输油管道受杂散电流干扰的检测与排除

输油管道受杂散电流干扰的检测与排除
输油管道受杂散电流干扰的检测与排除

输油管道受杂散电流干扰的检测与排除

河南邦信防腐材料有限公司

2017年3月

杂散电流分为直流和交流,例如采用四通道快速数据采集存储器和计算机数据处理技术,对紧靠上海地铁一号线沪闵路段的埋地输油管道受杂散电流干扰的情况进行了现场检测.测试结果充分说明干扰来源于地铁列车的运行,其特点是双向动态干扰,没有固定的阴极区和阳极区.从实际条件出发,利用原来保护该输油管道所埋设的镁阳极作接地床,采用极性接地排流方式来抑制杂散电流干扰,各处的排流效果介于60%~100%.

直流杂散电流检测

直流杂散电流可以分为静态杂散电流和动态杂散电流。使用SCM(杂散电流检测仪)软件可以对静态杂散电流进行实时检测和数据分析。而对动态杂散电流检测时,可以设置最长达48小时的自动监测和数据存贮。

当在管道任意点上的管地电位较自然电位正向偏移20mV或管道附近土壤中的电位梯度大于0.5mV/m时,确定为有直流电干扰;当在管道任意点上管地电位较自然电位正向偏移100mV或管道附近土壤中的电位梯度大于2.5mV/m时,管道应采取直流排流保护或其它防护措施。

直流电干扰的测试,排流保护效果评定及管理应按SY/T0017—96《埋地钢质管道直流排流保护技术标准》中的规定执行。

交流杂散电流检测

交流杂散电流干扰采用参比法测量,从而确定杂散电流干扰的程度。当管道任意点上管地电位持续1V以上时,确定为存在交流干扰;当中性土壤中的管道任意点上管地交流电位持续高于8V、碱性土壤中高于10V或酸性土壤中高于6V时,管道应采取交流排流保护或相应的其它保护措施。

交流电干扰测试按SY/T0032—2000《埋地钢质管道交流排流保护技术标准》执

行,具休的方法是:

(1)测知管道上产生交流电干扰时,应及时向上级主管部门申报,由上级部门做进一步核查,请专业部门提出防护设计,并组织实施。

(2)交流电干扰防护措施,应优先选避让措施,当避让困难时,可选择以钳位式交流排流保护为主的综合防护措施。

(3)管道部门每年应对所辖下管道进行一次交流管地电位检测,特别对输电线路平行间距小、平行段较长、距输电线路杆(塔)避雷接地体、变电所接地网较近干扰可能性大的管段重监测,当发现有干扰时,应按规定进行详测。并上报主管部门。

固态去耦合器带防爆箱立柱

交流电干扰防护措施固态去耦合器施工

轻轨杂散电流干扰对管道腐蚀影响的检测与判定

龙源期刊网 https://www.360docs.net/doc/3513873011.html, 轻轨杂散电流干扰对管道腐蚀影响的检测与判定 作者:孙政李振悦陈健 来源:《中国石油和化工标准与质量》2013年第08期 【摘要】分析了轨道交通动态杂散电流产生的机理,以广珠轻轨附近的天然气管道为研究对象,介绍了广珠轻轨杂散电流的检测情况,根据有关标准对杂散电流干扰情况进行判定,提出了解决杂散电流干扰的建议。 【关键词】广珠轻轨杂散电流管地电位检测交流电流密度 1 概述 杂散电流又称迷流,是指在设计或规定的回路以外流动的电流。杂散电流一旦流入埋地金属管道,再从埋地金属管道的另一端流出,进入大地或水中,则在电流流出部位发生激烈的腐蚀,电流流出部位则成为电化学腐蚀的阳极,通常把这种腐蚀称为杂散电流干扰腐蚀,将流入或流出埋地金属导体的杂散电流称为干扰电流。根据来源,杂散电流主要有直流杂散电流、交流杂散电流、地球磁场感应杂散电流等;根据电流幅值和流经路径是否随时间变化,可分为静态杂散电流和动态杂散电流。对城市埋地天然气管道而言,影响最普遍、最严重的是城市轨道交通产生的动态直流杂散电流干扰。 广珠城际轨道交通(以下简称广珠轻轨),由北面的广州,途径佛山市顺德区、中山市、到达南面的珠海市,全长约140公里,2011年1月正式通车。在中山市区,大约10公里的广珠轻轨与高压天然气管道并排铺设,两者之间最近的水平净距不足10米。广珠轻轨产生的杂散电流对埋地天然气管道的影响不容忽视,必须对杂散电流干扰腐蚀的问题引起关注。本文对轨道交通杂散电流产生机理及其动态特性进行讨论,介绍与天然气管道平行铺设的轻轨杂散电流的检测情况,根据有关标准对杂散电流干扰情况进行判定,并提出解决杂散电流干扰的建议。 2 轨道交通杂散电流 2.1 轨道交通杂散电流产生的机理 直流牵引轨道交通供电回路与杂散电流的产生原理见图1。变电站将交流电转换为直流电,经接触网向电力机车输送,电流由铁轨及相关导线返回变电站。由于铁轨具有一定的电阻,电流在铁轨中产生电位差,同时铁轨对大地也存在一定的电位差,使铁轨中部分电流泄漏进入大地形成杂散电流。泄漏到大地的杂散电流流入埋地天然气管道,经埋地天然气管道传输至变电站附近通过土壤重新流入铁轨,在电流流出的部分,金属发生腐蚀。

地铁杂散电流和接触网验收标准

地铁杂散电流和接触网 验收标准 标准化管理部编码-[99968T-6889628-J68568-1689N]

5杂散电流防护 5.1一般规定 5.1.1开工前应复核杂散电流防护排流钢筋及防护测点的设置是否符合设计要求。 5.1.2所有端子连接前应清除表面的附着物。 5.1.3电缆保护管端头应密封防潮,电缆敷设前应进行绝缘试验。 5.1.4电缆敷设应符合本标准规定。 5.1.5电缆终端头与中间接头制作时,应严格遵守制作工艺流程,操作人员应具备操作资格。 5.2测防端子连接 主控项目 5.2.1检查测防端子预留情况,设置位置及端子引出方式是否满足设计要求。 检验数量:全数检查。 检验方法:观察检查。 5.2.2连接电缆型号,规格应符合设计要求。 检验数量:全数检查。 检验方法:检查质量证明文件。 5.2.3电缆芯线与接线端子压接牢固,接线端子与测防端子的连接可靠。 检验数量:全数检查。 检验方法:观察检查。 一般项目 5.2.4所连接的测防端子间距较大(>80cm),需对连接电缆整理和固定。 检验数量:全数检查。 检验方法:观察检查。 5.3参考电极及监测装置安装 主控项目 5.3.1参考电极及监测装置应无锈蚀或机械损伤,规格、型号及安装位置应与设计要求相符。

