帧中继协议原理及配置

帧中继协议原理及配置

【复习旧课】(教学手段:课堂提问)

【引入新课】(教学手段:创设情景)

【讲授新课】(教学手段:教师讲授)

一、 帧中继概述

帧中继(Frame Relay ,简称FR )是以X.25 分组交换技术为基础,摒弃其中复杂的检、纠错过程,改造了原有的帧结构,从而获得了良好的性能。帧中继的用户接入速率一般为64 kbps ~2 Mbps ,局间中继传输速率一般为2 Mbps 、34 Mbps ,现已可达155 Mbps 。

1. 帧中继简介

帧中继技术继承了X.25 提供的统计复用功能和采用虚电路交换的优点,但是简化了可靠传输和差错控制机制,将那些用于保证数据可靠性传输的任务(如流量控制和差错控制等)委托给用户终端或本地结点机来完成,从而在减少网络时延的同时降低了通信成本。帧中继中的虚电路是帧中继包交换网络为实现不同DTE 之间的数据传输所建立的逻辑链路,这种虚电路可以在帧中继交换网络内跨越任意多个DCE 设备或帧中继交换机。

图6-4 帧中继网络

一个典型的帧中继网络是由用户设备与网络交换设备组成,如图6-4所示。作为帧中继网络核心设备的FR 交换机其作用类似于我们前面讲到的以太网交换机,都是在数据链路层完成对帧的传输,只不过FR 交换机处理的是FR 帧而不是以太帧。帧中继网络中的用户设备负责把数据帧送到帧中继网络,用户设备分为帧中继终端和非帧中继终端两种,其中非帧中继终端必须通过帧中继装拆设备(FRAD )接入帧中继网络。

2. 帧中继的特点

帧中继具有如下特点:

● 帧中继技术主要用于传递数据业务,将数据信息以帧的形式进行传送。

● 帧中继传送数据使用的传输链路是逻辑连接,而不是物理连接,在一个物理连接上可以复用多个逻辑连接,可以实现带宽的复用和动态分配。

● 帧中继协议简化了X.25的第三层功能,使网络节点的处理大大简化,提高了网络对信息的处理效率。采用物理层和链路层的两级结构,在链路层也只保留了核心子集部分。

● 在链路层完成统计复用、帧透明传输和错误检测,但不提供发现错误后的重传。省去了帧编号、流量控制、应答和监视等机制,大大节省了交换机的开销,提高了网络吞吐量、

局域网 局域网

降低了通信时延。一般帧中继用户的接入速率在64kbps-2Mbps。

●交换单元——帧的信息长度比X.25分组长度要长,预约的最大帧长度至少要达到1600字节/帧,适合封装局域网的数据单元。

●提供一套合理的带宽管理和防止拥塞的机制,用户有效的利用预约的宽带,即承诺的信息速率(CIR),还允许用户的突发数据占用未预定的带宽,以提高网络资源的利用率。

●与分组交换一样,帧中继采用面向连接的交换技术,可以提供SVC和PVC业务,但目前已应用的帧中继网络中,一般只采用PVC业务。

3. 帧中继术语

DLCI:Data-Link Connection Identifier,数据链路连接标识符。用来标识帧中继本地虚电路。 DLCI只在本地有意义。

LMI:Local Management Interface,本地管理接口。用来建立与维护路由器和交换机之间的连接。LMI协议还用于维护虚电路,包括虚电路的建立、删除和状态改变。

Inverse ARP:逆向地址解析协议(ARP)。逆向帧中继网中的路由器通过逆向ARP可以自动建立帧中继映射,从而实现IP协议和DLCI之间的映射。

FECN:前向拥塞通知。FECN是帧中继帧头中地址字段的一个比特,用于网络发生拥塞时的标志。

BECN:后向拥塞通知。BECN也是帧中继帧头中地址字段的一个比特,用于网络发生拥塞时的标志。

CIR:承诺信息速率。指服务提供商承诺提供的有保证的速率。

二、 DLCI地址映射、LMI信令与逆向ARP

1. DLCI地址映射

帧中继是一种统计复用协议,每条虚电路用数据链路连接标识DLCI来标识。通过帧中继中的地址字段的DLCI,可区分出该帧属于哪一条虚电路。DLCI只在本地接口和与之直接相连的对端接口有效,不具有全局有效性,即在帧中继网络中,不同物理接口上相同的电路,其中用户可用的DLCI范围是16~1007。由于帧中继虚电路是面向连接的,本地不同的DLCI连接到不同对端设备,所以可认为本地DLCI就是对端设备的“帧中继地址”。

2. 本地管理接口LMI

本地管理接口LMI协议是用来建立与维护路由器和交换机之间的连接。LMI协议还用于维护虚电路,包括虚电路的建立、删除和状态改变。

主要有3种LMI协议:

● Q933A:遵从ITU-T Q.933建议附录A的LMI协议;

● ANSI:遵从ANSIT1.617建议附录D的LMI协议;

● CISCO:与CISCO“Gang of Four”标准兼容的LMI协议。

它们的基本工作方式是:DTE设备每隔一定的时间间隔发送以一个状态请求报文(Status Enquiry报文)去查询虚电路的状态,DCE设备收到状态请求报文后,立即用状态报文(Status 报文)通知DTE当前接口上所有虚电路的状态。

虚电路的状态有3种:

●活动状态:连接处于活动状态,路由器可以交换数据;

●非活动状态:到帧中继交换机的本地连接正常运行,但远程路由器到帧中继交换机

的连接不正常。

●删除状态:没有从帧中继交换机哪里收到LMI或者路由器与帧中继交换机之间没有服务。

对于DTE侧设备,永久虚电路的状态完全由DCE侧设备决定。对于DCE侧设备,永久虚电路的状态由网络来决定。在两台网络设备直接连接的情况下,DCE侧设备的虚电路状态由设备管理员来设置的。

3. 逆向地址解析(Inverse ARP)

Inverse ARP主要功能是用来发现每条虚电路连接的对端设备的协议地址,包括IP地址和IPX地址等。

三、帧中继的配置

帧中继的配置主要包括以下内容:

●配置接口封装协议

●配置动态或者静态地址映射

●配置本地管理接口LMI参数(可选)

●配置帧中继交换(可选)

●配置帧中继子接口(可选)

1. 基本配置

(1)封装帧中继协议

在同步口上封装协议帧中继请用如下的命令来指定:

router(config-if)#encapsulation frame-relay [ietf]

为了和主流设备兼容,系统缺省封装的帧中继的格式是cisco封装,如果没有特殊的使用场合,请配置ietf类型,即使用encapsulation frame-relay ietf命令

