高强钢断裂韧性与裂纹扩展机制研究

高强钢断裂韧性与裂纹扩展机制研究
高强钢断裂韧性与裂纹扩展机制研究

高强钢断裂韧性与裂纹扩展机制研究

凭借优异的综合力学性能,高强钢成为目前应用最广泛的金属结构材料,在当今及未来工业发展中占据重要的地位。高强钢在服役过程中长期经受循环载荷作用,其疲劳与断裂问题成为高强钢的重点研究方向。

随着断裂力学发展,损伤容限设计成为航空、航天等国防重要工业领域的关键构件疲劳断裂控制方法。材料的疲劳裂纹扩展性能与断裂韧性是构件损伤容限设计基础,然而目前对高强钢疲劳裂纹扩展及断裂韧性的研究仍不完善。

因此,本研究选取一种典型AISI 4340高强钢为研究对象,基于能量原理深入探讨断裂韧性的评价方法及裂纹扩展微观机制;以Paris公式为基础,建立了改进的疲劳裂纹扩展速率公式,并提出一种快速预估疲劳性能的判据;通过深入探究疲劳裂纹扩展微观机制,由此形成疲劳裂纹扩展三阶段的宏观力学模型。本文试图通过对高强钢中疲劳裂纹扩展及断裂韧性等相关问题的理解,尝试将所研究理论直观地应用到工程领域,为工程优化选材及关键构件可靠性设计提供具有一定价值的参考依据。

提出了三种评价金属材料平面应变断裂韧性KIC的方法。1)基于裂纹扩展初始阶段到临界失稳状态消耗能量的分配,建立了试样厚度B与断裂韧性KIC的定量关系,借助此公式可以实现小尺寸试样估算断裂韧性KIC,此项工作可应用于高韧性金属材料的断裂韧性评价。

2)以试样整体断裂过程中的能量消耗,推导出断裂能密度WF与剪切唇宽度s 的定量关系。其中WF在最大剪切唇宽度处达到最低,此时处于正断与切断的竞争平衡,揭示了裂纹扩展过程中遵循最低能量密度原理,并以此建立了剪切唇宽度与断裂韧性的定量关系。

3)从冲击韧性与断裂韧性的能量消耗方式及共同遵循的能量原理出发,提出两种韧性剪切唇宽度之间的线性关系,由此获得高强钢中冲击韧性与断裂韧性的定量关系式。探讨了不同强韧性钢中裂纹扩展微观机制的转变过程。

发现随着韧性提高,AISI 4340钢微观断裂特征从解理-韧窝混合型断口向韧窝连续转变,三维XRT图像显示裂纹扩展方式由跳跃性向连续性逐步演化。低韧性钢中,裂纹在应力控制下以解理断裂方式连接其尖端附近的微裂纹,裂纹扩展速率加快;高韧性钢中,裂纹在应变主导下钝化扩展,且与附近聚合长大的微孔连接形成新的裂纹尖端;上述两种裂纹扩展微观机制可同时出现中等韧性钢中,此时应力应变存在竞争平衡,裂纹以交替方式向前扩展。

高强钢的断口微观形貌可分为三种典型特征,其形貌特征的形成过程与能量消耗有关,基于此建立了高强钢断裂韧性与断口微观形貌特征之间的定量关系。建立了具有预测性的疲劳裂纹扩展速率公式及疲劳性能优化判据。

以Paris公式为基础,引入强韧性参量,推导出改进的疲劳裂纹扩展速率公式。阐述影响材料疲劳裂纹扩展性能的两大因素,疲劳裂纹扩展的变化过程取决于断裂韧性,疲劳裂纹失稳扩展的临界速率由抗拉强度控制。

凭借该公式可以由材料的静态力学性能预测疲劳裂纹扩展性能,这在高强钢中得到了验证。此外,提出一种疲劳裂纹扩展性能与材料强韧性的定量判据,基于该判据可以在强韧性倒置关系曲线中选出最优疲劳性能的材料,并能够阐述材料同步强韧化可提高疲劳性能的本质。

该公式与判据在合金钢、钛合金及铝合金中都得到准确的验证,为材料的疲劳性能优化提供理论依据。探索了疲劳裂纹扩展微观机制及宏观力学模型。

在断口微观形貌中发现,疲劳裂纹扩展稳态阶段出现疲劳辉纹与韧窝特征共

存的现象,且韧窝数量随着应力场强度因子升高而逐渐增多;三维XRT图像显示裂纹尖端前方出现了大量微裂纹,侧面形貌则表现出裂纹尖端的不连续微孔。基于裂纹尖端应力场分析,提出疲劳裂纹扩展过程由钝化复锐机制向微孔聚合机制逐渐转化。

以此混合机制为基础,建立宏观力学模型来描述疲劳裂纹扩展三阶段,该模型在典型工程合金中得到了较准确的验证。其中ΔKv是钝化复锐-微孔聚合转变机制的平衡位置,成为疲劳裂纹扩展的安全参量,并且提出三种获得ΔKv值的方法。

断裂韧性实验报告

断裂韧性测试实验报告 随着断裂力学的发展,相继提出了材料的IC K 、()阻力曲线J J R 、)(阻力曲线CTOD R δ等一些新的力学性能指标,弥补了常规试验方法的不足,为工程应用提供了可靠的断裂判据和设计依据。下面介绍下这几种方法的测试原理及试验方法。 1、三种断裂韧性参数的测试方法简介 1. 1 平面应变断裂韧度IC K 的测试 对于线弹性或小范围的I 型裂纹试样,裂纹尖端附近的应力应变状态完全由应力强度因子I K 所决定。I K 是外载荷P ,裂纹长度a 及试样几何形状的函数。在平面应变状态下,当P 和a 的某一组合使I K =IC K ,裂纹开始失稳扩展。I K 的临界值IC K 是一材料常数,称为平面应变断裂韧度。测试IC K 保持裂纹长度a 为定值,而令载荷逐渐增加使裂纹达到临界状态,将此时的C P 、a 代入所用试样的I K 表达式即可求得IC K 。 IC K 的试验步骤一般包括: (1) 试样的选择和准备(包括试样类型选择、试样尺寸确定、试样方位选择、试样加工及疲 劳预制裂纹等); (2) 断裂试验; (3) 试验结果的处理(包括裂纹长度a 的测量、条件临界荷载Q P 的确定、实验测试值Q K 的 计算及Q K 有效性的判断)。

