聚二甲基二烯丙基氯化铵的染料废水脱色性能研究

聚二甲基二烯丙基氯化铵的染料废水脱色性能研究
聚二甲基二烯丙基氯化铵的染料废水脱色性能研究

印染废水脱色方法有哪些

印染废水成分复杂,色度高,对于其脱色的研究众多,根据不同的处理方法大可分为两大类:即生化法和物化法。 物化法包括吸附、混凝、中和等,生化法包括活性污泥法、生物转盘等。实际水处理工程中常常是多种方法组合,以便取得较好的效果。 ★吸附法 吸附法是采用活性炭、粘土等多孔物质的粉末或颗粒与废水混合,或使废水通过由其颗粒状物组成的滤床,使废水中染料等污染物质吸附于多孔物质表面等而除去。吸附脱色的一个主要优点是通过吸附的作用可将染料从水中去除,吸附过程保留了染料的结构。 ★絮凝脱色 印染废水絮凝脱色机制就是以吸附架桥理论为基础的。就无机絮凝剂而言,是铁系、铝系等絮凝剂发生水解和聚合反应,生成高价聚羟阳离子,与水中的胶体进行压缩双电层、电中和脱稳、吸附架桥并辅以沉淀物网捕、卷扫作用,沉淀去除生成的粗大絮体(矾花),从而达到净水脱色目的。对于有机高分子絮凝剂而言,除了电中和与架桥作用外,可能还存在类似化学反应成键的絮凝机制。 活性炭吸附脱色技术不适合印染废水的一级处理,只能用于深度脱色处理,活性炭处理成本高,再生困难。煤、炉渣吸附剂,原料来源广,成本低,但处理印染废水之后存在二次污染,所以只适合与生化法或砂过滤等方法联合使用。 近年来,人们研究较多的是有机絮凝剂,尤其是人工合成的有机高分子絮凝

剂,它种类繁多,具有优异的性能,但是因价格、一些合成体中残留单体的毒性等方面的限制,使其在应用中受到制约,因此开发研制价廉、无毒、高效的新型有机絮凝剂,已成为絮凝法的主要研究方向之一。 另外,在应用中可将有机絮凝剂与无机混凝剂复配使用,充分发挥有机高分子絮凝剂的吸咐架桥性能和无机混凝剂的电性中和能力,从而保证复合混凝剂的高效性,使出水达到较好的效果。 此外,单一的絮凝技术处理印染废水效果往往不佳,因此,根据实际出水要求,还应注意采用适当的预处理和后处理手段,发挥絮凝工艺与其它工艺的协同工作的优势,以达到综合治理的目的,这对于提高印染废水的处理效果,降低处理成本具有极其重要的意义。 杭州一洲纺织助剂有限公司位于杭州市拱墅区,公司为纺织和皮革工业提供性能较好的化学品和系统的解决方案,经过十多年的稳步发展,公司在湖州拥有20余亩现代化厂房和先进的化工生产设备,已成为一家集研发、生产、销售、服务为一体的综合性化工企业。

化工废水特点及废水处理原则

化工废水特点及废水处理原则 随着经济的高速发展,化工产品生产过程对环境的污染加剧,对人类健康的危害也日益普遍和严重,其中特别是精细化工产品(如制药、染料、日化等)生产过程中排出的有机物质,大多都是结构复杂、有毒有害和生物难以降解的物质。因此,化工废水处理的难度较大。 化工废水的基本特征为极高的COD、高盐度、对微生物有毒性,是典型的难降解废水,是目前水处理技术方面的研究重点和热点。化工废水的特征分析如下: (1)水质成分复杂,副产物多,反应原料常为溶剂类物质或环状结构的化合物,增加了废水的处理难度; (2)废水中污染物含量高,这是由于原料反应不完全和原料、或生产中使用的大量溶剂介质进入了废水体系所引起的; (3)有毒有害物质多,精细化工废水中有许多有机污染物对微生物是有毒有害的,如卤素化合物、硝基化合物、具有杀菌作用的分散剂或表面活性剂等; (4)生物难降解物质多,B比C低,可生化性差; (5)废水色度高。 化工废水处理方法: 废水处理技术已经经过了100多年的发展,污水中的污染物种类、污水量是随着社会经济发展、生活水平的提高而不断增加,污水处理技术也随着科学技术的发展而发生了日新月异的变化,同时,旧的污水处理技术也不断被革新和发展着。尤其现在的化工废水中的污染物是多种多样的,往往用一种工艺是不能将废