(2)配置帧中继接口的终端类型

router (config-if)#frame-relay intf-type {dte|dce|nni}

帧中继接口缺省接口类型为DTE,DCE类型只有在设备用作帧中继交换或者模拟帧中继局方设备时才使用的,NNI是用在帧中继交换机之间的接口类型。

(3)配置LMI类型

router (config-if)#frame-relay lmi-type {q933a|ansi|cisco}

锐捷系列RGNOS系统支持三种帧中继的本地管理接口类型:ITU-T Q.933附录A(Q933A)、ANSI T1.617 附录D(ANSI)和CISCO格式。用户在配置设置该参数时必须和帧中继网络的接入设备(DCE端)的一致,系统缺省是Q933A,一般局方提供ANSI类型,和工业主流设备cisco设备相连时,也可以采用和Cisco相一致的管理类型cisco格式。

2. 配置帧中继地址映射

(1)配置静态地址映射

静态地址映射反映远端设备的IP地址和本地DLCI的对应关系,地址映射可以手工配置,命令如下:

router (config-if)#frame-relay map ip ip-address dlci [broadcast|active| tcp|ietf|cisco]

在对端设备不支持反转ARP(动态地址映射)协议时,本地端必须配置静态地址映射才能通讯,设置静态映射之后,反转ARP自动失效。

ietf可选关键字指示帧中继进程使用IETF帧中继RFC 1490封装方法。当路由器与一个

帧中继网络上的指定使用cisco封装的设备时,使用cisco关键字。使用cisco或ietf关键字可以覆盖接口配置命令encapsulation frame-relay所指定的方法。不指定cisco或者关键字将使地址映射继承接口配置命令encapsulation frame-relay所设置的属性。

当网络协议需要使用广播功能时使用关键字Broadcast,在IP网络上使用OSPF或者EIGRP路由协议时,使用该关键字尤其重要。

(2)配置动态逆向ARP

动态地址映射对于网络协议缺省都为启用状态。

由于逆向ARP缺省为启用状态,因此不需要为动态寻址而专门指定它,除非反转ARP 被禁止。在指定的接口配置下面可以输入如下的命令启用逆向ARP:

router(config-if)#frame-relay inverse-arp [protocol] [dlci]

可选的protocol变量允许路由器管理员对一个特定的网络协议禁止使用逆向ARP,而同时其他支持的协议仍能够使用逆向ARP。protocol变量的取值可以是下面的关键字之一:Ip,bridge,LLC2

dlci变量的取值是一个合法的接口号,范围为16~1007。同时指定protocol和dlci变量可以确定一个特定的DLCI协议。这允许运行相同协议的另一个DLCI继续使用动态地址映射。

当使用用no frame-relay inverse-arp不特定指定哪个协议和哪个DLCI号时,是使所有的协议和接口上所有的DLCI都禁止使用逆向ARP。

3. 配置帧中继本地虚电路

帧中继本地DLCI号使用如下命令指定:

router (config-if)#frame-relay local-dlci dlci

注意:只有当本地接口类型为DCE或者是NNI类型时,才可以在接口上配置本地虚电路号。

4. 配置帧中继交换

RGNOS系列路由器支持帧中继的交换功能,用此功能可以将路由器模拟成局方网络侧的交换机,配置帧中继的交换必须注意以下几点:

●设定帧中继交换使能命令(打开帧中继交换功能)

●设定接口的intf-type 是DCE或者NNI类型

●帧中继交换路由器必须两个以上的接口配置了交换才可以起作用

●必须配置帧中继交换路由

(1)允许帧中继进行PVC交换

Router(config)#frame-relay switching

使用这条命令打开帧中继交换功能时,必须将该路由器配置成DCE设备。

(2)设置帧中继接口类型

router(config-if)#frame-relay intf-type {dte|dce|nni}

(3)配置帧中继PVC交换的路由

Red-Giant(config)# frame-relay route in-dlci interface serial number out-dlci

将本地地接口上DCE上的DLCI设定为in-dlci,而另外一个同步接口serial number上的DCE的DLCI设定为out-dlci。

5. 帧中继典型配置举例

【例6-6】配置帧中继IETF DTE :如图6-5,通过公用帧中继网络互连局域网,在这种方式下,路由器只能作为用户设备工作在帧中继的DTE 方式,假设路由器R1的DLCI 号16,路由器R2的DLCI 号17。

图6-5 配置帧中继DTE 示例图

配置步骤如下:

配置路由器R1:

!配置接口IP 地址

router(config)#interface serial 0

router (config-if)#ip address 1.1.1.1 255.255.255.252

!配置接口封装为帧中继IETF 报文格式

router (config-if)#encapsulation frame-relay ietf

!配置静态地址映射

router (config-if)#frame-relay map ip 1.1.1.2 16

配置路由器R2:

!配置接口IP 地址

router (config)#interface serial 0

router (config-if)#ip address 1.1.1.2 255.255.255.252

!配置接口封装为帧中继IETF 报文格式

router (config-if)#encapsulation frame-relay ietf

!配置静态地址映射

router (config-if)#frame-relay map ip 1.1.1.1 17

【例6-7】 配置帧中继IETF DCE :如图6-6,两台路由器通过V .35电缆线背靠背直连,R1物理层和帧中继链路层都作为DTE 工作方式、R2在物理层和帧中继链路层都作为DCE 工作方式。

图6-6 配置帧中继电缆线背靠背直连-DCE 示例图

配置步骤如下:

配置路由器R1:

!配置接口IP 地址

Router (config)#interface serial 0

Router(config-if)#ip address 1.1.1.1 255.255.255.252

!配置接口封装为帧中继IETF 报文格式

Router(config-if)#encapsulation frame-relay ietf

!配置静态地址映射

Router(config-if)#frame-relay map ip 1.1.1.2 16

局域网 局域网 R1:1.1.1.1/30 R2:1.1.1.2/30

局域网

局域网

配置路由器R2:

!配置帧中继交换功能

Router(config)#frame-relay switching

!配置接口IP地址

Router(config)#interface serial 0

Router(config-if)#ip address 1.1.1.2 255.255.255.252 !配置接口封装为帧中继IETF报文格式

Router(config-if)#encapsulation frame-relay ietf

!配置接口的类型DCE

Router(config-if)#frame-relay intf-type dce

!配置本地DLCI号

Router(config-if)#frame-relay local-dlci 16

!配置静态地址映射

Router(config-if)#frame-relay map ip 1.1.1.1 16 【课堂练习】

【布置作业】

【下次课预习内容】

【课堂小结】

帧中继协议原理及配置

帧中继协议原理及配置 【复习旧课】(教学手段:课堂提问) 【引入新课】(教学手段:创设情景) 【讲授新课】(教学手段:教师讲授) 一、 帧中继概述 帧中继(Frame Relay ,简称FR )是以X.25 分组交换技术为基础,摒弃其中复杂的检、纠错过程,改造了原有的帧结构,从而获得了良好的性能。帧中继的用户接入速率一般为64 kbps ~2 Mbps ,局间中继传输速率一般为2 Mbps 、34 Mbps ,现已可达155 Mbps 。 1. 帧中继简介 帧中继技术继承了X.25 提供的统计复用功能和采用虚电路交换的优点,但是简化了可靠传输和差错控制机制,将那些用于保证数据可靠性传输的任务(如流量控制和差错控制等)委托给用户终端或本地结点机来完成,从而在减少网络时延的同时降低了通信成本。帧中继中的虚电路是帧中继包交换网络为实现不同DTE 之间的数据传输所建立的逻辑链路,这种虚电路可以在帧中继交换网络内跨越任意多个DCE 设备或帧中继交换机。 图6-4 帧中继网络 一个典型的帧中继网络是由用户设备与网络交换设备组成,如图6-4所示。作为帧中继网络核心设备的FR 交换机其作用类似于我们前面讲到的以太网交换机,都是在数据链路层完成对帧的传输,只不过FR 交换机处理的是FR 帧而不是以太帧。帧中继网络中的用户设备负责把数据帧送到帧中继网络,用户设备分为帧中继终端和非帧中继终端两种,其中非帧中继终端必须通过帧中继装拆设备(FRAD )接入帧中继网络。 2. 帧中继的特点 帧中继具有如下特点: ● 帧中继技术主要用于传递数据业务,将数据信息以帧的形式进行传送。 ● 帧中继传送数据使用的传输链路是逻辑连接,而不是物理连接,在一个物理连接上可以复用多个逻辑连接,可以实现带宽的复用和动态分配。 ● 帧中继协议简化了X.25的第三层功能,使网络节点的处理大大简化,提高了网络对信息的处理效率。采用物理层和链路层的两级结构,在链路层也只保留了核心子集部分。 ● 在链路层完成统计复用、帧透明传输和错误检测,但不提供发现错误后的重传。省去了帧编号、流量控制、应答和监视等机制,大大节省了交换机的开销,提高了网络吞吐量、 局域网 局域网

OSPF协议详解分析

OSPF 学习笔记 OSPF 协议号是89,也就是说在ip 包的protocol 中是89,用ip 包来传送 数据包格式: 在OSPF 路由协议的数据包中,其数据包头长为24 个字节,包含如下8 个字段: * Version number-定义所采用的OSPF 路由协议的版本。 * Type-定义OSPF 数据包类型。OSPF 数据包共有五种: * Hello-用于建立和维护相邻的两个OSPF 路由器的关系,该数据包是周期性地发送的。 * Database Description-用于描述整个数据库,该数据包仅在OSPF 初始化时发送。 * Link state request-用于向相邻的OSPF 路由器请求部分或全部的数据,这种数据包是在当 路由器发现其数据已经过期时才发送的。 * Link state update-这是对link state 请求数据包的响应,即通常所说的LSA 数据包。 * Link state acknowledgment-是对LSA 数据包的响应。 * Packet length-定义整个数据包的长度。 * Router ID-用于描述数据包的源地址,以IP 地址来表示,32bit * Area ID-用于区分OSPF 数据包属于的区域号,所有的OSPF 数据包都属于一个特定 的OSPF 区域。 * Checksum-校验位,用于标记数据包在传递时有无误码。 * Authentication type-定义OSPF 验证类型。 * Authentication-包含OSPF 验证信息,长为8 个字节。 FDDI 或快速以太网的Cost 为1,2M 串行链路的Cost 为48,10M 以太网的Cost 为10 等。 所有路由器会通过一种被称为刷新(Flooding)的方法来交换链路状态数据。Flooding 是指路由器将其LSA 数据包传送给所有与其相邻的OSPF 路由器,相邻路由器根据其接收到的链路状态信息 更新自己的数据库,并将该链路状态信息转送给与其相邻的路由器,直至稳定的一个过程。当路由 器有了一个完整的链路状态数据库时,它就准备好要创建它的路由表以便能够转发数据流。CISCO 路由器上缺省的开销度量是基于网络介质的带宽。要计算到达目的地的最低开销,链路状态型路由选择协议(比如OSPF)采用Dijkstra 算法,OSPF 路由表中最多保存 6 条等开销路由条目以进行负 载均衡,可以通过"maximum-paths" 进行配置。如果链路上出现fapping 翻转,就会使路由器不停 的计算一个新的路由表,就可能导致路由器不能收敛。路由器要重新计算客观存它的路由表之前先 等一段落时间,缺省值为 5 秒。在CISCO 配置命令中"timers spf spf-delay spy-holdtime" 可以对两次连续SPF 计算之间的最短时间(缺省值10 秒)进配置。 路由器初始化时Hello 包是用224.0.0.5 广播给域内所有OSPF 路由器,选出DR 后在用224.0.0.6 和DR,BDR 建立邻接。DR 用224.0.0.5 广播给DRother LSA BDR 也是 DRother 用224.0.0.6 广播LSA 给DR 和BDR DR 是在一个以太网段内选举出来的,如果一个路由器有多个以太网段那么将会有多个 DR 选举;DR 的选择是通过OSPF 的Hello 数据包来完成的,在OSPF 路由协议初始化的过程中,会通过Hello 数据包在一个广播性网段上选出一个ID 最大的路由器作为指定

帧中继协议

帧中继协议 刷钻代码https://www.360docs.net/doc/332681709.html,/ 一、数据链路层帧方式接入协议(LAPF) 1、LAPF基本特性 LAPF(Link Access Procedures to Frame Mode Bearer Services)是帧方式承载业务的数据链路层协议和规程,包含在ITU-T建议Q.922中。LAPF的作用是再ISDN用户-网络接口的B、D或H通路上为帧方式承载业务,在用户平面上的数据链路(DL)业务用户之间传递数据链路层业务数据单元(SDU)。 LAPF使用I.430和I.431支持的物理层服务,并允许在ISDN B/D/H通路上统计复用多个帧方式承载连接。LAPF也可以使用其它类型接口支持的物理层服务。 LAPF的一个子集,对应于数据链路层核心子层,用来支持帧中继承载业务。这个子集称为数据链路核心协议(DL-CORE)。LAPF的其余部分称为数据链路控制协议(DL-CONTROL)。 LAPF提供两种信息传送方式:非确认信息传送方式和确认信息传送方式。 2、LAPF帧结构 LAPF的帧由5种字段组成:标志字段F、地址字段A、控制字段C、信息字段I和帧检验序列字段FCS。 标志字段(Flag)是一个特殊的八比特组01111110,它的作用是标志一帧的开始和结束。在地址标志之前的标志为开始标志,在帧校验序列(FCS)字段之后的标志为结束标志。

