窗函数的特性分析

窗函数的特性分析
窗函数的特性分析

本科学生验证性实验报告

学号114090315 姓名李开斌

学院物理与电子信息专业、班级11电子

实验课程名称窗函数的特性分析

教师及职称李宏宁

开课学期2013 至2014 学年下学期

填报时间2014 年03 月26 日云南师范大学教务处编印

凯撒窗时域波形及频谱N=60,beta取不同值的波形比较N=60;

几种特殊性质的函数的周期

几种特殊性质的函数的周期: ①y=f(x)对x ∈R 时,f(x +a)=f(x -a) 或f(x -2a )=f(x) (a>0)恒成立,则y=f(x)是周期为2a 的周期函数; ②y=f(x)对x ∈R 时,f(x+a)=-f(x)(或f(x+a)= ) (1x f -,则y=f(x)是周期为2a 的周期函数; ③若y=f(x)关于点(a,0),(b,0)对称,则f(x)是周期为2b a -的周期函数; ④y=f(x)的图象关于直线x=a,x=b(a ≠b)对称,则函数 y=f(x)是周期为2b a -的周期函数;如:正弦函数 sin y x = ⑤若y=f(x)是偶函数,其图像又关于直线x=a 对称,则 f(x)是周期为2︱a ︱的周期函数; ⑦正(余)弦型函数定义域为R ,周期为T ,那么,对于任意R m ∈,区间[)T m m +,内有且只有两个量21,x x ,满足()()21x f x f =。正切型函数则只有一个。 ⑧0)()(=+=a x f x f , 或)0)(() (1)(≠= +x f x f a x f , 或1()()f x a f x +=-(()0)f x ≠, 例1.若函数)(x f 在R 上是奇函数,且在()01, -上是增函数,且)()2(x f x f -=+,则 ①)(x f 关于 对称; ②)(x f 的周期为 ; ③)(x f 在(1,2)是 函数(增、减); ④)时,,(若10∈ x )(x f =x 2,则=)(log 18 21f 。 例2.设)(x f 是定义在),(+∞-∞上,以2为周期的周期函数,且)(x f 为偶函数,在区间 [2,3]上 )(x f =4)3(22+--x ,则时,]2,0[∈x )(x f = 。 4.函数(图象)的对称性 1)证明一个函数图象自身的对称问题及证明两个函数图象的对称关系问题

DFT-FFT的应用之确定性信号谱分析

实验报告 课程名称:数字信号处理指导老师:成绩:__________________ 实验名称:DFT/FFT的应用之一确定性信号谱分析实验类型:__验证_ 同组学生姓名:— 一、实验目的和要求 谱分析即求信号的频谱。本实验采用DFT/FFT技术对周期性信号进行谱分析。通过实验,了解用X(k)近似地表示频谱X(ejω)带来的栅栏效应、混叠现象和频谱泄漏,了解如何正确地选择参数(抽样间隔T、抽样点数N)。 二、实验内容和步骤 2-1 选用最简单的周期信号:单频正弦信号、频率f=50赫兹,进行谱分析。 2-2 谱分析参数可以从下表中任选一组(也可自定)。对各组参数时的序列,计算:一个正弦周期是否对应整数个抽样间隔?观察区间是否对应整数个正弦周期? 信号频率f(赫兹)谱分析参数抽样间隔T (秒) 截断长度N (抽样个数) 50 第一组参数0.000625 32 50 第二组参数0.005 32 50 第三组参数0.0046875 32 50 第四组参数0.004 32 50 第五组参数0.0025 16 2-3 对以上几个正弦序列,依次进行以下过程。 2-3-1 观察并记录一个正弦序列的图形(时域)、频谱(幅度谱、频谱实部、频谱虚部)形状、幅度谱的第一个峰的坐标(U,V)。 2-3-2 分析抽样间隔T、截断长度N(抽样个数)对谱分析结果的影响; 2-3-3 思考X(k)与X(e jω)的关系; 2-3-4 讨论用X(k)近似表示X(ejω)时的栅栏效应、混叠现象、频谱泄漏。 三、主要仪器设备 MATLAB编程。

四、操作方法和实验步骤 (参见“二、实验内容和步骤”) 五、实验数据记录和处理 %program 2-2-1 clear;clf;clc;%清楚缓存 length=32; T=0.000625; t=0:0.001:31;%设置区间以及步长 n=0:length-1; xt=sin(2*pi*50*t); xn=sin(2*pi*50*T*n); figure(1); subplot(2,1,1);plot(t,xt); xlabel('t');ylabel('x(t)'); axis([0 0.1 -1 1]);title('原序列'); subplot(2,1,2); stem(n,xn);xlabel('n');ylabel('xn)'); title('抽样后序列');axis([0 length -1 1]); figure(2); %画出序列的实部、虚部、模、相角 subplot(2,2,1);stem(n,real(xn)); xlabel('n');ylabel('real(xn)');title('序列的实部');axis([0 length -1 1]); subplot(2,2,2);stem(n,imag(xn)); xlabel('n');ylabel('imag(xn)');title('序列的虚部');axis([0 length -1 1]); subplot(2,2,3);stem(n,abs(xn)); xlabel('n');ylabel('abs(xn)');title('序列的模');axis([0 length -1 1]); subplot(2,2,4);stem(n,angle(xn)); xlabel('n');ylabel('angle(xn)');title('序列的相角');axis([0 length -1 1]); F=fft(xn,length); %计算DFT figure(3); %画出DFT的的幅度,实部和虚部 subplot(3,1,1);stem(n,abs(F)); xlabel('k');ylabel('abs(F)');title('DFT幅度谱'); subplot(3,1,2);stem(n,real(F));