水中所有的污染物去除殆尽的。用物化工艺将化工废水处理到排放标准难度很大,而且运行成本较高;化工废水含较多的难降解有机物,可生化性差,而且化工废水的废水水量水质变化大,故直接用生化方法处理化工废水效果不是很理想。 针对化工废水处理的这种特点,我们认为对其处理宜根据实际废水的水质采取适当的预处理方法,如絮凝、内电解、电解、吸附、光催化氧化等工艺,破坏废水中难降解有机物、改善废水的可生化性;再联用生化方法,如SBR、接触氧化工艺,A/O工艺等,对化工废水进行深度处理。 目前,国内对处理化工废水工艺的研究也趋向于采用多种方法的组合工艺。例如,采取内电饵混凝沉淀—厌氧—好氧工艺处理医药废水、采用大孔吸附树脂吸附和厌氧—好氧生物处理—絮凝沉淀法处理有机化工废水、采用絮凝—电饵法联用处理麻黄素废水、采取臭氧一生物活性碳工艺去除水中有机污染物、采用的光催化氧化—内电饵—sBR组合方法处理高浓化工废水都取得了比较好的结果。 化工废水成分复杂、水质水量变化大。随着国家对其处理达标要求越来越严格,人们用一种方法很难得到良好的处理效果。处理化工废水根据实际情况采用各种组合处理技术。以取长朴短,实现处理系统优化。 水污染指标 水污染指标是衡量水体被污染程度的数值标示,也是控制好检测水处理设备运行状态的重要依据。其中,最常用的水污染指标有(8个): 生化需氧量(BOD):表示在有饱和氧条件下,好氧微生物在20℃,经一定天数降解每升水中有机物所消耗的游离氧的量,常用单位mg/L,常以 5日为测定BOD的标准时间,以BOD5表示。 化学需氧量(COD):表示用强氧化剂把有机物氧化为H2O和CO2所消耗的相当氧量。常用的氧化剂为重铬酸钾或高锰酸钾,分别表示为COD Cr或简写(COD)和COD Mn(也称耗氧量,简称OC),单位为mg/L。

Fenton试剂氧化法对染料中间体废水的深度处理

Vol.30,No.6,2011净水技术2011,30(6):28-30,52Water Purification Technology 染料中间体废水主要为带有硝基、氨基和磺酸基等取代基团的芳香族化合物,具有成分复杂、难降解有机物含量高、色度高、毒性大等特点,常规生化处理出水难以达到排放标准要求。近年来,对常规生化处理后的工业废水进行深度处理并回用的要求日益迫切。Fenton试剂氧化法因其反应速度快、操作简单、处理效果好而受到重视,但将其应用于染料中间体废水深度处理的研究报道很少。目前仅知张英等[1]做了铁催化内电解法预处理高浓度、高盐度和高色度的染料中间体废水的效果的研究。本文着重研究废水经铁催化内电解、水解酸化、好氧组合工艺处理后,再经Fenton试剂氧化法深度处理的效果及影响因素。 1材料与方法 1.1试验用水 试验用水为某化工厂染料中间体废水经铁催化 内电解、水解酸化、好氧组合处理后的出水,COD Cr 为187.5mg/L,色度为1085倍。 1.2试验方法 向500mL碘量瓶内加入200mL原水,用硫酸溶液调节pH后,加入适量浓度为2.8g/L的Fe2+和 浓度为27.2g/L的H 2 O2。将碘量瓶置于107r/min 的摇床中摇动,反应适当时间后取出碘量瓶,加入适量的氢氧化钠溶液调节pH值至10终止反应,再将其置于107r/min的摇床上摇动30min后,向溶液中滴加0.1g/L的聚丙烯酰胺(PAM)溶液2mL,搅拌2min,静置10min,取上清液进行分析。 1.3分析项目及方法 COD:快速测定仪5B-3F型;pH:pHS-2F型精密pH计;色度:SD-2型色度仪。 2结果与讨论 2.1Fenton试剂氧化法深度处理染料中间体废水 Fenton试剂氧化法对染料中间体废水的深度处理 任国栋1,魏宏斌1,唐秀华2,张英1,陈良才2 (1.同济大学环境科学与工程学院,上海200092;2.上海中耀环保实业有限公司,上海200092) 摘要以实际染料中间体废水经铁催化内电解、水解酸化、好氧生化组合工艺处理后的出水为研究对象,考察了Fenton试 剂氧化法深度处理染料中间体废水的效果和影响因素。当进水COD Cr 为187.5mg/L、色度为1085倍时,出水COD Cr 下降到 59.2mg/L,去除率为68.4%;色度下降到129倍,去除率为88.1%。 关键词染料中间体废水Fenton试剂氧化深度处理影响因素 中图分类号:TU992.3文献标识码:B文章编号:1009-0177(2011)06-0028-04 Advanced Treatment of Dye Intermediate Wastewater by Fenton Reagent Oxidation Pro-cess Ren Guodong1,Wei Hongbin1,Tang Xiuhua2,Zhang Ying1,Chen Liangcai2 (1.College of Environment Science and Engineering,Tongji University,Shanghai200092,China; 2.Shanghai Zhongyao Environmental Protection Industry Co.,Ltd.,Shanghai200092,China) Abstract On the basis of the actual dye intermediate wastewater treated by iron-catalyzed internal electrolysis,hydrolytic-acidifi-cation and aerobic biochemical process,the efficiency and influencing factors in advanced treatment by Fenton reagent oxidation pro-cess were investigated.When the influent COD Cr is187.5mg/L and the color is1085times,the effluent COD Cr is decreased to59.2mg /L,its removal rates being68.4%,and color is decreased to129times,its removal rates being88.1%. Keywords dye intermediate wastewater Fenton reagent oxidation advanced treatment influencing factors [收稿日期]2010-11-26 [作者简介]任国栋(1986-),男,硕士研究生,研究方向为水和废水处 理技术。电话:135********; E-mail:guodongrr@https://www.360docs.net/doc/34765055.html,。 28 --