检验数量:全数检查。 检验方法:核对设计文件及观察检查。 5.3.2监测装置的接地方式应符合设计要求;本体接地可靠。二次回路接线正确,连接可靠。所有安装的元、器件应符合设计要求,动作可靠,固定牢固。 检验数量:全数检查。 检验方法:核对设计文件检查。 5.3.3参比电极安装地点应符合设计要求,安装位置与对应的测试端子之间距离不应超过1m的范围,安装孔直径应不小于60mm,深160mm。 检验数量:全数检查。 检验方法:观察测量检查。 5.3.4参考电极材质应为氧化钼,在埋设前应在水中浸泡不少于24小时。 检验数量:全数检查。 检验方法:观察检查。 5.3.5参考电极安装时不应和结构钢筋接触,严禁撞击其他刚硬结构物。 检验数量:全数检查。 检验方法:观察检查。 一般项目 5.3.6参考电极埋设的填充物的封闭及引线的固定,应符合设计要求。 检验数量:全数检查。 检验方法:观察检查。 5.3.7引线固定将参考电极引线传穿入玻璃钢管,并用管卡固定。 检验数量:全数检查。 检验方法:观察检查。 5.3.8参考电极安装完毕,道床表面和隧道侧墙表面应处理平整。 检验数量:全数检查。 检验方法:观察检查。 5.3.9监测装置表面涂层应完整,盘面清洁。 检验数量:全数检查。 检验方法:观察检查。 5.4传感器、转接器安装

交流电气化铁路杂散电流排流工程设计方案

交流电气化铁路杂散电流 排流工程 设 计 方 案 河南汇龙合金材料有限公司 2019年正版

随着我国电气化铁路改造以及高铁网络的建设以及特高压输电线路、变电站的建设,因其产生的杂散电流不可避免的干扰到临近的地下管道、油库等设施,导致其电位紊乱,阴极保护系统失效,腐蚀加剧,因此杂散电流的防护及排流越来越收到人们的重视,这就需要采取有效的防杂散电流措施,使杂散电流量控制在允许的范围内。杂散电流的防护工程基本上采用“以防为主,以排为辅,防排结合,加强监测”的原则。本文讲述了山东石创公司在杂散电流防护过程中的一点体会和理念。 1 杂散电流的防护原则 轨道交通直流牵引供电系统中,只要用走行轨兼做回流导体,杂散电流的产生是不可避免的。为了减少杂散电流的

危害,就应当设法减少杂散电流量。这就需要采取有效的防杂散电流措施,使杂散电流量控制在允许的范围内。杂散电流的防护工程基本上采用“以防为主,以排为辅,防排结合,加强监测”的原则。 (1) 以防为主 控制所有可能的杂散电流泄漏途径,减少杂散电流进入轨道交通系统的主体结构、设备以及沿线附近相关设施的结构钢筋。具体实施时,由于涉及到的专业多,各专业、各工种必须紧密配合,尤其在施工设计阶段更要考虑综合防治措施,尽量减少直流系统与其他建筑物的电气连接。可采取的措施有:牵引变电所内和区间的交直流供电设备在安装时与结构钢筋和结构主体绝缘安装;走行轨道在施工时,采用与轨道道床绝缘的安装方式;由外界引入轨道交通内部或由轨道交通内部引出的金属管线均应进行绝缘处理后方可引入 和引出;在轨道交通线内部设立结构钢筋电气连通,把所有结构钢筋和接地点连接在一起,将泄漏的杂散电流排流回直流系统。 (2) 以排为辅 设置杂散电流的收集系统。此收集系统为杂散电流从回流轨上泄漏后遇到的第一道小电阻的回流通道,可以将杂散电流尽量限制在本系统内部,防止杂散电流向本系统以外泄漏。

输油管道受杂散电流干扰的检测与排除

输油管道受杂散电流干扰的检测与排除 河南邦信防腐材料有限公司 2017年3月

杂散电流分为直流和交流,例如采用四通道快速数据采集存储器和计算机数据处理技术,对紧靠上海地铁一号线沪闵路段的埋地输油管道受杂散电流干扰的情况进行了现场检测.测试结果充分说明干扰来源于地铁列车的运行,其特点是双向动态干扰,没有固定的阴极区和阳极区.从实际条件出发,利用原来保护该输油管道所埋设的镁阳极作接地床,采用极性接地排流方式来抑制杂散电流干扰,各处的排流效果介于60%~100%. 直流杂散电流检测 直流杂散电流可以分为静态杂散电流和动态杂散电流。使用SCM(杂散电流检测仪)软件可以对静态杂散电流进行实时检测和数据分析。而对动态杂散电流检测时,可以设置最长达48小时的自动监测和数据存贮。 当在管道任意点上的管地电位较自然电位正向偏移20mV或管道附近土壤中的电位梯度大于0.5mV/m时,确定为有直流电干扰;当在管道任意点上管地电位较自然电位正向偏移100mV或管道附近土壤中的电位梯度大于2.5mV/m时,管道应采取直流排流保护或其它防护措施。 直流电干扰的测试,排流保护效果评定及管理应按SY/T0017—96《埋地钢质管道直流排流保护技术标准》中的规定执行。 交流杂散电流检测 交流杂散电流干扰采用参比法测量,从而确定杂散电流干扰的程度。当管道任意点上管地电位持续1V以上时,确定为存在交流干扰;当中性土壤中的管道任意点上管地交流电位持续高于8V、碱性土壤中高于10V或酸性土壤中高于6V时,管道应采取交流排流保护或相应的其它保护措施。 交流电干扰测试按SY/T0032—2000《埋地钢质管道交流排流保护技术标准》执

铁路对管道杂散电流排流方案设计(单点)

排流方案 铁路对管道干扰杂散电流解决方案项目号: 文件号:GLYB2017021108 CADD号: 设计阶段:方案设计 日期:2017.02.11 0 版 铁路对管道杂散电流排流设计方案 (此方案为单交叉点的方案) (文件号:GLYB2017021108) 西安冠霖电气有限公司 0 张宁静吴琳2017.02.11 版次说明编制校对审核审定日期