地址字段A的主要用途是区分同一通路上多个数据链路连接,以便实现帧的复用/分路。地址字段的长度一般为2个字节,必要时最多可扩展到4个字节。地址字段通常包括地址字段扩展比特EA,命令/响应指示C/R,帧可丢失指示比特DE,前向显式拥塞比特FECN,后向显示拥塞比特BECN,数据链路连接标识符DLCI和DLCI扩展/控制知识比特D/C等7个组成部分。 控制字段C分3种类型的帧:信息帧(I帧)用来传送用户数据,但在传拥护数据的同时,I帧还捎带传送流量控制和差错控制信息,以保证用户数据的正确传送;监视帧(S帧)专门用来传送控制信息,当流量和差错控制信息没有I帧可以“搭乘”时,需要用S帧来传送;无编号帧(U帧),有两个用途:传送链路控制信息以及按非确认方式传送用户数据。 信息字段I包含的是用户数据,可以是任意的比特序列,它的长度必须是整数个自己,LAPF信息字节的最大默契长度为260个字节,网络应能支持协商的信息字段的最大字节数至少为1598,用来支持例如LAN互联之类的应用,以尽量减少用户设备分段和重装用户数据的需要。 帧校验序列字段FCS是一个16比特的序列。它具有很强的检错能力,它能检测出在任何位置上的3个以内的错误、所有的奇数个错误、16个比特之内的连续错误以及大部分的大量突发错误。 3、LAPF帧交换过程 LAPF的帧交换过程是对等实体之间在D/B/H通路或其它类型物理通路上传送和交换信息的过程,进行交换的帧有I帧、S帧和U帧。 采用非确认信息传送方式时,LAPF的工作方程十分简单,用到的帧只有一种,即无编号信号帧UI。UI帧的I段包含了用

ospf协议,实验报告

ospf协议,实验报告 篇一:实验7 OSPF路由协议配置实验报告 浙江万里学院实验报告 课程名称:数据通信与计算机网络及实践 实验名称: OSPF路由协议配置专业班级:姓名:小组学号:XX014048 实验日期: 再测试。要求写出两台路由器上的ospf路由配置命令。 第页共页 [RTC-rip-1]import ospf [RTC-rip-1]quit [RTC]ospf [RTC-ospf-1]import rip [RTC-ospf-1]quit 结合第五步得到的路由表分析出现表中结果的原因: RouteB 通过RIP学习到C和D 的路由情况,通过OSPF 学习到A 的路由信息 实验个人总结 班级通信123班本人学号后三位__048__ 本人姓名_徐波_ 日期 本次实验是我们的最后一次实验,再次之前我们已经做了很多的有关于华为的实验,从一开始的一头雾水到现在的有一些思路,不管碰到什么问题,都能够利用自己所学的知识去解决或者有一些办法。这些华为实验都让我受益匪浅。

实验个人总结 班级通信123班本人学号后三位__046__ 本人姓名_金振宁_ 日期 这两次实验都可以利用软件在寝室或者去其他的地方去做,并不拘泥于实验室,好好的利用华为的模拟机软件对我们来说都是非常有用的。 实验个人总结 班级通信123班本人学号后三位本人姓名_陈哲日期 第页共页 篇二:单区域的OSPF协议配置实验报告 学生实验报告 *********学院 篇三:OSPF实验报告 计算机学院 实验报告 ( XX 年春季学期) 课程名称:局域网设计与管理 主讲教师:李辉 指导教师:学生姓名: 学 年郑思楠号: XX012019 级: XX级

帧中继协议

课程7 帧中继协议

目录 1 课程说明 课程介绍 1 课程目标 1 相关资料 1 2 第一节帧中继协议介绍 1.1帧中继概述 2 1.2 帧中继的历史 2 1.3 网络交换技术及其特点 2 1.4 帧中继的技术和市场起因 4 1.5 帧中继技术的特点 5 1.6 什么情况下适用帧中继 6 7 第二节帧中继协议介绍及应用 2.1 帧中继协议的一些概念7 2.2 帧中继的应用8 2.3 帧中继PVC交换9 2.4 帧中继的带宽管理10 12 第3课帧中继帧格式 3.1 Q.922附录A介绍12 3.2 IETF封装12 3.3 CISCO封装15 17 第四节帧中继LMI协议 4.1 LMI协议简介17 4.2 Q.933附录A 17 22 第五节InARP协议介绍 24 缩略词表

课程说明 课程介绍 本教材介绍了帧中继技术的起因、发展、特点及应用等,阐述了有关帧中继 的一些基本概念,注重介绍了帧中继的封装协议、LMI协议和INARP协议。课程目标 完成本课程学习,学员能够掌握: ?了解帧中继的特点、技术条件、应用等 ?理解帧中继的基本概念,了解帧中继的一些协议 相关资料 《帧中继技术及其应用》 《QUIDWAY路由器用户手册》

第一节帧中继协议介绍 1.1帧中继概述 概括的讲,帧中继技术是在数据链路层用简化的方法传送和交换数据单元的 快速分组交换技术。帧中继技术是在分组交换技术充分发展,数字与光纤传 输线路逐渐代替已有的模拟线路,用户终端日益智能化的条件下诞生并发展 起来的。 1.2 帧中继的历史 1986年AT&T首先在其有关ISDN的技术规范中提出帧中继业务;1988年国际 电信联盟ITU-T公布第一个有关帧中继业务框架的标准I.122;1989年美国国家 标准委员会ANSI开始帧中继技术标准的研究工作;1990年CISCO、DEC、NT 和STRATACOM联合创建帧中继委员会;1991年帧中继委员会改名为帧中继 论坛,并开始标准的制定工作。迄今ITU-T、ANSI和帧中继论坛制定了帧中继 的一系列标准,帧中继技术日趋完善。有关标准见附录。 1.3 网络交换技术及其特点 为了对帧中继有一个概括的了解和认识,首先简要回顾一下网络交换技术的 发展。随着数据通讯技术的发展和演变,网络交换技术有电路方式、分组方 式、帧方式、信元方式和交换型多兆比特数据业务(SMDS)。 电路方式是基于电话网电路交换的原理,当用户要求发送数据时,交换机就 在主叫用户和被叫用户之间接通一条物理的数据传输通路。特点是时延小、 “透明”传输(即传输通路对用户数据不进行任何修正或解释)、信息传输 的吞吐量大。缺点是所占带宽固定,网络资源利用率低。 分组方式是一种存储转发的交换方式。他是将需要传输的信息划分为一定的 长度的包(分组),以分组为单位进行存储转发的。每个分组信息都载有接 收地址和发送地址的的标识,在传送分组之前必须首先建立虚电路,然后依