染料废水脱色处理工艺

染料废水脱色处理工艺 聚合氯化铝(PAC)是一种广泛使用的无机絮凝剂,印染废水经生化处理后色度往往难以达标,采用PAC 进行深度脱色处理效果较好, 但其存在用量大,水中残留铝对环境有害,形成的絮体结构松散,沉降性能欠佳,水力冲击下容易返浑等缺点〔1〕?目前改性硅藻土也常用于染料废水的脱色〔2〕,硅藻土廉价无毒,适应性强,但吸附性能与活性炭相比还有差距,且多呈粉体难以固液分离?采用改性硅藻土复配聚合氯化铝絮凝剂处理染料溶液, 可以获得结构密实的絮体,提高脱色效率,改善沉降性能,减少PAC用量从而减轻Al3+溶出对环境造成的危害, 由于硅藻土价格低廉,同时也可降低水处理成本? 1 实验部分 1.1 材料与仪器 材料:硅藻土,化学纯,质量分数(以Si 计)为88%;聚合氯化铝,质量分数(以Al2O3计)为10%?以上材料均来自常州友邦净水材料有限公司?商品活性艳红? 仪器:721 分光光度计,上海精密科学仪器有限公司;MY3000-6 智能型混凝试验搅拌仪,潜江梅宇仪器有限公司;pHS-3C 型酸度计,上海虹益仪器仪表有限公司? 1.2 硅藻土改性方法 将硅藻原土用0.1 mol/L 的稀HCl 溶液浸泡24 h,然后用去离子水冲洗?烘干,在450 ℃下焙烧1 h 至微呈粉红色,备用? 1.3 絮凝剂复配方法 将聚合氯化铝在85 ℃下烘0.5 h, 然后与改性硅藻土按照一定的质量比混合后反复研磨,即得复合絮凝剂? 1.4 脱色率测定 活性艳红浓度采用分光光度法在540 nm 波长处测定? 脱色率=(C0-C1)/C0×100% 式中: C0———活性艳红初始质量浓度,mg/L; C1———处理后活性艳红质量浓度,mg/L? 1.5 沉降性能测定 用沉降时间表征沉降快慢?沉降时间是指搅拌停止后,污泥和液面之间形成明显的分界面所需时间?絮体的紧密程度用污泥沉降比表征?将反应悬浊液倒入250 mL 量筒中静置1 h,测得污泥体积与原浑浊液体积之比即为沉降比? 2 结果与分析

印染废水的主要成分及特点

印染废水的主要成分及特点 一、印染废水的主要成分 印染废水的主要成分与加工纤维的种类,所用染料助剂、机器设备及操作方法的不同,而有所差异。各类不同纤维(纤维素纤维、蛋白质纤维、合成纤维)所用染料及助剂造成污染的成分如下。 直接染料所用助剂为NaCO3、NaCl、NaSO4、表面活性剂; 活性染料所用助剂为NaOH 、Na2CO4、NaCl、表面活性剂; 还原染料所用助剂为NaOH、Na2CO4、NaCr2O7、H2O2、NaBO3、CH3COOH、表面活性剂; 硫化染料所用助剂为Na2S、NaCl、Na2CO3、H2O2; 冰染料所用助剂为NaOH、NaNO2、HCl、皂洗剂等表面活性剂; 颜料所用助剂为浆料、胶黏剂、树脂等。 酸性染料所用助剂为CH3COOH、CH3COONa、Na2SO4、CH3COONH4、(NH4)3PO4 >、(NH4)2SO4、表面活性剂; 弱酸性染料所用助剂为CH3COOH、CH3COON、表面活性剂; 中性染料所用助剂为(NH4)2S04、表面活性剂; 酸性媒染染料所用助剂为NaCr2O7、CH3COOH、Na2S04、表面活性剂。 分散染料所用助剂为导染剂、CH3COOH、CH3COONa、表面活性剂; 酸性染料染尼龙所用助剂为NaS04、有机酸、单宁酸、酒石酸、表面活性剂; 阳离子染料染腈纶所用助剂为有机酸、表面活性剂。

除此以外还包括印花上的大量废弃物。由此可见印染废水的成分是非常复杂且难以处理的。 二、印染废水的特点 ①BOD:在200~800mg/L,该数据除了与原料有关外,还与 生产过程中水的循环使用有关,用较少的水则有较髙的 BOD,通常平均在300~500mg/L。 ②COD:在 800~1200mg/L,平均在 1000mg/L。 ③COD/BOD:COD与BOD之比值,值越高表示废水不易用生 物处理,值越低则表示较容易受生物降解,一般染整废水将 COD/BOD值调至1~5之间以利生物处理。 ④SS:通常染整废水可从操作上降低很多,用过滤方式可将生 产过程中的大约100mg/L降至75~50mg/L。 ⑤油脂及润滑油:油脂和润滑油在纤维素纤维织造过程中含量 较小,约为40mg/L,而在羊毛纤维上则较高。 ⑥温度:染整废水的温度由精练、漂白、染色过程而决定,一 般平均为60~70℃。 ⑦颜色:染整废水的颜色来自染料,染料种类、形态不同则色 泽也不同。一般为800~15000APHA色度。 ⑧硫化物含量:平均为0.1mg/L。 ⑨金属含量:平均为0.11mg/L或更小,主要来自染料,而 选用的染料不同,差异很大。 ⑩酚含量:平均为0.5Mg/L,因选用的助剂不同差异也较大。