目次 1概述 (3) 2设计原则 (3) 3设计遵循的标准规范 (3) 4设计基本参数 (4) 5保护对象和保护方法 (4) 6排流方案设计内容 (4) 7施工技术要求 (8) 8排流保护准则 (8) 9系统的管理和维护 (8) 10卫生、安全和环境 (9) 11材料表 (10)

1.概述 铁路与埋地管道交叉或平行时,会对埋地管道形成电磁干扰,从而使管道电位升高或降 低,导致管道腐蚀加剧。所以,在铁路和管道交叉或平行时,必须对管道进行固态去耦合器 排流处理,以消除或降低铁路对管道的干扰。 铁路干扰的相关参数: (1)、铁路为单回路供电,供电电压一般为27.5kV; (2)、铁路对管道主要产生交流干扰,但也有相当大的直流分量; (3)、干扰电压呈波动状态,最高可达到100V; (4)、交叉多处,交叉斜角为70--90度; (5)、设计排流防雷系统寿命为25年。 2.设计原则 2.1 严格遵守埋地钢质管道排流有关的设计规范、技术标准和技术规定; 2.2 采用成熟技术、材料,做到安全可靠、经济合理; 3.设计遵循的标准规范 3.1 《埋地钢质管道强制电流阴极保护设计规范》(SY/T0036-2000) 3.2 《钢制管道及储罐腐蚀控制工程设计规范》(SY0007-1999) 3.3 《长输管道阴极保护施工及验收规范》(SY/J4006-90) 3.4 《埋地钢质管道阴极保护参数测量方法》(GB/T 21246-2007) 3.5 《钢质管道外腐蚀控制规范》(GB/T 21447-2008) 3.6 《埋地钢质管道阴极保护技术规范》(GB/T 21448-2008) 3.7 《埋地钢质管道直流排流保护技术标准》(SY/T 0017-2006) 3.8 《埋地钢质管道交流干扰防护技术标准》(GB/T 50698—2011) 3.9 《减轻交流电和雷电对金属构筑物和腐蚀控制系统影响的措施》(NACE SP0177-2007) 3.10 《阴极保护管道的电绝缘标准》(SY/T 0086-2003) 3.11 《埋地钢质管道交流排流保护技术标准》(中华人民共和国石油天然气行业标准SY/T 0032-2000) 3.12 《埋地钢质管道牺牲阳极阴极保护设计规范》(中华人民共和国石油天然气行业标准 SY/T 0019-97)。 3.13《埋地钢质管道交流干扰防护技术标准》(GB 50698-2011) 3.14 业主方提供的其他资料、图纸。

交直流杂散电流综合干扰时的排流措施

交直流杂散电流综合干扰时的排流措施 技 术 说 明 书 河南汇龙合金材料有限公司 2019年正版

考虑到排流地床接地体既要保证将杂散电流排走,又要保证阴极保护电流不被排走,当管道所受的直流干扰为正电流干扰的情况下,通常接地体一般选择牺牲阳极接地体如镁阳极或者锌接地体,牺牲阳极既可以作为接地将杂散电流排入地下,还可以提供足够的阴极保护电流来抵消直流杂散电流的干扰; 当管道所受的直流干扰为负电流干扰的情况下,接地体一般可选择铜接地体,因为锌接地体等牺牲阳极自身开路电位较高,加上钳位式排流器0.5V的电压差,无法将多余电流排走。该工程正是受直流杂散电流负干扰较为严重的情况,不能选择牺牲阳极作为接地体或者牺牲阳极阴极保护系统,容易产生过保护。 高压输电线路与地下金属管道平行分布且相互距离较近时,由于磁性耦合的作用,管道上会产生交流电压,在测量上表现为管地交流电位,即由输电线路引起的交流干扰。 新大管道沿线高压输电线路较多,有些管段与高压线近距离平行,易受交流干扰。为此,对管道交流电位进行了24 h连续测试,实测结果表明,新大管道存在强直流和弱交流干扰,需要采取排流保护措施。管道上施加的强制电流阴极保护对直流干扰有明显的抑制作用。 与轻轨平行的新大管道管段应采用排流保护,以降低杂散电流对该管段的干扰;在管道两端利用阴极保护对杂散电流的抑制作用来降

低对管道的干扰,并使该管段得到有效的阴极保护,具体设计方案如下。 (1)在管道末端增设1座阴极保护站,以减轻轻轨穿越点处至七厂段管道直流的干扰,解决该管段的阴极保护电位不足的问题。 (2)在管道与轻轨平行段预设6~8处排流设施,既可消除该管段的直流干扰,又可同时减弱其交流干扰。 (3)排流装置采用接地式排流方式,该方式位置选择灵活,对其它设施干扰小。对于轻轨铁路引起的干扰,由于管道电位波动较大,且存在正负交变现象,为防止杂散电流倒流人管道,排流器需增设防逆流装置,即极性排流器。排流接地极材料选用镁合金阳极,不仅可以提高排流驱动电压,而且还可为管道提供阴极保护。 (4)考虑到管道与轻轨平行段附近多数地域较狭窄,排流接地极采用了灵活的排布方式,接地地床方向可与管道平行、垂直或倾斜,接地极可采用立式或水平埋设。

直流杂散电流的排流方法

直流杂散电流的排流方法 根据排流回路中电连接的电路方式不同,直流杂散电流的排流方法可分为直流排流、极性排流、强制排流和接地排流四种。 (1)直接排流法 对于直流电气铁路附近的管道而言,用电缆将管道与电气化铁路的铁轨或负回归线实现电连接,这是一种常用的、有效的排流法。直接排流法适合管道上存在着稳定不变的阳极区的情况。在直接连接的电缆中可串联可调电阻、控制开关及断路系统,据此可控制排流量的大小及管道的相对电位,以防止排流量过大造成管道防腐层发生老化和剥离。 (2)极性排流法 极性排流法是目前广泛应用的排流方式之一,它具有单向导电性,只允许杂散电流从管道排出,而不允许杂散电流进入管道,能防止逆流。这种方法结构简单,比较安全,效率高。 (3)强制排流法 当埋地管道位于杂散电流干扰极性交变区,用于直接排流和极性排流都无法将杂散电流排出,这时可选用强制电流法。强制电流法的原理类似于阴极保护技术。它在管道与铁轨(或接地阳极)之间安装一个整流器,可起到电位控制器的作用。在外部存在电位差的条件下强制进行排流,其功能兼具排流和阴极保护的双重作用,比较经济、有效,所以应用比较广泛。 (4)接地排流电缆并不连接到铁轨上,而是连接到一个埋地辅助阳极上。将杂散电流从管道排除到阳极上,经过土壤再返回铁轨。接地排流地床的接地电阻应尽可能地小,以提高排流效果。采用牺牲阳极时也需要使用填包料。 对于同一埋地结构物,应根据实际环境情况和工况,根据排流需要,采用一种或几种排流方法,选择一点或多点进行排流处理。 在电气化铁路邻近的埋地结构物上,采用排流法应注意它自身可能产生的干扰性。即它在工作过程中可能对铁路控制系统的传输信号造成干扰,从而对铁路运行安全造成威胁。