频谱分析中如何选择合适的窗函数

频谱分析中如何选择合适的窗函数 1、信号截断及能量泄漏效应 数字信号处理的主要数学工具是傅里叶变换。应注意到,傅里叶变换是研究整个时间域和频率域的关系。然而,当运用计算机实现工程测试信号处理时,不可能对无限长的信号进行测量和运算,而是取其有限的时间片段进行分析。做法是从信号中截取一个时间片段,然后用观察的信号时间片段进行周期延拓处理,得到虚拟的无限长的信号,然后就可以对信号进行傅里叶变换、相关分析等数学处理。 周期延拓后的信号与真实信号是不同的,下面从数学的角度来看这种处理带来的误差情况。设有余弦信号x(t)在时域分布为无限长(- ∞,∞),将截断信号的谱XT(ω)与原始信号的谱X(ω)相比,它已不是原来的两条谱线,而是两段振荡的连续谱。这表明原来的信号被截断以后,其频谱发生了畸变,原来集中在f0处的能量被分散到两个较宽的频带中去了,这种现象称之为频谱能量泄漏(Leakage)。 信号截断以后产生的能量泄漏现象是必然的,因为窗函数w(t)是一个频带无限的函数,所以即使原信号x(t)是限带宽信号,而在截断以后也必然成为无限带宽的函数,即信号在频域的能量与分布被扩展了。又从采样定理可知,无论采样频率多高,只要信号一经截断,就不可避免地引起混叠,因此信号截断必然导致一些误差,这是信号分析中不容忽视的问题。 如果增大截断长度T,即矩形窗口加宽,则窗谱W(ω)将被压缩变窄(π/T减小)。虽然理论上讲,其频谱范围仍为无限宽,但实际上中心频率以外的频率分量衰减较快,因而泄漏误差将减小。当窗口宽度T趋于无穷大时,则谱窗W(ω)将变为δ(ω)函数,而δ(ω)与X(ω)的卷积仍为H(ω),这说明,如果窗口无限宽,即不截断,就不存在泄漏误差。 为了减少频谱能量泄漏,可采用不同的截取函数对信号进行截断,截断函数称为窗函数,简称为窗。泄漏与窗函数频谱的两侧旁瓣有关,如果两侧p旁瓣的高度趋于零,而使能量相对集中在主瓣,就可以较为接近于真实的频谱,为此,在时间域中可采用不同的窗函数来截断信号。 2、常用窗函数 实际应用的窗函数,可分为以下主要类型: 幂窗:采用时间变量某种幂次的函数,如矩形、三角形、梯形或其它时间函数x(t)的高次幂;三角函数窗:应用三角函数,即正弦或余弦函数等组合成复合函数,例如汉宁窗、海明窗等;指数窗。:采用指数时间函数,如e-st形式,例如高斯窗等。

冲激函数

一冲激函数的定义 在信息分析和系统分析中,单位冲激函数δ(t)是一个使用频率极高的奇异函数。对这类奇异函数不能按普通函数进行定义,因为它本身不属于普通函数。 1 单位冲激函数的普通数学定义 定义有多种方式,其中 定义1设有一函数P(t) 当n趋近于∞时,函数P(t)的宽度趋近于零,而幅度趋近于无限大,但其强度仍然等于1。这个函数就定义为单位冲激函数δ(t)。 定义2 狄拉克(Dirac)定义 上面两个对单位冲激函数的定义是不符合普通函数的定义对于普通函数来说当自变量t取某值时,除间断点外,函数有确定的值,而δ(t)在唯一不等于零的点t=0处函数值为无限大.因为单位冲激函数已经不属于普通函数的范畴,不能用普通函数进行定义,要用广义函数进行严格的定义。 2 单位冲激函数的广义定义 选择一类性能良好的函数,称为检验函数(它相当于定义域),一个广义函数g(t)是对检验函数空间中每个函数赋于一个数值N的映射,该数与广义函数g(t)和检验函数有关,记作N[g(t),(t)],通常广义函数g(t)可写为 式中检验函数是连续的,具有任意阶导数,且用其各阶导数在无限远处急剧下降的普通函数这类函数的全体构成的检验函数空间称为急降函数