染料废水的特点及危害

染料废水特点及危害 1.1 染料 社会的不断发展,推动着化学工业的发展,但在发展过程中工业废水也在不断地增加。染料废水是主要的有害工业废水之一,主要来源于染料及染料中间体生产行业,由各种产品和中间体结晶的母液、生产过程中流失的物料及冲刷地面的污水等组成。随着染料工业的不断壮大,其生产废水已成为主要的水体污染源。根据美国 C.I.(Color Index),目前染料已有数万种之多。我国是染料生产大国,纺织染料工业近年来快速发展,目前我国各种染料产量已达 90 万吨,染料产量占世界的 60%左右。根据染料的不同特性可对染料进行不同的分类,根据染料的化学结构可将染料分为:偶氮染料、蒽醌染料、靛旋染料、硫化染料、菁染料、三芳基甲烷染料、杂环染料;根据染料染色时应用特性可将染料分为:直接染料、硫化染料、还原染料、酸性染料、酸性络合染料、反应性染料、冰染染料、氧化染料、分散染料、碱性染料;在环境工程领域经常根据染料分子在水溶液中解离出来的离子态而分为:阴离子染料,如直接染料、酸性染料;阳离子染料,如碱性染料;非离子型染料,如分散染料。离子型和非离子型染料中的发色基团大多都是含氮基团或者是蒽醌类,含氮基团中氮键的还原断裂容易在废水中形成具有毒性的胺,而蒽醌类的染料由于其中的芳香结构很难被降解从而使得这类染料废水更难脱色。活性染料是典型的发色基团中含有氮键的染料,发色基团和各种活性基团相连接,如烟磺基团、二氯均三嗪活性基团、乙烯砜基等,这类染料在染色和印花过程中,染料的活性基团与纤维分子形成共价键结合,使得染料和纤维形成一个整体,由于其色泽鲜艳、水溶性好、应用技术简单等优点,活性染料被广泛应用于印染工业。然而,含有这些水溶性的活性染料的废水也是最难处理的废水之一,传统的水处理工艺对这些染料处理效果不是很好。碱性染料由于其色泽非常鲜艳使得水中碱性染料浓度即使很低时,水体的色度也非常高。含有重金属的染料大都含有铬,而铬具有致癌性。分散染料在溶液中不以离子形式存在,许多分散染料具有生物积累性,且分散染料化学结构稳定,生物可降解性差,因此,传统的水处理生物处理系统对分散染料的去除效果很差。 1.2 染料废水的特点 在染料生产过程中如磺化、硝化、重氮化、还原、氧化以及酸(盐)析等工序中都有大量的污染物产生。据估计,在染料生产中有 90%的无机原料和 10%~30%的有机原料转移到水中,污染物浓度高,废水成分复杂,含有大量的有机物和盐份,具CODCr高,色泽深,酸碱性强等特点,一直是废水处理中的难题,已成为环境重点污染源之一。染料废水有如下特点:(1)废水中的有机物绝大部分是以苯、萘、蒽、醌等芳香团作为母体,且带有显色基团,颜色很深,色度达 500~500000,有很强的污染性。 (2)由于生产过程及分子结构的需要,染料物质及中间分子往往含有极性基团,增强了水溶性,使物质流失量大。废水中通常含有许多原料和副产品,如卤化物、硝基物、氨基物、苯胺、酚类等系列有机物和氯化钠、硫酸钠、硫化物等一些无机盐,浓度高,毒性大,一般 COD 可达 1000~73000mg/L 。(3)染料废水多呈酸性,也有的呈碱性,一般含盐量都很大。 (4 )由于人们对五彩缤纷的色彩需要越来越高,染料的品种越来越多,并朝着抗光解、抗氧化、抗生物降解的方向发展,使得这些废水越来越难以用一般的水处理系统处理。(5)在印染工业中往往根据不同的纤维原料和产品需要使用不同的染料、助剂和染色方法,

H酸T酸染料中间体合成废水—UAV技术处理方案

H酸T酸染料中间体合成废水处理方案 浙江临海市楚玛尔海水淡化处理设备厂 项目单位Project unit: 承建单位Construction unit: 一、概述: (India)某企业生产H酸染料及反应中间体T酸废水,日总废水量1800吨。 H酸(1-氨基-8-萘酚-3,-6-二磺酸,是重要的萘系染料中间体,主要用于生产直接、酸性、活性染料和偶氮染料中间体,以及,制药中间体合成。H酸的生产工艺以精萘为原料,经磺化、硝化、中和、还原、碱溶和酸析等工序制取。生产中产生高COD、高盐废水,其中有机物主要为H酸和中间体T酸,COD生物降解性差,是国内、外环保处理公认的高难废水之一。 二、废水指标: 三、废水处理量和要求: 1、处理量:1800t/h。 2、处理要求: (1).H酸、T酸分质回收。 (2).硫酸钠、硫酸铵分质回收。

(3).废水回收利用,回用水水质指标: 四、设计处理工艺: (一)、废水主要组分分析: 1.COD:主要由H酸和T酸组成. ①.H酸理化性质:1-氨基-8-萘酚-3,6-二磺酸,相对分子量319,性状:无色晶体,微溶于冷水0.17%(20℃)、2.4%(60℃),溶于纯碱和烧碱等碱性溶液中。 ②.T酸理化性质:科赫酸(1-萘胺-3,6,8-三磺酸),分子量:383.38,性状:白色固体,微溶于水。 2.硫酸钠:性状:无色、透明、结晶颗粒或粉状。分子量142.06 ,溶解度19.5g(20℃)。 3.硫酸铵:性状:无色斜方晶体,白色至淡黄色结晶体。相对密度(水=1):1.77,分子量132.14,溶解度75.4g(20℃)。 (二)、采用工艺和过程分析: 废水首先过滤分离悬浮物,,通过UAV技术进行浓缩,提高COD(即H酸、T酸物质)、硫酸钠和硫酸铵各组分的浓度,然后,依据废水组分溶解度、温度的特性依次进行分离、分质提取,实现废水回收回用,物质资源化回收。 (三)、设计处理量和工艺流程: 设计处理量:100t/h