1. 2 延性断裂韧度R J 的测试 J 积分延性断裂韧度是弹塑性裂纹试样受I 型载荷时,裂纹端点附近区域应力应变场强度力学参量J 积分的某些特征值。测试J 积分的根据是J 积分与形变功之间的关系: a B U J ??-= (1-1) 其中U 为外界对试样所作形变功,包括弹性功和塑性功两部分,a 为裂纹长度,B 为试样厚度。 J 积分测试有单试样法和多试验法之分,其中多试样法又分为柔度标定法和阻力曲线法。但无论是单试样法还是多试样柔度标定法,都须先确定启裂点,而困难正在于此。因此,我国GB2038-80标准中规定采用绘制R J 阻力曲线来确定金属材料的延性断裂韧度。这是一种多试样法,其优点是无须判定启裂点,且能达到较高的试验精度。这种方法能同时得到几个J 积分值,满足工程实际的不同需要。 所谓R J 阻力曲线,是指相应于某一裂纹真实扩展量的J 积分值与该真实裂纹扩展量的关系曲线。标准规定测定一条R J 阻力曲线至少需要5个有效试验点,故一般要58件试样。把按规定加工并预制裂纹的试样加载,记录?-P 曲线,并适当掌握停机点以使各试样产生不同的裂纹扩展量(但最大扩展量不超过0.5mm )。测试各试样裂纹扩展量a ?,计算相应的J 积分,对试验数据作回归处理得到R J 曲线。R J 阻力曲线的位置高低和斜率大小代表了材料对于启裂和亚临界扩展的抗力强弱。 R J 阻力曲线法测试步骤一般包括: (1) 试样准备

管线钢综述

综述 管线钢指用于输送石油、天然气等的大口径焊接钢管用热轧卷板或宽厚板。管线钢在使用过程中,除要求具有较高的耐压强度外,还要求具有较高的低温韧性和优良的焊接性能。随着石油、天然气消费量的增长,其输送的重要性显越发突出,尤其是长距离输送。而提高输送效率,提高输送的经济效益就要通过加大输送管道口径,提高输送压力来解决。从而提高了对高级别、高性能管线钢的需求。 国外高级别管线钢呈现强劲的发展趋势,从20世纪70年代初期X65管线钢开始投入使用,80年代X70级管线钢逐渐被引入工程建设,1985年API标准中增加了X80钢级,随后X80开始部分在一些管线工程中使用,并很快就投入到X100和X120管线钢的开发试制工作。有关X100最早的研究报告发表于1988年,通过大量工作已形成很好的技术体系。高级别管线钢概述我国管道建设正处于大力发展阶段,因此管线钢的发展也非常迅速。20世纪50~70年代管线钢主要采用A3钢和16Mn钢;70年代后期和80年代采用从日本进口的TS52K钢(相当于X52级钢);90年代,管线钢主要采用的X52、X60、X65级热轧板卷主要由宝钢和武钢生产供应。“八五”期间成功研制和开发了X52~X70级高韧性管线钢,并逐步得到广泛应用。西气东输工程采用了X70级管线钢并逐渐向X80过度。国内管线钢生产技术现状分析由于市场要求单管输气量不断提高。我国早期四川、西北地区的天然气管道采用X52及以下钢级、426mm以下管径的管线钢管,设计年输气量在10亿m3/a以下;陕京一线第一次采用了X60钢级、

D660mm管线钢管设计年输量提高到33亿m3/a;西气东输一线采用X70钢级、D1016mm管线钢管,设计年输量提高到170亿m3/a;最近建设的西气东输二线管道,采用X80钢级、D1219 mm管线钢管,设计年输量提高到300亿m3/a。 这种单管输气量不断提高的趋势仍在持续。当前国际上新一轮巨型天然气长输管道,单管输气量将达到450亿-500亿m3/a的水平。干线一般采用X80钢级,具有输送距离长、采用更高工作压力和大管径输送的特点。 一个具有代表性的项目是正在建设的俄罗斯巴甫年科沃-乌恰天然气管道。管线长度1100km,采用1420mm管径和K65(类似于X80)钢级,输送压力11.8MPa,单管设计输气量约500亿m3/a,计划于2012年第三季度进行系统调试。 另一个有代表性的项目是拟在北美建设的阿拉斯加北坡天然气外输管道,管道的输送能力约465亿m3/a,管线长度2737km,采用1219mm管径和X80钢级,将阿拉斯加北坡丰富的天然气资源输送到加拿大和北美市场。 我国也已在规划研究未来多条西气东输管道(西三线~西八线)的方案。包括将单管输气量提高到400亿~500亿m3/a的多种方案都在研究之中。 由于西气东输二线采用的X80钢级、管径1219mm,12MPa工作压力的方案只能达到300亿m3/a的输气能力,要将输气能力进一步提高到400亿-500亿m3/a,只能进一步提高输送压力和管径。

断裂韧性

断裂韧性(fracture toughness) 带裂纹的金属材料及其构件抵抗裂纹开裂和扩展的能力。从20世纪50年代开始在欧文(G.R.Irwin)等的努力下,形成了线弹性断裂力学,随后又发展成弹塑性断裂力学。在用它们对断裂过程进行分析和不断完善实验技术的基础上, 逐步形成了平面应变断裂韧性K IC 、临界裂纹扩展能量释放率G IC 、临界裂纹顶端 张开位移δ IC 、临界J积分J IC 等断裂韧性参数。其中下标I表示I型即张开型裂 纹,下标c表示临界值。这些参数可通过实验测定,其值越高,材料的断裂韧性越好,裂纹越不易扩展。 断裂韧性参数 (1)平面应变断裂韧性K IC 。欧文分析平面问题的I型裂纹尖端区域的各个应 力分量中都有一个共同的因子K I ,其值决定着各应力分量的大小,故称为应力强 度因子。K IC =yσ(πa)1/2,式中σ为外加拉应力;a为裂纹长度,y为与裂纹形状、 加载方式和试件几何因素有关的无量纲系数。K I 增大到临界值K IC ,K I ≥K IC 时,裂 纹失稳扩展,迅速脆断。 (2)临界裂纹扩展能量释放率G IC 。裂纹扩展能量释放率G I =-(aμ/aA),式中 μ为弹性能,A为裂纹面积。平面应力条件下,G I=k I2/E;平面应变条件下, G I =(k I 2/E)(1-v2),式中E为弹性模量,v为泊松比。G I 是裂纹扩展的动力,G IC 增 大到临界值G。即G I ≥G IC 时,裂纹将失稳扩展。 (3)临界裂纹顶端张开位移δ C 。裂纹上、下表面在拉应力作用下,裂纹顶端 出现张开型的相对位移叫裂纹顶端张开位移δ,δ增大到临界值δ C ,裂纹开始扩展。 (4)临界J积分J IC 。弹塑性断裂力学中,一个与路径无关的能量线积分 叫做J积分。式中r为积分回路,由裂纹下边缘到上边缘,以逆时针方向为正,ds为弧元,ω为单位体积应变能,u为位移矢量,T是边界 条件决定的应力矢量。线弹性和弹塑性小应变条件下,I型裂纹的J积分J I =-B-1(a μ/aA),式中B为试样厚度,a为裂纹长度。J I增大到J IC临界值,m即当J I≥J IC 时,裂纹开始扩展。 断裂韧性参数还有动态断裂韧度K Id ,应力腐蚀临界强度因子K I scc 、疲劳裂 纹扩展速率da/dN(mm/周)等。各种参数中K Ic 应用最为普遍。 K Ic 的测定各国的测试标准基本上都参考美国ASTME399。中国是 GB4161—84。按GB7732—87金属板材表面裂纹断裂韧度K Ic 试验方法规定的标准试样是紧凑拉伸试样和弯曲试样的尺寸如图1所示。

