地下水的化学成分及其形成作用(精)

地下水的化学成分及其形成作用(精)
地下水的化学成分及其形成作用(精)

第六章地下水的化学成分及其形成作用

第一节概述

地下水是天然溶液。地下水在参与自然界水循环过程中,与大气圈、水圈与生物圈同时发生着水量交换、化学成分的交换(—水质状况)。

水是良好的溶剂,地下水在空隙中运移时,可以溶解岩石中的组分,使地下水的化学成分丰富多彩。

地下水的物理性质:温度、颜色、嗅、味、密度、导电性与放射性

地下水的化学性质:气体成分、离子成分、胶体物质、有机质等

地下水的放射性、微生物成分等。

第二节地下水的化学特征

一、地下水中常见的气体成分

主要有氧()、氮()、二氧化碳()、硫化氢()、甲烷(),常见的气体成分与地下水所处环境,地下水的来源有关。

(1)氧()、氮()

来源:在大气成分中、含量很高,随降水一起入渗进入地下含水层中。反过来,如果地下水中富含与——也说明地下水是大气起源。由于活跃,在地下水运动中易发生氧化作用而消耗,因此,大气起源的地下水中,也可能独立存在。此外,氮还有生物起源与变质起源。

指示意义:含量高指示氧化环境;封闭环境下,氧被耗尽只剩下,则为大气起源封闭环境。

(2)硫化氢()、甲烷()

来源:这两种气体,都是在封闭环境下生成的。如是在有机物与微生物参与的生物化学过程中形成,还原环境下地下水中的→,在成煤过程中,在还原作用下产生,使煤田水富含。同理,甲烷()是成油和油气藏形成过程的结果,油田水富含甲烷()。

指示意义:富含和的地下水,指示封闭的还原环境。

(3)二氧化碳()

大气降水中的含量较低,地下水中主要来源:

①主要源于土壤层(入渗过程溶于水中):有机质残骸发酵产生、植物呼吸作用产生

②碳酸盐岩地层的脱碳酸作用

③深部高温下,变质作用生成

④人类活动,在使用化石燃料(煤、石油、天然气)时,大气中的增加

作用:地下水中增加,水对碳酸盐岩的溶解、结晶岩风化溶解的能力愈强!

(4)地下水中气体成分特征小结:

①气体成分——指示地下水所处的地球化学环境

氧化环境

还原环境

②气体成分增加水对盐类的溶解能力→促进水—岩的化学反应(即相互作用)

二、地下水中的主要离子成分

(1)概述:地下水中组分很多,而分布广、含量多的主要有七种离子

阴离子:,,

阳离子:,,,

离子成分含量与什么有关?

①各种元素的丰度(克拉克值)—即某元素在地壳化学成分中的重量百分比

②该元素组成的化合物在水中的溶解度

在自然界,丰度较高的元素,如Si、Al、Fe,在水中含量很低;而某些丰度较低的,如Cl、S、C,在水中含量却很高。这说明元素组成的化合物的溶解度起主要作用。

(2)主要离子的相对含量与地下水中的总含盐量(TDS)关系

常见地下水的化学成分特征,与地下水的矿化度(或TDS)具有以下关系矿化度:低→ 中→ 高

阴离子:

阳离子:

我们可以得出主要离子构成的盐类溶解度的大小为:

碳酸盐类 < 硫酸盐类 < 氯化物(氯盐)

(3)主要离子成分的来源

低矿化度水中的常见离子:

,,常共同出现在低矿化度水中。来源沉积盐岩的溶解、岩浆岩、变质岩等的风化溶解,如风化溶解反应式:

沉积盐岩的溶解反应式:

高矿化度水中的常见离子:

,,常出现在高矿化度水中。来源沉积盐岩(钠盐、钾盐)的溶解,以及岩浆岩、变质岩的风化溶解,有时也有海水海风影响。变质岩的风化溶解反应式:

中等矿化度水中的常见离子:

,常出现在中等矿化度水中。其中,来源于沉积盐类溶解、金属硫化物的氧化、火山喷发,气体氧化、以及人类活动燃烧煤产生大量

,大气中过高时,会出现降“酸雨”现象(如一些工业城市上空)。

(4)主要离子成分在地下含水系统(岩层)中的分布

插图6-1,表示了水中主要阴离子沿流程的变化特点。

请思考?相应的阳离子和矿化度(TDS),沿流程如何变化?

插图6-1 主要阴离子沿流程变化特点(图中+号表示含量多少)

三、地下水中的其他成分

次要离子:阳离子,如

阴离子,如及等

微量组分:有Br、I、F、B、Sr等

化合物构成的胶体:主要有,及等,有时可占到相当比例。

有机质:经常以胶体方式存在于地下水中。有机质的存在,常使地下水酸度增加,并有利于还原作用。

地下水中还存在各种微生物:如,硫细菌、铁细菌、脱硫酸细菌等;

在污染水中,还有各种致病细菌。

第三节地下水的温度

地下水的温度受其赋存与循环处所的地温控制。

变温带:浅埋地下水显示微小的水温季节变化。

常温带:地下水水温与当地年平均气温很接近,这两带的地下水,常给人以“冬暖夏凉”的感觉。

增温带:地下水随其赋存与循环深度的加大而提高,成为热水甚至蒸汽。如西藏羊八井的钻孔,获得温度为160℃的热水与蒸汽,

地下水水温的计算:已知年平均气温(t)、年常温带深度(h)、地温梯度(r)时,可概略计算某一深度(H)的地下水水温(T),即:

地下水循环深度计算:利用地下水水温(T),可以推算其大致循环深度(H),即:

地温梯度的平均值约为3℃/100m。通常变化于1.5—4℃/l00m之间,但个别新火山活动区可以很高。如西藏羊八井的地温梯度为300℃/100m。

第四节地下水化学成分的形成作用

本节讨论的地下水化学成分的形成作用包括:

溶滤作用——水与岩的相互作用,经常发生

浓缩作用——蒸发排泄条件下发生

脱碳酸作用——在温度与压力发生变化时发生

脱硫酸作用——在还原环境下发生,→↑

阴离子交替吸附作用——岩土表面吸附阳离子与水中阳离子的作用

混合作用——2种或以上不同类型地下水交汇混合时发生

人为活动的作用

一、溶滤作用

1、定义:在地下水与岩土相互作用下,岩土中某些组分向地下水中转移的过程,其结果是,岩土失去部分可溶物质,地下水中获得相应的化学组分,通常水的矿化度会增高。如:

(岩——水作用)离子

2、影响因素(水和岩两个方面考虑)

岩土的化学组分:通常流经什么样岩土,就会有什么样的水化学特征

如:石灰岩地区常见水、花岗岩地区常见水

组分的可溶性:与组分的溶解度和溶解速度有关;盐分溶解度的差异,使易溶组分很快进入水中,而难溶组分缓慢进入水中。

水的溶解能力:与水的矿化度(TDS)、气体组分(,)含量有关

a.水中已溶组分的多少——即水的矿化度大小,随着盐份在水中的含量增高,水的溶解能力逐渐降低

b.水中某些气体组分含量越高,如,气体含量高,可以增相应盐类的溶解度

—增加硫化物的氧化,而被溶解

—增加碳酸盐类的溶解度

通常,入渗到地下的水(如降水、河水等),矿化度很低,随着水在地下含水岩层的运移,与岩土发生溶滤作用后,不断有新的盐份被溶解到水中,地下水的矿化度(TDS)增高,水的溶解能力就会下降。

地下水的流动(交替)性:地下水的流动性是维系水的溶解能力的条件。

而地下水的流动性取决于水的径流和交替强度(即V与Q):

停滞与流动很缓慢的地下水,溶解能力最终会降低为零,溶滤作用很弱

地下水流动速度快,水交替(更新)迅速,,不断被补充,低TDS

水不断更新已经降低溶解能力的水,保持水的溶解能力。

请思考:如果某一地区,地下水流动很快,水交替(循环)迅速,水化学特征如何?也就是说,某一地区溶滤作用进行的很强烈,长期作用结果地下水中的矿化度高(TDS)如何?水中阴离子和水中阳离子以什么为主?