空间,用表示.在上定义的广义函数称为缓增广义函数它的全体构成广义函数空间,用这类广义函数有良好的性质。根据以上定义,如有一广义函数f(t),它与的作用也赋给相同的值,即若 就认为二广义函数相等,记作f(t)=g(t)。按照广义函数的理论,冲激函数δ(t)由式 定义,即冲激函数δ(t)作用于检验函数的效果是给它赋值。如将(1)式中的函数看做广义函数,则有: 当n趋近于∞时在(,)区间内有=,取广义函数(t)的极限(广义极限),得 比较以上两式,得 按照此定义,冲激函数有多种定义形式,如: δ(t)=高斯钟形函数 δ(t)=取样函数 δ(t)=双边指数函数 等等 而对于离散的δ[n]定义很简单: δ[n]=1,(n=0)

求函数解析式的几种常用方法

求函数解析式的几种常 用方法 -CAL-FENGHAI.-(YICAI)-Company One1

求函数解析式的几种常用方法 一、高考要求: 求解函数解析式是高考重点考查内容之一,需引起重视.本节主要帮助考生在深刻理解函数定义的基础上,掌握求函数解析式的几种方法,并形成能力,并培养考生的创新能力和解决实际问题的能力. 重难点归纳: 求解函数解析式的几种常用方法主要有: 1.待定系数法,如果已知函数解析式的构造时,用待定系数法; 2.换元法或配凑法,已知复合函数f [g (x )]的表达式可用换元法,当表达式较简单时也可用配凑法; 3.消参法,若已知抽象的函数表达式,则用解方程组消参的方法求解f (x ); 另外,在解题过程中经常用到分类讨论、等价转化等数学思想方法. 二、题例讲解: 例1.(1)已知函数f (x )满足f (log a x )= )1 (1 2x x a a --.(其中a >0,a ≠1,x >0),求f (x )的表达式. (2)已知二次函数f (x )=ax 2+bx +c 满足|f (1)|=|f (-1)|=|f (0)|=1,求f (x )的表达式. 命题意图:本题主要考查函数概念中的三要素:定义域、值域和对应法则,以及计算能力和综合运用知识的能力. 知识依托:利用函数基础知识,特别是对“f ”的理解,用好等价转化,注意定义域. 错解分析:本题对思维能力要求较高,对定义域的考查、等价转化易出错. 技巧与方法:(1)用换元法;(2)用待定系数法. 解:(1)令t=log a x (a >1,t >0;01,x >0;0

数字信号处理实验报告-DFTFFT的应用之一确定性信号谱分析

实验报告 课程名称: 数字信号处理 指导老师: 成绩:__________________ 实验名称:DFT/FFT 的应用之一 ? 确定性信号谱分析 实验类型:__验证_ 同组学生姓名: — 一、实验目的和要求 谱分析即求信号的频谱。本实验采用DFT/FFT 技术对周期性信号进行谱分析。通过实验,了解用X(k)近似地表示频谱X(ej ω)带来的栅栏效应、混叠现象和频谱泄漏,了解如何正确地选择参数(抽样间隔T 、抽样点数N )。 二、实验内容和步骤 2-1 选用最简单的周期信号:单频正弦信号、频率f=50赫兹,进行谱分析。 2-2 谱分析参数可以从下表中任选一组(也可自定)。对各组参数时的序列,计算:一个正弦周期是 否对应整数个抽样间隔?观察区间是否对应整数个正弦周期? 2-3 对以上几个正弦序列,依次进行以下过程。 2-3-1 观察并记录一个正弦序列的图形(时域)、频谱(幅度谱、频谱实部、频谱虚部)形状、幅度谱的第一个峰的坐标(U ,V )。 2-3-2 分析抽样间隔T 、截断长度N (抽样个数)对谱分析结果的影响; 2-3-3 思考X(k)与X(e j ω)的关系; 2-3-4 讨论用X(k)近似表示X(ej ω)时的栅栏效应、混叠现象、频谱泄漏。 三、主要仪器设备 MATLAB 编程。 专业:________________ 姓名:________________ 学号:________________ 日期:________________ 地点:________________

实验名称:_______________________________姓名:______________学号:__________________ P. 四、操作方法和实验步骤 (参见“二、实验内容和步骤”) 五、实验数据记录和处理 列出MATLAB程序清单,加注释。 六、实验结果与分析 6-1 实验前预习有关概念,并根据上列参数来推测相应频谱的形状、谱峰所在频率(U)和谱峰的数值(V)、混叠现象和频谱泄漏的有无。 6-2 观察实验结果(数据及图形)的特征,做必要的记录。 5-2 用基本理论、基本概念来解释各种现象。 (注: A、黑色部分不要改动。 B、蓝色部分,学生根据本人情况填写。 C、“五、实验数据记录和处理”和“六、实验结果与分析”根据要求(见红色部分),逐条撰写。 D、从第二页起,在每页头部填写实验名称、姓名、学号,标上页码。不够时自行加页。 E、上交纸质报告)