OSPF协议的配置

OSPF协议的配置 1.配置ospf的stub区域 【 quidway】ospf [process-id] 【 quidway】area area-id 【 quidway】stub [no-summary]配置当前区域为STUB区域 Stub命令只有当在ABR上配置时,可选参数no-summary 才能对该区域起作用(所有连接到stub区域的路由器必须使用stub命令将该区域配置成stub区域 2.配置ospf的Nssa区域 【 quidway】ospf [process-id] 【 quidway】area area-id 【 quidway】nssa [default-route-advertise|no-import-route|no-summary] 配置一个区域为NSSA区域,所有连接到NSSA区域的路由器使用NSSA命令将 该区域配置为NSSA属性 3.配置ospf的虚连接 【 quidway】ospf [process-id] 【 quidway】area area-id 【 quidway】vlink-peer router-id连接到对方的router-id 4.配置ospf的网络类型 介绍:OSPF根据类型分为四种,由于NBMA网络必须是全连接通的,所有网络中任意两台路由器之间都必须可达,很多情况下,这个要求无法满足,这时需要修改网络类型,如果部分路由器之间没有直接可达的链路时,应将接口配置成P2MP方式,如果路由器在NBMA 网络中只有一个对端,可以将接口类型改为P2P方式 【 quidway】interface interface-type interface-number 【 quidway】ospf network-type {broadcast|nbma|p2mp|p2p}配置ospf接口的网络类型5.配置ospf的路由聚合 【 quidway】ospf [process-id] 【 quidway】area area-id 【 quidway】abr(asbr)-summary ip-address mask配置abr和asbr的路由聚合 6.配置过滤ospf接收的路由 【Quidway】ospf 【Quidway】area area-id 【Quidway】filter-policy acl-number import(基于ACL过滤学到的路由信息) 【Quidway】filter-policy gateway ip-prefix-name import(基于目的地址前缀过滤邻居发布路由信息) 7.配置ospf引入缺省路由 【Quidway】ospf 【Quidway】default-route-advertise[always][cost cost][type type][route- Policy route-policy-name]使用这个命令配置always参数时,可以强制OSPF引入一条缺省路由,否则必须本地有缺省路由才可以 引入。 8.配置ospf的区域认证 【Quidway】ospf 【Quidway】area area-id

7帧中继链路与上层协议的交互

11 帧中继链路与上层协议的交互 2008-08-19 23:15 15页的东西,很长,帧中继链路和OSPF网络类型的交互,很乱,再整理一下吧:都有些什么呢?嗯,有这些: 一、很NA的理论; 二、用Tunnel搭建远距离的链中继二层链路; 三、帧中继与OSPF网络类型的交互,这个最杂了,总结一下吧: 关于帧中继的不支持广播的问题: 1、帧中继是NBMA非广播型多路访问,由于不支持广播,所以在帧中继链路上运行依赖广播的RIP V1,是起不来的,当然,对于依赖组播的RIP V 2、EIGRP和OSPF,也是跑不下来的,实验中可以看到(组播在后面,现在还不怎么有概念)。怎么解决这个问题呢?在MAP映射里面加broadcast参数,将一个数据包复制成几份扔到各个DLCI管道里面去。反向ARP的话是自动加了这个参数的,手动映射的话必须得注意加上这个参数。再说一个吧,rip v2在帧中继链路上默认在主接口是关闭了水平分割的,但子接口开启,而EIGRP是默认开启的。 2、关于OSPF在帧中继链路上的问题: (1)邻居建立的问题:解决方法:改网络类型、单播建邻居 (2)角色混乱的问题:解决方法:改优先级,spoke端不参与竞选 (3)数据通信的问题:解决方法:做二层PVC和IP地址的映射(不增加PVC) 多播又是怎么发送数据包的?(这个不急,可以学了多播了再说) OSPF有五种网络类型,在帧中继链路上默认是NBMA,即或是帧中继二层链路加上了广播参数,即二层支持广播,OSPF也认为组播包发不出去而不发HELLO包,所以邻居关系无法建立,协议无法运行。 解决方法1:改OSPF网络类型,让OSPF用组播建立邻居: 改OSPF网络类型为点对多点,这时不管二层链路是全互联还是HUB-AND-SPOKE,角色混乱问题和路由数据包的发送问题都不存在值得注意的是:这个MA域的所有路由上的OSPF链路类型必须一致,否则即使能建立邻居,也不能正常传递路由.还有在HUB-AND-SPOKE二层链路上,各个路由器都会出现所有参与OSPF的路由器接口地址的32位主机路由;看一下二层链路是多点子接口的情况,现在是三个路由器多点子接口全互联,也就是三个路由器都还连着其他网络.将主接口和子接口的反向ARP关掉,或者不关开启LMI本地管理协议,在子接口做MAP映射.结果很正常,三个问题都没有出现(很奇怪,看了一下OSPF的接口,这是默认的NBMA三层网络,为什么在多点子接口下就不存在上述三个问题了呢?).这是三层网络为默认的NBMA的情况, NBMA都没有问题,改成点到多点应该更没有问题吧. 看一下,的确没有这三个问题,不过要注意的是这时会生成MA网络中参与OSPF 的接口地址的32位主机路由.现在看二层是HUB-AND-SPOKE的情况.这又是畸形

OSPF协议配置

OSPF 协议配置 【实验目的】 1.了解和掌握ospf 的原理; 2.熟悉ospf 的配置步骤; 3.懂得如何配置OSPF router ID ,了解DR/BDR 选举过程; 4.掌握hello-interval 的使用; 5.学会使用OSPF 的authentication ; 【实验拓扑】 【实验器材】 如上图,需用到路由器三台,hub/switch 一个,串行线、网线若干,主机三台。 说明:拓扑中网云可用hub 或普通switch 替代,建立multiaccess 网络,以太口连接。 【实验原理】 一、OSPF 1. OSPF 基本原理以及邻居关系建立过程 OSPF 是一种链路状态型路由选择协议。它依靠5种(Hello, DBD, LSR, LSU and LSAck)不同种类的数据包来识别、建立和维护邻居关系。当路由器接收到来自邻居的链路状态信息后,会建立一个链路状态数据库;然后根据该链路状态数据库,采用SPF 算法确定到各目的地的最佳路径;最后将最佳路径放到它的路由表中,生成路由表。 OSPF 会进行周期性的更新以维护网络拓扑状态,在LSA 的生存期到期时进行周期性的更新。除了周期性更新之外,还有触发性更新。即当网络结构发生变化(例如增减路由器、链路状态发生变化等)时,会产生触发性更新,把变化的那一部分通告给整个网络。 192.168.1.0/24 RT A

