量子加密技术

量子加密技术
量子加密技术

量子加密技术

摘要

自从BB84量子密钥分配协议提出以来,量子加密技术得到了迅速发展,以加密技术为基础的量子信息安全技术也得到了快速发展。为了更全面地、系统地了解量子信息安全技术当前的发展状况和以后发展的趋势,文中通过资料查新,以量子加密技术为基础,阐述了量子密钥分配协议及其实现、量子身份认证和量子数字签名、量子比特承诺等多种基于量子特性的信息安全技术的新发展和新动向。

关键词:信息安全;量子态;量子加密;量子信息安全技术

一、绪论

21世纪是信息技术高速进步的时代,而互联网技术为我们带来便捷和海量信息服务的同时,由于我们过多的依赖网络去工作和生活,网络通信、电子商务、电子金融等等大量敏感信息通过网络去传播。为了保护个人信息的安全性,防止被盗和篡改,信息加密成为解决问题的关键。那么是否有绝对可靠的加密方法,保证信息的安全呢?

随着社会信息化的迅猛发展,信息安全问题日益受到世界各国的广泛关注。密码作为信息安全的重要支撑而备受重视,各国都在努力寻找和建立绝对安全的密码体系。而量子信息尤其是量子计算研究的迅速发展,使现代密码学的安全性受到了越来越多的挑战。与现代密码学不同的是,量子密码在安全性和管理技术方面都具有独特的优势。因此,量子密码受到世界密码领域的高度关注,并成为许多发达国家优先支持的重大课题。

二、量子加密技术的相关理论

1、量子加密技术的起源

美国科学家Wiesner首先将量子物理用于密码学的研究之中,他于 1969 年提出可利用单量子态制造不可伪造的“电子钞票”。1984 年,Bennett 和Brassard 提出利用单光子偏振态实现第一个 QKD(量子密钥分发)协议—BB84 方案。1992年,Bennett 又提出 B92 方案。2005 年美国国防部高级研究计划署已引入基于量子通信编码的无线连接网络,包括 BBN 办公室、哈佛大学、波士顿大学等 10个网络节点。2006 年三菱电机、NEC、东京大学生产技术研究所报道了利用 2个不同的量子加密通信系统开发出一种新型网络,并公开进行加密文件的传输演示。在确保量子加密安全性的条件下,将密钥传输距离延长到200km。

2、量子加密技术的概念及原理

量子密码,是以物理学基本定律作为安全模式,而非传统的数学演算法则或者计算技巧所提供的一种密钥分发方式,量子密码的核心任务是分发安全的密钥,建立安全的密码通信体制,进行安全通讯。量子密码术并不用于传输密文,而是用于建立、传输密码本。量子密码系统基于如下基本原理:量子互补原理(或称量子不确定原理),量子不可克隆和不可擦除原理,从而保证了量子密码系统的不可破译性。

3、基于单光子技术(即BB84协议)的量子密码方案主要过程:

a)发送方生成一系列光子,这些光子都被随机编码为四个偏振方向;

b)接收方对接收到的光子进行偏振测量;

c)接收方在公开信道上公布每次测量基的类型及没测量到任何信号的事件序列,但不公布每次有效测量事件中所测到的具体结果;

d)如果没有窃听干扰,则双方各自经典二进制数据系列应相同。如果有窃听行为,因而将至少导致发送方和接收方有一半的二进制数据不相符合,得知信息有泄露。

4、量子密码系统的安全性。

在单光子密码系统中,通讯密钥是编码在单光子上的,并且通过量子相干信道传送的。因此任何受经典物理规律支配的密码分析者不可能施行在经典密码系统中常采用的攻击方法:

1)对加密算法进行分析,以找出“陷门”。

由于量子密码系统的实现所依据的是量子力学原理。而不是数学算法,因此无从下手进行算法分析。

2)截获/重发,并精确复制密钥用于进行穷举攻击。

单个量子不可能克隆的基本原理决定了这样的攻击对信道进行宏观测量都会破坏信道的量子相干性,并马上被通讯的合法用户所发现。

三、量子密码学的几个研究课题

1、量子密钥分配

量子密钥分配是量子密码学中研究最早、理论和实验成果最多的一个研究领域。量子密钥分配目前主要有两个研究方向:一个是基于连续变量 QKD 的理论和实验研究;一个高速率、高性能的 QKD 理论和技术研究。量子密钥最早研究得分配协议很多是关于两方之间的点对点的密钥分配。然而QKD 实际的实现要求网络中任意用户之间的密钥分配。所以后来人们已研究了利用单光子的多用户QKD 方案,也提出了使用非正交基的多用户 QKD 方案。

2、量子身份认证

上面所提出的 QKD 均是假设通信方为合法用户的前提下,然而在实际的环境中,有可能有假冒者存在,所以需要考虑通信方的身份认证问题。基本的量子身份认证方案可分为两类,即共享信息型和共享纠缠态型。前者是指通信双方事先共享有一个预定好的比特串,以此来表明自己是合法通信者;而后者是双方共享有一组纠缠态粒子,即双方各自拥有每对纠缠态粒子中的一个,通过对纠缠对进行相应的操作也可以互相表明身份。这里需要强调一点,“共享信息”指经典信息,即经典的比特串。另外,与经典密码学中的身份认证类似,量子身份认证中也可以引入仲裁者,双方可以在仲裁者的帮助下验证身份。

3、量子签名

在量子保密通信的过程中,像经典保密通信一样也会涉及到签名的问题,目前量子通信和量子计算机的研究取得了迅速的进展,特别是量子计算机,它的出现使得对量子比签名成为重要的课题;目前已提出了若干种量子签名方案,主要有基于单向函数的量子签名方案,基于纠缠交换的量子签名方案,基于 GHZ 三重态的量子签名方案。

4、量子加密算法

由量子态叠加原理可知,一个有n个量子位的系统可以制备出 2n 个不同的叠加态,即量子系统有强大的信息存储能力,因此研究量子加密算法有重要意义。量子加密算法经典加密相比具有特殊的优点:密钥可以重用。如果发现通信错误小于一定阈值,则可以将密钥经过保密放大处理后重复使用。目前最多的量子加密算法有:基于经典密钥的量子加密算法和基于量子密钥的量子加密算法。