3、溶滤作用的结果:长期强烈溶滤作用的结果,地下水以低矿化度的难溶离子为主,如或水。这是由溶滤作用的阶段性决定的!

设想岩层中原来含有包括氯化物、硫酸盐、碳酸盐及硅酸盐等各种矿物盐类。

开始阶段水流作用,盐最易溶水中→随水带去,不断转入岩层中盐贫化

随后,相对易溶的盐也被溶入水中→随水带走,岩层中盐也贫化最后(岩土中),只剩较难溶的碳酸盐类,溶滤的结果水中的化学成分就以较难溶的碳酸盐(或硅酸盐)为主

二、浓缩作用

1、定义:地下水在蒸发排泄条件下,水分不断失去,盐分相对浓集,而引起的一系列地下水化学成分的变化过程。

用一个理想模式,来理解浓缩作用:

矿化度:350mg/L 700mg/L 1400mg/L … 2800mg/L

插图6-2 浓缩作用(过程)理想模式

水份失去过程→盐分相对浓集,水的矿化度不断增高,相应的水的化学成分也发生变化。

实际上地下水在蒸发过程中,发生的浓缩作用与上述理想模式是不同的!!

●地下水在蒸发过程中,水分失去还有补充,盐分积累后随水流也会不断补充,因此,实际的蒸发作用可以产生含盐量很高的地下水(卤水)或盐渍化的土地。

2、浓缩作用的结果:往往形成高矿化度的以易溶离子为主的地下水(,

为主的)

●蒸发浓缩前,地下水为低矿化水,阴离子以为主,阴离子以与

为主。

●随着蒸发浓缩,溶解度小的钙、镁的重碳酸盐部分析出,及逐渐成为主要成分。

●继续浓缩,硫酸盐达到饱和并析出,水便形成以、为主的高矿化水

浓缩作用的影响因素——与蒸发排泄的影响因素相同。因此,地下水化学成分形成作用受区域自然地理与地质条件的影响,地下水的化学特征往往具有一定的分带性(空间上的)。

3、浓缩作用的基本条件:

●干旱或半干旱的气候

●低平地势控制下较浅的地下水位埋深

●有利于毛细作用的颗粒细小的松散岩土

最后一个必备的条件是地下水流动系统的势汇——排泄处,因为只有水分源源不断地向某一范围供应,才能从别处带来大量的盐分,并使之集聚。

三、脱碳酸作用:(钟乳石、石笋、泉华均是脱碳酸作用的结果)

1、发生条件:环境的温度和压力变化。

水中的溶解度受环境的温度和压力控制。随温度升高或压力降低,一部分便成为游离从水中逸出,发生脱碳酸作用。脱碳酸作用反应式:

2、脱碳酸的结果:地下水中及、减少,矿化度(TDS)降低,pH↓(略低)

深部地下水上升成泉时,脱碳酸作用在泉口往往形成钙华。温度较高的深层地下水,由于脱碳酸作用使、从水中析出,阳离子通常以为主。

四、脱硫酸作用

1、发生条件:在还原环境中,有有机质存在,在脱硫酸细菌参与下,SO42—还原为H2S,反应式:

2、脱脱硫的结果:地下水中减少以至消失,增加,pH值变大。

封闭的地质构造,如储油构造,是产生脱硫酸作用的有利环境。因此,某些油田水中出现,而含量很低。这一特征可以作为寻找油田的辅助标志。

五、阳离子吸附交替作用

1、定义:岩土颗粒表面带有负电荷,一定条件下,颗粒将吸附地下水中某些阳离子,而将其原来吸附的部分阳离子转为地下水中的组分,这便是阳离子交替吸附作用。

不同的阳离子,其吸附于岩土表面的能力不同,按吸附能力,自大而小顺序为:

。离子价愈高,离子半径愈大,水化离子半径愈小,则吸附能力愈大。则是例外。

2、结果:岩土吸附的阳离子与水中阳离子交换,岩土与水中阳离子都发生变化。

如:含为主的地下水,进入主要吸附有的岩土时,水中的便置换岩土所吸附的一部分,使地下水中曾多而减小。

3、影响因素:

阳离子交替吸附作用的规模取决于岩土的吸附能力,与岩土的比表面积。

●颗粒愈细,比表面积愈大,交替吸附作用的规模也就愈大。

因此,粘土及粘土岩类最容易发生交替吸附作用,而致密的结晶岩中,不发生这种作用。

六、混合作用

1、发生条件:成分不同的两种水汇合在一起,形成化学成分与原来两者都不相同的地下水。

●在海滨、湖畔或河边,地表水往往混入地下水中,发生混合;

●深层地下水补给浅部含水层时,发生两种地下水的混合。

2、作用结果:

●混合作用,发生化学作用可能形成化学类型完全不同的地下水;

●两种水的混合,也可能不产生明显的化学反应,此时,混合水的矿化度与化学类型取决于参与混合的两种水的成分及其混合比例。

分析地下水的化学成分,不能用孤立的,静止的方法去套上述“作用”,应视具体条件,用综合的、发展的观点,抓住主要的问题去分析,把握。

七、人为活动的作用

人类活动对地下水化学成分的影响愈来愈大。体现在以下两个方面:

●人类生活与生产活动产生的废弃物污染地下水;

●人为作用大规模地改变了地下水形成条件,而使地下水化学成分发生变化。

人类干预自然的能力正在迅速增强,因此,防止人类活动对地下水水质的不利影响,采用人为措施使地下水水质向有利方向演变,愈来愈重要了。

第五节地下水化学成分的基本成因类型

从形成地下水化学成分的基本成分出发,地下水分为三个主要成因类型:溶滤水、沉积水和内生水。

一、溶滤水

溶滤水:是富含与的渗入成因的地下水,溶滤它所流经的岩土而获得其主要化学成分。

溶滤水的影响因素:受岩性、气候、地貌等因素的影响

●地形因素是通过干扰气候,而控制和影响溶滤水的分带性

●干旱地区的山间堆积盆地,气候、岩性、地形表现为统一的分带性,地下水化学分带最为典型。山前地区气候相对湿润,颗粒比较粗大,地形坡度也大;向盆地中心,气候转为十分干旱,颗粒细小,地势低平。

●构造开启性的影响:构造开启性好的含水系统,径流途径短,流动相对较快,溶滤作用发育,多形成低矿化的重碳酸盐水。构造较为封闭的,位置较深的含水系统,则形成矿化度较高,易溶离子为主的地下水。

●同一含水系统的不同部位:由于径流条件与流程长短不同,水交替程度不同,出现水平的或垂向的水化学分带,参阅第八章地下水系统中的图8—9。

绝大部分地下水属于溶滤水。这即包括潜水,也包括大部分承压水。

二、沉积水

沉积水:是指与沉积物大体同时生成的古地下水。

河、湖、海相的沉积物中的水具有不同的原始成分,在漫长的地质年代中水质又经历一系列复杂的变化。以海相淤泥为例说明:

●海相淤泥:含大量有机质、各种微生物,处于缺氧环境,有利于生物化学作用

●经历后期变化,海相淤泥沉积水与海水比较的不同:(1)矿化度高,最高可达300g/L;(2)硫酸根离子减少乃至消失;(3)钙的相对含量增大,钠相对含量减少。(4)富集溴、碘(碘的含量升高显著),变小;(5)出现硫化氢、甲烷、铵、氮;(6)pH值增高。