2.Designated Router (DR) / Backup Designated Router(BDR)选举过程 存在于multiaccess网络,点对点链路和NBMA网络中无此选举过程,此过程发生在Two-Way之后ExStart之前。 选举过程: 选举时,依次比较hello包中的各台router priority和router ID,根据这两个值选出DR 和BDR。选举结束后,只有DR/BDR失效才会引起新的选举过程;如果DR故障,则BDR 替补上去,次高优先级Router被选为BDR。 基本原则如下: 1)有最高优先级值的路由器成为DR,有第二高优先级的路由器成为BDR; 2)优先级为0的路由器不能作为DR或BDR,只能做DRother (非DR); 3)如果一台优先级更高的路由器加到了网络中,原来的DR与BDR保持不变,只有DR 或BDR它们失效时才会改变; 4)当优先级相同时,路由器ID最高和次高的的就成为DR和BDR; 5)当没有配置loopback时,用router上up起来的端口中最高IP地址作为Router ID,否则就用loopback口的IP地址作为它的ID;如果有多个loopback则用loopback端口中最高IP地址作为ID;而且路由器ID 一旦确定就不再更改。 建议使用优先级操纵DR/BDR选举过程 3.update timer与authentication的影响 要让OSPF路由器能相互交换信息,它们必须具有相同的hello间隔和相同的dead-time 间隔。缺省情况下,后者是前者的4倍。 缺省地,路由器认为进入的路由信息总是可靠的、准确的,从而不加甄别就进行处理,这存在一定的危险。因此,为了确保进入的路由信息的可靠性和准确性,我们可以在路由器接口上配置认证密钥来作为同一区域OSPF路由器之间的口令,或对路由信息采用MD5算法附带摘要信息来保证路由信息的可靠性和准确性。建议采用后者,因为前者的密钥是明文发送的。 三、其它预备知识 1、回环接口的配置: Router(config)#int l0 Router(config-if)#ip addr *.*.*.* *.*.*.* 2、telnet:是属于应用层的远程登陆协议,是一个用于远程连接服务的标准协议,用户可以 用它建立起到远程终端的连接,连接到Telnet服务器;用户也可以用它远程连接上路由器进行路由器配置。 【实验内容】 一、在路由器上配置单域的OSPF 1.按照拓扑图1接好线,完成如下基本配置: (1)配置端口IP地址 以RTA路由器的配置为例: RTA(config)#Interface Ethernet 0 RTA(config-if)#ip address 192.168.1.1 255.255.255.0

OSPF协议配置实例

OSPF 协议配置 【实验目的】 1.了解和掌握ospf 的原理; 2.熟悉ospf 的配置步骤; 3.懂得如何配置OSPF router ID ,了解DR/BDR 选举过程; 4.掌握hello-interval 的使用; 5.学会使用OSPF 的authentication ; 【实验拓扑】 【实验器材】 如上图,需用到路由器三台,hub/switch 一个,串行线、网线若干,主机三台。 说明:拓扑中网云可用hub 或普通switch 替代,建立multiaccess 网络,以太口连接。 【实验原理】 一、OSPF 192.168.1.0/RTA

1. OSPF基本原理以及邻居关系建立过程 OSPF是一种链路状态型路由选择协议。它依靠5种(Hello, DBD, LSR, LSU and LSAck)不同种类的数据包来识别、建立和维护邻居关系。当路由器接收到来自邻居的链路状态信息后,会建立一个链路状态数据库;然后根据该链路状态数据库,采用SPF算法确定到各目的地的最佳路径;最后将最佳路径放到它的路由表中,生成路由表。 OSPF会进行周期性的更新以维护网络拓扑状态,在LSA的生存期到期时进行周期性的更新。除了周期性更新之外,还有触发性更新。即当网络结构发生变化(例如增减路由器、链路状态发生变化等)时,会产生触发性更新,把变化的那一部分通告给整个网络。 2.Designated Router (DR) / Backup Designated Router(BDR)选举过程 存在于multiaccess网络,点对点链路和NBMA网络中无此选举过程,此过程发生在Two-Way之后ExStart之前。 选举过程: 选举时,依次比较hello包中的各台router priority和router ID,根据这两个值选出DR和BDR。选举结束后,只有DR/BDR失效才会引起新的选举过程;如果DR故障,则BDR替补上去,次高优先级Router被选为BDR。 基本原则如下: 1)有最高优先级值的路由器成为DR,有第二高优先级的路由器成为BDR; 2)优先级为0的路由器不能作为DR或BDR,只能做DRother (非DR); 3)如果一台优先级更高的路由器加到了网络中,原来的DR与BDR保持不变,只有DR或BDR它们失效时才会改变; 4)当优先级相同时,路由器ID最高和次高的的就成为DR和BDR; 5)当没有配置loopback时,用router上up起来的端口中最高IP地址作为Router ID,否则就用loopback口的IP地址作为它的ID;如果有多个loopback则用loopback端口中最高IP地址作为ID;而且路由器ID 一旦确定就不再更改。 建议使用优先级操纵DR/BDR选举过程 3.update timer与authentication的影响 要让OSPF路由器能相互交换信息,它们必须具有相同的hello间隔和相同的dead-time

OSPF协议基本配置

OSPF协议基本配置 注意:此实验拓扑图是以机房的实验拓扑画的,如果是使用模拟器来做此实验,请根据模拟器的拓扑来更改。 实验目的: 1.能够独立的配置OSPF的单区域,实现整个区域之间的网络通信。 2.能够使用各种SHOW命令进行检查。 3.理解DR/BDR的选举原则,OSPF的邻接关系的建立过程。 4.邻接关系建立的必须匹配的几个参数 5.3张表的形成过程,OSPF协议的基本原理 实验要求: 1.按照拓扑图把基本的链路连接配置起来,并且配置完成以后检查基本的链路通信(检查直连链路之间能否进行通信) 2.运行OSPF协议,实现整个网络之间可达。(配置OSPF单区域) 3.保证R1成为DR,其他的路由器成为DROTHER 实验配置:(基本的常见配置和链路配置这里不给出) R1上的配置: R1(config)#int loopback 0 R1(config-if)#ip address 11.11.11.11 255.255.255.0 //回环接口,一般回环接口我们主要用来做测试或者模拟网段的时候使用,需要注意回环接口是一个逻辑上的接口。没有真实的物理接口和他对应,但是回环接口基本上具有所有物理借口的特性 R1(config-if)#