几种常见窗函数及其MATLAB程序实现

几种常见窗函数及其MATLAB程序实现 2013-12-16 13:58 2296人阅读评论(0) 收藏举报 分类: Matlab(15) 数字信号处理中通常是取其有限的时间片段进行分析,而不是对无限长的信号进行测量和运算。具体做法是从信号中截取一个时间片段,然后对信号进行傅里叶变换、相关分析等数学处理。信号的截断产生了能量泄漏,而用FFT算法计算频谱又产生了栅栏效应,从原理上讲这两种误差都是不能消除的。在FFT分析中为了减少或消除频谱能量泄漏及栅栏效应,可采用不同的截取函数对信号进行截短,截短函数称为窗函数,简称为窗。 泄漏与窗函数频谱的两侧旁瓣有关,对于窗函数的选用总的原则是,要从保持最大信息和消除旁瓣的综合效果出发来考虑问题,尽可能使窗函数频谱中的主瓣宽度应尽量窄,以获得较陡的过渡带;旁瓣衰减应尽量大,以提高阻带的衰减,但通常都不能同时满足这两个要求。 频谱中的如果两侧瓣的高度趋于零,而使能量相对集中在主瓣,就可以较为接近于真实的频谱。不同的窗函数对信号频谱的影响是不一样的,这主要是因为不同的窗函数,产生泄漏的大小不一样,频率分辨能力也不一样。信号的加窗处理,重要的问题是在于根据信号的性质和研究目的来选用窗函数。图1是几种常用的窗函数的时域和频域波形,其中矩形窗主瓣窄,旁瓣大,频率识别精度最高,幅值识别精度最低,如果仅要求精确读出主瓣频率,而不考虑幅值精度,则可选用矩形窗,例如测量物体的自振频率等;布莱克曼窗主瓣宽,旁瓣小,频率识别精度最低,但幅值识别精度最高;如果分析窄带信号,且有较强的干扰噪声,则应选用旁瓣幅度小的窗函数,如汉宁窗、三角窗等;对于随时间按指数衰减的函数,可采用指数窗来提高信噪比。表1 是几种常用的窗函数的比较。 如果被测信号是随机或者未知的,或者是一般使用者对窗函数不大了解,要求也不是特别高时,可以选择汉宁窗,因为它的泄漏、波动都较小,并且选择性也较高。但在用于校准时选用平顶窗较好,因为它的通带波动非常小,幅度误差也较小。

窗函数作用

数字信号处理的主要数学工具是博里叶变换.而傅里叶变换是研究整个时间域和频率域的关系。不过,当运用计算机实现工程测试信号处理时,不可能对无限长的信号进行测量和运算,而是取其有限的时间片段进行分析。做法是从信号中截取一个时间片段,然后用观察的信号时间片段进行周期延拓处理,得到虚拟的无限长的信号,然后就可以对信号进行傅里叶变换、相关分析等数学处理。无线长的信号被截断以后,其频谱发生了畸变,原来集中在f(0)处的能量被分散到两个较宽的频带中去了(这种现象称之为频谱能量泄漏)。 为了减少频谱能量泄漏,可采用不同的截取函数对信号进行截断,截断函数称为窗函数,简称为窗。 信号截断以后产生的能量泄漏现象是必然的,因为窗函数w(t)是一个频带无限的函数,所以即使原信号x(t)是限带宽信号,而在截断以后也必然成为无限带宽的函数,即信号在频域的能量与分布被扩展了。又从采样定理可知,无论采样频率多高,只要信号一经截断,就不可避免地引起混叠,因此信号截断必然导致一些误差。 泄漏与窗函数频谱的两侧旁瓣有关,如果两侧瓣的高度趋于零,而使能量相对集中在主瓣,就可以较为接近于真实的频谱,为此,在时间域中可采用不同的窗函数来截断信号。 实际应用的窗函数,可分为以下主要类型: a) 幂窗--采用时间变量某种幂次的函数,如矩形、三角形、梯形或其它时间(t)的高次幂; b) 三角函数窗--应用三角函数,即正弦或余弦函数等组合成复合

函数,例如汉宁窗、海明窗等; c) 指数窗--采用指数时间函数,如形式,例如高斯窗等。 下面介绍几种常用窗函数的性质和特点。 1) 矩形窗 矩形窗属于时间变量的零次幂窗。矩形窗使用最多,习惯上不加窗就是使信号通过了矩形窗。这种窗的优点是主瓣比较集中,缺点是旁瓣较高,并有负旁瓣,导致变换中带进了高频干扰和泄漏,甚至出现负谱现象。 2) 三角窗 三角窗亦称费杰(Fejer)窗,是幂窗的一次方形式。与矩形窗比较,主瓣宽约等于矩形窗的两倍,但旁瓣小,而且无负旁瓣。 3) 汉宁(Hanning)窗 汉宁窗又称升余弦窗,汉宁窗可以看作是3个矩形时间窗的频谱之和,或者说是3个 sine(t)型函数之和,而括号中的两项相对于第一个谱窗向左、右各移动了π/T,从而使旁瓣互相抵消,消去高频干扰和漏能。可以看出,汉宁窗主瓣加宽并降低,旁瓣则显著减小,从减小泄漏观点出发,汉宁窗优于矩形窗.但汉宁窗主瓣加宽,相当于分析带宽加宽,频率分辨力下降。 4) 海明(Hamming)窗 海明窗也是余弦窗的一种,又称改进的升余弦窗。海明窗与汉宁窗都是余弦窗,只是加权系数不同。海明窗加权的系数能使旁瓣达到更小。分析表明,海明窗的第一旁瓣衰减为一42dB.海明窗的频谱