交流干扰对管道的影响

交流杂散电流对管道的影响研究 (滕延平1、王维斌1、陈洪源1、韩兴平2、陈新华1、赵晋云1、蔡培培1)(1.中国石油管道研究中心 2.西南油田输气管理处) 摘要: 随着公共设施如电气化牵引系统、高压输电线路等的日益建设,管道受到的交流干扰将愈加严重。目前国内许多管道都受到较强的交流干扰。本文介绍了国内外关于交流干扰的危害,分别从人身安全、对仪器设备、管道防腐层以及交流腐蚀的角度进行了分析。同时,主要对国外研究的交流腐蚀的一些重要结论进行了总结。文章重点介绍了国外的交流腐蚀评价指标,同时参照国外的交流电流密度评价指标对西气东输管道与港枣线,分别采用理论计算方法与电阻探头的方法对管道的交流电流密度进行了计算与测量,并对其进行了分析与评价。最后对国内外的交流减缓措施进行了分析比较,提出了国内应用该措施的局限性与不足之处。希望借此文章,能推动国内在油气管道交流干扰规律研究与标准制定方面的工作进展。 关键词:管道;交流干扰;腐蚀;交流密度;减缓 1、前言 . 为了有效利用土地资源,通常在一条公共走廊里同时安装高压电线和管道,管道有时还与铁路平行或交叉,受许多外部因素制约,加上现代高绝缘涂层的使用更加重了电危害。其主要影响有:与管道接触的人员电伤害、管道涂层与钢质损坏、烧毁CP装置和遥测系统等。 我国在交流干扰评价控制方面技术相对较弱,石油行业标准 SY/T0032交流干扰标准,对应弱碱性、中性、和酸性土壤环境给出了10V/8V/6V的交流电压排流指标。但该标准仅仅适应于石油沥青涂层,在高绝缘涂层如 3PE条件下已存在问题。国外油气管道交流干扰的研究发展快速,颁布了较多减缓交流电的标准。 2、交流干扰的危害 交流输电线路对输油输气管道的电磁影响主要涉及对人身安全的影响、对输油输气管道及其阴极保护设备安全的影响以及对输油输气管道的交流腐蚀等问题。

地铁杂散电流和接触网验收标准

地铁杂散电流和接触网验收标准

5杂散电流防护 5.1 一般规定 5.1.1 开工前应复核杂散电流防护排流钢筋及防护测点的设置是否符合设计要求。 5.1.2 所有端子连接前应清除表面的附着物。 5.1.3 电缆保护管端头应密封防潮,电缆敷设前应进行绝缘试验。 5.1.4 电缆敷设应符合本标准第3.2.13的规定。 5.1.5电缆终端头与中间接头制作时,应严格遵守制作工艺流程,操作人员应具备操作资格。 5.2 测防端子连接 主控项目 5.2.1 检查测防端子预留情况,设置位置及端子引出方式是否满足设计要求。 检验数量:全数检查。 检验方法:观察检查。 5.2.2 连接电缆型号,规格应符合设计要求。 检验数量:全数检查。 检验方法:检查质量证明文件。 5.2.3 电缆芯线与接线端子压接牢固,接线端子与测防端子的连接可靠。 检验数量:全数检查。 检验方法:观察检查。 一般项目 5.2.4 所连接的测防端子间距较大(>80cm),需对连接电缆整理和固定。

检验数量:全数检查。 检验方法:观察检查。 5.3 参考电极及监测装置安装 主控项目 5.3.1 参考电极及监测装置应无锈蚀或机械损伤,规格、型号及安装位置应与设计要求相符。 检验数量:全数检查。 检验方法:核对设计文件及观察检查。 5.3.2 监测装置的接地方式应符合设计要求;本体接地可靠。二次回路接线正确,连接可靠。所有安装的元、器件应符合设计要求,动作可靠,固定牢固。 检验数量:全数检查。 检验方法:核对设计文件检查。 5.3.3 参比电极安装地点应符合设计要求,安装位置与对应的测试端子之间距离不应超过1m的范围,安装孔直径应不小于60mm,深160mm。 检验数量:全数检查。 检验方法:观察测量检查。 5.3.4 参考电极材质应为氧化钼,在埋设前应在水中浸泡不少于24小时。 检验数量:全数检查。 检验方法:观察检查。 5.3.5 参考电极安装时不应和结构钢筋接触,严禁撞击其他刚硬结构物。 检验数量:全数检查。 检验方法:观察检查。

管道受直流杂散电流干扰情况下的排流系统

随着国民经济的持续发展,我国各个城市为了缓和日趋严重的城市交通压力,纷纷加快了城市轨道交通的建设。同时为了保持城市美观,供水、燃气管道以及供电和通信电缆大多采用地下埋设或隐蔽敷设,城轨杂散电流对这些管道和电缆的腐蚀危害以及对应的防治方法则 成为一个倍受关注的问题。加强对杂散电流腐蚀危害及防治方法的研究,对保证城轨基础结构及周边的管线及建筑设施的安全运行,延长它们的使用寿命具有重要的现实意义。 1直流电气化铁路杂散电流电化学腐蚀的危害 城市轨道交通中的杂散电流会引起城轨、城轨附近的钢筋混凝土结构物以及埋地管线发生腐蚀,阴极保护系统失效,造成严重后果。主要表现在以下一些方面。 1.1钢轨及其附件 城轨中多采用道钉把钢轨固定于枕木上,在与道钉相接触的部位常发生钢轨的楔状腐蚀。若采用垫板和压片固定钢轨,则这种腐蚀有所减少,但会导致在垫板以外的部位发生钢轨的底部腐蚀。这种腐蚀从上面难以发现,因而危害性更大。此外在与路基石子相接触的钢轨底部有时也发生类似的杂散电流腐蚀。钢轨的杂散电流腐蚀在隧道内及道岔等部位尤为显著,在有些地方2—3年就要更换钢轨。道钉也有杂散电流腐蚀,而且多发生在钉入部位,从地上难以发现。 1.2钢筋混凝土结构物 杂散电流通过混凝土时对混凝土本身并不产生影响,但如果有钢筋存在,则钢筋起汇集电流的作用并把电流引导到排流点处。在杂散