5、量子秘密共享

把一个秘密消息分割使得单个人不能重构该秘密消息是信息处理特别是高安全应用中常见的任务。现代密码学提供了解决方案--秘密共享。随着 QKD 的发展,人们开始研究多方密钥分配问题,于是很自然的提出了量子秘密共享(QSS)这一新的方向。QSS 协议有三个主要目标:①在多方之间分发秘密密钥;②共享经典秘密信息;③共享量子秘密(未知量子态)。另外对于如何提高秘密共享方案的效率也是人们研究的热点

四、阻碍量子密码学实用化的因素

(1)制造高效的单光子源比较困难

目前量子信道主要建立在光纤中,信息载体采用单光子,但是制造高效的单光子源比较困难。单光子源是将脉冲激光大幅度衰减且其光子统计服从泊松分布,当脉冲激光衰减到平均每个脉冲 0.1 个光子时,每个脉冲含 2 个以上光子的概率才降为 0.5%,当平均光子继续减少时单光子速率也相应降低,这将导致量子密码传输系统的带宽窄和传输速率慢。由于光纤的吸收,单光子无法实现远距离传输。

(2) 需要工作在所需波长高效单光子探测器还未成熟。

目前,常用的探测单光子的仪器有光电倍增管(PMT)和雪崩光电二极管(APD)。但这两种器件的共同缺点是:需通过高压来获得放大。此外,PMT 在红外波段的量子效率太低以及其玻璃外壳使器件过大而易碎和 APD 需要液氮来降低噪声,这需要庞大的设备来维护且成本很高,同时为挫败潜在窃听者的企图,就必须采用高效的光子探测器以减少系统自身错误。

(3)防窃听技术。

前面已经说明,量子在传输过程中,(3)~(5)三个过程采取的都是非量子方法。这在一定程度上也减弱了量子密码术在技术上的优势。这些问题都有待于整个量子信息技术的发展,例如量子存储器的技术等。

(4)量子放大

量子通道的放大将不可避免地失去其量子特性,这使得量子信息传输的距离受到限制。

(5)市场竞争

因为量子通信技术必须与传统的通信技术竞争以获得市场,而这些传统方法在长距离上以及成本费用上更低,从而使量子密码通信技术处于不利地位。这也是目前量子密码术难以立即转化为实用技术的原因之一。但是从总的发展趋势看,经典保密通信的成本是逐年提高,而量子密码通信的成本正随量子密码术的发展在降低。

(6)自身的原因

量子密码系统即使在没有窃听者窃听的情况下,由于系统自身的不稳定性也会造成一定的长期误码率。还有在实际量子通信系统传输过程中,由于调制、采集数据过程中速度太慢和光探测器暗计数误码、信道噪声所产生的误码,从而导致实际的通信速度太慢和造成一定的误码率。

五、量子密码的前景

量子加密是一种前沿性、战略性的信息安全技术,随着量子计算机的研究与发展使得基于大数的因子分解的经典密码学越来越受到威胁,人们预测,当量子计算机成为现实,经典密码体制将无安全可言。而量子密码术和量子计算机都是根植于量子力学的,只有量子密码术能够抵挡量子计算机的攻击。所以,量子信息安全系统将成为保护数据安全的最佳选择之一。

六、我的几点思考

但是再趋近于完美的东西,也会有他致命的弱点。量子密码在理论上是无可挑剔的,但在实际应用上却存在许多问题,如:

1、如何保证信道的通信安全;

2、怎样提高抗干扰性;

3、量子密码要有一个初始密钥,且该方法的安全性很大程度上依赖于密钥的保密程度,密钥的选定方法及如何远距离保密协商密钥是目前面临的一个重要问题。

以上是本人对量子密码技术的研究成果,水平有限,内容肤浅,望批评斧正!

七、参考文献

(1)量子密码学的应用研究-----------何湘初广东工贸职业技术学院(2)量子加密技术探讨---------------孟洋徐向阳刘英娜

(3)基于量子理论的保密通信研究--------------刘斌刘涛刘伟彦

(4)量子密码技术的前沿跟踪与研究--------邵博闻西安电子科技大学(5)量子密码可以保护你我网络信息--------中国妇女报/2011 年/2 月/10 日/第 B04 版

(6)量子信息安全技术-------------------赵生妹姚佳李飞郑宝玉

量子加密技术

量子加密技术 摘要 自从BB84量子密钥分配协议提出以来,量子加密技术得到了迅速发展,以加密技术为基础的量子信息安全技术也得到了快速发展。为了更全面地、系统地了解量子信息安全技术当前的发展状况和以后发展的趋势,文中通过资料查新,以量子加密技术为基础,阐述了量子密钥分配协议及其实现、量子身份认证和量子数字签名、量子比特承诺等多种基于量子特性的信息安全技术的新发展和新动向。 关键词:信息安全;量子态;量子加密;量子信息安全技术