FIR滤波器的窗函数设计法及性能比较

MATLAB课程设计报告 学院:地球物理与石油资源学院 班级: 姓名: 学号: 班内编号: 指导教师: 完成日期: 2013年6月3日

一、 题目 FIR 滤波器的窗函数设计法及性能比较 1. FIR 滤波器简介 数字滤波器是一种用来过滤时间离散信号的数字系统,通过对抽样数据进行数学处理来达到频域滤波的目的。根据其单位冲激响应函数的时域特性可分为两类:无限冲激响应(IIR )滤波器和有限冲激响应(FIR )滤波器。与IIR 滤波器相比,FIR 滤波器的主要特点为: a. 线性相位;b.非递归运算。 2. FIR 滤波器的设计 FIR 滤波器的设计方法主要有三种:a.窗函数设计法;b.频率抽样发;c.最小平法抽样法; 这里我主要讨论在MA TLAB 环境下通过调用信号分析与处理工具箱的几类窗函数来设计滤波器并分析与比较其性能。窗函数法设计FIR 滤波器的一般步骤如下: a. 根据实际问题确定要设计的滤波器类型; b. 根据给定的技术指标,确定期望滤波器的理想频率特性; c. 求期望滤波器的单位脉冲响应; d. 求数字滤波器的单位脉冲响应; e. 应用。 常用的窗函数有 同。 时与布莱克曼窗结果相当时与海明窗结果相同; 时与矩形窗一致;当当885.84414.50]!)2/([1)(120===+=∑∞ =x x x m x x I m m 3.窗函数的选择标准 1. 较低的旁瓣幅度,尤其是第一旁瓣; 2. 旁瓣幅度要下降得快,以利于增加阻带衰减; 3. 主瓣宽度要窄,这样滤波器过渡带较窄。 函数,可定义为是零阶式中Bessel x I n R I N n I n w window Kaiser n R N n N n n w window Balckm an n R N n n w window Ham m ing n R N n n w window Hanning N N N N )()5.2.9()(]) (})]1/(2[1{[)()4()4.2.9()()]14cos(08.0)12cos( 5.042.0[)()3()3.2.9()()]12cos( 46.054.0[)()2() 2.2.9()()]1cos( 5.05.0[)()1(0020ββππππ--=-+--=--=--=

实验三窗函数的特性分析

数字信号处理及实验实验报告 实验题目窗函数的特性分析 姓名MYT 组别班级学号 【实验目的】 分析各种窗函数的时域和频率特性,灵活运用窗函数分析信号频谱和设计FIR数字滤波器。 【实验原理】 在确定信号谱分析、随机信号功率谱估计以及FIR数字滤波器设计中,窗函数的选择对频谱分析和滤波器设计都起着重要的作用。在确定信号谱分析和随机信号功率谱估计中,截短无穷长的序列会造成频率泄漏,影响频谱分析的精度和质量。合理选取窗函数的类型,可以改善泄漏现象。在FIR数字滤波器设计中,截短无穷长的系统单位脉冲序列会造成FIR滤波器的幅度特性产生波动,且出现过渡带。 【实验结果与数据处理】 1、分析并绘出常用窗函数的时域特性波形。 程序如下: clc,clear,close all N=50 figure(1) W1=boxcar(N); stem([0:N-1],W1); figure(2) W2=hanning(N); stem([0:N-1],W2); figure(3) W3=hamming(N); stem([0:N-1],W3); figure(4) W4=blackman(N); stem([0:N-1],W4); figure(5) W5=bartlett(N); stem([0:N-1],W5); figure(6) W6=kaiser(N,2*N); stem([0:N-1],W6);

时域波形图如下: 图 1 矩形窗 图 2 汉宁窗 图 3 汉明窗

图 4 布莱克曼窗 图 5 Bartlett窗 图 6 凯泽窗

2、研究凯泽窗(Kaiser)的参数选择对其时域和频域的影响。 (1)固定beta=4,分别取N=20,60,110。 clc,clear,close all N1=20;N2=60;N3=110; beat=4; figure(1) subplot(3,2,[1,2]) W=kaiser(N1,beat); stem([0:N1-1],W); subplot(3,2,[3,4]); Ww=kaiser(N2,beat); stem([0:N2-1],Ww); subplot(3,2,[5,6]); WW=kaiser(N3,beat); stem([0:N3-1],WW); figure(2) subplot(3,2,[1,2]) W1=fft(W,N1) plot([0:N1-1],abs(fftshift(W1))) subplot(3,2,[3,4]); W2=fft(Ww,N2) plot([0:N2-1],abs(fftshift(W2))) subplot(3,2,[5,6]); W3=fft(WW,N3) plot([0:N3-1],abs(fftshift(W3))) 图7 凯泽窗频域图图8 凯泽窗时域图 (2)固定N=60,分别取beta=1,5,11。 clc,clear,close all beat1=1;beat2=5;beat3=11; N=60; figure(1) subplot(3,2,[1,2])