电流由混凝土进入钢筋之处,钢筋呈阴极。如果阴极产生氢气且氢气不能从混凝土逸出,就会形成等静压力使钢筋与混凝土脱开。如有钠或钾的化合物存在,则电流的通过会在钢筋与混凝土的界面处产生可溶的碱式硅酸盐或铝酸盐,使结合强度显著降低。在电流离开钢筋返回混凝土的部位,钢筋呈阳极并发生腐蚀。腐蚀产物在阳极处的堆积产生机械张力而使混凝土结构物基础及检件和环境下修坑便会在较短时间内发生腐蚀。如果结构物中的钢筋与钢轨有电接触,则更容易受到杂散电流腐蚀。 1.3埋地管线 对于埋地管线的影响是城轨杂散电流腐蚀的另一个重要方面,在设计和建造城轨时不考虑此问题会产生极严重的后果。 埋地管有铸铁管和钢管之分。铸铁管表面一般涂沥青等,在管接头处多采取相互绝缘的连接方式,因此杂散电流不会传到远方,加之管壁厚,故比较耐杂散电流腐蚀。钢管纵向电导性良好,容易积聚来自远方的电流,加之管壁较薄,故易受杂散电流腐蚀,有必要采取适当的防治措施。城轨系统内的埋地管线主要有自来水管、石油管线、通风管线、蒸汽管线等。在系统外则可能有煤气管线、石油管线、自来水管等公用事业管线以及各种电缆管等。 2杂散电流电化学腐蚀基本原理 在杂散电流流出走行轨到重新返回走行轨的过程中,城轨杂散电流对走行轨及其附件、混凝土腐蚀属于局部腐蚀。直流杂散电流将从

杂散电流监测系统(含排流柜)、单向导通装置技术规格书

杂散电流监测系统(含排流柜)、单向导通装置技术规格书 (一)杂散电流监测系统(含排流柜) 1. 适用范围 本技术要求适用于重庆轨道交通一号线朝沙段杂散电流监测系统,并作为投标方制定投标技术文件和供货设备的技术依据。 2. 环境条件 1)环境温度:-5?C~+44.5?C 2)污秽等级:重污区 3)相对湿度:日平均:95% 月平均:90% 有凝露发生 4)海拔高度:≤1000m 5)雷电日:60D/年 6)地震烈度:7度 3. 供货规格型号 4. 采用标准(但不限于此) 地铁杂散电流自动监测系统有关设备所涉及的产品标准、规范;工程标准、规范;验收标准、规范等完全满足所有中华人民共和国的条例及规范,包括:《地铁杂散电流腐蚀防护技术规程》CJJ49-92 《低压电器外壳防护等级》GB4942.2-85 《电工电子产品基本环境试验规程》GB2423-81 《电磁兼容试验和测量技术》GB/T 17626 《煤矿通信、检验、控制用电工电子产品基本试验方法》MT 210 《交流电气装置的接地》DL/T621-1997

《地铁设计规范》GB50157-2003 《地铁直流牵引供电系统》GB10411-89 5. 系统构成 本工程杂散电流监测系统采用车站(变电所)监测和控制中心集中监测二级监测系统。 杂散电流监测装置通过变电所内通信网络与电力监控系统接口,并将处理和统计后的数据传至监控中心。 杂散电流监测系统由参比电极、整体道床测防端子、地下结构测防端子、测量线、传感器、通信电缆、信号转接器、监测装置组成。 6. 系统功能 杂散电流监测装置的输入端与从沿线各传感器引入的通信电缆连接,通过各监测点传感器实时采集监测分区内的结构钢筋的极化电位,参比电极自然本体电位,并对数据进行A/D转换,计算、存贮、统计并通过变电所内通信网络,将统计结果传送到变电所自动化系统,本监测系统具备以下几种功能: 6.1 通信功能 每个供电区间内的监测装置定期向传感器发出数据采集命令,数据按指定的格式上传到监测装置。 监测装置与SCADA通信每天上传的数据是: (1)监测点参比电极本体电位值。 (2)监测点极化电位实时值、正向偏移电位平均值。 (3)监测点30分钟极化电位正向偏移超标值、接触电压平均值。 6.2 测量功能 (1)实时监测道床结构钢筋的极化电位。 (2)实时监测隧道结构钢筋的极化电位。 (3)机车停止运行时,参比电极的自然本体电位。 6.3 计算功能。 根据计算极化电位的数学模型计算出30分钟监测点的极化电位正向偏移平均值。 6.4 显示功能 (1)就地显示道床结构钢筋的极化电位。

输油管道受杂散电流干扰的检测与排除

输油管道受杂散电流干扰的检测与排除 河南汇龙合金材料有限公司 2018年8月

杂散电流分为直流和交流,例如采用四通道快速数据采集存储器和计算机数据处理技术,对紧靠上海地铁一号线沪闵路段的埋地输油管道受杂散电流干扰的情况进行了现场检测.测试结果充分说明干扰来源于地铁列车的运行,其特点是双向动态干扰,没有固定的阴极区和阳极区.从实际条件出发,利用原来保护该输油管道所埋设的镁阳极作接地床,采用极性接地排流方式来抑制杂散电流干扰,各处的排流效果介于60%~100%. 直流杂散电流检测 直流杂散电流可以分为静态杂散电流和动态杂散电流。使用SCM(杂散电流检测仪)软件可以对静态杂散电流进行实时检测和数据分析。而对动态杂散电流检测时,可以设置最长达48小时的自动监测和数据存贮。 当在管道任意点上的管地电位较自然电位正向偏移20mV或管道附近土壤中的电位梯度大于0.5mV/m时,确定为有直流电干扰;当在管道任意点上管地电位较自然电位正向偏移100mV或管道附近土壤中的电位梯度大于2.5mV/m时,管道应采取直流排流保护或其它防护措施。 直流电干扰的测试,排流保护效果评定及管理应按SY/T0017—96《埋地钢质管道直流排流保护技术标准》中的规定执行。 交流杂散电流检测 交流杂散电流干扰采用参比法测量,从而确定杂散电流干扰的程度。当管道任意点上管地电位持续1V以上时,确定为存在交流干扰;当中性土壤中的管道任意点上管地交流电位持续高于8V、碱性土壤中高于10V或酸性土壤中高于6V时,管道应采取交流排流保护或相应的其它保护措施。