沉积水后期改造:埋藏在地层中的沉积水,受地壳运动影响,在构造开启性变好时,经过长期入渗淋滤,沉积水可能为溶滤水所替换。在构造开启性不十分好时,在含水层补给区可以出现溶滤水和沉积水的混合,而在深部保留高矿化的以易溶离子为主的沉积水。

三、内生水

内生水是指源自地球深部层圈岩浆分异的产物。

如来自深部的温泉,在地热系统的热均衡分析得出,某些高温水的出现,应有10%—30%的来自地球深部层圈的高热流体的加入(内生水)。有人认为,

深部高矿化卤水的化学成分也显示了内生水的影响。

内生水的典型化学特征至今并不完全清楚。前苏联某些花岗岩中包裹体溶液为矿化度100-200g/L的氯化钠型水。冰岛玄武岩区的热蒸汽凝成的水,是矿化度1—2g/L的

水,含有大量与。

内生水的研究迄今还很不成熟,但由于它涉及水文地质学乃至地质学的一系列重大理论问题,因此,今后水文地质学的研究领域将向地球深部层圈扩展,更加重视内生水的研究。

第六节地下水化学成分的分析内容与分类图示

一、总矿化度(TDS)与库尔洛夫式

(1)总矿化度(TDS)

总含盐量(TDS 或M表示):地下水中各种离子、分子与化合物的总量,称之为。

求算方法:

①在105~110℃温度下,水样烘干后的干涸残余物质,单位:g/L,mg/L(ppm)

②计算中,用水样全分析实验结果,计算阴阳离子总和,其中含量计算一半。

据矿化度的水样分类:

(2)库尔洛夫式

库尔洛夫式是水化学成分特征的简单表示方法。表示形式是分式:分式的上下:分别标示阴阳离子的相对含量,按毫克当量①百分数自大而小顺序排列,小于10%的离子不予表示。

分式横线前:表示气体成分、特殊成分及矿化度(以字母M为代号),单位为g/L,

分式横线后:表示以摄氏计的水温,以字母t为代号

例如某水样的库尔洛夫式为:

二、地下水化学成分分析内容

根据需要,分析内容多少,分为简分析、全分析、专门性分析或污染分析等。

简分析指标:——分析项目少,精度要求低,简便快速,成本低,容易掌握。

物理性质(温度、颜色、透明度、嗅味、味道等)

主要离子:、、、

计算:总硬度、pH值,根据分析结果计算水中各主要离子含量及总矿化度。

简分析项目少,精度要求低,简便快速,成本不高,技术上容易掌握。

全分析指标:

物理性质(温度、颜色、透明度、嗅味、味道等)

分析项:、、、、、、、、、、、、、、、耗氧量、pH值及干涸残余物。

分析结果的表示方法:

离子含量:毫克/升,毫克当量/升。

离子的相对含量:分别用阴、阳离子毫克当量/升和毫克当量百分数表示。取阴、阳离子的毫克当量为100%,求取各阴、阳离子所占的毫克当量百分比。

污染分析内容:(参考全国地下水污染防治规划—调查指标)

感官指标:肉眼可见物、颜色、嗅、味、透明度、浑浊度、色度、水温等。常规组分:pH值、游离二氧化碳、、、、、、、、、、、、-、、、、、、COD、可溶性二氧化硅、总硬度、矿化度等。

重金属组分:Hg、Cu、Pb、As、Cd、Mn、Zn、Ni、Co、Cr6+、总Cr、V、W、Sr、Ba、U、Ra、Se、等。有机污染组分:三氯甲烷、四氯化碳、三溴甲烷、二氯甲烷、1,2-二氯乙烷、环氧氯丙烷、氯乙烯、1,1-二氯乙烯、1,2-二氯乙烯、三氯乙烯、四氯乙烯、氯丁二烯、六氯丁二烯、苯乙烯、甲醛、乙醛、丙烯醛、三氯乙醛、苯、乙苯、二甲苯、异丙苯、氯苯、1,2-二氯苯、1,4-二氯苯、三氯苯、四氯苯、六氯苯、硝基苯、二硝基苯、2,4-二硝基甲苯、2,

4,6-三硝基甲苯、硝基氯苯、2,4-二硝基氯苯、2,4-二氯苯酚、2,4,6-三氯苯酚、五氯酚、苯胺、联苯胺。DDT、六六六(总量)、林丹(γ-六六六)、2,4-滴、七氯、呋喃丹、敌敌畏(含敌百虫)。

生物学指标:总大肠菌群、菌落总数。

三、地下水化学分类与图示方法

(1)舒卡列夫分类(据前苏联学者CAЩукалев)

首先,根据地下水中主要七种离子(其中合并,分为6种)的相对含量进行组合分类的一种方法。

如果某种离子含量(毫克当量百分数,或视毫摩尔百分含量)≥25%,参与组合定名,给定编号;

三类阳离子(、、)可以有7种组合方式;

三类阴离子(、、)也可组合为7种;

阴、阳离子再组合共计为:7×7=49种水型,参见表6-2。

表6—2 舒卡列夫分类图表

其次,再加上矿化度大小分为4组,即

A——<1.5g/L,

B——1.5~10g/L

C——10~40g/L

D——>40g/L

例如,上述库尔洛夫式所表示的地下水为:B—46,即中等矿化度的Cl—NaCa 型水

通常,A—1号水表示沉积岩地区浅层溶滤水的特点。而49—D型则是矿化度大于40g/L的Cl—Na型水,可能是与海水及海相沉积有关的地下水。

舒卡列夫分类表简明易查,在系统分析水样的化学试验结果中被广泛利用。

(2)派伯(Piper)三线图(自选学习内容)

基本构成:派珀三线图解由两个三角形和一个菱形组成(图6—4)。

左下角三角形的三条边线分别代表阳离子中、、的毫克当量百分数。

右下角三角形表示阴离子、、的毫克当量百分数。

任一水样先根据阴、阳离子的相对含量分别在两个三角形表示出来(如图6—4有标号的圆圈);再从两个三角形对应的位置向上方的菱形延伸得出交点,交点以圆圈综合表示此水样的阴阳离子相对含量;并按一定比例尺画圆,大小表示水样的矿化度。

分区特征:落在菱形中不同区域的水样具有不同化学特征(图6—5):

1区碱土金属离子超过碱金属离子,2区碱大于碱土;

3区弱酸根超过强酸根,4区强酸大于弱酸;

5区碳酸盐硬度超过50%,6区非碳酸盐硬度超过50%;

7区碱及强酸为主,8区碱土及弱酸为主;