染料废水脱色方法

染料废水脱色方法 1 引言(Introduction) 随着经济的快速发展,我国已成为染料生产大国,但随之而来产生了大量的染料废水.除了大量残留的染料外,染料废水中还含有其他有毒有害成分,如重金属离子.因此,染料废水具有成分复杂、色度、浓度高、难生物降解、水量水质变化大等特点,成为较难处理的工业废水之一。 孔雀绿是常见的三苯基甲烷类染料之一,常作为丝织品、毛织品、棉布等的染色剂.虽然孔雀绿具有高毒性、致突变性和较强的生物毒性等特性,但因其成本低廉、杀菌效果显著,因此,目前仍被广泛应用在纺织和水产养殖业.重金属通常应用于纺织染料工业的不同生产过程中,因此,染料废水中存在各种不同浓度的重金属,其中,Cr(Ⅵ)的含量最高,而Cu(Ⅱ)次之.研究发现,极少量的重金属离子就能产生明显的中毒反应,且通过食物链被较高级的生物成倍地富集在体内,且会使生物体内的酶、蛋白质等失活,同时它无法被微生物降解,最终累积在器官中,严重损害着人体健康和生态环境。染料废水中残留染料与重金属离子经常并存,这种复合污染具有更高的生物、细胞毒性。 染料脱色一般分为物理化学法和生物法,物化法使用方便、见效快,但成本高、二次污染严重;生物法运行费用低,处理效果显著且不会造成二次污染,是环境友好的处理方法,因而受到广泛关注。但重金属通过影响微生物体内酶的生成或酶的活性抑制微生物对染料的降解。因此,如何提高染料与重金属构成的复合污染中染料的生物降解效率成为该类废水处理的难点之一.

EDTA(乙二胺四乙酸二钠)是一种常见的鳌合剂,生成的络合物在中性或碱性条件下稳定系数非常大.在一般情况下,这些螯合物的配合比都是1:1(鞠峰等, 2011).EDTA与配位离子形成环状结构,金属离子取代配位原子上的氢而进入鳌合环中,使金属离子钝化,降低其毒害作用。但目前关于采用环境中广泛存在的螯合剂减少与染料共存的重金属离子的毒性,提高染料降解效率的研究少有报道.根据之前的研究发现,某些微生物可能会将Cr(Ⅵ)还原成Cr(Ⅲ),因此,本研究拟采用EDTA降低Cr(Ⅵ)的毒性,从而提高Cr(Ⅵ)共存时微生物降解孔雀绿的效率.采用筛选出的高效好氧菌Burkholderia cepacia C09G降解孔雀绿,研究EDTA对重金属共存时降解孔雀绿的影响,同时优化EDTA鳌合Cr(Ⅵ)的最佳浓度.通过此研究以提高在重金属共存时染料的去除效率,为复杂废水的治理奠定一定的理论基础. 2 材料与方法(Materials and methods)2.1 试剂与仪器 试剂:葡萄糖、KH2PO4、Na2HPO4·2H2O、MgSO4、FeCl3·6H2O、KNO3、孔雀绿(MG)、K2CrO7、EDTA等均为分析纯. 仪器:SKY-2102型立式双层恒温培养摇床、SPX-2508-Z型生化培养箱、722N 型可见光光度计、PHS-3C型精密pH计、AA-240型原子吸收光谱仪. 2.2 试验菌种与培养基 本试验所用菌种为Burkholderia cepacia C09G(B. Cepacia C09G).LB培养基:牛肉膏5 g·L-1,蛋白胨10 g·L-1,NaCl 10 g·L-1,分装在100 mL的三角烧瓶中,每瓶装量为30.0 mL,121 ℃灭菌15 min.降解培养基:葡萄糖6.0