管线钢综述

管线钢综述 欧阳高凤 摘要:本文对管线钢的大概发展历程、成分冶金、显微组织、力学性能、轧制工艺、焊接性及焊接工艺进行了论述,从而能够了解管线钢的发展,为课题研究打下基础。 关键词:管线钢成分显微组织力学性能生产工艺焊接工艺发展 1 管线钢的大概发展历程 半个多世纪以来,随着石油和天然气的开发和需求量的增加,从而带动了管线钢的发展。由于管道运输具有经济、方便、安全等特点,进入二十一世纪以来,管线钢呈现蓬勃发展的趋势。我国管线钢的应用和起步较晚,过去已铺设的油、气管线大部分采用Q235和16Mn钢。我国开始按照API标准研制X60、X65管线钢,并成功地与进口钢管一起用于管线铺设。90年代初宝钢、武钢又相继开发了高强高韧性的X70管线钢,随后成功研制了X80管线钢,X70和X80管线钢已大量应用于油气管道运输中。近几年开发的高强韧的X100和X120管线钢还处在试验阶段,应用方面还比较少。 在我国,石油、天然气的运输基本上已经实现了管道运输。但是与世界上工业发达国家相比,国内的管道运输在质量上和数量上都存在很大差距。中国虽然为世界的主要石油出产国之一,但输油输气的管道不足世界管线总长度的百分之一,而且普遍存在输送压力低、管径小的缺点。随着我国油气资源的进一步开发利用,西气东输的工程实施,油气管线向长距离、大口径发展是必然趋势。下面从管线钢的冶金成分、显微组织、力学性能、生产工艺及焊接工艺等方面,进一步较详细的介绍管线钢的发展。 2 管线钢的冶金成分的发展 管线钢和其他的微合金钢一样,都是在传统的C-Mn钢的基础上加上合金元素。合金元素主要以Nb、Ti、V或少量的Mo、Cu、Ni、Cr及B为主,以这些合金元素来对管线钢进行合金设计,以达到不同的强度等级及性能要求。 管线钢的冶金成分的发展大致经历三个阶段。第一阶段为1950年以前,是以C-Mn和C-Mn-Si钢为主的普通碳钢,强度级别在X52以下。第二阶段为1950-1972年,在C-Mn钢的基础上引入微量的Nb、Ti、V,通过相应的热轧和轧后处理工艺,提高了钢的综合性能,生产出X60及X65级别的钢。第三阶段为1972年至今,这一阶段合金化的发展特点为微合金的多元化,相继又加入少量的Mo、Cu、Ni、Cr及B,结合控轧控冷的新工艺,生产出综合性能优异的管线钢,主要以X70和X80管线钢为主,X100和X120管线钢在试验研究阶段。 下面具体论述以下管线钢中这些合金元素或微合金元素的作用及添加量。2.1 碳 碳是最传统的合金元素、强化元素,而且也是最经济的元素,但它对钢的可焊性影响很大。碳是影响焊接性能最敏感的一个元素,所以20多年来管线钢的碳含量是逐步趋向于低碳或超低碳方向发展。而且随着含碳量的增加,韧性下降,偏析加剧,抗HIC和SSC的能力下降。因此,随着管线钢级别的提高,碳含量应逐渐降低。管线钢的含碳量从开始的1.0%左右逐步降低,最低可达到0.01%。

WC_钢基复合材料断裂韧性与断口形貌特征

收稿日期:1998-08-29 第一作者:男,1946年生,硕士,教授*甘肃省自然科学基金资助项目 WC -钢基复合材料断裂韧性与断口形貌特征* 杨瑞成 王军民 车 骥 (甘肃工业大学材料工程系,兰州 730050) 摘 要 采用单边切口梁法(SENB)测试了12种工艺状态的WC 增强钢基复合材料的断裂韧性K c ,并用扫描电镜观察了其断口形貌.试验表明SENB 法对于WC-钢基合金的断裂韧性测试适用可行,数据稳定.研究发现数量众多(40%左右)的硬质相对材料的断裂韧性起决定性作用,细化硬质相及加强硬质相-基体交互作用有利于材料断裂韧性的提高.断口的主要特征为WC 解理、基体准解理及部分分散韧窝和韧窝带. 关键词 复合材料 断裂韧性 断口 WC 硬质相 钢基体 分类号 TG407 碳化物-钢基复合材料已成为一种新型工程材料,不仅在机械工程,而且在其它行业如冶金、矿山和能源等行业,展示了其广阔的应用前景.作为一种能承受繁重负荷、高磨损工况的特殊结构材料,其常规力学性能已有较多研究[1~3],但是关于断裂韧性及断口形貌的报道甚少[4~5].究其原因,一般认为此类材料介于钢铁材料与陶瓷材料之间.钢铁材料的断裂韧性测试早已成熟,常用三点弯曲及紧凑拉伸的试验方法;陶瓷材料则鉴于其高脆性及工程需求,其不同于塑性材料(如软钢)的断裂韧性测试方法正在研究之中[6~8].碳化物-钢基复合材料从化学组成及制作方法上,更近于陶瓷材料,但目前尚无公认的、可靠的断裂韧性试验方法.本文结合材料性质,通过分析对比,尝试用单边切口梁法(SENB )[6]测试并考察了不同状态下WC -钢基复合材料的断裂韧性,以及扫描电镜下的断口微观形貌特征. 1 实验方法 1.1 材料和试样 试验材料为WC-CrNiMo 钢基合金,WC 粒子为硬质相,中碳CrN iMo 合金为基体相,WC 粒子约占35%~45%.此类材料是将原料混粉,经特殊工艺烧结成型(烧结态),有的再锻造(锻打态),然后经不同工艺的热处理,加工成40mm ×8mm ×4mm 的扁平试样,横向一侧用<0.11的钼丝线切割,开一定深度的切口. 1.2 材料的工艺及热处理状态 试样淬火温度和回火温度分别为960℃,1000℃,1040℃和200℃,250℃,300℃,原始状态为烧结态和锻打退火态,共12种工艺状态. 第24卷第4期 1998年12月甘 肃 工 业 大 学 学 报Journal of Gansu University of Technology Vol.24No.4Dec.1998