9区任一对阴阳离子含量均不超过50%毫克当量百分数。

图6—4 派珀三线图解〔Piper,1953〕

图6—5 派珀三线图解分区〔Piper,1953〕

优点:不受人为影响,可看出水样的一般化学特征,看出各种离子的相对含量。将一个地区的水样标在图上,可以分析地下水化学成分的演变规律。

钢材中的化学成分对钢材的作用

钢材中的化学成分对钢材的作用(一) 钢材中的化学成分对钢材的作用 1、碳(C):钢中含碳量增加,屈服点和抗拉强度升高,但塑性和冲击性降低,当碳量0.23%超过时,钢的焊接性能变坏,因此用于焊接的低合金结构钢,含碳量一般不超过0.20%。碳量高还会降低钢的耐大气腐蚀能力,在露天料场的高碳钢就易锈蚀;此外,碳能增加钢的冷脆性和时效敏感性。 2、硅(Si):在炼钢过程中加硅作为还原剂和脱氧剂,所以镇静钢含有0.15-0.30%的硅。如果钢中含硅量超过0.50-0.60%,硅就算合金元素。硅能显著提高钢的弹性极限,屈服点和抗拉强度,故广泛用于作弹簧钢。在调质结构钢中加入1.0-1.2%的硅,强度可提高15-20%。硅和钼、钨、铬等结合,有提高抗腐蚀性和抗氧化的作用,可制造耐热钢。含硅1-4%的低碳钢,具有极高的导磁率,用于电器工业做矽钢片。硅量增加,会降低钢的焊接性能。 3、锰(Mn):在炼钢过程中,锰是良好的脱氧剂和脱硫剂,一般钢中含锰0.30-0.50%。在碳素钢中加入0.70%以上时就算“锰钢”,较一般钢量的钢不但有足够的韧性,且有较高的强度和硬度,提高钢的淬性,改善钢的热加工性能,如16Mn钢比A3屈服点高40%。含锰11-14%的钢有极高的耐磨性,用于挖土机铲斗,球磨机衬板等。锰量增高,减弱钢的抗腐蚀能力,降低焊接性能。 钢材中的化学成分对钢材的作用(二) 钢材中的化学成分对钢材的作用/文青岛宏正金属 4、磷(P):在通常情况下,磷元素是模具钢材中的有害元素,磷(P)元素能够增加模具钢的冷脆性,使模具钢焊接性能变坏;降低模具钢的塑性,使模具钢的冷弯性能变坏。因此通常要求模具钢中含磷量小于0.045%,优质模具钢要求更低。 5、硫(S):硫(S)元素在一般情况下也是有害元素。硫(S)元素使模具钢产生热脆性,降低模具钢的延展性和韧性,在锻造和轧制时造成裂纹。硫(S)元素对模具钢的焊接性能也不利,降低其耐腐蚀性。所以通常要求硫含量小于0.055%,优质钢要求小于0.040%。但是在模具钢中加入0.08-0.20%的硫,可以改善切削加工性,称易切削模具钢。 6、铬(Cr):在结构钢和工具钢中,铬(Cr)元素能显著提高模具钢的强度、硬度和耐磨性,但同时降低模具钢塑性和韧性。铬(Cr)元素又能提高模具钢的抗氧化性和耐腐蚀性,因而是不锈钢,耐热钢的重要合金元素。 钢材中的化学成分对钢材的作用(三) 7、镍(Ni):镍元素能提高模具钢的强度,而又保持模具钢良好的塑性和韧性。镍元素对酸碱有较高的耐腐蚀能力,在高温下有防锈和耐热能力。但由于镍元素是较稀缺的资源,故应尽量采用其他合金元素代用镍铬钢。

第六章 地下水的地质作用

第六章地下水的地质作用 教学目的要求:了解地下水、泉、地下热水的概念及特征;掌握地下水的赋存、运动及类型;初步掌握地下水潜蚀作用、沉积作用的基本原理和特征。教学重点及难点:重点是地下水的赋存、运动及类型和地下水的潜蚀作用、溶蚀现象;难点是的地下水的溶蚀和沉淀过程。第一节地下水概述 ——是指地表以下的岩石孔隙中或土层里的水,称为地下水。 地下水主要是由大气降水、地面流水、冰雪融水、湖泊水渗透到地下而形成的,称为渗透水。此外还有凝结水、埋藏水、原生水等。 一、地下水的赋存及运动条件 ——岩石或土层允许水透过的性能称为透水性。 地下水能在岩石中赋存与运动,是因为岩石中具有一定的空隙。空隙包括孔隙(岩石颗粒之间的空隙)、裂隙(岩石的裂缝)和洞穴(可溶性岩石受溶蚀后形成的孔洞)。 岩石孔隙度越大,含水量越大,透水性越好;孔隙度越小,含水量越少,透水性越差。因此自然界的岩石可分为透水层和不透水层: 透水层——能够透过地下水的岩层。主要有:砂岩层、沙砾岩层以及裂隙、洞穴发育的其它岩石。其中储满地下水的部分称为含水层。 不透水层——不能透过地下水的岩层。主要有:粘土、页岩、岩浆岩、变质岩等。 不透水层对地下水的运动起着阻隔作用,又称为隔水层。

两者之间过渡类型称为半(弱)透水层。如泥岩、亚粘土、黄土等。 二、地下水的类型 地下水按照埋藏条件分为包气带水、潜水、承压水。 1.包气带水(土壤水) ——从地面到地下水面(潜水面)之间的地带(包气带、不饱和带)所含的非重力地下水,以气态水、吸着水、薄膜水和毛细水等状态存在。 2.潜水 ——埋藏在地面以下,在第一个隔水层之上,具有自由表面的重力水,称为潜水。 潜水的表面称为潜水面,随地形起伏而变化,具有潜水流。同时因季节变化而升降,雨季、旱季潜水面的不同而形成一个暂时饱和带。3.层间水 ——埋藏在地下两个隔水层之间的含水层中的水。 承压水——当两个隔水层之间的含水层被水充满时,就是有了一定的静压力,称为承压水。 自流井——当打井凿穿上部隔水层时,如果承压水的静水压力所达到的水头高度超过井口地面时,则自行喷溢出地表,形成自流井。自流井最适宜的构造类型为向斜盆地和单斜构造。自流水坟地可以分为三个区:补给区、承压区和排泄区。在承压区形成自流井,在排泄区形成上升泉。 三、泉及其分类

水文地质课件习题六 地下水的化学成分及其形成作用

习题六 地下水的化学成分及其形成作用 一、名词解释 1.总溶解固体:地下水中所含各种离子、分子与化合物的总量。 2.变温带:受太阳辐射影响的地表极薄的带。 3.常温带:变温带以下,一个厚度极小的温度不变的带。 4.增温带:常温带以下,随深度增大而温度有规律地升高的带。 5.地温梯度:指每增加单位深度时地温的增值。 6.溶滤作用:在水与岩土相互作用下,岩土中一部分物质转入地下水中,这就是溶滤作用。 7.浓缩作用:由于蒸发作用只排走水分,盐分仍保留在余下的地下水中,随着时间延续,地下水溶液逐渐浓缩,矿化度不断增大的作用。 8.脱碳酸作用:地下水中CO2的溶解度随温度升高或压力降低而减小,一部分CO2便成为游离CO2从水中逸出,这便是脱碳酸作用。 9.脱硫酸作用:在还原环境中,当有有机质存在时,脱硫酸细菌能使硫酸根离子还原为硫化氢的作用。 10.阳离子交换吸附作用:一定条件下,颗粒将吸附地下水中某些阳离子,而将其原来吸附的部分阳离子转为地下水中的组分,这便是阳离子交替吸附作用。 11.混合作用:成分不同的两种水汇合在一起,形成化学成分与原来两者都不相同的地下水,这便是混合作用。 12.溶滤水:富含CO2与O2的渗入成因的地下水,溶滤它所流经的岩土而获得其主要化学成分,这种水称之为溶滤水。 13.沉积水:指与沉积物大体同时生成的古地下水。 14.内生水:来自地球深部层圈物质分异和岩石变质作用过程中化学反应生成的水。 15.总硬度:水中所含钙离子和镁离子的总量。 16.暂时硬度:指水中钙离子和镁离子与碳酸根离子和重碳酸根