染料废水特点及危害

1.1染料 社会的不断发展,推动着化学工业的发展,但在发展过程中工业废水也在不断地增加。染料废水是主要的有害工业废水之一,主要来源于染料及染料中间体生产行业,由各种产品和中间体结晶的母液、生产过程中流失的物料及冲刷地面的污水等组成。随着染料工业的不断壮大,其生产废水已成为主要的水体污染源。根据美国 C.I.(Color Index),目前染料已有数万种之多。我国是染料生产大国,纺织染料工业近年来快速发展,目前我国各种染料产量已达 90 万吨,染料产量占世界的 60%左右。根据染料的不同特性可对染料进行不同的分类,根据染料的化学结构可将染料分为:偶氮染料、蒽醌染料、靛旋染料、硫化染料、菁染料、三芳基甲烷染料、杂环染料;根据染料染色时应用特性可将染料分为:直接染料、硫化染料、还原染料、酸性染料、酸性络合染料、反应性染料、冰染染料、氧化染料、分散染料、碱性染料;在环境工程领域经常根据染料分子在水溶液中解离出来的离子态而分为:阴离子染料,如直接染料、酸性染料;阳离子染料,如碱性染料;非离子型染料,如分散染料。离子型和非离子型染料中的发色基团大多都是含氮基团或者是蒽醌类,含氮基团中氮键的还原断裂容易在废水中形成具有毒性的胺,而蒽醌类的染料由于其中的芳香结构很难被降解从而使得这类染料废水更难脱色。活性染料是典型的发色基团中含有氮键的染料,发色基团和各种活性基团相连接,如烟磺基团、二氯均三嗪活性基团、乙烯砜基等,这类染料在染色和印花过程中,染料的活性基团与纤维分子形成共价键结合,使得染料和纤维形成一个整体,由于其色泽鲜艳、水溶性好、应用技术简单等优点,活性染料被广泛应用于印染工业。然而,含有这些水溶性的活性染料的废水也是最难处理的废水之一,传统的水处理工艺对这些染料处理效果不是很好。碱性染料由于其色泽非常鲜艳使得水中碱性染料浓度即使很低时,水体的色度也非常高。含有重金属的染料大都含有铬,而铬具有致癌性。分散染料在溶液中不以离子形式存在,许多分散染料具有生物积累性,且分散染料化学结构稳定,生物可降解性差,因此,传统的水处理生物处理系统对分散染料的去除效果很差。 1.2染料废水的特点 在染料生产过程中如磺化、硝化、重氮化、还原、氧化以及酸(盐)析等工序中都有大量的污染物产生。据估计,在染料生产中有 90%的无机原料和 10%~30%的有机原料转移到水中,污染物浓度高,废水成分复杂,含有大量的有机物和盐份,具CODCr 高,色泽深,酸碱性强等特点,一直是废水处理中的难题,已成为环境重点污染源之一。染料废水有如下特点:

染料废水的脱色方法_张林生

专论与综述 染料废水的脱色方法 张林生,蒋岚岚 (东南大学环境工程系,江苏 南京210096) [摘要]综述了染料废水的污染特征和混凝、电解、氧化、吸附、生物降解等各种脱色方法,分析了相 应的脱色机理,并介绍了染料废水的组合处理方法。 [关键词]染料废水;脱色;处理方法 [中图分类号]X703 [文献标识码]A [文章编号]100621878(2000)0120014205 1 染料废水的来源和性质 染料废水主要来源于染料及染料中间体生产行业,由各种产品和中间体结晶的母液、生产过程中流失的物料及冲刷地面的污水等组成。 我国染料工业具有小批量、多品种的特点,大部分是间歇操作,废水间断性排放,水质水量变化范围大。染料生产流程长,产品收率低,废水组分复杂、浓度高(COD为1000~10万m g L)、色度深(500~50万倍)。废水中的有机组分大多以芳烃及杂环化合物为母体,并带有显色基团(如-N=N-、-N=O)及极性基团(如-SO3N a、-OH、-N H2)。废水中还含有较多的原料和副产品,如卤化物、硝基物、苯胺、酚类等,以及无机盐如N aC l、N a2SO4、N a2S等。由于染料生产品种多,并朝着抗光解、抗氧化、抗生物氧化方向发展,从而使染料废水处理难度加大。染料废水的处理难点:一是COD高,而BOD COD值较小,可生化性差;二是色度高,且组分复杂。COD的去除与脱色有相关性,但脱色问题困难更大。 [收稿日期]1999202202 [作者简介]张林生(1944-),男,江苏省常州市人,南京东南大学环境工程系主任、副教授,硕士,主要从事水污染控制与水处理技术的研究。 T re a t m e nt of W oo le n2D ye ing W a s tew a te r by T i O2F il m2S o la r P ho toca ta ly tic O x ida tion P roce s s SUN Shang2m ei,KAN G Zheng2jin W E I Zh i2fang (D ep a rt m en t of Che m istry,Y anbian U n iversity of S cience and T echnoloty,Y anj i133002,Ch ina) Abstract:W oo len2dyeing w astew ater w as treated in a so lar p ho tocatalytic ox idati on reacto r m ade of glass and filled w ith sho rt glass tubes.T he su rface of the tubes w as covered w ith T i O2fil m by so l2gel p rocess.T he w astew ater w as recycled in the reacto r by a subm erged w ater m icropum p and the air w as i m b ibed at the sam e ti m e to supp ly oxygen.T he influence of so lar radiati on ti m e,o riginal pH of influen t and quan tity of supp lied oxygen on COD rem oval efficiency w as studied.T he resu lts show that the treatm en t efficiency of the p rocess is better than that of b i o logycal treatm en t p rocess and that of pho tocatalytic ox idati on p rocess w ith su spend2 ed catalyst.T he catalyst of the p rocess can be con tinuou sly u sed w ithou t separati on and recovery,m ak ing the p rocess su itab le to indu strial u tilizati on. Keywords:pho tocatalytic ox idati on;T i O2fil m;w astew ater treatm en t.