一、绪论 21世纪是信息技术高速进步的时代,而互联网技术为我们带来便捷和海量信息服务的同时,由于我们过多的依赖网络去工作和生活,网络通信、电子商务、电子金融等等大量敏感信息通过网络去传播。为了保护个人信息的安全性,防止被盗和篡改,信息加密成为解决问题的关键。那么是否有绝对可靠的加密方法,保证信息的安全呢? 随着社会信息化的迅猛发展,信息安全问题日益受到世界各国的广泛关注。密码作为信息安全的重要支撑而备受重视,各国都在努力寻找和建立绝对安全的密码体系。而量子信息尤其是量子计算研究的迅速发展,使现代密码学的安全性受到了越来越多的挑战。与现代密码学不同的是,量子密码在安全性和管理技术方面都具有独特的优势。因此,量子密码受到世界密码领域的高度关注,并成为许多发达国家优先支持的重大课题。 二、量子加密技术的相关理论 1、量子加密技术的起源 美国科学家Wiesner首先将量子物理用于密码学的研究之中,他于 1969 年提出可利用单量子态制造不可伪造的“电子钞票”。1984 年,Bennett 和Brassard 提出利用单光子偏振态实现第一个 QKD(量子密钥分发)协议—BB84 方案。1992年,Bennett 又提出 B92 方案。2005 年美国国防部高级研究计划署已引入基于量子通信编码的无线连接网络,包括 BBN 办公室、哈佛大学、波士顿大学等 10个网络节点。2006 年三菱电机、NEC、东京大学生产技术研究所报道了利用 2个不同的量子加密通信系统开发出一种新型网络,并公开进行加密文件的传输演示。在确保量子加密安全性的条件下,将密钥传输距离延长到200km。 2、量子加密技术的概念及原理 量子密码,是以物理学基本定律作为安全模式,而非传统的数学演算法则或者计算技巧所提供的一种密钥分发方式,量子密码的核心任务是分发安全的密钥,建立安全的密码通信体制,进行安全通讯。量子密码术并不用于传输密文,而是用于建立、传输密码本。量子密码系统基于如下基本原理:量子互补原理(或称量子不确定原理),量子不可克隆和不可擦除原理,从而保证了量子密码系统的不可破译性。 3、基于单光子技术(即BB84协议)的量子密码方案主要过程: a)发送方生成一系列光子,这些光子都被随机编码为四个偏振方向; b)接收方对接收到的光子进行偏振测量; c)接收方在公开信道上公布每次测量基的类型及没测量到任何信号的事件序列,但不公布每次有效测量事件中所测到的具体结果; d)如果没有窃听干扰,则双方各自经典二进制数据系列应相同。如果有窃听行为,因而将至少导致发送方和接收方有一半的二进制数据不相符合,得知信息有泄露。 4、量子密码系统的安全性。 在单光子密码系统中,通讯密钥是编码在单光子上的,并且通过量子相干信道传送的。因此任何受经典物理规律支配的密码分析者不可能施行在经典密码系统中常采用的攻击方法:

浅谈我国量子通信技术的发展现状及未来趋势

浅谈我国量子通信技术的发展现状及未来 趋势 量子通信具有超强安全性、超大信道容量、超高通信速率、超高隐蔽性等特点,其发展历经30余年,在理论上日益成熟,技术方案已逐渐从实验室走向了实用化,我国在量子通信技术领域也取得了丰硕成果。 【关键词】量子通信技术;发展现状;未来趋势 【Abstract】The quantum communication has the characteristics of super security,large channel capacity,super high communication speed and ultrahigh concealment. After 30 years of development,it has matured theoretically,and the technical scheme has gradually moved from the laboratory to the practical. Quantum communication technology has also achieved fruitful results. 【Key words】Quantum communication technology;Development status;Future trend 量子通信是利用量子纠缠效应改变量子态,从而实现信息传递的一种新型的通信方式,它是量子论和信息论相结合的新研究领域。量子通信具有超强安全性、超大信道容量、超高通信速率、超高隐蔽性等特点,其发展历经30余年,在理论上日益成熟,技术方案已逐渐从实验室走向了实用化,我国在量子通信技术领域也取得了丰硕成果。

量子信息安全系统

量子信息安全系统 1、量子密码学的起源与发展 利用量子现象(效应)对信息进行保密是1969年哥伦比亚大学的科学家S. Wiesner首先提出的[1]。当时,Wiesner写了一篇题为“共辄编码(conjugate coding)”的论文,在该文中,Wiesner提出了两个概念:量子钞票(quantum bank notes)和复用信道(multiplexing channel)。Wiesner的这篇论文开创了量子信息安全研究的先河,在密码学史上具有重要的意义。但遗憾的是这篇论文当时没能获准发表。 在一次偶然的谈话中,Wiesner向IBM公司的科学家C. H. Bennett提及他10年前的思想,引起Bennett的注意。在1979年举行的第20次IEEE计算机科学基础大会上,Bennett 与加拿大Montreal大学的密码学家G. Brasard讨论了Wiesner的思想。但最初他们没能正确理解Wiesner的思想,在1983年发表的论文中他们利用量子态储存来实现量子密码并提出了量子公钥算法体制,而长时间储存量子态在目前的实验上不能实现,因此他们的论文没引起人们的共识,甚至有人认为他们的想法是天方夜谭。不久他们意识到在量子密码中量子态的传输可能比量子态的储存更重要,于是在1984年重新考虑了量子密码,并开创性地提出了量子密钥分发的概念,并提出了国际上第一个量子密钥分发协议(BB84协议)[3]。从此,量子密码引起了国际密码学界和物理学界的高度重视。在以后的十多年的研究中,量子密码学获得了飞速发展。目前,量子密码也引起了非学术界的有关部门(如军方、政府)等的注意。 2、量子密码的基本理论 2.1量子密码信息理论基础 密码学的发展经历了三千多年的历史,但直到升到科学的体系,成为一门真正的学科,因此,信息论是密码学的基础。事实上,在密码学中,信息理论是与安全性联系在一起的,Shannon信息论包括信息安全和计算安全。量子密码的安全属于信息安全,因此量子密码应建立在信息论的基础上。值得指出的是,量子密码的实现是以量子物理学为基础的,而S hannon信息论对应经典物理学。众所周知,量子物理学和经典物理学依赖于不同的法则,因此量子信息论不能简单地套用Shannon信息论,必须在Shannon信息论的基础上建立新的理论体系。 文献[5]从信息的角度提出了适合非正交量子态信道的信息理论,但他们的理论只能解释BB84协议以及改进版。文献[6]研究了量子相干性与量子保密性的关系。文献[7]做了较

经典保密通信和量子保密通信区别

经典保密通信和量子保密通信区别 摘要:文章介绍了经典保密通信和量子保密通信区别,说明了两者的根本区别。经典保密通信安全性主要是依赖于完全依赖于密钥的秘密性,很难保证真正的安全。而量子密码通信是目前科学界公认唯一能实现绝对安全的通信方式,其主要依赖于基本量子力学效应和量子密钥分配协议。最后分析量子保密通信的前景和所要解决的问题。 关键词:量子通信、经典保密通信、量子保密通信、量子通信发展、量子通信前景 经典保密通信 一般而言,加密体系有两大类别,公钥加密体系与私钥加密体系。密码通信是依靠密钥、加密算法、密码传送、解密、解密算法的保密来保证其安全性. 它的基本目的使把机密信息变成只有自己或自己授权的人才能认得的乱码。具体操作时都要使用密码讲明文变为密文,称为加密,密码称为密钥。完成加密的规则称为加密算法。讲密文传送到收信方称为密码传送。把密文变为明文称为解密,完成解密的规则称为解密算法。如果使用对称密码算法,则K=K’ , 如果使用公开密码算法,则K 与K’不同。整个通信系统得安全性寓于密钥之中。公钥加密体