Parzen窗方法的分析和研究

对Parzen窗/PNN算法的学习和研究报告 姓名:吴潇学号:1333755 1、Parzen窗方法综述、发展历史及现状 模式识别领域的非参数估计方法大致可以分为两类。第一种类型是先估计出概率密度函数的具体形式,然后再利用这个估计出来的概率密度函数对样本进行分类。第二种类型是,不估计具体的概率密度函数,而直接根据样本进行分类。Parzen窗方法就是属于第一种类型的非参数估计方法,概率神经网络(PNN)是它的一种实现方式。Parzen窗方法的基本思想是利用一定范围内的各点密度的平均值对总体密度函数进行估计。 Parzen窗(Parzen window)又称为核密度估计(kernel density estimation),是概率论中用来估计未知概率密度函数的非参数方法之一。该方法由Emanuel Parzen于1962年在The Annals of Mathematical Statistics杂志上发表的论文“On Estimation of a Probability Density Function and Mode”中首次提出。Nadaraya和Watson最早把这一方法用于回归法中。Specht把这一方法用于解决模式分类的问题,并且在1990年发表的论文“Probabilistic neural networks”中提出了PNN网络的硬件结构。Ruppert和Cline基于数据集密度函数聚类算法提出了修订的核密度估计方法,对Parzen窗做了一些改进。 Parzen窗方法虽然是在上个世纪60年代提出来的,已经过去了45年的时间,看上去是一种很“古老”的技术,但是现在依然有很多基于Parzen窗方法的论文发表。这说明Parzen 窗方法的确有很强的生命力和实用价值,虽然它也存在很多缺点。 2、Parzen窗方法和概率神经网络 Parzen窗方法就是基于当样本个数n非常大的时候,有公式成立这样的一个事实而提出的。通过计算在一个区域R内的频数k/n,用这个频数来估计这一点的频率,从而得到这一点的概率。当n趋于无穷大的时候,p(x)等于该点的实际概率。这种方法就是模式识别领域中的非参数估计方法。 Parzen窗方法就是通过构造一系列的区域:,在这些区域内计算k/n。记V n为区域R n的体积,k n为落在区域R n中的样本个数,表示对的第n次估计,于是有: 为了保证能够收敛到,必须满足以下3个条件: 1)2)3) Parzen窗方法的实质就是通过对上面的区域R n,每次按照来构造区域序列,使区域逐渐收缩到一个给定的初始区间。它不断收缩区域,按照公式把区域不断缩小,而不关心该

实验六、用窗函数法设计FIR滤波器分析解析

实验六 用窗函数法设计 FIR 滤波器 一、实验目的 (1) 掌握用窗函数法设计FIR 数字滤波器的原理和方法。 (2) 熟悉线性相位FIR 数字滤波器特性。 (3) 了解各种窗函数对滤波特性的影响。 二、实验原理 滤波器的理想频率响应函数为H d (e j ω ),则其对应的单位脉冲响应为: h d (n) = ?-π π ωωωπ d e e H n j j d )(21 窗函数设计法的基本原理是用有限长单位脉冲响应序列h(n)逼h d (n)。由于h d (n)往往是无 限长序列,且是非因果的,所以用窗函数。w(n)将h d (n)截断,并进行加权处理: h(n) = h d (n) w(n) h(n)就作为实际设计的FIR 数字滤波器的单位脉冲响应序列,其频率响应函数H(e j ω )为: H(e j ω ) = ∑-=-1 )(N n n j e n h ω 如果要求线性相位特性,则h (n )还必须满足: )1()(n N h n h --±= 可根据具体情况选择h(n)的长度及对称性。 用窗函数法设计的滤波器性能取决于窗函数w(n)的类型及窗口长度N 的取值。设计过程中,要根据对阻带最小衰减和过渡带宽度的要求选择合适的窗函数类型和窗口长度N 。 三、实验步骤 1. 写出理想低通滤波器的传输函数和单位脉冲响应。 2. 写出用四种窗函数设计的滤波器的单位脉冲响应。 3. 用窗函数法设计一个线性相位FIR 低通滤波器,用理想低通滤波器作为逼近滤波器,截止频率ωc =π/4 rad ,选择窗函数的长度N =15,33两种情况。要求在两种窗口长度下,分别求出h(n),打印出相应的幅频特性和相频特性曲线,观察3dB 带宽和阻带衰减; 4 用其它窗函数(汉宁窗(升余弦窗)、哈明窗(改进的升余弦窗)、布莱克曼窗) 设计该滤波器,要求同1;比较四种窗函数对滤波器特性的影响。 四、实验用MATLAB 函数 可以调用MATLAB 工具箱函数fir1实现本实验所要求的线性相位FIR-DF 的设计,调用一维快速傅立叶变换函数fft 来计算滤波器的频率响应函数。