DCB染料生产废水处理技术分析

伴随染料生产和印染行业的发展,染料工业废水的排放量也急剧增多。由于染料废水具有色度大、有机污染物含量高、组分复杂、水质变化和生物毒性大,以及难生化降解,并朝着抗光解、抗氧化的方向发展等特点,使处理染料废水的难度进一步加大。并且,印染废水含有大量的有机污染物,排入水体将消耗溶解氧,破坏水生态平衡,危及鱼类和其它水生生物的生存,甚至进一步恶化环境。因此,染料工业废水的排放处理已经成为了国内外聚焦的热点。 DCB的化学名称为3,3-二氯联苯胺盐酸盐,以DCB为原料的颜料色光纯正、光亮,耐碱和耐热坚牢度好,是颜料行业难以代的品种,现产量占有机颜料的25%~30%,并逐年增长。需要注意的是,DCB染料废水比较难降解,废水水质见表1。 表1 染料生产废水水质参数 项目范围平均值COD/(mg·L-1) 11600~33686 224820 BOD5/(mg·L-1) 800~900 885 NaOH/% 7~9 8 NH4+-N/(mg·L-1) 1148~1347 1247.9 TN/(mg·L-1) 1236~1540 1388 SS/(mg·L-1) 1600~1900 1700 pH 13.75~13.98 13.9 色度/倍—20000 苯胺类/(mg·L-1) 220~320 270 电导率/(μs·cm-1) 12114~13840 12900 1、常用染料工业废水处理技术 当前有多种物理化学方法和生物方法均可用于染料废水的脱色降解处理,国内外常用于工业染料废水处理的方法有:生物处理法、化学絮凝法、化学氧化法、吸附法和电化学法等方法。其他如膜分离技术、辐照技术等也正在推广应用。在具体城市下水道和污水处理中,废水首先在工厂作预处理,达到城市下水道排放标准后进行集中处理。废水经过预处理再排放可改善污水水质,降低城市污水厂处理负荷,同时便于根据不同的废水水质采取不同的预处理手段。在对印染废水进行最终处理时,有机物的去除一般以生物法为主,对难于生物降解的印染废水,

染料中间体废水处理

染料中间体废水处理 摘要:本文主要介绍了染料中间体废水的特点,废水水质,废水治理方法等。 关键词:染料,废水污染,废水处理,生化法 1 前言 染料工业是精细化学工业的重要行业之一,与多个行业密切相联,在我国国民经济中发挥着重要的作用。我国目前是世界上最大的染料生产国,随着染料工业的快速发展,环保问题亦日益突出。染料制造中产生的“三废”,特别是废水是我国染料工业成为污染大户的主要来源。据2008年全国各行业污染物普查,每年染料生产排放的废水约占全国废水排放总量的1.5-2.0%。染料废水有特殊性,表现为排放量大、毒性大、有机浓度高、含盐量高、色度高、难降解化合物含量高,因而治理难度大。目前有些企业做不到达标排放。 一般来说,染料中间体废水具有如下特点: ①废水中污染物种类多。染料及染料中间体废水含有酸、碱、盐、卤素、烃、硝基物、胺类和染料及中间体等物质,有些还含有剧毒的联苯胺、吡啶、氨、酚、以及重金属汞、镉、铬等。 ②有机物浓度高。其CODCr值一般在4000 mg/L以上,对于酸性染料、直接染料以及食用染料,由于原料往往带有磺酸基团,易溶于水,导致这些有机污染物多以水溶态存在于废液中。 ③含盐量高。废水中含盐量可以达到几十到几百g/L。 ④染料的使用要求,促使它向抗光解、抗氧化、抗生物降解方向发展,使得这些废水难以用常规的方法治理。 ⑤染料生产多为间歇操作,工艺较落后,产生的废水水质波动很大,乡镇企业的水质波动更为显著。 染料中间体又称中间体,泛指用于生产染料和有机颜料的各种芳烃衍生物。它们是以来自煤化工和石油化工的苯、甲苯、萘和蒽等芳烃为基本原料,通过一系列有机合成单元过程而制得。染料中间体的品种很多,较重要的就有几百种。早期最重要的染料中间体,如硝基苯、苯胺、苯酚、氯苯和邻苯二甲酸酐等,因用途广、用量大,已发展为重要的基本有机中间体,世界年产量都在百万吨以上。现在最重要的染料中间体有邻硝基氧苯、对硝基氯苯、邻硝基甲苯、对硝基甲苯、

印染废水处理现状及发展趋势

印染废水处理现状及发展趋势 摘要:随着染料工业的快速发展和各种染料的大量使用,进入环境的染料与日俱增。本文论述了染料废水处理方法的研究现状和发展态势,介绍了利用物理化学生物等各类方法处理印染废水的过程,为处理方法最优化提供了参考。并且,对处理技术的发展方向进行了展望,通过废水回用,进行产业结构调整,改进生产工艺,积极开展清洁生产,树立资源观,争取从源头解决印染废水的污染问题。关键词:印染废水处理方法发展 Abstrct: With the rapid development of the dyestuff industry and the use of various dyes, dye growing into the environment. This paper discusses the research status and development trend of the dye wastewater treatment method, this paper introduces the method of using the physical chemistry of biological and other kinds of printing and dyeing wastewater treatment process, provides reference for process optimization. And direction to the development of processing technology was discussed, through the waste water reuse, industrial structure adjustment, improve production technology, actively carry out clean production, sets up the resource view, to solve the pollution problem of the printing and dyeing wastewater from the source. Key words: Print to dye waste water;ways of handling; development 1.引言 印染废水是以加工棉、麻、化学纤维及其混纺产品为主的印染厂排出的废水。印染废水水量较大,每印染加工一吨纺织品耗水100—200吨,其中80—90%为废水。印染行业是工业废水排放大户,据不完全统计,全国印染废水每天排放量为3*106—4*106m3。印染废水具有水量大、有机污染物含量高、碱性大、水质变化大等特点,属难处理的工业废水之一。废水中含有染料、浆料、助剂、油剂、酸碱、纤维杂质、砂类物质、无机盐等。传统的印染废水处理方法有物理、化学、生物法,以下就对其处理现状及未来发展做出概述。 2.我国印染废水现状、特点 2.1印染废水现状 纺织印染工业是我国传统的支柱产业之一,已有一个多世纪的发展历史。20世纪90年代以来,随我国经济快速发展,用水量和排水量也急剧增长。纺织工