离子结合的硬度。 17.永久硬度:指水中钙离子和镁离子与氯离子、硫酸根离子和硝酸根离子结合的硬度。 二、填空 1.地下水中含有各种 气体、离子、胶体物质、有机质 以及微生物等。 2.地下水中常见的气体成分有 氧气、氮气、二氧化碳、甲烷 及硫化氢 等。 3.地下水中分布最广、含量较高的阴离子有 氯离子、硫酸根离子及重碳酸根离子 等。 4.地下水中分布最广、含量较高的阳离子有 钠离子、钾离子、钙离子 及 镁离子 等。 5.一般情况下,低矿化水中常以 重碳酸离子、钙离子 及 镁离子 为主;高矿化水则以 氯离子及 钠离子 为主。 6.一般情况下,中等矿化的地下水中,阴离子常以 硫酸根离子为主,主要阳离子则可以是 钠离子 ,也可以是 钙离子 。 7.地下水化学成分的形成作用有 溶滤作用、浓缩作用、脱碳酸作用、脱硫酸作用、阳离子交替吸附作用和混合作用。 8.据地下水化学成分的成因类型,可将地下水分为 溶滤水、沉积水 和 内生水 。 9.在低矿化水中,阴离子以重碳酸盐为主,阳离子以钙离子、镁离子为主。随着蒸发浓缩,溶解度小的钙、镁的碳酸盐部分析出, 硫酸根 及 钠离子 逐渐成为主要成分,继续浓缩,水中硫酸盐达到饱和并开始析出,便将形成以 氯离子 、钠离子 为主的高矿化水。 10.当含钙为主的地下水,进入主要吸附有钠离子的岩土时,水中的钙离子便置换岩土所吸附的一部分 钠离子 ,使地下水中 钠离子增多而 钙离子 减少。

化妆品化学成分的作用

化妆品化学成分的作用 油脂 油脂是油和脂的总称,油脂包括植物性油脂和动物性油脂。油脂主要成分为脂肪酸和甘油组成的脂肪酸甘油酯。 植物性油脂分三类,干性油、半干性油和不干性油。干性油如:亚麻仁油、葵花籽油;半干性油如棉籽油、大豆油、芝麻油;不干性油指的象橄榄油、椰子油、蓖麻油等。用于化妆品的油脂多为半干性油,干性油几乎不用于化妆品原料。常用的油脂有:橄榄油、椰子油、蓖麻油、棉籽油、大豆油、芝麻油、杏仁油、花生油、玉米油、米糠油、茶籽油、沙棘油、鳄梨油、石栗子油、欧洲坚果油、胡桃油、可可油等。 动物性油脂用于化妆品的有水貂油、蛋黄油、羊毛脂油、卵磷脂等,动物性油脂一般包括高度不饱和脂肪酸和脂肪酸,他们和植物性油脂相比,其色泽、气味等较差,在具体使用时应注意防腐问题。水貂油具有较好的亲和性,易被皮肤吸收,用后滑爽而不腻,性能优异,故在化妆品中得到广泛应用,如营养霜、润肤霜、发油、洗发水、唇膏及防晒霜化妆品等。蛋黄油含油脂、磷脂、卵磷脂以及维生素A、D、E等,可作唇膏类化妆品的油脂原料。羊毛脂油对皮肤亲和性、渗透性、扩散性较好,润滑柔软性好,易被皮肤吸收,对皮肤安全无刺激;主要作用于无水油膏、乳液、发油以及浴油等。卵磷脂是从蛋黄、大豆和谷物中提取的,具有乳化、抗氧化、滋润皮肤的功效,是一种良好的天然乳化剂,常使用于润肤膏霜和油中。 1、蜡类 蜡类是高碳脂肪酸和高碳脂肪醇构成的酯。这种酯在化妆品中起到稳定性、调节黏稠度、减少油腻感等作用。主要应用于化妆品的蜡类有:棕榈蜡、小烛树蜡、霍霍巴蜡、木蜡、羊毛酯、蜂蜡等。 棕榈蜡精致产品为白色或淡黄色脆硬固体,具有愉悦的气味。主要成分为蜡酸蜂花醇酯和蜡酸蜡酯。在化妆品中主要提高蜡酯的熔点,增加硬度、韧性和光泽,也有降低粘性、塑性和结晶的倾向。主要用于唇膏、睫毛膏、脱毛蜡等制品。 小烛树蜡是一种淡黄色半透明或者不透明的固体。精致产品有光泽和芳香气味,略带黏性。主要成分为碳水化合物、蜡酯、高级脂肪酸、高级醇等。应用于唇膏等淀状化妆品中。 霍霍巴蜡是一种透明无臭的浅黄液体。主要为十二碳以上脂肪酸和脂肪醇构成的蜡酯。其特点不易氧化和酸败,无毒、无刺激,易于被皮肤吸收以及具有良好的保湿等作用。因此,广泛应用于润肤膏、面霜、香波、头发调理剂、唇膏、指甲油、婴儿护肤用品以及清洁剂等用品。

地下水的地质作用

地下水的地质作用 一、地下水的贮存 (一)岩土中的空隙 1、孔隙 松散岩土(如粘土、砂土、砾石等)中颗粒或颗粒集合体之间存在的空隙,称为孔隙。 岩石中孔隙体积的多少直接影响储容地下水的能力大小。孔隙体积的多少可用孔隙度(n)表示。孔隙度是孔隙体积(Vn)与包括孔隙在内的岩石总体积(V)的比值,用小数或百分数表示,即: 或 孔隙度的大小主要取决于岩土的密实程度及分选性。此外,颗粒形状和胶结程度对孔隙度也有影响。岩石越疏松、分选性越好,孔隙度越大。相反,岩石越紧密图)或分选性越差,孔隙度越小。孔隙若被胶结物充填,则孔隙度变小。

几种典型松散岩土的孔隙度的参考值 2、裂隙 固结的坚硬岩石受地壳运动及其它内外地质营力作用的影响产生的空隙,称为裂隙。 裂隙发育程度除与岩石受力条件有关外,还与岩性有关,坚脆的岩石裂隙发育,透水性好,质软具塑性的岩石裂隙不发育,透水性差。 裂隙的多少用裂隙率(Kt)表示,裂隙率是裂 隙体积(Vt)与包括裂隙体积在内的岩石总体积 的比值,用小数或百分数表示: 几中岩石裂隙的参考值

3、溶隙 可溶岩(石灰岩、白云岩等)中的裂隙经地下水长期溶蚀而形成的空隙称溶隙。 溶隙的发育程度用溶隙率(K k)表示,溶隙率 (K k )是溶隙的体积(V k )与包括溶隙在内的岩石 总体积(V)的比值,用小 数或百分数表示: 研究岩石的空隙时,不仅要研究空隙的多少,还要研究空隙的大小、空隙间的连通性和分布规律。松散土孔隙的大小和分布都比较均匀,且连通性好,所以,孔隙度可表征一定范围内孔隙的发育情况,岩石裂隙无论其宽度、长度和连通性差异都很大,分布也不均匀,因此,裂隙率只能代表被测定范围内裂隙的发育程度;溶隙大小相差悬殊,分布很不均匀,连通性更差,所以,溶隙率的代表性更差。(二)岩土中水的存在形式 1、气态水 气态水,即水蒸气,存在于未饱和的岩土空隙中。岩土中的气态水可由大气中的气态水进人地下形成,也可由地下液态水蒸发而成。气态水有极大的活动性,可随空气流动而流动,也可由绝对湿度大的