管线管断裂韧性试验SAMSS-022

材料系统说明01-SAMSS-022 1997年2月26日管线管断裂韧性试验方法 Saudi Aramco 案头标准 目录 1范围 2 2冲突与分歧 2 3参考文献 2 4管线管等级 2 5测试方法 3 6夏氏冲击功测试方法 3 7重力落锤冲击试验 4 8重新测试 4 9报告 4 10标准 4 1/4

文件范围:01-SAMSS-022 出版日期:年月日 计划再版:年月日 1 范围 本规范规定了适用API 5L管线管的冲击测试方法,当Saudi Aramco工程标准有要求时,名义直径大于或等于6英寸,壁厚为6.3mm到3.8mm(0.25到1.5英寸),对于野外铺设的管线管、流管、干线管,工作条件在0℃以上,应符合本规范要求。 本规范是01-SAMSS-033和01-SAMSS-035的增补要求,并且应附加于相关要求,引用要求和订单之兵团。本说明不适用于平端管线管。 2 冲突与分歧 2.1 当本说明与其它适用的Saudi Aramco材料系统说明(SAMSSs)、工程标准 (SAESs)、标准图样(SASDs),或工业标准、代号和形式菜任何冲突时,应 由公司或习方代理人写书面材料,通过Saudi Aramco咨询服务部的主管 人来解决。 2.2 将与本规范有偏差的全部要求用书面材料交给公司或买方代理代,他将按 公司内部程序SAEP-302处理并将这些要求转交给Dhahram市的Saudi Aramco咨询服务部的主管人。 3 参考文献 本规范所涉及的材料、设备、设计、结构、维护和设备及修理的选择应遵从下列参考文献的最新版本,除非人其它通知或这些文件指定的章节有变动。 3.1 Saudi Aramco参考文献 Saudi Aramco工程程序 SEAP-302 为获得一项Saudi Aramco强制的设计要求的指导 Saudi Aramco材料系统说明 01-SAMSS-033,API 5L 电焊管线管 01-SAMSS-035,API 管线管 3.2 工业代号和标准 美国石油学会 API 5L-SR 5&6 管线管说明,附加要求5(SR5)和附加要求6(SR6) 4 流体管分类 符合本说明范围的流体管,在这里根据在不同类型流的条件下服役所要求的冲击强度来分类。 2/4

断裂韧性基础

第六章 断裂韧性基础 第一节Griffith 断裂理论 第二节裂纹扩展的能量判据 能量释放率G 裂纹扩展单位面积时,系统所提供的弹性能量 U A ??是裂纹扩展的动力,此力叫裂纹扩展力或称为裂纹扩展时的能量释放率。以1G 表示(1表示Ⅰ型裂纹扩展)。G 与外加应力,试样尺寸和裂纹有关,而裂纹扩展的阻力为 2()s p γγ+,随 1,a G σ↑→↑→增大到某一临界值时,1G 能克服裂纹失稳扩展阻力,则裂纹使失稳扩 展而断裂,这个1G 的临界值它为1c G ,称为断裂韧性。表示材料组织裂纹试稳扩展时单位面积所消耗的能量。 平面应力下: 2 211,C c C a a G G E E σπσπ= = 平面应变下: 2 22211(1)(1),C c C a v v a G G E E σπσπ--== G 的单位1 2 MPa m - ?。 第三节 裂纹顶端的应力场 可看成线弹性体12005001000s s MPa MPa σσ?? =??=-??? 玻璃,陶瓷高强钢 的横截面中强钢低温下的中低强度钢 6.3.1三种断裂类型 ?? ??? 张开型断裂滑开型断裂撕开型断裂 最危险Ⅰ型 6.3.2Ⅰ型裂纹顶端的应力场 无限大平板中心含有一个长为2a 的穿透裂纹,受力如图 欧文(G 。R 。Irwin )等人对Ⅰ型裂纹尖端附近的应力应变进行了分析,提出应力应变场的

数字解析式,由此引出了应变场强度因子 1 K的概念。并建立了裂纹失稳扩展的K判据和断 裂韧性 1C K。 若用极坐标表达式表达,则有近似数字表达式: 当裂尖某点不确定,即,rθ一定后,应力大小均由1K决定———盈利强度因子1K 故 1 K大小反映了裂纹尖端应力场的强弱,取决于应力大小,裂纹尺寸。 6.3.3 应力场强度因子及判据 将上面应力场方程写成: () ij ij f σθ = 其中 1 K Y = Y:形状系数。对无限大板Y=1。 1 K: 1 2 MPa m- ? 1 1 1 , , a K K a a K σ σ σ ?↑→↑ ? ? ? ↑→↑ ?? 不变 是一个决定于和的复合物理量 不变 当此参量达到临界时,在裂纹尖端足够大的范围内,应力便会达到断裂强度,裂纹便沿着X 轴失稳扩展,从而使材料断裂。这个临界或失稳状态的 1 K值记为 1C K→断裂韧性。 1C K为平面应变的断裂韧性,表示在平面应变下材料抵抗裂纹失稳扩展的能力,显然 1C K Y = 可见,材料的 1C K越高,则裂纹体的断裂应力或临界断裂尺寸就越大,表明难以断裂。因此1C K是材料抵抗断裂的能力 11 1 S C s C K K K σ σσ σ → ? ? ↑→ ? ? ↑→ ? ?→ ? 和力学参量,且和载荷,试样尺寸有关,和材料无关 当临界时,材料屈服 当K临界时,材料断裂 和材料的力学性能指标,且和材料成分,组织结构有关而和载荷及试样尺寸无关 断裂判据: c a 或 1C Y K ≥

高强钢断裂韧性与裂纹扩展机制研究

高强钢断裂韧性与裂纹扩展机制研究 凭借优异的综合力学性能,高强钢成为目前应用最广泛的金属结构材料,在当今及未来工业发展中占据重要的地位。高强钢在服役过程中长期经受循环载荷作用,其疲劳与断裂问题成为高强钢的重点研究方向。 随着断裂力学发展,损伤容限设计成为航空、航天等国防重要工业领域的关键构件疲劳断裂控制方法。材料的疲劳裂纹扩展性能与断裂韧性是构件损伤容限设计基础,然而目前对高强钢疲劳裂纹扩展及断裂韧性的研究仍不完善。 因此,本研究选取一种典型AISI 4340高强钢为研究对象,基于能量原理深入探讨断裂韧性的评价方法及裂纹扩展微观机制;以Paris公式为基础,建立了改进的疲劳裂纹扩展速率公式,并提出一种快速预估疲劳性能的判据;通过深入探究疲劳裂纹扩展微观机制,由此形成疲劳裂纹扩展三阶段的宏观力学模型。本文试图通过对高强钢中疲劳裂纹扩展及断裂韧性等相关问题的理解,尝试将所研究理论直观地应用到工程领域,为工程优化选材及关键构件可靠性设计提供具有一定价值的参考依据。 提出了三种评价金属材料平面应变断裂韧性KIC的方法。1)基于裂纹扩展初始阶段到临界失稳状态消耗能量的分配,建立了试样厚度B与断裂韧性KIC的定量关系,借助此公式可以实现小尺寸试样估算断裂韧性KIC,此项工作可应用于高韧性金属材料的断裂韧性评价。 2)以试样整体断裂过程中的能量消耗,推导出断裂能密度WF与剪切唇宽度s 的定量关系。其中WF在最大剪切唇宽度处达到最低,此时处于正断与切断的竞争平衡,揭示了裂纹扩展过程中遵循最低能量密度原理,并以此建立了剪切唇宽度与断裂韧性的定量关系。