系基于单向函数(one way function)。即给定x,很容易计算出F (x),但其逆运算十分困难。这里的困难是指完成计算所需的时间对于输入的比特数而言呈指数增加。 另一种广泛使用的加密体系则基于公开算法和相对前者较短的私钥。例如DES (Data Encryption Standard, 1977)使用的便是56位密钥和相同的加密和解密算法。这种体系的安全性,同样取决于计算能力以及窃听者所需的计算时间。事实上,1917年由Vernam提出的“一次一密乱码本”(one time pad) 是唯一被证明的完善保密系统。这种密码需要一个与所传消息一样长度的密码本,并且这一密码本只能使用一次。然而在实际应用中,由于合法的通信双方(记做Alice和Bob)在获取共享密钥之前所进行的通信的安全不能得到保证,这一加密体系未能得以广泛应用。 传统的加密系统,不管是对密钥技术还是公钥技术,其密文的安全性完全依赖于密钥的秘密性。密钥必须是由足够长的随机二进制串组成,一旦密钥建立起来,通过密钥编码而成的密文就可以在公开信道上进行传送。然而为了建立密钥,发送方与接收方必须选择一条安全可靠的通信信道,但由于截收者的存在,从技术上来说,真正的安全很难保证,而且密钥的分发总是会在合法使用者无从察觉的情况下被消极监听。 量子保密通信 量子密码学的理论基础是量子力学,而以往密码学的理

加密技术四大创新领域

加密技术四大创新领域 从数据安全层面来看,“谁拥有数据”以及“谁可以读取哪些数据”这两个问题尤为重要。在这一系列的问题当中,需要加密算法将所有的东西结合到一起。这些都是复杂的数学问题,甚至对于一些专家而言都难以理解。但是,反欺诈、隐私保护、确保信息准确性都或多或少离不开这些算法的正确使用。 密码学同时在网络攻防中有着两面性:研究者们试图改进它们的同时,也在努力尝试找出它们的弱点进行破解。一些最新的密码学方式通过更复杂的协议和更高强度的算法进行保护。一些最新的工具会提升隐私防护,使应用个能灵活,从而能更好地抵御攻击,甚至是未来可能用量子计算机发起的攻击。而加密货币的发展打开了新的可能:不仅仅是保护资金和交互,还提供完整的数字工作流保护。通过区块链的发展与演进,从而保护所有的交互,是当今计算机科学最有创造性的领域。由于这些创新的出现,密码学这一核心基础依然相当稳定、强大、安全。企业依然能以来十年前制定的标准来保障自己的安全,而不需要经常重新编写或设计协议。像SHA和AES这类标准算法都是在NIST管理的公开竞赛中同颖而出的设计,因此能抵御大量公开的攻击。虽然像SHA1在技术的发展过程中变得更为脆弱,会被破解,但是SHA256的出现对SHA1进行了替代,因此整体而言,密码学体系没有出现灾难性的崩溃。 一、抗量子加密 量子计算的出现引发人们对暴力破解的担忧。因此,NIST开始着力于研发“抗量子”或者“后量子”算法。去年夏天,NIST宣布2016年底发起的比赛

的第三轮正式开始。最初有69种算法参与其中,在第三轮时就剩下26种算法,而现在只剩下了15中算法。15中算法中,有7种作为“决胜者”,而其他8种则作为一些小规模应用的替代算法。这8种算法中也依然有研究者正在进一步改进,因为在通告中表明这些算法“可以能需要更多时间完善”。筛选的过程相当困难,毕竟研究者们需要想象一种来自还不存在的机器的攻击。举例而言,现在使用广泛的RSA数字签名就有可能通过对一个超大数的分解造成破解。在2012年,研究者就表示已经通过量子计算将21拆解为7和3——尽管说21并不是一个很大的数目。许多人认为,要研究出能分解大数的量子计算机需要花很长时间,而像RSA这类的标准可能相比量子计算而言,反而更容易被云计算等技术威胁。参赛的大部分算法都集中在如何对抗Shor算法。Shor算法被认为是量子计算攻击诸如RSA之类的算法的模型。不过,现在公布的量子计算机的形态各不相同,所以也没人知道具体哪种算法或者设计会成为最终形态。不过,研究者发现,即使量子攻击永远都无法达到完美,如今对抗量子的设计依然会对密码学本身有很大的推动。密码学家Paul Kocher在一次采访中表示,基于哈希函数的数字签名可以在一些低功率处理的专用硬件和软件环境中轻松部署。他表示,验证只需要一个微小的状态机和一个哈希函数,就能完美契合硬件部署;而对抗量子计算机本身只基于哈希函数的强度,而不是需要涉及一些新的数学领域的抗量子算法。NIST表示,最终轮因为疫情,将会花费更长的时间,但他们希望能在2022年宣布新的加密和数字签名标准。 二、同态加密 研究者的另一个方向是对加密后的数据直接进行操作,而不需要密钥来进行。越来越多的信息存储于云端,但是这些信息和本地存放的信息相比安全性又没有