染料废水处理

1物理法 1.1吸附法 吸附法是利用多孔性固体(如活性炭、吸附树脂等)与染料废水接触,利用吸附剂表面活性,将染料废水中的有机物和金属离子吸附并浓集于其表面,达到净化水的目的。 活性炭具有较强的吸附能力,对阳离子染料,直接染料,酸性染料、活性染料等水溶性染料具有较好的吸附功能,但活性炭价格昂贵,不易再生。由壳聚糖与活性炭及纤维素混合制成的染料吸附剂对活性染料和酸性染料有优异的吸附能力,其吸附容量分别为264和421mg/g(椰子活性炭吸附容量少于80mg/g)。该吸附剂在水中具有优良的分散性,可采用简单而廉价的接触过滤法处理。 大孔吸附树脂是内部呈交联网络结构的高分子珠状体,具有优良的孔结构和很高的比表面积。吸附树脂可用于去除难以生物处理的芳香族磺酸盐,萘酚类物质。它易再生,且物理化学稳定性好,树脂吸附法已成为处理染料废水的有效方法之一。 1.2膜分离 膜分离技术应用于染料废水处理方面主要是超滤和反渗透。据报道,用管式和中空纤维式聚砜超滤膜处理还原染料废水脱色率在95%~98%之间,CODCr去除率60%~90%,染料回收率大于95%。近年来,用壳聚糖超滤膜和多孔炭膜的新型膜材料来处理印染废水,取得较好的效果。夏之宁等研究了染料废水在超声作用下,通过醋酸纤维素膜的透水率与透盐率,发现超声波在膜分离中有明显的加速传质和去“浓差极化”作用,有超声波作用时其渗透率是无超声波时的1.5倍,对透盐率影响更大,其截留率分别为94%和67%。 2化学法 2.1化学混凝法 化学混凝法主要有沉淀法和气浮法,此法经济有效,但产生化学的污泥需进一步处理。常用的有无机铁复合盐类。近年来国内外采用高分子混凝剂日益增多。天然高分子絮凝剂主要有淀粉及淀粉衍生物、甲壳质衍生物和木质素衍生物3大类。曾淑兰等用NaOH作催化剂将玉米淀粉和醚化剂M反应制得的阳离子淀粉CST,用量为7~15mg/L时,对酸性染料、活性染料的脱色率达90%以上。吴冰艳等用接枝聚合制得的木质素季胺盐絮凝剂处理J酸染料废水,絮凝剂中的季胺离子与废水中的磺酸基团生成不溶于水的物质,投量20mg/L,色度去除率达90%。 方忻兰利用海虾、蟹壳为原料制得的壳聚糖用来处理印染废水,CODCr去除率达85%以上。天然高分子絮凝剂电荷密度小,分子量低,易发生生物降解而失去絮凝活性。人工合

生物法对偶氮染料废水脱色的研究

生物法对偶氮染料废水脱色的研究 从某印染废水的活性污泥中富集了一个能够高效降解酸性大红GR的菌群。研究结果表明,该菌群在15h内几乎将100mg/L的酸性大红完全脱色。该菌群在偏碱性环境下的脱色效果大于酸性环境,并表现出高效广谱染料脱色降解特性。当温度在10°C~30°C之间时,脱色率随温度的递增而增大,在30°C时脱色率达到最大。 标签:酸性大红GR;脱色;菌群;偶氮染料 Abstract:A bacteria group capable of degrading acid scarlet GR was enriched from the activated sludge of a printing and dyeing wastewater. The results showed that the bacteria almost completely decolorized acid scarlet at 100 mg/L within 15h. The decolorizing effect of the bacteria group in the alkaline environment was higher than that in the acidic environment,and showed the characteristics of decolorization and degradation of the dyes with high efficiency and broad spectrum. When the temperature is between 10 °C and 30 °C,the decolorization rate increases with the increase of temperature,and reaches the maximum at 30°C. Keywords:acid scarlet GR;decolorization;microflora;azo dyes 1 概述 1.1 课题背景 染料和印染工业快速发展,这种发展导致了生产废水越趋增多,大约占了总的工业废水的十分之一。印染废水因其排放数量庞大、成分组成复杂等特点以及处理经济负荷沉重成为目前最难处理的工业废水之一。作为合成染料,与天然染料相比,偶氮染料因其价格成本低,颜色具有多样性,不易掉色,合成方便等特点成为主流染料。偶氮染料广泛应用于制药、造纸、皮革、食品、化妆品和纺织等行业。偶氮染料的稳定性较高,抗光、抗氧化能力强,而且具有致癌、致畸、致突变性[1],严重破坏了水体生态系统,对人类健康构成潜在危害。 1.2 偶氮染料的性质 偶氮染料是所有分子中含有偶氮基团结构(-N=N-)染料的总称。偶氮基团结构能够吸收光中的可见光谱部分常与发色体[2](一个或多个芳香环系统)相连构成的共扼体系。为了使偶氮染料的种类变得多样化,因此可以改变发色体芳香环系统中的取代集团,如:硝基、氨基、甲基、氯基、羟基和羧基等,从而得到种类繁多,颜色丰富多彩的偶氮染料。 1.3 染料废水的处理方式

相关文档
最新文档