3)从冲击韧性与断裂韧性的能量消耗方式及共同遵循的能量原理出发,提出两种韧性剪切唇宽度之间的线性关系,由此获得高强钢中冲击韧性与断裂韧性的定量关系式。探讨了不同强韧性钢中裂纹扩展微观机制的转变过程。 发现随着韧性提高,AISI 4340钢微观断裂特征从解理-韧窝混合型断口向韧窝连续转变,三维XRT图像显示裂纹扩展方式由跳跃性向连续性逐步演化。低韧性钢中,裂纹在应力控制下以解理断裂方式连接其尖端附近的微裂纹,裂纹扩展速率加快;高韧性钢中,裂纹在应变主导下钝化扩展,且与附近聚合长大的微孔连接形成新的裂纹尖端;上述两种裂纹扩展微观机制可同时出现中等韧性钢中,此时应力应变存在竞争平衡,裂纹以交替方式向前扩展。 高强钢的断口微观形貌可分为三种典型特征,其形貌特征的形成过程与能量消耗有关,基于此建立了高强钢断裂韧性与断口微观形貌特征之间的定量关系。建立了具有预测性的疲劳裂纹扩展速率公式及疲劳性能优化判据。 以Paris公式为基础,引入强韧性参量,推导出改进的疲劳裂纹扩展速率公式。阐述影响材料疲劳裂纹扩展性能的两大因素,疲劳裂纹扩展的变化过程取决于断裂韧性,疲劳裂纹失稳扩展的临界速率由抗拉强度控制。 凭借该公式可以由材料的静态力学性能预测疲劳裂纹扩展性能,这在高强钢中得到了验证。此外,提出一种疲劳裂纹扩展性能与材料强韧性的定量判据,基于该判据可以在强韧性倒置关系曲线中选出最优疲劳性能的材料,并能够阐述材料同步强韧化可提高疲劳性能的本质。 该公式与判据在合金钢、钛合金及铝合金中都得到准确的验证,为材料的疲劳性能优化提供理论依据。探索了疲劳裂纹扩展微观机制及宏观力学模型。 在断口微观形貌中发现,疲劳裂纹扩展稳态阶段出现疲劳辉纹与韧窝特征共

工业管道检验案例

工业管道检验案例1. 引言 1.1 管道检验检测概述 失效机制 影响因素 外在表征如何在一定时间内有效无损地检测发现? 发展规律 预防措施 检验人员应当根据压力管道的使用情况、失效模式制定检验方案。改变机械地使用检验规则规定的习惯做法。 失效模式分析 检测方法检测时机 管道检验目的:发现并预防管道的不正常状态,避免管道失效,发生事故。 失效案例 典型失效模式

API 给出的腐蚀失效模式(63种) 氢致损伤:氢腐蚀、氢脆(微裂纹)、堆焊层的氢致剥离 爆炸 断裂 泄漏 形过量变 表面损伤、金属损失 材料性能退化 物理爆炸:物理原因(温度、内压)使应力超过强度 化学爆炸:异常化学反应使压力急剧增加超过强度 脆性断裂:应力腐蚀、氢致开裂、持久(蠕变)断裂、低温脆断 韧性断裂 疲劳断裂:应力疲劳、应变疲劳、高温疲劳、热疲劳、腐蚀疲劳、蠕变疲劳 密封泄漏:充装过量(冒顶) 腐蚀穿孔、穿透的裂纹或冶金、焊接缺陷(满足LBB 条件) 过热、过载引起的鼓胀、屈曲、伸长、凹坑(dent) 蠕变、亚稳定相的相变 电化学腐蚀:均匀腐蚀、点腐蚀、缝隙腐蚀、晶间腐蚀、沉积物下腐蚀、溶解氧腐蚀、碱腐蚀、硫化物腐蚀、氯化物腐蚀、硝酸盐腐蚀 冲蚀、气蚀 高温氧化腐蚀、金属尘化或灾难性渗碳腐蚀、环烷酸腐蚀 外来机械损伤:油气长输管线的主要失效模式之一 辐照损伤脆化 金相组织变化:珠光体球化、石墨化、S 相析出长大、渗碳、渗氮、脱碳、回火 脆化与敏化、应变时效 压力 容 器 与 管 道

1.2 压力管道的失效 压力管道是具有潜在泄漏和爆炸危险的特种设备,对国家支柱产业有重要影响,其特点是: ●量大面广:截止2009年底,我国在用固定式压力容器217.5万台,锅炉60.9万台,在用气瓶1.3 亿只,压力管道68.5万公里,与承压设备相关的生产企业2万多家,年产值超过5000亿元。 ●服役环境极端化:逐渐向高温、低温(液化天然气集输,-196℃)、复杂腐蚀(高硫、高酸原油炼制)、 大型化等极端方向发展。 石化企业Ⅰ、Ⅱ、Ⅲ类管道事故原因:管理不善、安装原因、腐蚀与冲蚀、设计原因、制造原因 失效分析的主要技术手段

断裂韧性实验报告

断裂韧性测试实验报告 随着断裂力学得发展,相继提出了材料得、、等一些新得力学性能指标,弥补了常规试验方法得不足,为工程应用提供了可靠得断裂判据与设计依据。下面介绍下这几种方法得测试原理及试验方法。 1、三种断裂韧性参数得测试方法简介 1、1平面应变断裂韧度得测试 对于线弹性或小范围得型裂纹试样,裂纹尖端附近得应力应变状态完全由应力强度因子所决定。就是外载荷,裂纹长度及试样几何形状得函数。在平面应变状态下,当与得某一组合使=,裂纹开始失稳扩展。得临界值就是一材料常数,称为平面应变断裂韧度。测试保持裂纹长度a为定值,而令载荷逐渐增加使裂纹达到临界状态,将此时得、代入所用试样得表达式即可求得。 得试验步骤一般包括: (1)试样得选择与准备(包括试样类型选择、试样尺寸确定、试样方位选择、试样加工及疲劳预制裂纹等); (2)断裂试验; (3)试验结果得处理(包括裂纹长度得测量、条件临界荷载得确定、实验测试值得计算及有效性得判断)。 1、2延性断裂韧度得测试 积分延性断裂韧度就是弹塑性裂纹试样受型载荷时,裂纹端点附近区域应力应变场强度力学参量积分得某些特征值。测试积分得根据就是积分与形变功之间得关系: (1-1) 其中为外界对试样所作形变功,包括弹性功与塑性功两部分,为裂纹长度,为试样厚度。

