烟分区均没有常闭型多叶排烟口。排风支管、排风主管及空调回风管上设70℃防烟防火阀,排烟风机入口处的排烟主管上设280℃排烟防火阀。火灾时,由消防控制中心信号关闭平时排风支管、排风主管及空调回风管上的70℃防烟防火阀,关闭平时排风机,同时开启着火防烟分区内的多叶排烟口,开启排烟主管上的280℃排烟防火阀和排烟风机进行排烟,组合式空调机组继续运转(水管阀门关闭),进行机械补风。当烟气温度达到280℃时,设于排烟主干管上

的280℃防火阀自动关闭,同时联动关闭排烟风机,停止排烟,联动关闭组合式空调机组,停止补风。 5.3、仓储区排烟系统设计: A、B区仓储区设置机械排烟系统,机械补风。仓储区设置若干个防烟分区,排烟量按最大防烟分区面积乘以120m3/h.m2计算,送风量按排烟量的60-70%计算。排烟风机设于大楼屋顶。平时组合式空调机组兼消防补风机,送风管及送风口与平时合用。各防烟分区均没有常闭型多叶排烟口。排风支管、排风主管及空调回风管上设70℃防烟防火阀,排烟风机入口处的排烟主管上设280℃排烟防火阀。火灾时,由消防控制中心信号关闭平时排风支管、排风主管及空调回风管上的70℃防烟防火阀,关闭平时排风机,同时开启着火防烟分区内的多叶排烟口,开启排烟主管上的280℃排烟防火阀和排烟风机进行排烟,组合式空调机组继续运转(水管阀门关闭),进行机械补风。当烟气温度达到280℃时,设于排烟主干管上的280℃防火阀自动关闭,同时联动关闭排烟风机,停止排烟,联动关闭组合式空调机组,停止补风。 5.4、中庭排烟系统设计: A区设有两个中庭,B区设有四个中庭,均不能自然通风排烟,故均设置独立的机械排烟系统。排烟量均按6次/时换气次数计算。排烟风机均设于屋顶。火灾时,由消防控制中心信号打开着火区域的中庭排烟风机进行排烟。当烟气温度达到280℃时,设于排烟主干管上的280℃防火阀自动关闭,同时联动关闭排烟风机,停止排烟。 5.5、楼梯间加压送风系统设计

暖通设计说明

1 主要设计依据 《高层民用建筑设计防火规范》(GB50045-95)(2005) 《建筑设计防火规范》(GB50016-2006) 《采暖通风与空气调节设计规范》(GB50019-2003) 《民用建筑供暖通风与空气调节设计规范》(GB50736-2012)《公共建筑节能设计标准》(GB50189-2005) 《公共建筑节能设计标准》(DB13(J)81-2009) 《严寒和寒冷地区居住建筑节能设计标准》(JGJ26-2010) 《居住建筑节能设计标准》(DB13(J)63-2011) 《河北省绿色建筑示范小区建设技术导则(试行)》 《汽车库、修车库、停车场设计防火规范》(GB50067-97) 《住宅设计规范》(GB50096-2011) 《民用建筑热工设计规范》(GB50176-93) 《城镇燃气设计规范》(GB50028-2006) 其他相关的国家、地方规范和标准 2 室内外设计计算参数 2.1 室外设计计算参数(廊坊) 供暖室外计算干球温度-8.3℃ 冬季通风室外干球温度-4.4℃ 冬季空调室外计算温度-11℃ 冬季空调室外计算相对湿度54% 夏季空调室外计算干球温度34.4℃ 夏季空调室外计算湿球温度26.6℃ 夏季通风室外计算温度30.1℃ 夏季通风室外计算相对湿度61% 夏季室外平均风速 2.2 m/s C SW 冬季室外平均风速 2.1 m/s C NE 最大冻土深度67 cm

冬季室外大气压力1026.4hPa 夏季室外大气压力1004.4hPa 2.2 主要房间的室内设计计算参数 2.3 主要房间的通风换气次数 3供暖、空调系统设计 3.1. 冷热源 3.1.1 住宅、公寓、底商、办公及幼儿园:

矿井通风系统设计范本

目录 前言3 第一章矿井基本简况5 第一节矿井简况4 一、井田简况4 二、煤层地质简况4 三、瓦斯简况5 四、水文简况5 五、煤尘、煤炭自燃简况5 六、通风简况5 第二章通风系统设计可行性论证8 第一节矿井通风系统优化背景8 一、矿井目前通风及生产能力情况8 二、矿井生产能力发展前景8 第二节通风系统改造的必要性分析、论证9 第三节通风系统改造的主要手段10

第四节通风系统改造总体技术方案的选择10 第三章矿井通风参数计算14 第一节通风系统改造后矿井需要风量的计算14 一、矿井风量计算原则14 二、矿井需风量的计算14 第二节通风系统改造后矿井通风阻力的计算19 一、矿井通风总阻力计算原则19 二、矿井通风总阻力计算19 第三节通风系统改造技术方案比较33 第四章矿井通风设备的选择35 第一节主要通风机选型35 一、设计依据35 二、通风设备选型35 第二节矿井主要通风设备的配置要求38 第五章通风费用概算40 第六章矿井安全技术措施43

第一节粉尘灾害防治43 一、防尘措施43 二、防爆措施43 三、隔爆措施43 第二节瓦斯灾害防治44 第三节防灭火44 一、煤的自燃预防措施44 二、外因火灾防治44 第四节矿井防治水45 第五节井下其它灾害预防45 一、顶板灾害防治45 二、机电运输事故防治45 前言 矿井通风是一个运用多种技术手段输送、调度空气在井下流动,维护矿井正常生产和劳动安全的动态过程。在生产期间其任务是利用通风动力,以最经济的方式,向井下各用风地点供给质优量足的新鲜空气,保证工作人员

的呼吸,稀释并排除瓦斯、粉尘等各种有害物质,降低热害,给井下创造良好的劳动环境;在发生灾变时,能有效、及时地控制风向及风量,并与其它措施结合,防止灾害的扩大,最大限度地减少事故损失。 剖析历次煤矿重大灾害事故发生及扩大的原因,无不与矿井通风系统有着密切的关系。因此,建立一个既能满足日常生产需风,保证风向稳定、风质合格,在灾害时期又能保持通风设备运行可靠、稳定、能快速实现风流控制的通风系统是至关重要的。 本设计基于郑兴义兴(新密)煤矿的现状,本着为矿井的长期发展,提高矿井生产能力进行的矿井通风系统改造。总设计技术方案:维修扩大矿井东回风巷的断面,回收矿井西回风巷,对皮带巷进行扩修增大通风断面减小阻力,并经过矿井通风设施改造。通过风量、风阻等计算,选择出主要通风机以及配套的电机型号。通过各种论证,本设计可靠可行,提高矿井的抗灾能力,提高了矿井的经济效益。

通风排烟设计原理

五、暖通消防 5.1地下车库排烟系统: A区地下一层车库设有两个防火分区,B区地下一层车库设有三个防火分区。每个防火分区设两个防烟分区,每个防烟分区设一套独立的机械排烟系统,机械送风(A区防火分区1、2和B区防火分区2、3利用车道自然进风)。排烟量按防烟分区体积(以实际高度计算)乘以6次/时 换气次数计算。排烟系统与平时排风系统合用。排烟风机采用双速风机。火灾时,由消防控制中心信号控制平时排风机高速运转,利用平时排风口进行强制排烟。送风机继续运转,进行机械补风。当烟气温度达到280℃时,设于排烟主管上的280℃防火阀自动关闭,同时联动关闭排烟风机,停止排烟。联动关闭送风风机,停止送风。 5.2商场排烟系统设计: 负一层至四层商场设置机械排烟系统,机械补风。商场每层均设置若干个防烟分区,排烟量按最大防烟分区面积乘以120m3/h.m2计算,送风量按排烟量的60-70%计算。排烟风机设于大楼屋顶。平时组合式空调机组兼消防补风机,送风管及送风口与平时合用。各防烟分区均没有常闭型多叶排烟口。排风支管、排风主管及空调回风管上设70℃防烟防火阀,排烟风机入口处的排烟主管上设280℃排烟防火阀。火灾时,由消防控制中心信号关闭平时排风支管、排风主管及空调回风管上的70℃防烟防火阀,关闭平时排风机,同时开启着火防烟分区内的多叶排烟口,开启排烟主管上的280℃排烟防火阀和排烟风机进行排烟,组合式空调机组继续运转(水管阀门关闭),进行机械补风。当烟气温度达到280℃时,设