交流电干扰测试按SY/T0032—2000《埋地钢质管道交流排流保护技术标准》执行,具休的方法是: (1)测知管道上产生交流电干扰时,应及时向上级主管部门申报,由上级部门做进一步核查,请专业部门提出防护设计,并组织实施。 (2)交流电干扰防护措施,应优先选避让措施,当避让困难时,可选择以钳位式交流排流保护为主的综合防护措施。 (3)管道部门每年应对所辖下管道进行一次交流管地电位检测,特别对输电线路平行间距小、平行段较长、距输电线路杆(塔)避雷接地体、变电所接地网较近干扰可能性大的管段重监测,当发现有干扰时,应按规定进行详测。并上报主管部门。

电气化铁路杂散电流对燃气管道的交流干扰腐蚀与防护措施

探讨埋地金属管道交流杂散电流的防治技术 陈亮中国石油天然气管道局管道投产运行公司 【摘要】:本文重点阐述了电气化铁路交流杂散电流对埋地燃气管道腐蚀的基本原理,分析杂散电流的特点,并根据这些特点提出对埋地燃气管道采取的防护措施。 【关键词】:电气化铁路、交流杂散电流、干扰腐蚀、管道防护 一、前言 铁路是国家的重要基础设施,大众化的交通工具和综合运输体系的骨干,肩负着为全面建设小康社会提供运力支持,当好国民经济发展先行的重任。随着《中国铁路中长期发展规划》的出台,各地纷纷兴起高铁投资热潮。至2020年,中国将建成“四纵四横”高铁网,贯穿环渤海地区、长三角、珠三角三大城市群,这意味着,我国已正式步入高铁时代! 管道运输是当今油气工业重要的运输手段,其输量大、运费少的优点非常突出,为满足各地不断增长的能源需求,中国的许多省份也在加快速度建设天然气管道项目,天然气行业的发展同时带来了机遇,省级天然气管网的里程也与日俱增。在管道与铁路的设计建设过程中,不可避免出现并行、交叉、穿跨越敷设的情况,埋地天然气金属管道将会受到电气化铁路的交流干扰,若处理不当,将会形成较大危害。因此,探索电气化铁路对埋地天然气金属管道的干扰规律并采取相应的预防措施,降低电气化铁路对埋地金属管道的干扰

影响,对于保证天然气管道的安全、平稳运行具有十分重要的意义。以山西省太原为例,目前在建的“大西铁路客运专线”以及建成的“石太铁路客运专线”存在多处穿跨越或近距离平行于山西省高压天然气管道。本文结合对“大西铁路客运专线”与山西省高压天然气管道近距离平行或交叉穿跨越路段所进行的工程安全咨询评估的相关研究内容以及在实际建设过程中所采取的解决方案,浅析电气化铁路对钢质燃气管道的交流干扰与防护技术。 二、电气化铁路牵引供电方式 我国电气化铁路采用的牵引供电方式有:有自耦变压供电(简称AT供电)、直接供电(简称TR供电)、吸流变压器供电(简称BT供电)和带回流线的直接供电(简称DN供电)等供电方式。牵引网是由馈电线、接触网、钢轨及回流线组成的供电网络。目前,在建的“大西铁路客运专线”;“原平—西安段”即为正线采用AT 供电方式,联络线及既有线改线部分采用带回流线的直接供电方式。 最简单的牵引网是由馈电线、接触网、轨道和大地、回流线构成的供电网的总称。如:(图1所示),牵引电流从牵引变电所主变压器流出,经由馈电线送到接触网后,由受电弓引入机车,而后经机车接地电刷、轮轴,沿轨道和大地、回流线流回牵引变电所。

杂散电流监测装置要求

1、用户需求书的响应以及技术方案 一、杂散电流监测系统技术规格书的响应 1. 总则 1.1 适用范围 本技术规格书适用于武汉市轨道交通四号线一期工程杂散电流防护系统。 应答:我公司将针对武汉市轨道交通四号线一期工程杂散电流防护系统的各项技术指标进行应答。 1.2 工程概况 4 号线一期工程联系两大重要交通枢纽武昌站和武汉站。一期工程线路起于首 义路站东端,下穿中山路和铁路站场,经紫阳东路、傅家坡一路、中南路、洪山 广场、中北路、岳家嘴、中北路延长线、罗家港、武青四干道至终点武汉火车站。 4 号线一期工程线路全长16.482km,均为地下线,设站1 5 座。 4 号线一期工程在青山落步嘴设青山车辆段与综合基地一座,在铁机村站西侧设线网管理服务中心及主变电所一座,同时与2号线共用中南主变。 4 号线一期工程采用集中式供电方式,利用2号线中南路主变电站,新建1座铁机村110/35kV主变电站。一期工程共设10 座牵引变电所,其中正线9座,车辆段1座。每座车站和车辆段均设降压变电所(有牵引变电所的车站合建为牵引降压混合变电所)向各种用电设备供电。中压供电网络采用 AC35kV 牵引供电和动力照明供电混合网络,牵引网采用 DC 750V 接触轨下部授电,走行轨回流方式,允许电压波动范围500~900VDC。牵引供电系统电压为750V.DC,武汉市轨道交通4号线一期工程电力负荷为一级负荷,变电所采用双路电源供电,当一路电源失电时由另一路电源带全部一、二级负荷。 。 4 号线一期工程初、近、远为6辆车编组(4动 2 拖) ,远景年为8辆车编组(6动 2 拖)车辆型式为变压变频交流传动车。供电系统按“无人值班”设计,杂散电流防护系统也必须满足“无人值班”条件。 本技术规格书适用于武汉轨道交通4号线一期工程杂散电流监测系统,并作为卖方制定投标技术文件和供货设备的技术依据。 应答:我方已知并满足以上要求。