声发射信号的谱分析和相关分析

声发射信号的谱分析和相关分析 陈玉华,刘时风 耿荣生* 沈功田** (清华大学机械系,北京100084) *(北京航空工程技术研究中心, 北京100076) **(国家质量技术监督局锅检中心,北京100027) 摘要:本文主要阐述了谱分析方法和相关分析方法在声发射信号分析中的应用,给出了谱分析和相关分析的基本原理,并分别举例子做了分析讨论。 关键词:声发射;谱分析;FFT;相关分析 SPECTRAL ANALYSIS AND CORRELATION ANALYSIS FOR ACOUSTIC EMISSION SIGNAL CHEN Yuhua,LIU Shifeng (Tsinghua University,Beijing 100084,China) Abstract:A review is given to both spectral analysis and correlation analysis of acoustic emission signal. The principles of spectral analysis and correlation analysis are presented and discussed with some examples. Keywords: acoustic emission;spectral analysis;FFT;correlation analysis 材料或结构受外力或内力作用产生变形或断裂,以弹性波形式释放出应变能的现象称为声发射。声发射是一种常见的物理现象,例如岩石开裂,骨头断裂和各种固体材料断裂过程中发出的声音都是声发射信号,图1为典型的声发射信号。实际应用中,由于外界的干扰以及声发射接收系统的原因(比如传感器的频率特性等),接受得到的声发射信号中除了含有声发射信号特征信息外,还存在着大量的干扰和噪声信号。因此,要想复杂的信号中提取出需要的特征声发射信号,就需要应用一些分析手段来对信号进行处理。 图1. 典型声发射信号

matlab 实验四 信号的谱分析

实验四 信号的谱分析 一、实验目的: 1、 掌握DTFT 原理及其程序实现,学习用DTFT 对信号进行谱分析。 2、 掌握DFT 原理及其程序实现,学习用DFT 对信号进行谱分析。 3、 熟悉FFT 算法原理和掌握fft 子程序的应用。 4、 掌握DFT 的性质。 二、实验内容: 1、 对于序列x(n)=[3,1,7,2,4],在-π ~ π内取64个频点,利用矩阵操作求其DTFT ,画出它 的幅频特性和相频特性。并把x(n)的位置零点右移一位,再求DTFT ,画出其幅频特性和相频特性,讨论移位对于DTFT 的影响。 2、 利用矩阵操作求1题中序列的DFT ,并画图。 3、 利用Matlab 自带的fft 函数求1题中序列的DFT ,并与1题中求出的DTFT 相比较。 4、 已知序列x(n)=[2,3,4,5]位于主值区间,求其循环左移一位的结果,画出循环移位的中间 过程。 提示:左右各拓展一个周期,nx=[-4:7];采用stem 函数画图。 5、 已知序列x(n)=[1,2,3,4,5,6]位于主值区间,循环长度为8,确定并画出循环折叠 y(n)=x((-n)8);如果循环长度为6,确定并画出循环折叠y(n)=x((-n)6)。 6、 已知序列x(n)=[2,1,5,3]位于主值区间,h(n)=nR 4(n),计算循环卷积1()()()c y n h n x n =⑥, 2()()()c y n h n x n =⑩和线性卷积()()*()y n h n x n =,画出1()c y n 、2()c y n 和()y n 的波 形图,观察循环卷积和线性卷积的关系。 三、实验报告要求: 1.实验原理: 序列x (n)的频谱定义为:n j n e n x n x F j X ωω-∞ -∞ =∑= =)())(()( πωπ≤≤-;也称 为它的离散时间傅立叶变换。可以认为,序列中的每一个样本x(n)对频谱产生的贡献为 n j e n x ω-)( ,把整个序列中所有样本的频谱分量按向量(即复数)叠加起来,就得到序 列的频谱X(j ω)。按定义: ()()ωωωωω322j j j n j e e e e n x j X ----+∞ ∞ -++-==∑ ω的基频在[-π,π]范围内,可任意地连续取值,代入上式,即可求出一系列的X(j ω), 因为X(j ω)是复数,可以分解为幅度和相位,并画出幅度和相位随频率变化的曲线。 频点的设定:在左闭右开奈奎斯特频率区间ωωπ<≤-中设定K 个等间隔频点的通用 公式:(K 可奇可偶) 2/)1(:2/)1(---=K K k K k d k π ωω2=?= 程序: x=[3,1,7,2,4]; nx1=-1:3; nx=0:4 K=64;dw=2*pi/K;

实验六 用窗函数设计FIR滤波器(附思考题程序)