量子信息

在量子力学中,量子信息(quantum information)是关于量子系统“状态”所带有的物理信息。通过量子系统的各种相干特性(如量子并行、量子纠缠和量子不可克隆等),进行计算、编码和信息传输的全新信息方式。 量子信息最常见的单位是为量子比特(qubit)——也就是一个只有两个状态的量子系统。然而不同于经典数位状态(其为离散),一个二状态量子系统实际上可以在任何时间为两个状态的叠加态,这两状态也可以是本征态。 而量子信息学(quantum information science或quantum informatics)则是研究这方面问题的学门,简要来说是量子力学和信息学的交叉,主领域包括有: ■量子计算的抽象推演,以及量子计算机(量子电脑)方面的物理系统实践。 ■量子通信。 ■量子密码学。 根据摩尔(Moore)定律,每十八个月计算机微处理器的速度就增长一倍,其中单位面积(或体积)上集成的元件数目会相应地增加。可以预见,在不久的将来,芯片元件就会达到它能以经典方式工作的极限尺度。因此,突破这种尺度极限是当代信息科学所面临的一个重大科学问题。量子信息的研究就是充分利用量子物理基本原理的研究成果,发挥量子相干特性的强大作用,探索以全新的方式进行计算、编码和信息传输的可能性,为突破芯片极限提供新概念、新思路和新途径。量子力学与信息科学结合,不仅充分显示了学科交叉的重要性, 而且量子信息的最终物理实现, 会导致信息科学观念和模式的重大变革。事实上,传统计算机也是量子力学的产物,它的器件也利用了诸如量子隧道现象等量子效应。但仅仅应用量子器件的信息技术,并不等于是现在所说的量子信息。目前的量子信息主要是基于量子力学的相干特征,重构密码、计算和通讯的基本原理。 量子计算(quantum computation) 的概念最早由IBM的科学家R. Landauer及C. Bennett于70年代提出。他们主要探讨的是计算过程中诸如自由能(free energy)、信息(informations)与可逆性(reversibility)之间的关系。80年代初期,阿岗国家实验室的P. Benioff首先提出二能阶的量子系统可以用来仿真数字计算;稍后费因曼也对这个问题产生兴趣而着手研究,并在1981年于麻省理工学院举行的First Conference on Physics of Computation中给了一场演讲,勾勒出以量子现象实现计算的愿景。1985年,牛津大学的 D. Deutsch提出量子图林机(quantum Turing machine)的概念,量子计算才开始具备了数学的基本型式。然而上述的量子计算研究多半局限于探讨计算的物理本质,还停留在相当抽象的层次,尚未进一步跨入发展算法的阶段。 1994年,贝尔实验室的应用数学家P. Shor指出[3],相对于传统电子计算器,利用量子计算可以在更短的时间内将一个很大的整数分解成质因子的乘积。这个结论开启量子计算的一个新阶段:有别于传统计算法则的量子算法(quantum algorithm)确实有其实用性,绝非科学

量子通信技术基于量子物理学的基本原理

关键词:量子通信安全性中国发展 摘要:用国际顶级量子专家王肇中教授的话说,量子通信就是单模光纤两端加上能代替常用光模块功能的、光量子态的发送和接收设备,实现基于物理加密的保密通信。 量子通信技术基于量子物理学的基本原理,克服了经典加密技术内在的安全隐患,是迄今为止唯一被严格证明是无条件安全的通信方式。为了拓展应用、与现有通信系统兼容以及大量减少成本,需对点对点的通信方式进行组网并充分利用经典通信设施。与此同时,量子克隆技术的出现也使得我们开始重新审视量子通信的安全性问题。量子通信是相对最安全的,但任何事情都不是绝对的,有矛就有盾。一方面有“量子非克隆原理”,另一方面有实现近似量子克隆的“量子克隆机”。怎样可靠地评估安全性?怎样进行攻击?是值得研讨的问题。在不久的将来,量子通信与经典通信的融合发展将会带来通信世界的新纪元。 例如一个量子态可以同时表示0和1两个数字,7个这样的量子态就可以同时表示128个状态或128个数字:0~127。光量子通信的这样一次传输,就相当于经典通信方式的128次。可以想象如果传输带宽是64位或者更高,那么效率之差将是惊人的2,以及更高。 1. 欧洲联合了来自12个欧盟国家的41个伙伴小组成立了SECOQC量子通信网络[8][9]。并于2008年10月在维也纳现场演示了一个基于商业网络的安全量子通信系统。该系统集成了多种量子密码手段,包含6个节点。其组网方式为在每个节点使用多个不同类型量子密钥分发的收发系统并利用可信中继进行联网。 息量子通信验证网”在北京开通,在世界上首次将量子通信技术应用于金融信息安全传输。 2014年11月15日,团队研发的远程量子密钥分发系统的安全距离扩展至200公里,刷新世界纪录。 2. 应用与用途 潘建伟教授指出,量子通信技术的实际应用将分三步走:一是通过光纤实现城域量子通信网络;二是通过量子中继器实现城际量子通信网络;三是通过卫星中转实现可覆盖全球的广域量子通信网络。 对市场角度来说,互联网本质上是一个不安全的网络,而量子通信在理论上的绝对保密特征,已经得到物理定理的证明,很显然在军事、国防、金融等领域有着广阔的应用前景。在大众商业市场,随着技术成熟,量子通信也将具有极大的发展潜力。 3.量子通信技术的发展趋势 4.不足 但量子通信本身,仍然处在研究阶段,还远远没有达到大规模商用化的水平,实用的量子通信网络其保密的绝对性还有待商榷。 量子通信面临四项难点:可扩展、强抗毁、广覆盖、立体化 子密钥分发在未来推广应用方面面临两大挑战:融合性和安全性。量子通信从量子力学的

量子密码与量子通信

龙源期刊网 https://www.360docs.net/doc/346396051.html, 量子密码与量子通信 作者:孔洁 来源:《中国科技纵横》2019年第21期 摘要:量子密码不同于普通密码,是量子力学与经典密码学相互融合的产物。它的安全性由量子力学基本原理保证,与攻击者的计算能力无关。它的兴起对信息安全技术领域产生了非常重要的影响。本文介绍了量子密码与普通密码的区别,量子密钥分配方案的基本原理,量子密码协议以及量子通信的2种方法。 关键词:量子密码;量子密钥分发;协议;量子通信 中图分类号:TN918 文献标识码:A 文章编号:1671-2064(2019)21-0024-02 密碼学广泛应用于军事、金融、信息保密等领域。到目前为止,我们所用的文本、声音、图像等都是转换为0或1进行编码存储于计算机中。人们用计算机所处理的数据依然是基于比特的。因此我们将密码系统的实质归结为保护比特数据的安全。早期的密码学主要基于数学的复杂性,破解一个密码系统,相当于解决一个具有一定复杂的数学问题,这类利用数学复杂性而生成的密码学称为经典密码学,与之相对应的就是量子密码学。 量子密码学依赖物理学原理,无条件地确保信息的安全。它服从“一次一密”,每次向对方传送一个密钥,这个密钥要求是随机的,如果被外界探测到了,本次密钥就作废。 当用于编码的量子态被窃听,接收方所收到的量子态和发送方的量子态有所不同,这样就会导致其统计特性发生变化,从而被察觉。 1 量子密码协议 1.1 BB84协议 BB84量子密码协议是第一个量子密码通信协议,也是唯一被商业化实现的量子密钥分发协议。BB84协议的关键在于:双方选取了2组非正交编码基。窃听方无法获得一方传递给另一方的信息。接收方根据测量数据计算相应的误码率,如果误码率高于某个阙值,就终止本轮协议,重新开始分发新的随机密钥。如果能保证密钥长度尽可能的长,这种传递信息的方式与窃听者的破解能力没有任何关系,是无条件的。 1.2 B92协议 贝内特在1992年提出了B92协议,也就是量子密码分发协议。B92协议中使用2种量子状态。