R1(config)#router ospf 1 //运行OSPF协议,进程ID为1。进程ID只是为了识别路由器本地运行了几个OSPF进程。 R1(config-router)#router-id 1.1.1.1 //指定R1的router-id为1.1.1.1 R1(config-router)#network 12.12.12.0 0.0.0.255 area 0 //将属于12.12.12.0/24这个网段的所有接口公告到区域0里去。 R1(config-router)#network 172.16.1.0 0.0.0.255 area 0 R1(config-router)# R2上的配置: R2(config)#router ospf 1 R2(config-router)#router-id 2.2.2.2 R2(config-router)#network 12.12.12.0 0.0.0.255 area 0 R2(config-router)#network 13.13.13.0 0.0.0.255 area 0 R2(config-router)#network 172.16.1.0 0.0.0.255 area 0 R2(config-router)# R3上的配置: R3(config)#interface loopback 0 R3(config-if)#ip address 33.33.33.33 255.255.255.0 R3(config)#router ospf 1 R3(config-router)#router-id 3.3.3.3 R3(config-router)#network 13.13.13.0 0.0.0.255 area 0 R3(config-router)#network 172.16.1.0 0.0.0.255 area 0 R3(config-router)#network 33.33.33.0 0.0.0.255 area 0 当完成上述配置以后我们可以发现已经可以实现整个网络之间的相互通信了。 当做完以后使用各种SHOW命令进行检查。 R1#sh ip ospf neighbor//查看OSPF的邻接关系表,需要注意这里所看到的都是邻居的信息。 Neighbor ID Pri State Dead Time Address Interface 2.2.2.2 1 FULL/BDR 00:00:29 172.16.1.2 Ethernet0 3.3.3.3 1 FULL/DROTHER 00:00:37 172.16.1.3 Ethernet0 2.2.2.2 0 FULL/ - 00:00:30 12.12.12.2 Serial0 R1#

OSPF路由协议的基本配置

实验三OSPF路由协议的基本配置 一、实验目的 1、掌握OSPF路由协议的配置方法 2、观察LSA生成情况 3、掌握域间路由聚合 二、准备知识 1、OSPF协议概述 OSPF(Open Shortest Path First,开放最短路径优先)是一个内部网关协议(Interior Gateway Protocol, IGP),用于在单一自治系统(autonomous system,AS)内决策路由。与RIP相对,OSPF是链路状态路由协议,而RIP是距离向量路由协议。 OSPF协议使用的是最短路径优先算法,利用链路状态通告(Link State Advertisement,LSA)得到的信息来计算到每一个目标网络的最短路径。每一台路由器将会对区域中的网络拓扑结构有一个完整的观察,以自身为根生成一个树,并有到达每个目的网段的完整路径。 2、LSA的分类及格式 type=1:Router-LSA(路由器LSA),由路由器生成,描述路由器的链路状态和花费,传递到整个区域(ABR对不同的区域生成不同的Router-LSA,在对应的区域内传播)。 type=2:Network-LSA(网络LSA),由DR生成,描述本网段的链路状态,传递到整个区域。 type=3:Net-Summary-LSA(网络聚合LSA),由ABR生成,描述到某区域内某一网段的路由信息,传播到相邻的区域。 type=4:ASBR-Summary-LSA(ASBR聚合LSA),由ABR生成,描述了ASBR的信息,传播到相关区域。 type=5:AS-External-LSA(AS外部LSA),由ASBR生成,描述到AS外部的路由,传递到整个AS(stub区域除外)。 2、区域 OSPF协议将整个自治系统(AS)分为若干个区域。 规定:区域0是一个OSPF网络中必须具有的区域,称为骨干区域。其它所有区域必须和骨干区域连接在一起。通常也称为区域直径不超过3。 3、路由器标识(Router ID) Router ID是一个32bit的数字,它在自治系统中被用来惟一识别路由器。缺省时,OSPF协议使用最高的回送接口(Loopback接口)地址作为RID,若Loopback接口没有被设置,则使用物理接口上最高的IP地址作为RID。 使用Loopback 接口的好处是它是逻辑接口,比物理接口稳定,不会因为接口故障而产生新的RID。使用Loopback接口的另一个好处是允许管理员手工分配RID。 ◆Loopback 是一种纯软件性质的虚拟接口,任何送到该接口的网络数据报文都 会被认为是送往路由器自身的。 ◆Loopback 接口一旦被创建,将一直保持Up 状态,直到被删除。 4、OSPF进程号(process-id)

OSPF 协议总结(最终版)

OSPF协议总结---By Joe&东东&校长 OSPF的五个包: 1.Hello:9项内容,4个必要 2.DBD:数据库描述数据包(主要描述始发路由器数据库中的一些或者全部LSA信息),主要包括接口的MTU,主从位MS,数据库描述序列号等); 3.LSR:链路状态请求数据包(查看收到的LSA是否在自己的数据库,或是更新的LSA,如果是将向邻居发送请求); 4.LSU:链路状态更新数据包(用于LSA的泛洪扩散和发送LSA去响应链路状态请求数据包); 5.LSACK:链路状态确认数据包(用来进行LSA可靠的泛洪扩散,即对可靠包的确认)。 Hello包作用: 1.发现邻居; 2.建立邻居关系; 3.维持邻居关系; 4.选举DR,BDR 5.确保双向通信。 2.邻居关系为FULL状态;而邻接关系是处于TWO-W AY状态。 Hello时间间隔: 在点对点网络与广播网络中为10秒; 在NBMA网络与点对多点网络中为30秒。 注: 保持时间为hello时间4倍 虚电路传送的LSA为DNA,时间抑制,永不老化. OSPF的组播地址: DR将使用组播地址224.0.0.5泛洪扩散更新的数据包到DRothers DRothers使用组播地址224.0.0.6发送更新数据包 组播的MAC地址分别为:0100.5E00.0005,0100.5E00.0006

OSPF的包头格式: | 版本 | 类型 | 长度 | 路由器ID | 区域ID | 验证和 | 验证类型 |验证 | 数据 | | 1 byte | 1 | 2 | 4 | 4 | 2 | 2 | 8 | variance | OSPF支持的验证类型: OSPF支持明文和md5认证,用Sniffer抓包看到明文验证的代码是“1”,md5验证的代码是“2”。 OSPF支持的网络类型: 1.广播 2.非广播 3.点对点(若MTU不匹配将停留在EX-START状态) 4.点对多点 5.虚电路(虚电路的网络类型是点对点) 虚链路必须配置在ABR上, 虚链路的配置使用的命令是area transit-area-id virtual-link router-id 虚链路的Metric等同于所经过的全部链路开销之和 DR /BDR选举: 1.优先级(0~255; 0代表不参加选举;默认为1); 2.比较Router-id。 次者为BDR。 在Point-to-Point, Point-to-Multipoint(广播与非广播)这三种网络类型不选取DR与BDR; Broadcast, NBMA选取DR与BDR。 先启动OSPF进程的路由器会等待一段时间,这个时间内你没有启动其它路由的OSPF进程的话,第一台路由就认为自己是DR,之后再加进来的也不能在选举了,这个等待时间叫做Wait Timer计时器,CISCO规定的Wait Timer是40秒。这个时间内你启动的路由是参与选举的,所以真实工作环境中,40秒你大概只启动了两台,DR会再前两台启动的路由中产生,工作一段时间以后,活的最久的路由最有可能成为DR OSPF over FRAME-RELAY 的配置: (1) NBMA : 在HUB上指定邻居;SPOKE上设置优先级为0。 (2) P-TO-P: 接口下配置命令ip ospf network point-to-point。 (3) P-TO-MULT P:接口下配置命令ip ospf network point-to-multipoint。 按需电路配置: 接口下配置命令ip ospf demand-cricuit。 孤立区域问题解决: 1.虚电路(虚电路穿过的区域一定是标准区域,标准区域一定是全路由的)2.隧道 3.多进程重分发