水岩作用的研究现状及趋势

水岩作用的研究现状及趋势 水岩作用(Water-Rock Interaction—WRI)泛指地质作用过程当中所发生的流体与岩石的相互作用。具体来说,水溶液和岩石在岩石固相线以下的温度、压力范围内进行的各种化学反应和物理化学作用。学者们对水岩作用的研究起源于20世纪50年代末,此后得到不断的重视和发展,并于1974 年在捷克召开了第一届国际WRI 学术会议。20世纪中叶以来,固体地球科学和环境地球科学都越来越重视水岩作用研究,已经成为水文地质学、地球化学、岩石学、工程地质学、地热学、矿床学、环境化学等学科的研究热点和前沿领域.对于水文地质而言和工程地质而言,很多问题均得益于把地下水和固体含水介质作为整体的系统来研究。 1国内外研究现状 1.1研究方向 目前, 关于水岩作用的研究主要涉及到两个方向,一是水文地质方向;二是工程地质和岩土力学的方向。前者主要研究水与岩土介质作用对地下水溶质运移的影响, 其采用的研究方法主要是水力学和同位素化学方法等,对于这方面的研究,资料很多。我国沈照理先生在1991年就提出了此问题, 并得到了同行们的广泛支持与响应。到目前为止,国际上已召开了多次相关的学术会(Water-Rock Interaction—WR I ) ,集中反映了国内外学者的研究成果,为水资源的研究做出了很大的贡献。后者主要集中在水与岩土介质作用对岩土的力学状态、变形特性的影响。由于它涉及到工程的成败问题, 因此必须对之进行详细而认真的研究。 1.2水岩作用的分类 从工程地质学和岩土工程的角度看,水岩作用主要有以下两类: 即力学和物理化学作用。力学作用包括静水压力、动水压力和浮托力等; 物理化学作用主要有水的软化作用、岩溶(溶解与沉淀)、冻融、基质吸力等。王思敬院士将水库地区的水岩作用总结为以下几种:岩土的软化,即在水的作用下岩石单轴抗压强度的弱化; 渗压效应, 岩体结构面上渗压主要是通过降低有效法向应力来降低结

地下水化学成分形成的主要影响因素全解

地下水化学成分形成的主要影响因素 地下水化学成分形成的主要影响因素有四大类:分别是自然地理因素、地质因素和水文因素、生物因素和人为因素,下面将详细分析并举例说明其主要的影响因素。 一.自然地理因素 包含地形;水文;气候(气象/降水/气温/蒸发)。 (1)地形:影响水交替条件,而水交替条件又影响水的化学成分和矿化度。地形切割强烈,水的交替条件就好,有利于淡水的形成。反之,则形成高矿化度的咸水或盐水。如山区形成碳酸型水,而平原易形成硫酸水或氯化物型水 (2)水文:密集的水文网有利含水层的水交替条件。盐分的带出及淡潜水的形成。在水文网稀疏的条件下,地下水径流受阻,从而使潜水矿化度增高。 (3)气候 ①气象 ②降水 大气降水能使地下水的储存量、矿化度和化学成分发生明显变化。 降雨对地下水化学成分的影响,可以分为直接与间接两种作用方式,所谓直接方式,是指雨水中的化学组分,通过包气带直接入渗补给地下水;间接方式,是指雨水在经过包气带并与岩土发生复杂的物理化学作用过程中进入地下水。实际上,地下水化学成分的变化,是在上述

两种过程中共同完成的只不过在降雨为pH值过低的酸雨时与岩土的作用更强烈,地下水化学成分的变化更深刻罢了。 i.据苏州市某厂周围1984年检测的浅层地下水中SO42-含量和水的化学类型,由资料看出,硫酸型水广泛分布,面积约为五平方公里,其中C8井点矿化度为2.21克/升,总硬度高达50.7德国度,为全市之冠;尤其是距该厂北侧30米左右的C5、C3。井孔点(为浅钻孔,水位埋深1米),地下水中SO42-含量居然高达2.63 一2.494克/ 升,矿化度达到4.93 一5.21 克/ 升,总硬度为2 5.2一4 1.6德国度,明显的与该厂经常排放高浓度的SO42-所形成的酸雨有密切关系,地下水中的SO42-含量如此之高,与酸雨中的高含量的SO42-的直接入渗有关,也是酸雨中高浓度的H+与本区浅部土层中丰富的铝硅酸盐( 100克土中含有SiO2 +A l2O3达到80克左右) 强烈作用的结果。

常用金属材料中各种化学成分的作用及影响

常用金属材料中各种化学成分的作用及影响

常用金属材料中各种化学成分的作用及影响 1. 生铁: 生铁中除铁外,还含有碳、硅、锰、磷和硫等元素。这些元素对生铁的性能均有一定的影响。 碳(C):在生铁中以两种形态存在,一种是游离碳(石墨),主要存在于铸造生铁中,另一种是化合碳(碳化铁),主要存在于炼钢生铁中,碳化铁硬而脆,塑性低,含量适当可提高生铁的强度和硬度,含量过多,则使生铁难于削切加工,这就是炼钢生铁切削性能差的原因。石墨很软,强度低,它的存在能增加生铁的铸造性能。 硅(Si):能促使生铁中所含的碳分离为石墨状,能去氧,还能减少铸件的气眼,能提高熔化生铁的流动性,降低铸件的收缩量,但含硅过多,也会使生铁变硬变脆。 锰(Mn):能溶于铁素体和渗碳体。在高炉炼制生铁时,含锰量适当,可提高生铁的铸造性能和削切性能,在高炉里锰还可以和有害杂质硫形成硫化锰,进入炉渣。 磷(P):属于有害元素,但磷可使铁水的流动性增加,这是因为硫减低了生铁熔点,所以在有的制品内往往含磷量较高。然而磷的存在又使铁增加硬脆性,优良的生铁含磷量应少,有时为了要增加流动性,含磷量可达1.2%。 硫(S):在生铁中是有害元素,它促使铁与碳的结合,使铁硬脆,并与铁化合成低熔点的硫化铁,使生铁产生热脆性.减低铁液的流动性,顾含硫高的生铁不适于铸造细件。铸造生铁中硫的含量规定最多不得超过0.06%(车轮生铁除外)。 o.p3x o jg 2.钢:

元素在钢中的作用 常存杂质元素对钢材性能的影响 钢除含碳以外,还含有少量锰(Mn)、硅(Si)、硫(S)、磷(P)、氧(O)、氮(N)和氢(H)等元素。这些元素并非为改善钢材质量有意加入的,而是由矿石及冶炼过程中带入的,故称为杂质元素。这些杂质对钢性能是有一定影响,为了保证钢材的质量,在国家标准中对各类钢的化学成分都作了严格的规定。 1)硫 硫来源于炼钢的矿石与燃料焦炭。它是钢中的一种有害元素。硫以硫化铁(FeS)的形态存在于钢中,FeS和Fe形成低熔点(985℃)化合物。而钢材的热加工温度一般在1150~1200℃以上,所以当钢材热加工时,由于 FeS化合物的过早熔化而导致工件开裂,这种现象称为“热脆”。含硫量愈高,热脆现象愈严重,故必须对钢中含硫量进行控制。高级优质钢:S<0.02%~0.03%;优质钢:S <0.03%~0.045%;普通钢:S<0.055%~0.7%以下。 2)磷 磷是由矿石带入钢中的,一般说磷也是有害元素。磷虽能使钢材的强度、硬度增高,但引起塑性、冲击韧性显著降低。特别是在低温时,它使钢材显著变脆,这种现象称"冷脆"。冷脆使钢材的冷加工及焊接性变坏,含磷愈高,冷脆性愈大,故钢中对含磷量控制较严。高级优质钢: P<0.025%;优质钢: P<0.04%;普通钢: P<0.085%。 3)锰 锰是炼钢时作为脱氧剂加入钢中的。由于锰可以与硫形成高熔点(1600℃) 的 MnS,一定程度上消除了硫的有害作用。锰具有很好的脱氧能力,能够与钢中的FeO成为MnO进入炉渣,从而改善钢的品质,特别是降低钢的脆性,提高钢的强度和硬度。因此,锰在钢中是一种有益元素。一般认为,钢中含锰量在0.5%~0.8%以下时,把锰看成是常存杂质。技术条件中规定,优质碳素结构钢中,正常含锰量是0.5%~0.8%;而较高含锰量的结构钢中,其量可达0.7%~1.2%。

地下水的化学成分及其形成作用(精)