凌雷科技管道杂散电流排流方案

陕西凌雷电气有限公司 排流方案 铁路对管道干扰杂散电流解决方案项目号: 文件号:LLYB20140107A CADD号: 设计阶段:方案设计 日期:2014.01.07 0 版 铁路对管道杂散电流排流 (文件号:LL20140107A) 0 戴碧辉2014.01.07 版次说明编制校对审核审定日期

目次 1概述 (3) 2设计原则 (3) 3设计遵循的标准规范 (3) 4设计基本参数 (4) 5保护对象和保护方法 (4) 6排流方案设计内容 (4) 7施工技术要求 (8) 8排流保护准则 (8) 9系统的管理和维护 (8) 10卫生、安全和环境 (9) 11材料表 (10)

1.概述 XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX 铁路干扰的相关参数: (1)、铁路为单回路供电,供电电压一般为27.5kV; (2)、铁路对管道主要产生交流干扰,但也有相当大的直流分量; (3)、平行段距离XXXXX米; (4)、交叉XXX处,交叉斜角为XXX度; (5)、铁路与管道距离最大为XXX米,最小为XXX米,平均为XXX米; (6)、设计排流防雷系统寿命为25年。 2.设计原则 2.1 严格遵守埋地钢质管道排流有关的设计规范、技术标准和技术规定; 2.2 采用成熟技术、材料,做到安全可靠、经济合理; 3.设计遵循的标准规范 3.1 《埋地钢质管道强制电流阴极保护设计规范》(SY/T0036-2000) 3.2 《钢制管道及储罐腐蚀控制工程设计规范》(SY0007-1999) 3.3 《长输管道阴极保护施工及验收规范》(SY/J4006-90) 3.4 《埋地钢质管道阴极保护参数测量方法》(GB/T 21246-2007) 3.5 《钢质管道外腐蚀控制规范》(GB/T 21447-2008) 3.6 《埋地钢质管道阴极保护技术规范》(GB/T 21448-2008) 3.7 《埋地钢质管道直流排流保护技术标准》(SY/T 0017-2006) 3.8 《防腐蚀工程经济计算方法标准》(SY/T 0042—2002) 3.9 《减轻交流电和雷电对金属构筑物和腐蚀控制系统影响的措施》(NACE SP0177-2007)3.10 《阴极保护管道的电绝缘标准》(SY/T 0086-2003) 3.11 《埋地钢质管道交流排流保护技术标准》(中华人民共和国石油天然气行业标准SY/T 0032-2000) 3.12 《埋地钢质管道牺牲阳极阴极保护设计规范》(中华人民共和国石油天然气行业标准

电气化铁路杂散电流对燃气管道的交流干扰腐蚀与防护措施

探讨埋地金属管道交流杂散电流的防治技术陈亮中国石油天然气管道局管道投产运行公司 【摘要】:本文重点阐述了电气化铁路交流杂散电流对埋地燃气管道腐蚀的基本原理,分析杂散电流的特点,并根据这些特点提出对埋地燃气管道采取的防护措施。 【关键词】:电气化铁路、交流杂散电流、干扰腐蚀、管道防护一、前言 铁路是国家的重要基础设施,大众化的交通工具和综合运输体系的骨干,肩负着为全面建设小康社会提供运力支持,当好国民经济发展先行的重任。随着《中国铁路中长期发展规划》的出台,各地纷纷兴起高铁投资热潮。至2020年,中国将建成“四纵四横”高铁网,贯穿环渤海地区、长三角、珠三角三大城市群,这意味着,我国已正式步入高铁时代! 管道运输是当今油气工业重要的运输手段,其输量大、运费少的优点非常突出,为满足各地不断增长的能源需求,中国的许多省份也在加快速度建设天然气管道项目,天然气行业的发展同时带来了机遇,省级天然气管网的里程也与日俱增。在管道与铁路的设计建设过程中,不可避免出现并行、交叉、穿跨越敷设的情况,埋地天然气金属管道将会受到电气化铁路的交流干扰,若处理不当,将会形成较大危害。因此,探索电气化铁路对埋地天然气金属管道的干扰规律并采取相应的预防措施,降低电气化铁路

对埋地金属管道的干扰影响,对于保证天然气管道的安全、平稳运行具有十分重要的意义。以山西省太原为例,目前在建的“大西铁路客运专线”以及建成的“石太铁路客运专线”存在多处穿跨越或近距离平行于山西省高压天然气管道。本文结合对“大西铁路客运专线”与山西省高压天然气管道近距离平行或交叉穿跨越路段所进行的工程安全咨询评估的相关研究内容以及在实际建设过程中所采取的解决方案,浅析电气化铁路对钢质燃气管道的交流干扰与防护技术。 二、电气化铁路牵引供电方式 我国电气化铁路采用的牵引供电方式有:有自耦变压供电(简称AT供电)、直接供电(简称TR供电)、吸流变压器供电(简称BT供电)和带回流线的直接供电(简称DN 供电)等供电方式。牵引网是由馈电线、接触网、钢轨及回流线组成的供电网络。目前,在建的“大西铁路客运专线”;“原平—西安段”即为正线采用AT 供电方式,联络线及既有线改线部分采用带回流线的直接供电方式。 最简单的牵引网是由馈电线、接触网、轨道和大地、回流线构成的供电网的总称。如:(图1所示),牵引电流从牵引变电所主变压器流出,经由馈电线送到接触网后,由受电弓引入机车,而后经机车接地电刷、轮轴,沿轨道和大地、回流线流回牵引变电所。

杂散电流测定

井下杂散电流测定规范及方法 一、杂散电流 杂散电流是指任何不按指定通路而流动的电流。 二、杂散电流的安全值 下列地点杂散电流值不得大于60mA 1、采区内各巷道中的轨道对总接地网间; 2、采煤工作面内的金属网假顶对总接地网间; 3、采区内上下山的轨道与运输大巷连接处的第二道绝缘夹板相连接的轨道对总接地网间; 4、掘进工作面与掘进巷道内任何地点的轨道对总接地网间; 5、掘进巷道的轨道与运输大巷道连接处的第二道绝缘夹板处的轨道对总接地网间; 6、采区煤仓对轨道间; 7、井下爆炸材料库铁门对轨道间 三、测定周期 井下各生产地点的杂散电流值,用携带式杂散电流测试仪每周测试一次。 四、对仪器的要求 杂散电流是随机事件而且是连续变化的量,因此要使用一种专用的杂散电流测定仪进行测量,这种杂散电流测定仪应具有测量、记忆、计算、显示和报警的功能。其量程为0——1000mA。