积分测试有单试样法与多试验法之分,其中多试样法又分为柔度标定法与阻力曲线法。但无论就是单试样法还就是多试样柔度标定法,都须先确定启裂点,而困难正在于此。因此,我国GB2038-80标准中规定采用绘制阻力曲线来确定金属材料得延性断裂韧度。这就是一种多试样法,其优点就是无须判定启裂点,且能达到较高得试验精度。这种方法能同时得到几个积分值,满足工程实际得不同需要。 所谓阻力曲线,就是指相应于某一裂纹真实扩展量得积分值与该真实裂纹扩展量得关系曲线。标准规定测定一条阻力曲线至少需要5个有效试验点,故一般要5 8件试样。把按规定加工并预制裂纹得试样加载,记录曲线,并适当掌握停机点以使各试样产生不同得裂纹扩展量(但最大扩展量不超过0、5mm)。测试各试样裂纹扩展量,计算相应得积分,对试验数据作回归处理得到曲线。阻力曲线得位置高低与斜率大小代表了材料对于启裂与亚临界扩展得抗力强弱。 阻力曲线法测试步骤一般包括: (1)试样准备 ①试样尺寸得选择原则: 1)平面应变条件:标准规定 (1-2)其中 2)积分有效性条件 一般,当不易估计时,可用求出得估计值 ②疲劳预制裂纹:

管线钢落锤撕裂实验标准比较1

管线钢落锤撕裂试验及标准 一、落锤撕裂试验(DWTT) 落锤撕裂试验(Drop-Weight Tear Tests——DWTT)是一种用于评价脆性断裂止裂性能的试验方法,是评价线钢钢板内在质量的重要手段之一,通过对全截面钢板试样的一次性快速冲断,从断口上观察冶金缺陷、断口性质、形貌等特征,综合评价冶金质量和抗破裂能力。近年研制成功的高新钢种。国标中对线钢的强度、可焊性、断裂韧性和抗腐蚀等性能和钢管质量都有极为严格的要求。落锤撕裂试验DWTT结果主要是建立断口形貌与温度的关系。由于DWTT结果与线实物气爆有很好的相关性,所以被广泛应用对管线的断裂进行控制和预测,并作为衡量管线钢管抵抗脆性开裂能力的韧性指标之一。按照试验标准规定,试样必须在离开保温设备10 s内一次冲击砸断,结果方为有效。但在日常检验中,由于在试样质量、设备调整、操作方法等方面控制失当,经常会出现试验过程失效的现象。 SYT 6476 2007 输送钢管落锤撕裂试验方法.pdf DWTT试验方法 试样及温度要求采用单边压制缺口原板厚矩形试样,长度为300±5 mm,后调整为305±5 mm,宽度为75±1.5 mm。采用刃口角度为45±2°的特制工具钢压头在试样上压制出深度为5±0.5 mm的缺口。在-75~100℃的范围内,应将试样完全浸于装有适宜液体(酒精)的保温装置内,液体温度与要求试验温度的偏差不得大于±1℃。试样在要求的试验温度下至少保温15 m in,为保证温度均匀,应使保温装置内的液体流动;从保温装置中取出试样装入试验机并迅速打断。 二、管线钢标准中DWTT规范 DNV标准 Drop Weight Tear Testing (DWTT) shall only be performed on welded linepipe with outer diameter > 500 mm, wallthickness > 8 mm and SMYS > 360 MPa. A DWTT transition curve shall be established for the linepipe base material. Minimum five sets of specimens shall be tested at different temperatures,including T min. Each set shall consist of two specimens taken from the same test coupon. The test shall be performed in accordance with Appendix B. The specimens tested at the minimum design temperature shall as a minimum, meet an average of 85% shear area with one minimum value of 75%. 205 If supplementary requirements for sour service as in I100 are specified for linepipe material with SMYS ≥450 MPa the acceptance criteria stated in I204 (average and minimum shear area) may be subject to agreement. A 800 Drop weight tear test 801 Drop weight tear test shall be carried out in accordance with API RP 5L3. 802 Full thickness specimens shall be used where possible.Reduced thickness specimens may be used subject to Purchaser agreement. If reduced thickness specimens are used,both surfaces shall be equally machined to the thickness of 19.0 mm. The testing temperature reduction given in API RP 5L3 shall apply.

管线钢管断裂韧性测试

断裂韧性测试 一.影响管线钢韧性的材料学因素 所谓韧性,是指材料在外载荷作用下抵抗开裂和裂纹扩展的能力,也就是材料在断裂前所经历的弹塑性变形过程中吸收能量的大小,它是强度和塑性的综合体现。准确地测试管线材料的断裂韧性不仅可确保管道使用的安全性,而且是在新产品研发中评价其冶金因素是否满足管材韧性要求的有效途径。 在前面成分分析部分已经详细论述了管线钢中各个合金元素对韧性的影响,这里就不在赘述。除了成分的影响外,影响韧性的因素还包括晶粒尺寸、组织结构、夹杂物的形态与分布等。 晶粒尺寸晶粒尺寸是唯一既能强化又能韧化的因素,在管线钢的控制轧制过程中,细化晶粒已作为韧化的一个重要的手段。实践证明,现代控轧工艺已经使得超细晶粒钢称为现实。对于少珠光体钢,晶粒尺寸可细化至几个微米。 不同组织的管线钢以及管线钢中的各个组织所占比例不同,韧性也会显著不同。在铁素体-珠光体管线钢中,随着珠光体含量的增加,管线钢的韧性降低,韧脆转变温度同时降低[1]。目前普遍认为针状铁素体管线钢是具有良好的强韧匹配的。实际上,针状铁素体型管线钢的显微组织通常为针状铁素体和多边形铁素体的混合组织,随着加速冷却速率的提高,可能在组织中出现分布的M-A小岛[2]。一般认为多边形铁素体不是管线钢的理想组织形态[3]。对于针状铁素体的强韧性,Tanaka[4]认为:针状铁素体组织与贝氏体组织相比,有高的韧性原因是贝氏体具有较大的断裂单元(有效晶粒尺寸),而针状铁素体具有较小的断裂单元(有效晶粒尺寸)。但Tanaka同时认为,100%的针状铁素体具有高的强度,但韧性较低。而提高韧性的有效方法是通过降低变形温度并增加在奥氏体非再结晶区的变形量获得细小晶粒的多边形铁素体加针状铁素体的混合组织。韧性提高的原因是多边形铁素体及针状铁素体的细化[5]。肖福仁认为:在针状铁素体中,裂纹扩展必定强烈地受到彼此咬合、互相交错分布的细小的针状铁素体条束的阻碍,从而有效地提高了钢的强韧性[5]。 图1 裂纹在针状铁素体中的扩展模型 夹杂物以及M-A组元的形状、数量、尺寸和分布同样对管线钢的韧性产生重要的影响。当体积分数一定时,夹杂物以及M-A组元尺寸越细小、分布越弥散,管线钢的韧性越好。