于排烟主干管上的280℃防火阀自动关闭,同时联动关闭排烟风机,停止排烟,联动关闭组合式空调机组,停止补风。 5.3、仓储区排烟系统设计: A、B区仓储区设置机械排烟系统,机械补风。仓储区设置若干个防烟分区,排烟量按最大防烟分区面积乘以120m3/h.m2计算,送风量按排烟量的60-70%计算。排烟风机设于大楼屋顶。平时组合式空调机组兼消防补风机,送风管及送风口与平时合用。各防烟分区均没有常闭型多叶排烟口。排风支管、排风主管及空调回风管上设70℃防烟防火阀,排烟风机入口处的排烟主管上设280℃排烟防火阀。火灾时,由消防控制中心信号关闭平时排风支管、排风主管及空调回风管上的70℃防烟防火阀,关闭平时排风机,同时开启着火防烟分区内的多叶排烟口,开启排烟主管上的280℃排烟防火阀和排烟风机进行排烟,组合式空调机组继续运转(水管阀门关闭),进行机械补风。当烟气温度达到280℃时,设于排烟主干管上的280℃防火阀自动关闭,同时联动关闭排烟风机,停止排烟,联动关闭组合式空调机组,停止补风。 5.4、中庭排烟系统设计: A区设有两个中庭,B区设有四个中庭,均不能自然通风排烟,故均设置独立的机械排烟系统。排烟量均按6次/时换气次数计算。排烟风机均设于屋顶。火灾时,由消防控制中心信号打开着火区域的中庭排烟风机进行排烟。当烟气温度达到280℃时,设于排烟主干管上的280℃防火阀自动关闭,同时联动关闭排烟风机,停止排烟。 5.5、楼梯间加压送风系统设计

通风设计说明书

工业通风课程设计说明书 一、原始资料 1.1、设计题目:长春市育铭工业厂房通风工程设计 1.2、气象资料 长春地区夏季室外计算干球温度31.2℃;湿球温度23.6℃;夏季室外平均风速3.5m/s 。 1.3、设计条件 室内温度:24℃,通风面积:1216.3㎡。 1.4、土建资料 该厂房建筑面积为1700.4m 2,框架结构、梁下高为5m 。窗户为单层木制结构,尺寸为1200×3000(mm×mm ),距地面900mm 。 二、送排风水力计算 2.1确定方案 采用上送下回式,由于机组不能做吊顶,所以安装在五层楼内,冬季送风在送到房间前用热阻丝加热到16摄氏度,然后送入房间。 2.2送排风实力计算过程 换气次数法: 查参考资料得厂房换气次数8-10次/h ,本设计采用10次/h ,需要通风的面积为1216.3㎡,层高4.8m Q v=n ×V f =1216.3*4.8*10=59078.4?/h 消除余热法: G=)(0t t c Q p P -其中p c =1.01kJ/(kg ·℃) 其中p c =1.01kJ/(kg ·℃) 房间内的散热源有电机共5台,额定功率为5kW/台、电焊机4台,额定功率 5kW/台。照明负荷按10W/m 2计算。其他冷负荷按120w/m 2 计算得到的总余热为203119W ,带入公式得: Q V ’=Ρ)(0t t c Q p P -=203119/1.01/(24-16)/1.205=75790.67m 3/h 所以Q v > Q V ’,取75790.67 m 3/h 。

本设计共有56个送风口,23个回风口,采用均匀送风 例:计算左送风管段1-2 每个风口空气流量qv=75790.67/56=1353.4 m3/h 管段1-2一个风口所以空气流量1353.4 m3/h 采用假定流速法: 查《实用供热空调设计手册》选定管道风速值,选4m/s 查《实用供热空调设计手册》选定风管断面尺寸400*250mm*mm 管内的实际流速ν=qv/A=1353.4/(400*250/1000000)=3.76 m/s 根据实际风速查的动压值为9.6 Pa 查相关规范得:局部阻力系数∑ζ=0.804 局部阻力Δрz=∑ζ*pd=0.804*9.6=7.7 Pa 管段长度为2米, 根据管道断面尺寸和风速查的单位长度摩擦阻力Rm=0.66(Pa/m)摩擦阻力Rml=2*0.66=1.32Pa 管段阻力Rml+Z=1.32+7.7=9.02Pa (计算方法同上) 计算结果见表:送回风水力计算表

相关文档
最新文档