五、测定方法 1、采区内各条巷道中的轨道对总接地网间,仪器的X1端子接钢轨,X2端子接总接地网,记录其最大值; 2、采煤工作面内的金属网假顶对总接地网间,仪器的X1端子接金属网,X2端子接溜槽,记录其最大值; 3、采区内轨道上下山的轨道与运输大巷连接处的第二道绝缘夹板相连接的轨道对总接地网间;仪器的X1端子接第二道绝缘夹板上面的轨道,X2端子接总接地网,记录其最大值; 4、掘进工作面与掘进巷道内任何地点的轨道对总接地网间,仪器的X1端子接轨道,X2端子接总接地网,记录其最大值; 5、掘进巷道的轨道与运输大巷连接处的第二道绝缘夹板处的轨道对总接地网间,仪器的X1端子接轨道,X2端子接总接地网,记录其最大值; 6、采区煤仓对轨道间,仪器的X1端子接轨道,X2端子接采区煤仓,记录其最大值; 7、井下爆炸材料库铁门对轨道间,仪器的X1端子接轨道,X2端子接火药库铁门,记录其最大值。

杂散电流测定的管理办法

杂散电流测定的管理办法 一、杂散电流 杂散电流是指任何不按指定通路而流通的电流。 二、对测定仪器的要求 杂散电流是随机事件而且是连续变化的量,因此要使用一种专用的杂散电流测定仪进行测量,这种杂散电流测定仪应具有测量、记忆、计算、显示和报警的功能。其量程为0——1000mA。 三、杂散电流的安全值 下列地点杂散电流值不得大于60mA: 1、采区内各巷道中的轨道对总接地网间。 2、采煤工作面内的金属网假顶对总接地网间。 3、采区内上下山的轨道与轨道运输大巷连接处的第二道绝缘夹板相连接的轨道对总接地网间。 4、掘进工作面与掘进巷道内任何地点的轨道对总接地网间。 5、掘进巷道的轨道与轨道运输大巷连接处的第二道绝缘夹板处的轨道对总接地网间。 6、采区煤仓对轨道间。 7、井下消防材料库铁门对轨道间。 四、测定周期 井下各生产工作面的杂散电流值,用便携式杂散电流测试仪每周测试一次。 五、测定方法

1、采区内各条巷道中的轨道对总接地网间:仪器的X1端子接钢轨,X2端子接总接地网,记录其最大值。 2、采煤工作面内的金属网假顶对总接地网间:仪器的X1端子接金属网,X2端子接溜槽,记录其最大值。 3、采区内轨道上下山的轨道与轨道运输大巷连接处的第二道绝缘夹板相连接的轨道对总接地网间:仪器的X1端子接第二道绝缘夹板上面的轨道,X2端子接总接地网,记录其最大值。 4、掘进工作面与掘进巷道内任何地点的轨道对总接地网间:仪器的X1端子接轨道,X2端子接总接地网,记录其最大值。 5、掘进巷道的轨道与轨道运输大巷连接处的第二道绝缘夹板处的轨道对总接地网间:仪器的X1端子接轨道,X2端子接总接地网,记录其最大值。 6、采区煤仓对轨道间:仪器的X1端子接轨道,X2端子接采区煤仓,记录其最大值。 7、井下消防材料库铁门对轨道间:仪器的X1端子接轨道,X2端子接火药库铁门,记录其最大值。 鑫隆煤矿机电科 2018年1月

铁路对管道杂散电流排流方案.doc

项目号: 排流方案 文件号:GLYB08 CADD号: 设计阶段:方案设计 铁路对管道干扰杂散电流解决方案日期: 版铁路对管道杂散电流排流设计方案 (此方案为单交叉点的方案) (文件号: GLYB08) 西安冠霖电气有限公司 0 张宁静吴琳 版次说明编制校对审核审定日期

目次 1 概述 (3) 2 设计原则 (3) 3 设计遵循的标准规范 (3) 4 设计基本参数 (4) 5 保护对象和保护方法 (4) 6 排流方案设计内容 (4) 7 施工技术要求 (8) 8 排流保护准则 (8) 9 系统的管理和维护 (8) 10 卫生、安全和环境 (9) 11 材料表 (10) 1.概述 铁路与埋地管道交叉或平行时,会对埋地管道形成电磁干扰,从而使管道电位升高或降

低,导致管道腐蚀加剧。所以,在铁路和管道交叉或平行时,必须对管道进行固态去耦合器 排流处理,以消除或降低铁路对管道的干扰。 铁路干扰的相关参数 : (1)、铁路为单回路供电,供电电压一般为; (2)、铁路对管道主要产生交流干扰,但也有相当大的直流分量; (3)、干扰电压呈波动状态,最高可达到100V; (4)、交叉多处,交叉斜角为70--90 度; (5)、设计排流防雷系统寿命为25年。 2.设计原则 严格遵守埋地钢质管道排流有关的设计规范、技术标准和技术规定; 采用成熟技术、材料,做到安全可靠、经济合理; 3.设计遵循的标准规范 《埋地钢质管道强制电流阴极保护设计规范》(SY/T0036-2000) 《钢制管道及储罐腐蚀控制工程设计规范》(SY0007-1999) 《长输管道阴极保护施工及验收规范》(SY/J4006-90 ) 《埋地钢质管道阴极保护参数测量方法》(GB/T 21246-2007 ) 《钢质管道外腐蚀控制规范》(GB/T 21447-2008 ) 《埋地钢质管道阴极保护技术规范》(GB/T 21448-2008 ) 《埋地钢质管道直流排流保护技术标准》(SY/T 0017-2006 ) 《埋地钢质管道交流干扰防护技术标准》( GB/T 50698— 2011) 《减轻交流电和雷电对金属构筑物和腐蚀控制系统影响的措施》(NACE SP0177-2007)《阴极保护管道的电绝缘标准》( SY/T 0086-2003) 《埋地钢质管道交流排流保护技术标准》(中华人民共和国石油天然气行业标准SY/T 0032-2000) 《埋地钢质管道牺牲阳极阴极保护设计规范》(中华人民共和国石油天然气行业标准SY/T 0019-97)。 《埋地钢质管道交流干扰防护技术标准》(GB 50698-2011) 业主方提供的其他资料、图纸。 4 . 设计基本参数 排流装置启动电位:+ ;

相关文档
最新文档