配置OSPF路由协议

配置OSPF路由协议 【实验目的】 在继续学习路由器工作原理、应用特点和配置方法的基础上,掌握直连路由、静态路由和动态路由的特点。同时,结合RIP路由协议的配置,学习OSPF路由协议的配置方法。同时,通过对RIP和OSPF 工作原理的对比,掌握距离矢量路由协议和链路状态路由协议的应用特点。 【实验要求】 (1)熟悉动态路由与静态路由之间的区别。 (2)掌握RIP和OSPF在工作原理上的区别。 (3)掌握OSPF路由协议的配置方法。 (4)掌握OSPF路由协议信息的查看方法。 (5)了解OSPF路由协议的应用特点。 【背景描述】 为了使本实验更贴近于实际应用,特别设计了如下图所示的网络拓扑结构。互连设备的每个端口分配了具有32为掩码的IP地址(子网掩码为255.255.255.252),以保证连接设备的网段只有两个IP地址。在该实验中还使用了一台3层交换机,它不但像路由器一样可以实现RIP协议,而且可以创建VLAN,并实现不同VLAN之间的路由管理。例如,我们可以在Switch-L3上创建一个VLAN10并为其分配一个172.16.1.1/24的IP地址,该VLAN的IP地址将作为加入VLAN10的所有主机的网关地址。PC1通过FastEthernet 0/2端口与Switch-L3连接。PC2连接到路由器Router-B的FastEthernet 0/1端口。【实验拓扑】 【实验设备】 S3760交换机 1台 R10(路由器) 2台 V35线缆 1条 PC 2台 直连线或交叉线 2台 【预备知识】 路由器基本配置、OSPF的工作原理及配置。 【技术原理】

OSPF路由协议是一种典型的链路状态协议,一般用于同一个路由域内。在这里,路由域是指一个自治系统(Autonomous System,AS)。AS是指一组通过统一的路由策略或路由协议互相交换路由信息的网络,在本实验中我们可以把一个AS域看成由若干个OSPF区域(Area)所组成的大的自治系统,也通常叫做OSPF路由域(Routing Domain)。OSPF做为典型的IGP(Interior Gateway Protocol,内部网关协议)路由协议,它是运行在一个AS内部的路由协议。在这个AS中,所有的OSPF路由器都维护一个相同的AS数据库,该数据库中存放的是该路由域(AS)中相应链路的状态信息,OSPF路由器正式通过这个数据库计算出OSPF路由表的。 OSPF路由协议是基于TCP/IP协议体系而开发的,即OSPF for IP,也就是说它是工作在TCP/IP网络中的。作为一种链路状态路由协议,OSPF将链路状态广播数据包(Link StateAdvertisement,LSA)传送给某一区域内的所有路由器,这一点与距离矢量路由协议(如RIP)不同。运行距离矢量路由协议的路由器是将部分或全部的路由表传递给与其相邻的路由器。OSPF算法通过考虑网络的规模、扩展性、自我恢复能力等高级特性来进一步提高了网络的整体健壮性。OSPF具有如下特点: ●可适应大规模的网络; ●路由变化收敛速度快; ●无路由自环; ●支持可变长子网掩码(VLSM); ●支持等值路由; ●支持区域划分; ●提供路由分级管理; ●支持验证; ●支持以组播地址发送协议报文; OSPF可以运行在结构复杂的大型网络中,本实验主要实现OSPF在单区域的点对点网络中的配置。在点对点网络中,两个路由器使用Hello协议自动建立相邻关系,这里没有指定路由器(DR)和备份指定路由器(BDR)的选举过程,因为点对点网络中只有两个路由器,不存在指定路由器(DR)和备份指定路由器(BDR)。所有OSPF数据包通过224.0.0.5组播地址来发送。 OSPF路由协议的配置命令为: (1)在全局配置模式下启动OSPF: RSR10(config)#router ospf process-id 像其他的路由协议一样,要允许OSPF的运行,首先要建立OSPF进程处理号,利用命令router ospf process-id在端口上启动OSPF协议。其中process-id(进程号)是用来在这个路由器接口上启动的OSPF 的唯一标识。process-id可以作为识别在一台路由器上是否运行着多个OSPF进程的依据。process-id的取值范围为1~65535。一个路由器上的每个接口都可以选择不同的process-id。但一般来说,不推荐在路由器上运行多个OSPF,因为多个会有拓扑数据库,给路由器带来额外的负担。 (2)发布OSPF的网络号和指定端口所在区域的具体命令格式如下所示: RSR10(config)#network address wildcard area area-id · address wildcard:表示运行OSPF端口所在网段地址以及相应的子网掩码的反码。例如,255.255.255.0的反码为0.0.0.255,255.255.255.252的反码为。0.0.0.3等。

华为路由器OSPF协议配置命令

华为路由器OSPF协议配置命令

华为路由器OSPF协议配置命令 4.7.13 ip ospf network-type 设置接口的网络类型。no ip ospf network-type 取消设置。 [ no ] ip ospf network-type { nonbroadcast | point_to_multipoint } 【参数说明】 nonbroadcast设置接口的网络类型为非广播NBMA类型。 point_to_multipoint设置接口的网络类型为点到多点。 【命令模式】 接口配置模式 【使用指南】

在没有多址访问能力的广播网上,应该将接口配置成NBMA方式。当一个NBMA网络中,不能保证任意两台路由器之间都是直接可达的话,应将网络设置为点到多点的方式。 【举例】 配置接口Serial0为非广播NBMA类型。 Quidway(config-if-Serial0)#ip ospf network-type nonbroadcast 【相关命令】 4.7.14 ip ospf neighbor ip ospf pollinterval 在NBMA和点到多点接口上配置发送轮询HELLO报文的时间间隔,no ip ospf pollinterval 命令恢复为缺省值。

ip ospf pollinterval time no ip ospf pollinterval 【参数说明】 time为发送轮询HELLO报文的时间间隔,以秒为单位,合法的范围是0~65535。 【缺省情况】 接口缺省发送轮询HELLO报文的时间间隔为120秒。 【命令模式】 接口配置模式 【使用指南】 在NBMA和点到多点网络中,当一台路由器的邻居一直没有响应时(时间间隔超过了

相关文档
最新文档