第六章地下水的化学成分及其形成作用 第一节概述 地下水是天然溶液。地下水在参与自然界水循环过程中,与大气圈、水圈与生物圈同时发生着水量交换、化学成分的交换(—水质状况)。 水是良好的溶剂,地下水在空隙中运移时,可以溶解岩石中的组分,使地下水的化学成分丰富多彩。 地下水的物理性质:温度、颜色、嗅、味、密度、导电性与放射性 地下水的化学性质:气体成分、离子成分、胶体物质、有机质等 地下水的放射性、微生物成分等。 第二节地下水的化学特征 一、地下水中常见的气体成分 主要有氧()、氮()、二氧化碳()、硫化氢()、甲烷(),常见的气体成分与地下水所处环境,地下水的来源有关。 (1)氧()、氮() 来源:在大气成分中、含量很高,随降水一起入渗进入地下含水层中。反过来,如果地下水中富含与——也说明地下水是大气起源。由于活跃,在地下水运动中易发生氧化作用而消耗,因此,大气起源的地下水中,也可能独立存在。此外,氮还有生物起源与变质起源。 指示意义:含量高指示氧化环境;封闭环境下,氧被耗尽只剩下,则为大气起源封闭环境。 (2)硫化氢()、甲烷() 来源:这两种气体,都是在封闭环境下生成的。如是在有机物与微生物参与的生物化学过程中形成,还原环境下地下水中的→,在成煤过程中,在还原作用下产生,使煤田水富含。同理,甲烷()是成油和油气藏形成过程的结果,油田水富含甲烷()。 指示意义:富含和的地下水,指示封闭的还原环境。 (3)二氧化碳() 大气降水中的含量较低,地下水中主要来源: ①主要源于土壤层(入渗过程溶于水中):有机质残骸发酵产生、植物呼吸作用产生

②碳酸盐岩地层的脱碳酸作用 ③深部高温下,变质作用生成 ④人类活动,在使用化石燃料(煤、石油、天然气)时,大气中的增加 作用:地下水中增加,水对碳酸盐岩的溶解、结晶岩风化溶解的能力愈强! (4)地下水中气体成分特征小结: ①气体成分——指示地下水所处的地球化学环境 氧化环境 还原环境 ②气体成分增加水对盐类的溶解能力→促进水—岩的化学反应(即相互作用) 二、地下水中的主要离子成分 (1)概述:地下水中组分很多,而分布广、含量多的主要有七种离子 阴离子:,, 阳离子:,,, 离子成分含量与什么有关? ①各种元素的丰度(克拉克值)—即某元素在地壳化学成分中的重量百分比 ②该元素组成的化合物在水中的溶解度 在自然界,丰度较高的元素,如Si、Al、Fe,在水中含量很低;而某些丰度较低的,如Cl、S、C,在水中含量却很高。这说明元素组成的化合物的溶解度起主要作用。 (2)主要离子的相对含量与地下水中的总含盐量(TDS)关系 常见地下水的化学成分特征,与地下水的矿化度(或TDS)具有以下关系矿化度:低→ 中→ 高 阴离子: 阳离子: 我们可以得出主要离子构成的盐类溶解度的大小为: 碳酸盐类 < 硫酸盐类 < 氯化物(氯盐) (3)主要离子成分的来源 低矿化度水中的常见离子:

保健食品中非法添加化学药品的现状与危害

保健食品中非法添加化学药品的现状与危害 一、保健食品的定义、特点及分类 保健食品在许多国家有不同的概念,如在日本称为功能食品,强调以调节人体机能为主要目的。在美国没有保健食品的概念,这一类的保健品统称营养品和功能性食品。我国《保健食品注册管理办法》第二条明确规定:本办法所称保健食品,是指声称具有特定保健功能或者以补充维生素、矿物质为目的的食品。即适宜于特定人群食用,具有调节机体功能,不以治疗疾病为目的,并且对人体不产生任何急性、亚急性或者慢性危害的食品。 保健食品的特点在于它对人体机能的调节上,而不在于对疾病的治疗上。保健食品是食品,又不是普通食品。 首先,保健食品必须是食品, 必须无毒无害,符合普通食品的基本要求,即能提供一种或多种营养素,能被人体消化吸收,安全无害。 其次,保健食品应有特定的保健功能,可满足一部分特殊人群的特殊生理机能的调节需要;同时,它不能取代正常的膳食摄入和对各种必需营养素的需要。 再次,保健食品是适宜于特定人群食用的特殊食品,是为解决特殊人群的特殊需要的特殊食品,它的食用对象、食用量都有一定的限制,并非人人皆宜。 此外,保健食品对人体的调节作用是缓慢的, 所以保健食品不应也不能作为药品,它不以治疗疾病为目的,当病人处于病态时,不能取代药物对病人的治疗作用。 保健食品的分类:大的方面分为二类。 一类是特定功能保健食品,《保健食品检验与评价技术规范》将保健食品的功能划分为以下27类(每种保健食品最多可以申报和审批两种保健功能): 1. 增强免疫力功能。 2. 辅助降血脂功能 3. 辅助降血糖功能 4. 抗氧化功能 5. 辅助改善记忆功能 6. 缓解视疲劳功能 7. 促进排铅功能 8. 清咽功能 9. 辅助降血压功能 10. 改善睡眠功能。 11. 促进泌乳功能 12. 缓解体力疲劳 13. 提高缺氧耐受力功能。 14. 对辐射危害有辅助保护功能 15. 减肥功能 16. 改善生长发育功能 17. 增加骨密度功能。 18. 改善营养性贫血 19. 对化学肝损伤有辅助保护功能。 20. 祛痤疮功能 21. 祛黄褐斑功能 22. 改善皮肤水份功能 23. 改善皮肤油份

水岩作用研究现状及发展趋势

水岩作用研究现状及趋势 水岩作用是指:水、热液和岩石在岩石固相线以下的温度、压力范围内进行的各种化学反应和物理化学作用。它是一种基本的地球化学作用,导致了化学元素、同位素在岩石与水之问重新分配,是元素活化、迁移及整个地球化学质量平衡过程的一种潜在因素。因此,它并不局限于某一种地质过程,而是广泛地存在于地壳乃至上地幔中。在水岩作用中,基本的地球化学、物理化学方式有:①流体对固相的溶解淋滤和交代,②固液两相间的同位索交换,③氧化一还原,④流体、地下水中的元素在固相表面的吸附,⑤流体、地下水流经细孔隙岩石时发生的渗滤分异。以上①、②两项在热液活动中有着广泛的意义。 水岩作用的主要地球化学特点如下:①水岩作用以流体、地下水和岩石之间存在的化学或同位素的不平衡为前提,并且是一个非平衡的地球化学过程②水岩作用的地球化学效应,与同一体系中诸矿物或元素问的差异行为有关,这种差异是元素选择性迁移、栝化及矿物间同位素非平衡现象的原因,⑤水岩作用是一个与时间有很大关系的过程,尤其是一些受局部性、暂时性热源控制的水岩作用,表现得更为明显。 由于上述原因,水岩作用研究的一个关键问题,就是阐明整个过程的动力学效应。地球化学动力学理论是水岩作用地球化学研究的主要理论工具,在今后的一段时间内将是地球化学理论的一个重要发展方向。