量子计算机技术发展对信息安全技术带来的影响研究汇报

量子计算机技术发展对信息安全技术带来的影响研究汇报 1、量子计算机技术的发展将会给信息安全技术带来颠覆性的影响。 a 、量子计算机运算速度比经典计算机快,而且相差的是指数级别。 量子计算机与经典计算机的不同之处在于:经典计算机每输入一个数据位(比特),都是确切的二进制0或者二进制1。而量子计算机每输入一个数据位(量子比特),却是二进制0和1的叠加态,记为a|0>+b|1>。这相当于可以这样理解,在只有一个数据位的情况下,每进行一次操作,经典计算机只进行了一次运算,而量子计算机进行了两次运算;以此类推,在有两个数据位的情况下,每进行一次操作,经典计算机只进行了2次运算,而量子计算机进行了次运算;而在在有三个数据位的情况下,每进行一次操作,经典计算机只进行了3次运算,而量子计算机进行了次运算。由此可见,在同样的操作次数和相同的数据位数情况下,量子计算机的运算次数等同于经典计算机的指数倍。 b 、目前计算机通信的安全体系主要依赖的加密解密算法在理论上可 以被量子计算机所破解。 计算机通信在技术层面的安全体系主要依赖于加密解密算法,典型的加密解密算法有RSA ,AES 等等。它们的原理是基于大数分解质因数比较困难这一事实为基础。就是说,在经典计算机的条件下,要把大数分解为质因数,花费时间较长,即使分解出来了,也没有了时效性,因此等同于不能分解。而量子计算机的运算速度等同于经典计算机的指数倍,用量子计算机来分解大数的质因2232

数在很短的时间内就可以实现。 2、量子计算机实现后的计算机通信安全体系重构的预测。 量子计算机采用特定的算法(shor算法)虽然能够破解当前所有的加密解密算法,但是,基于量子力学的量子通信技术所依赖的物理学原理,却可以抵御住量子计算机的破解。正所谓以己之矛攻己之盾。 举个典型的例子说明,基于量子纠缠的量子密钥分发,能实现一次一密的完全随机的密钥分发。而在密码学基本原理中,一次一密的完全随机的密钥分发是是任何算法都不能破解的。因此,基于量子纠缠的量子密钥分发,即使在真正通用的量子计算机出来后,也是可以抵御它的破解的。 并且,基于量子力学的通信技术,例如E91协议,BB84协议,量子隐形传态等通信技术,可以让窃听者无法窃听信息(根据量子力学物理学原理,一旦有人窃听信息,接收方就会收到乱码,从而识别出有人在窃听信息)。从而保证通信的安全。

量子密码

量子密码 摘要 论文说明了量子密码的现实可行性与未来可行性,强调了量子密码比传统密码和公开密钥更加方便和安全,探讨了量子密码的理论基础与试验实践。密码技术是信息安全领域的核心技术,在当今社会的许多领域都有着广泛的应用前景。量子密码术是密码技术领域中较新的研究课题,它的发展对推动密码学理论发展起了积极的作用。量子密码技术是一种实现保密通信的新方法,它比较于经典密码的最大优势是具有可证明安全性和可检测性,这是因为量子密码的安全性是由量子物理学中量子不可克隆性Heisenburg 测不准原理来保证的,而不是依靠某些难解的数学问题。自从BB84量子密钥分配方案提出以来,量子密码技术无论在理论上还是在实验上都取得了大量研究成果。 关键词:密码学;量子;偏光器;金钥;量子密码;金钥分配 目录 1.密码学原理............................................................................................................. - 2 - 1.1密码学概念...................................................................................................... - 2 - 1.2对称密钥.......................................................................................................... - 2 - 1.3公开密钥.......................................................................................................... - 2 - 2.量子密码学原理.................................................................................................... - 2 - 2.1量子密码学概念.............................................................................................. - 2 - 2.2量子密码工作原理.......................................................................................... - 3 - 2.3量子密码理论基础.......................................................................................... - 4 - 2.4试验与实践...................................................................................................... - 5 - 3.结论 ........................................................................................................................... - 5 - 参考文献................................................................................................................ - 6 -