(完整版)断裂韧性KIC测试试验.docx

实验五断裂韧性K IC测试试验 一、试样的材料、热处理工艺及该种钢材的σy 和KⅠC 的参考值 本实验采用标准三点弯曲试样(代号SE(B)),材料为 40Cr,其热处理工艺如下: ①热处理工艺:860℃保温 1h,油淬; 220℃回火,保温0.5~1h ; ②缺口加疲劳裂纹总长:9~11mm (疲劳裂纹2~3.5mm) ③不导角,保留尖角。 样品实测 HRC50,从机械手册中关于40Cr 的热处理实验数据曲线上查得: σy=σ0.2=1650MPa,σb=1850MPa,δ5=9%,ψ=34%,KⅠ C=42MN·m-3/2。 二、试样的形状及尺寸 国家标准 GB/T 4161-1984《金属材料平面应变断裂韧度KⅠC试验方法》中规定了两种测 试断裂韧性的标准试样:标准三点弯曲试样(代号SE( B))和紧凑拉伸试样(代号C(T))。这两种试样的裂纹扩展方式都是Ⅰ型的。本实验采用标准三点弯曲试样(代号SE( B))。试样的形状及各尺寸之间的关系如图所示: 为了达到平面应变条件,试样厚度 B 必须满足下式: B≧ 2.5(KⅠC/ σ y)2 a≧ 2.5(KⅠC/ σ y)2 (W-a)≧ 2.5(KⅠC/ σ y)2 式中:σ y 0.2或 σ s 。 —屈服强度σ 因此,在确定试样尺寸时,要预先估计所测材料的KⅠC和σy值,再根据上式确定试样的最小厚度 B。若材料的KⅠC值无法估计,则可根据σy B 的大小,然后再确 /E 的值来确定 定试样的其他尺寸。试样可从机件实物上切去,或锻、铸试样毛坯。在轧制钢材取样时,应 注明裂纹面取向和裂纹扩展方向。 试样毛坯粗加工后,进行热处理和磨削,随后开缺口和预制裂纹。试样上的缺口一般在钼 丝电切割机床上进行切割。为了使引发的裂纹平直,缺口应尽可能地尖锐。 开好缺口的试样,在高频疲劳试验机上预制裂纹。 疲劳裂纹长度应不小于 2.5%W,且不小于 1.5mm 。 a/W 值应控制在 0.45~0.55 范围内。本试样采用标准三点弯曲试样(代号 SE(B)),其尺寸:宽 W=19.92mm ,厚 B=10.20mm 总长 100.03mm 。 三、实验装置 制备好的试样,在MTS810 材料力学试验机上进行断裂试验。对于三点弯曲试样,其试 验装置如图5-2 所示。可将采集的试验数据以文件形式(数据采集间隔0.1s)存储在计算机中,同时利用3086-11 型 X— Y 系列实验记录仪绘制P— V 曲线。本实验跨距S 为 80mm ,弯曲压头速率0.01mm/s 。用 15J 型工具显微镜测量试样的临界裂纹(半 )长度 a。

断裂韧性试验

断裂韧性试验 创建时间:2008-08-02 test for fracture toughness 在线弹性断裂力学及弹塑性断裂力学基础上发展起来的一种评定材料韧性的力学试验方法(见断裂力学)。 20世纪以来,曾发生过多起容器、桥梁、舰船、飞机等脆断事故;事故分析查明,断裂大多起源于小裂纹。为解决金属脆断问题,美国在1958年组成ASTM断裂试验专门委员会,目的是建立有关测定材料断裂特性的试验方法。于1967年首次制定了用带疲劳裂纹的三点弯曲试样(图1 [两种常用断裂韧性试 样])测定高强度金属材料平面应变断裂韧性操作规程草案,并于1970年颁发了世界第一个断裂韧性试验标准ASTME399-70T。此后,断裂韧性试验受到世界各国的普遍重视并蓬勃发展。中国于1968年前后开始这方面的试验研究。 取样原则由于裂纹或类裂纹缺陷是导致工程结构断裂的主要原因,所以断裂韧性试验采用带尖锐裂纹的试样(图1[两种常用断

裂韧性试样]),用 直接观察或间接测量法连续监测裂纹的行为;如用夹式引伸计连续测量裂纹嘴张开位移随载荷的变化(图2[用夹式引伸计测裂纹嘴张开位移随载荷变化的曲线]随载荷变化的曲线" class=image>),以测定材料抗裂纹扩展的能力及裂纹在疲劳载荷或 应力腐蚀下的扩展速率;求得平面应变断裂韧度[ic]、动态断裂韧度[id]、裂纹临界张开位移,应力腐蚀临界强度因子[111-21] [kg2],疲劳裂纹扩展速率d/d(毫米/周)等断裂韧性参数。其中,角标Ⅰ代表张开型裂纹,或称Ⅰ型裂纹,角标c代表临界值。此外,尚有滑开型(Ⅱ型)裂纹,撕开型(Ⅲ型)裂纹(图3 [裂纹的扩展 类型示意图])。Ⅰ型裂纹最易引起脆断,所以目前断裂韧性试验多限于Ⅰ型加载。

断裂韧性的结果分布

断裂韧性 编辑词条参与讨论 所属分类:冶金术语化学各种化学名称机械机械工程机械零件金属加工 表征材料阻止裂纹扩展的能力,是度量材料的韧性好坏的一个定量指标。在加载速度和温度一定的条件下,对某种材料而言它是一个常数。当裂纹尺寸一定时,材料的断裂韧性值愈大,其裂纹失稳扩展所需的临界应力就愈大;当给定外力时,若材料的断裂韧性值愈高,其裂纹达到失稳扩展时的临界尺寸就愈大。 目录 ?? 概述 ?? 规律与测试 ?? 论文 ?? 参考资料 断裂韧性-概述 构件经过大量变形后发生的断裂。主要特征是发生了明显的宏观塑性变形(不包括压缩失稳),如杆件的过量伸长或弯曲、容器的过量鼓胀。断口的尺寸(如直径、厚度)比原始尺寸也明显变化。韧性断裂的断口一般能寻见纤维区和剪唇区。断口尺度较大时还出现放射形及人字形山脊状花纹。形成纤维区断口的断裂机制一般是“微孔聚合”,在电子显微镜中呈韧窝状花样。韧性断裂一般由超载引起,而材料的塑性与韧性又很优良。纤维区一般是断裂源区。剪切唇总是在断口的边缘,并与构件的表面约成45°夹角,是在平面应力受力条件下发生剪切撕裂而形成的断口,剪切唇表面较光滑,断裂时的名义应力高于材料的屈服强度。 断裂韧性-规律与测试 随着概率断裂力学工程应用的逐步深入,材料断裂韧性分散性问题,已成为影响含缺陷结构概率安全评定的关键因素之一。合理解决材料断裂韧性分散性是一个十分复杂的问题。一方面巾于冶金过程等方面的偏差,造成材料断裂韧性的分散性;另一方面由于试样几何尺寸、裂纹长度测量等试验误差,亦会导致测试结果的不确定性,还有不同测试规范和标准对测试数据的处理也会导致测试结果的不