实验六 用窗函数设计FIR 滤波器 1.实验目的 (1) 熟悉FIR 滤波器设计的方法和原理 (2) 掌握用窗函数法设计FIR 滤波器的方法和原理,熟悉滤波器的特性 (3) 了解各种窗函数滤波器特性的影响 2.实验原理 FIR 滤波器的设计方法主要有三种:窗函数法、频率取样法、切比雪夫等波纹逼近法。FIR 滤波器的设计是要寻求一系统函数)(z H ,使其频率响应)(ωj e H 逼近滤波器要求的理想频率响应()j d H e ω,其对应的单位脉冲响应)(n h d 。 (1)用窗函数设计FIR 滤波器的基本方法 在时域用一个窗函数截取理想的)(n h d 得到)(n h ,以有限长序列)(n h 近似逼近理想的)(n h d ;在频域用理想的)(ωj d e H 在单位圆上等角度取样得到h(k),根据h(k)得到H(z)将逼近理想的Hd(z)。 设理想滤波器)(ωj d e H 的单位脉冲响应为)(n h d 。以低通线性相位FIR 数字滤波器为 例。 )(n h d 一般是无限长的、非因果的,不能直接作为FIR 滤波器的单位脉冲响应。要想得到一个因果的有限长的滤波器h(n),最直接的方法是截断)()()(n w n h n h d =,即截取为有限长因果序列,并用合适的窗函数进行加权作为FIR 滤波器的单位脉冲响应。按照线性相位滤波器的要求,h(n)必须是偶对称的。对称中心必须等于滤波器的延时常数,即 用矩形窗设计的FIR 低通滤波器,所设计滤波器的幅度函数在通带和阻带都呈现出振荡现象,且最大波纹大约为幅度的9%,(现象称为吉布斯(Gibbs )效应)。 (2)典型的窗函数 (a )矩形窗(Rectangle Window) 其频率响应和幅度响应分别为: 21)2/sin()2/sin()(--=N j j e N e W ωωωω,) 2/sin()2/sin()(ωωωN W R = 在matlab 中调用w=boxcar(N)函数,N 为窗函数的长度 (b )三角形窗(Bartlett Window) 其频率响应为:212])2/sin()4/sin([2)(--=N j j e N N e W ωω ωω 在matlab 中调用w=triang(N)函数,N 为窗函数的长度 (c )汉宁(Hanning)窗,又称升余弦窗 其频率响应和幅度响应分别为:

常见的几个函数

几种常见的函数及其应用 1.迭代函数 例1 若()f x = 1()()f x f x =,1()(())n n f x f f x +=,求()n f x 的表达式。 例2已知()1x f x x = +,0x ≥,若1()()f x f x =,1()(())n n f x f f x +=,n N +∈,则 2014()f x 的表达式为 . 2.高斯函数:(取整函数)用[]x 表示不超过x 的最大整数,例如[]1.21=,[]00=, []1.42-=-,则()f x 例 设x R ∈,[]x 表示不超过x 的最大整数. 若存在实数t ,使得[]1t =,2[]2t =,…,[]n t n =同时成立.... ,则正整数n 的最大值是 A .3 B .4 C .5 D .6 8.(2013湖北卷文科)x 为实数,[]x 表示不超过x 的最大整数,则函数 ()[]f x x x =-在R 上为 A.奇函数 B.偶函数 C.增函数 D.周期函数 3.取小数部分函数 例 对任意x R ∈,函数{}[]()f x x x x ==-,例如{}[]1.2 1.2 1.2 1.210.2=-=-=, {}333330=-=-=,{}[]1.2 1.2 1.2 1.2(2)0.8-=---=---=,则()f x 的图像是 4.符号函数:10()sgn 0010x f x x x x >?? ===??-

例 设x R ∈,定义符号函数1,0sgn 0,01,0x x x x >?? ==??-

(实验三窗函数的特性分析)

实验报告 实验课程:数字信号处理实验开课时间:2020—2021 学年秋季学期 实验名称:窗函数的特性分析实验时间:2020年9月16日星期三 学院:物理与电子信息学院年级:大三班级:182 学号:1843202000234 姓名:武建璋 一、实验预习

(2)固定N=60,分别取beta=1,5,11。clc,clear,close all beat1=1;beat2=5;beat3=11; N=60; figure(1) subplot(3,2,[1,2]) W=kaiser(N,beat1); stem([0:N-1],W); subplot(3,2,[3,4]); Ww=kaiser(N,beat2); stem([0:N-1],Ww); subplot(3,2,[5,6]); WW=kaiser(N,beat3); stem([0:N-1],WW); figure(2) subplot(3,2,[1,2]) W1=fft(W,N) plot([0:N-1],abs(fftshift(W1))) subplot(3,2,[3,4]); W2=fft(Ww,N) plot([0:N-1],abs(fftshift(W2))) subplot(3,2,[5,6]); W3=fft(WW,N) plot([0:N-1],abs(fftshift(W3)))

4、某序列为x[k] = (11πk/20) + cos(9πk/20),使用fft函数分析其频谱。(1) 利用不同宽度N的矩形窗截短该序列,N分别为20,40,160,观察不同长度N 的窗对谱分析结果的影响。 clc,clear,close all N1=20;N2=40;N3=160; k1=0:N1;k2=0:N2;k3=0:N3; X1=0.5.*cos((11*pi*k1)/20)+cos((9*pi*k1)/20) X2=0.5.*cos((11*pi*k2)/20)+cos((9*pi*k2)/20) X3=0.5.*cos((11*pi*k3)/20)+cos((9*pi*k3)/20) figure(1) subplot(3,2,[1,2]) W1=fft(X1,N1) plot([0:N1-1],abs(fftshift(W1))) subplot(3,2,[3,4]); W2=fft(X2,N2) plot([0:N2-1],abs(fftshift(W2))) subplot(3,2,[5,6]); W3=fft(X3,N3) plot([0:N3-1],abs(fftshift(W3))) figure(2) subplot(3,2,[1,2]) W=abs(fftshift(W1)) stem([0:N1-1],W); subplot(3,2,[3,4]); Ww=abs(fftshift(W2))

相关文档
最新文档