量子通信中的信息安全技术及比较

量子通信中的信息安全技术及比较 量子通信是近二十年发展起来的新型交叉学 科,是量子论和信息论相结合的新的研究领域。它主要是利用量子纠缠效应进行信息传 递,其研究主要涉及量子密码通信、量子远程传态和量子密集编码等等。而量子通信安全性是将保密通信建立在量子客观规律基础上的,是一个具有重要意义的研究课 题。 随着对数学难题求解的经典算法和量子算法的深入研 究,基于数学上计算复杂性的经典 安全通信面临着严峻的挑战。而经典计算机技术的飞速发展和量子计算机的实验进 展,导致 破译数学密码的难度逐渐降 低。与量子通信安全性相比,目前经典密码体制面临三个方面 的 威胁。首先,经典密码体制安全性是建立在没有严格证明的数学难题之 上。数学难题的突破必将给经典密码算法带来毁灭性打 击。其次,计算机科学的飞速发展导致其计算能力的快速 提高,始终冲击着经典密码。再次,量子计算理论的发展使得数学难题具有量子可解性。 在 1994年Shor提出了多项式时间内求解大数因子和离散对数的量子算法使得目前常用的基于 大数分解困难性提出的RSA公钥密码体制和ELGamal公钥密码体制受到极大威 胁。1998年, Grove提出了量子搜索算法,即在N个记录的无序数据库中搜索记录的时间复杂度为 对N开 平方根,可以提高量子计算机利用蛮力攻击方法破解经典密码的效率,使得经典密码体制 受 到威胁。仅仅因为量子计算机的应用仍处于初级阶 段,量子计算理论成果目前还没有影响经典密码体制系统的使用。但以量子力学为基础发展的安全通信是不可能被攻破的,它以量子力学为基础,利用系统所具有的量子性质,使得“一次一密”密码真正能应用于实际。量子 密码学的安全性是由“海森堡测不准原理”,或量子相干性以及“单量子不可克隆定理” 来 保证的,具有可证明的无条件安全性和对窃取者的可检测 性,完全可以对抗以量子计算机为 工具的密码破译。从而保证了密码本的绝对安全,也保证了加密信息的绝对安 全,故以量子 为载体的通信,具有以往经典通信所没有的安全优 势。 谈到量子安全通信就不得不介绍一下量子密码学。量子密码学的思想最早是由美 国人 S.Wiesner在1969年提出。后来 IBM的S.H.Bennett和Montreal大学的G.Brassard在此基础 上提出了量子密码学的概念,并于1984年提出了第一个量子密钥分发协议,简称议。1991年Ekert依据量子缠绕态而提出了一种基于EPR关联光子对的E91协议,BB84 1992 协 年 Bennet t 又进一步提出 了 B92量子密码协议。 一、量子密码保密通信的物理原理: 1、互补性以及测不准原理:在量子力学中具有互补性的两组物理量是指在进行观测时,对

量子密码学报告

量 子 密 码 学 报 告 班级_ 学号_ 姓名_ 指导老师_ 年月日

目录 一,绪论。 (3) 1.1 研究背景。 (3) 二,量子简介。 (3) 2.1量子的特性。 (3) 2.2量子算法介绍。 (4) 2.3实现量子计算的困境。 (4) 三.量子力学在密码学中的应用。 (5) 3.1量子密码协议. (5) 四,基于量子隐形传态原理的安全通信介绍。 (7) 五,参考文献。 (9)

一,绪论。 1.1 研究背景。 电子计算机的产生,使得密码学从机械时代发展到了计算机时代。计算机的计算能力影响着密码系统的设计者,也影响了密码系统的攻击者。 电子计算机的计算能力存在瓶颈。根据摩尔定律,在一块固定面积的芯片上,被集成的晶片的数量以一到两年的时间增加一倍。问题是芯片的密度受到一定的物理限制,这样限制了进晶片的数量,连带也限制了电子计算机的计算速度。当芯片密度越来越大,晶片之间的距离以纳米来计算的话,就会出现量子效应。 这样,量子计算机就诞生了! 现在的密码学说研究的,很大的一部分是在加长密钥位数,或者多次加密方面。但是香农的完全加密理论指出:一个加密系统要达到完全加密的要求,密钥的长度要与明文的长度一样长。这是不现实的! 即便是公钥密码体制,由于密钥安全是基于大数分解的,随着计算能力的快速发展,也会变得很不安全。 于是,量子密码学从此出现在世人的眼中。 二,量子简介。 2.1量子的特性。 1)传统意义上,任何粒子都处在一个明确的状态,是否测量都不会改变状态。 2)量子力学:量子同时处在不同的状态,只是这些状态各自有不同的发生概率(量子叠加性),但是一旦被测量,状态就被确定(量子态的坍缩)。 利用量子作出的单一位元,就称为量子位元(Quantum Bit,Qubit)。

量子时代,信息安全的挑战与机遇

量子计算时代,信息安全的挑战与机遇 By *** 2010年7月 (武汉大学国际软件学院 2008级7班) 摘要:量子计算技术的发展对我们来说既是机遇,又是挑战。计算机的实用化只是时间问题,我们必须提前做好准备工作。本文简单介绍了量子计算的基本原理,发展现状及实现方案,展现出了其诱人的前景。同时也指出了对我们当前信息安全的挑战,并且提出了两种应对方案,一是从密码的算法方面入手,二是发展被称为最可靠通信技术的量子密码。 关键字:量子; 计算机; 信息安全; 密码 Abstract: The developing of quantum technology is an opportunity as well as challenge. The common quantum computer is on the way and we must do the preparation now. This paper gives a brief introduction to both the basic theory of quantum computation and the possible solutions for implementation of quantum computer, which shows the promising future of this field. At the same time, we point out the challenges witch it brings to present information system. There are two solutions for this challenge. The first one is to do research in algorithm of cryptography. Another solution is to develop quantum cryptography which is described as the most reliable communication technology. Key Words: Quantum; Computer; Information Safety; Cryptography

全球量子保密通信技术进展研究

Computer Science and Application 计算机科学与应用, 2017, 7(1), 74-87 Published Online January 2017 in Hans. https://www.360docs.net/doc/346396051.html,/journal/csa https://www.360docs.net/doc/346396051.html,/10.12677/csa.2017.71010 文章引用: 李宏欣, 李瞻, 闫宝, 韩宇, 王伟, 山灵. 全球量子保密通信技术进展研究[J]. 计算机科学与应用, 2017, Technology Development Analysis of Global Quantum Private Communication Hongxin Li 1,2, Zhan Li 1, Bao Yan 1, Yu Han 1, Wei Wang 1, Ling Shan 3 1Department of Language Engineering, PLA University of Foreign Languages, Luoyang Henan 2 State Key Laboratory of Mathematical Engineering and Advanced Computing, Zhengzhou Henan 3 College of Animal Science and Technology, Henan University of Science and Technology, Luoyang Henan Received: Jan. 6th , 2017; accepted: Jan. 21st , 2017; published: Jan. 24th , 2017 Abstract With the rapid development of Information Technology (IT), people pay more attention to the confidentiality of network communications. As a result, higher safety requirement is in urgent need for encryption systems. The birth of quantum cryptography drawing great attention at home and abroad can tackle the problem perfectly, since the ideal quantum private communication possesses theoretically unconditional security. This paper mainly introduces the latest progress on quantum cryptography experiment, quantum cryptography network and quantum cryptogra-phy product, possessing important reference value. Keywords Quantum Private Communication, Quantum Key Distribution, Latest Development, Applications 全球量子保密通信技术进展研究 李宏欣1,2,李 瞻1,闫 宝1,韩 宇1,王 伟1,山 灵3 1解放军外国语学院语言工程系,河南 洛阳 2 数学工程与先进计算国家重点实验室,河南 郑州 3 河南科技大学动物科技学院,河南 洛阳 收稿日期:2017年1月6日;录用日期:2017年1月21日;发布日期:2017年1月24日 摘 要 随着互联网信息技术日新月异的发展,人们对于通信保密性的要求越来越高,从而对于加密体制的安全