确定性。若缺陷位厂焊接部位,影响因素将更加复杂。除上述原因外,还会有诸如焊接上艺、焊材、以及不同操作人员及焊后热处理等因素导致断裂韧性测试结果分散性更加严重。尽管分析和解决其分散性问题如此复杂,十分困难,然而,在对含缺陷焊接结构(尤其是工业锅炉、压力容器和管道)进行安全评定时,重点就是焊接接头区而不是母材。如何处理断裂韧性的分散忭问题已成为工程界不可回避的问题,也是概率安全评定应解决的基本问题之—。 对材料断裂韧性分散性规律的研究,在理论和实践上均已取得较大进展。 Wallin分别根据Weibuli统计模型和微结构分析模型,推得基于断裂韧性尺I(单位:MN·m-3/2)失效准则的累积失效概率 并从理论上得到Kl服从形状参数m:为4的Weibull分布,同时指山m1不等于4是由厂测试数据不够而造成的,并且认为延性撕裂和材料非均匀性对分散性只具有较轻微的影响。这一理论建立在裂尖小范围有效体积基础上。 Slatcher将裂尖等效为多个单元的串联模型,推导出基寸:断裂韧性,J(单位:N/inlTl)失效准则的累积失效概率 式中,a=B中,B为试样宽度,中为常数;B=2。 这一理沦基于如下假设: 1)裂纹体能被分成若干单元,任一单元的失效意味着整体失效,各单元强度彼此独立且同分布。 2)第一个失效单元的应力和应变与裂尖应力场强度,J和该单元到裂尖的垂直距离r有关,仅由r/J确定。 3)第一千失效单元必须位于r和O定义的区域内(r,O为该单元的柱坐标)对任何O均有Jg(O)≤r≤Jh(O)。g(O)和h(O))为o的函数,分别为该区域的内、外界限。 由式(5.2)可知,理论上断裂韧性/服从形状参数为2的双参数威布尔分布。对充分小的试验数据集,式(5.2)比对数正态分布和威布尔分布能更好地描述断裂韧性的分布规律。 Neville提出了另一种描述断裂韧性分布的模型,该模型不用作任何假设和近似处理。由断裂韧性构成一个样本u,样本u中的子样ui由g2,J2或K1确定,g2,J2或K1分别由CTOD、JIC和Kic的测试数据计算得到。累积失效概率由如下双参数分布函数表达 式中,a,b为分布参数。 Neville将该模型分别对几组断裂韧性的测试数据进行厂分析,结果表明该模型应用方便,与实测数据分布吻合较好,并略偏保守。 Hauge和Thualow分别采用Weibull分布、Log—Normal分布、Slather模型以及Neville模型,对两组CTOD数据(86个母材和16个焊材)进行了统计分析,其主要结论如下: 1)两组CTOD数据并非服从形状参数为2的Weibull分布(或Slather模型);双参数Weibull分布、Log—Normal分布和Neville分布都适宜拟合这些数据。 2)90%置信限的中位期望值可较好地由I.og—Normal分布得到;对于只有三个子样时,能较好地等效于三个值十取最小值的方法;对大子样,Log—Normal 吻合更好。

管线钢断裂韧度测试实验研究进展

技 术 综 述  管线钢断裂韧度测试实验研究进展 白永强,帅 健,许 葵 (石油大学(北京),北京 102249) 摘 要:随着管道钢强度和韧度的增加,表征材料断裂韧度的参数也在变化,同时断裂韧度测试技术也得到了不断的发展。本文介绍了几种测试材料断裂韧度的小试件实验以及存在的问题。重点介绍了一种准静态测试CT OA的小试件,以及测量CT OA的实验方法,为天然气管道止裂研究提供帮助。 关键词:天然气管道;断裂韧度;裂纹尖端张开角;断裂控制 中图分类号:TE973 文献标识码:A 文章编号:1001-4837(2005)05-0035-05 The Progress of Fracture Toughness Test in Pipeline Steel BAI Yong-qiang,SHUAI Jian,XU K ui (University of Petroleum,Beijing102249,China) Abstract:With the increasing use of high strength and toughness steels in oil and gas pipelines,the parameter of the crack toughness of material is continuously developing,s o do the test technique of fracture toughness.In this paper,several small specimens to predict the toughness of pipeline steels and their shortages were dis2 cussed.The em phases is to present a new small quasi-static specimen of CT OA test,and experimental meth2 ods of CT OA measurement. K ey w ords:natural gas pipeline;fracture toughness;crack tip opening angle;fracture control 高压天然气管道裂纹的扩展和止裂是近50年来管道工业研究的主题。在裂纹快速扩展过程中,高压气体提供了裂纹扩展的驱动力。而只要该驱动力一超过材料阻力,裂纹就持续扩展。断裂韧度正是表征材料抗断裂阻力的一个重要参数,因此测定材料的断裂韧度是天然气管道止裂工程设计的重要内容。过去曾经使用V缺口夏比或落锤撕裂(DWTT)吸收能或剪切区域来表征断裂韧度[1、2]。 但是断裂韧度测试实验的研究是随着管线工业的发展而发展的。当管线材料、管道运行压力、气体成分等条件发生变化时,原有的预测指标以及预测手段都已经不适合了。这就需要发展出新的手段,使用更为精确的实验方法来测试材料性能,从而进行止裂预测和控制。 近来多使用断裂力学参数,比如应力强度因子、 J积分或者裂纹尖端张开角(CT OA)来表征断裂阻力[3~6]。并且,CT OA被认为是较好延性裂纹阻力参数而在天然气管道的止裂设计中应用。 1 经典实验 在确定材料断裂韧度方面,前人做了大量工作,其中最著名的是V型缺口夏比冲击实验(Charpy V -Notch Im pact T est)和落锤撕裂实验(Drop Weight T ear T est)[7]。 111 V型缺口夏比冲击实验 C VN(Charpy V-Notch)实验又称三点弯曲夏比冲击实验,是一种评价材料断裂韧度传统的实验方法。它通过摆锤式冲击实验机对含V型缺口的小 ? 5 3 ?

相关文档
最新文档