1.3 信息安全技术体系结构

1.3 信息安全技术体系结构 信息安全技术是一门综合的学科,它涉及信息论、计算机科学和密码学等多方面知识,它的主要任务是研究计算机系统和通信网络内信息的保护方法以实现系统内信息的安全、保密、真实和完整。一个完整的信息安全技术体系结构由物理安全技术、基础安全技术、系统安全技术、网络安全技术以及应用安全技术组成。 1.3.1 物理安全技术 物理安全在整个计算机网络信息系统安全体系中占有重要地位。计算机信息系统物理安全的内涵是保护计算机信息系统设备、设施以及其他媒体免遭地震、水灾、火灾等环境事故以及人为操作失误或错误及各种计算机犯罪行为导致的破坏。包含的主要内容为环境安全、设备安全、电源系统安全和通信线路安全。 (1)环境安全。计算机网络通信系统的运行环境应按照国家有关标准设计实施,应具备消防报警、安全照明、不间断供电、温湿度控制系统和防盗报警,以保护系统免受水、火、有害气体、地震、静电的危害。 (2)设备安全。要保证硬件设备随时处于良好的工作状态,建立健全使用管理规章制度,建立设备运行日志。同时要注意保护存储介质的安全性,包括存储介质自身和数据的安全。存储介质本身的安全主要是安全保管、防盗、防毁和防霉;数据安全是指防止数据被非法复制和非法销毁,关于存储与数据安全这一问题将在下一章具体介绍和解决。 (3)电源系统安全。电源是所有电子设备正常工作的能量源,在信息系统中占有重要地位。电源安全主要包括电力能源供应、输电线路安全、保持电源的稳定性等。 (4)通信线路安全。通信设备和通信线路的装置安装要稳固牢靠,具有一定对抗自然因素和人为因素破坏的能力。包括防止电磁信息的泄露、线路截获以及抗电磁干扰。 1.3.2 基础安全技术 随着计算机网络不断渗透到各个领域,密码学的应用也随之扩大。数字签名、身份鉴别等都是由密码学派生出来的新技术和应用。 密码技术(基础安全技术)是保障信息安全的核心技术。密码技术在古代就已经得到应用,但仅限于外交和军事等重要领域。随着现代计算机技术的飞速发展,密码技术正在不断向更多其他领域渗透。它是结合数学、计算机科学、电子与通信等诸多学科于一身的交叉学科,它不仅具有保证信息机密性的信息加密功能,而且具有数字签名、身份验证、秘密分存、系统安全等功能。所以,使用密码技术不仅可以保证信息的机密性,而且可以保证信息的完整性和确定性,防止信息被篡改、伪造和假冒。 密码学包括密码编码学和密码分析学,密码体制的设计是密码编码学的主要内容,密码体制的破译是密码分析学的主要内容,密码编码技术和密码分析技术是相互依存,互相支持,密不可分的两个方面。 从密码体制方面而言,密码体制有对称密钥密码技术和非对称密钥密码技术,对称密钥密码技术要求加密解密双方拥有相同的密钥。非对称密钥密码技术是加密解密双方拥有不相同的密钥。 密码学不仅包含编码与破译,而且包括安全管理、安全协议设计、散列函数等内容。不

量子保密通信

量子保密通信 目录 绪言 (2) 第一章 保密通信 (3) 1.1 引言 (3) 1.2 经典保密通信 (3) 1.3 量子保密通信 (4) 1.4 量子密钥分配原理 (5) (7) 第二章 量子密钥分配协议 2.1 引言 (7) 2.2 BB84 量子密钥分配协议 (7) 2.3 B92量子密钥分配协议 (10) 2.4 EPR量子密钥分配协议 (11) 2.5 4+2量子密钥分配协议 (13) 第三章 量子通信传输流程 (14) 3.1 引言 (14) 3.2 量子传输 (14) 3.3 筛选数据(Distill data) (15) 3.4 数据纠错(Error Correction) (15) 3.5 保密增强(Privacy Amplification) (16) 3.6身份认证(Identify Authentication) (16) 第四章 量子密钥分配系统 (17) 4.1 引言 (17) 4.2 双MZ干涉仪系统 (17) 4.3 即插即用系统 (18) 4.4 基于VPN网络的量子通信系统 (19) (21) 跋 参考文献 (21)

第一章保密通信 1.1 引言 传统的加密系统,不管是对密钥技术还是公钥技术,其密文的安全性完全依赖于密钥的秘密性。密钥必须是由足够长的随机二进制串组成,一旦密钥建立起来,通过密钥编码而成的密文就可以在公开信道上进行传送。然而为了建立密钥,发送方与接收方必须选择一条安全可靠的通信信道,但由于截收者的存在,从技术上来说,真正的安全很难保证,而且密钥的分发总是会在合法使用者无从察觉的情况下被消极监听。 近年来,由于量子力学和密码学的结合,诞生了量子密码学,它可完成仅仅由传统数学无法完成的完善保密系统。量子密码学是在量子理论基础上提出了一种全新的安全通信系统,它从根本上解决量子特性不可忽视,测量动作是量子力学的一个组成部分。在这些规律中,对量子密码学起关键作用的是Heisenberg测不准原理,即测量量子系统时通常会对该系统产生干扰,并产生出关于该系统测量前状态的不完整信息,因此任何对于量子信道进行监测的努力都会以某种检测的方式干扰在此信道中传输的信息。 1.2 经典保密通信 一般而言,加密体系有两大类别,公钥加密体系与私钥加密体系。经典保密通信原理如下图1一1所示: 密码通信是依靠密钥、加密算法、密码传送、解密、解密算法的保密来保证其安全性.它的基本目的使把机密信息变成只有自己或自己授权的人才能认得的乱码。具体操作时都要

相关文档
最新文档