水岩作用对各种地质构造、工程施工都有很重要的影响,目前,主要研究以下几个方面: 1、低温地热系统水岩作用的实验研究。用水——岩反应实验模拟了开采条件下天然地热水的化学组分,研究开采引起的水化学性质改变的主要控制因素和过程,认为其机理通常是储层中水岩反应的重新整。实验结果揭示出储层中水岩比发生了局部变化,从理论上找到了地热水资源开发中的水动力学过程和水化学过程的结合点,在实践找到到了调节、控制和改良水质的技术途径和方法。 2、红层泥岩水岩作用特征研究。红层中的泥岩具有透水性弱、亲水性强,遇水易软化、塑变,抗风化能力弱,易崩解等特性。特别是遇水后岩体及结构面抗剪强度大幅度降低,并且具有遇水膨胀、失水收缩的工程特性。水岩作用对边坡的影响主要有,结构面遇水泥化导致楔形体失稳,泥岩塑性变形引起边坡蠕变,同时红层还具有很强的崩解性,边坡开挖后发生崩解等现象。 3、滑坡体水岩作用机制与变形机理研究。水岩作用对滑坡形成与发展具有非常重要的影响。从水岩作用的材料力学效应、水力学效应、化学效应及地震效应4个方面对某滑坡体的水岩作用机制进行了分析,其中前3种作用机制对滑坡体的变形演化与复活关系最为密切。在此基础上,对滑坡体变形机理进行了综合分析。分析认为,滑坡发育的基本条件有软硬相间的有利地层结构、地质构造条件等;滑坡发育的诱发因素有降雨、水库蓄水及人类活动等。 4、人工回灌条件下的水岩作用研究。人工回灌过程中所发生的

地下水的地质作用

第十三章地下水的地质作用 §3.地下水的概念及其特征 一.概念:以各种形式存在于地表之下岩石和松散堆积物空隙中的水。 二、地下水的来源 (一)渗透水——大气降水、冰雪融水、地面流水(江、河、湖、海) 等从地面渗入地下积聚成。 (二)凝结水——水蒸汽凝结成水滴后渗于地下。 (三)岩浆水——(原生水)地下岩浆活动形成的水(结晶水、水气)。 (四)埋藏水——(古水)地史中沉积物空隙中的水,被封闭保存下来。 三、.地下水的赋存状态 (一)吸着水——靠分子引力及静电引力吸附在土和岩石颗粒表面 上的水。不受重力影响,不被植物吸收。 (二)薄膜水——包围在吸着水的外层,可以从原处向薄处“移动” 少部分可被植物吸收。 (三)毛细管水——受表面张力影响,保留在毛细管中,易被植物 吸收。 (四)重力水——受重力影响可自由流动。 四、岩石的空隙类型 (一)孔隙——疏松未胶结好的岩石中形成的空隙颗粒之间的 空隙。Q、N地层常见,孔隙大小与碎屑颗粒有关。 颗粒磨圆差不等粒则孔隙小(图) 磨圆差好,近等粒则孔隙大(图) 孔隙度 (二)裂隙——岩石中断层、节理、缝隙等。 (三)溶洞——可溶性岩石被溶蚀形成的洞穴。 五、岩石的透水性 岩石允许水透过的能力不仅与孔隙度有关,跟孔隙绝对大小有关,空隙大、多、连通情况好,透水能力强。 (一)透水层:孔隙大、孔隙及大的砂层和砾砂层,胶结不好,砂岩、砾岩及裂隙发育的其它岩石。 透水系数:米/昼 当透水层含水时称含水层。 良透水层 透水层 (二) 不透水层:常见由泥岩,粘土层等组成 六、地下水与地表水的差异

地下水大多被限制在透水层中流动与自由流动的地表水有一定的差异。 1.流速小、机械动能小 地下水除受重力影响由高向低流,受压力影响由高压向低压流动外,在流动过程中受到透水层中岩石的阻碍,能量消耗在磨擦上,因此流速小,机械动能小。 2. 矿化度高、化学动力大 水中各种元素的离子、分子、化合物的总量。Mg/e g/e Nacl——咸味 ——苦味 MgSO 4 Fe——兰绿色 ——清凉可口,成为可供饮用的矿泉水。 CO 2 矿化度高,作为溶剂浓度大,成分复杂,有较强的溶解能力,化学动力强。 七、地下水的补给、径流和排泄 §2. 地下水的类型 一、按地下水的赋存空间分:孔隙水、裂隙水、岩溶水。 二、按地下水的埋藏条件分:上层滞水、潜水、承压水。 (一)上层滞水及包气带 包气带(不饱和带)——地表向下至较稳定的地下水面(潜水面)之 间的土层或岩层。 饱水带——潜水面之下称饱水带 包气带和饱水带的区别在于:包气带中空隙主要是气体;饱水带中空隙带中 空隙主要是充填了地下水。 包气带中的水主要有:气态水,结合水(吸着薄膜水)、 过路重力水及毛细管水。

食品中非法添加药物成份应从严监管

食品中非法添加药品成份应按假药论处追究刑事责任 日前,笔者参与了一起普通食品和保健食品检验发现其中含有化学药品成份盐酸苯乙双胍和格列本脲的案件调查。《食品安全法》第二十八条规定“禁止生产经营下列食品(一)用非食品原料生产的食品或者添加食品添加剂以外的化学物质和其他可能危害人体健康物质的食品,或者用回收食品作为原料生产的食品”。依据《食品安全法》第八十五条“由有关主管部门按照各自职责分工,没收违法所得、违法生产经营的食品和用于违法生产经营的工具、设备、原料等物品;违法生产经营的食品货值金额不足一万元的,并处二千元以上五万元以下罚款;货值金额一万元以上的,并处货值金额五倍以上十倍以下罚款;情节严重的,吊销许可证。”在案件讨论中,参与案件查办的公安部门认为,根据2013年5月4日起施行《最高人民法院、最高人民检察院关于办理危害食品安全刑事案件适用法律若干问题的解释》第九条规定“在食品加工、销售、运输、贮存等过程中,掺入有毒、有害的非食品原料,或者,依照刑法第一百四十四条的规定以生产、销售有毒、有害食品罪定罪处罚。在食用农产品种植、养殖、销售、运输、贮存等过程中,使用禁用农药、兽药等禁用物质或者其他有毒、有害物质的,适用前款的规定定罪处罚。在保健食品或者其他食品中非法添加国家禁用药物等有毒、有害物质的,适用第一款的规定定罪处罚。”因此只能按使用有毒、有害的非食品原料加工食品来刑事立案。 一、生产经营非法添加药品成份的食品刑事责任明显小于生产经营假药的刑事责任,与当前食品药品安全面临着的严峻现状不相适宜。 从法律的角度看,《刑法》第一百四十四条的规定,如果食品生产企业在生产、销售的食品中掺入有毒、有害的非食品原料的,将被处五年以下有期徒刑或者拘役,并处或者单处销售金额百分之五十以上二倍以下罚金。而《刑法》第一百四十一条规定,如果药品生产企业生产、销售假药,足以严重危害人体健康的,将被处以三年以下有期徒刑或者拘役,并处或者单处销售金额百分之五十以上二倍以下罚金;对人体健康造成严重危害的,处三年以上十年以下有期徒刑,并处销售金额百分之五十以上二倍以下罚金;致人死亡或者对人体健康造成特别严重危害的,处十年以上有期徒刑、无期徒刑或者死刑,并处销售金额百分之五十以上二倍以下罚金或者没收财产。可以看出,按使用有毒、有害的非食品原料加工食品行为的刑事责任明显要小于按生产经营假药的刑事责任。目前《刑法》中还没有明确规定食用食品致人死亡或对人体造成特别严重伤害时,应该处以何种处罚。 二、应加大对食品中非法添加药品成份的违法行为的打击力度,对非法添加药品成份的食品类产品应按假药论处。 1、当前食品药品安全形势十分严峻,正是因为如此,为依法惩治危害食品安全犯罪,保障人民群众身体健康、生命安全,根据刑法有关规定,最高人民法院和最高人民检察院出台了《关于办理危害食品安全刑事案件适用法律若干问题的解释》自2013年5月4日起施行,目的就是为了进一步加大对食品安全刑事案件查处工作。虽然《解释》明确了生产、销售有毒、有害食品罪,但是对非法添加药品成份的食品类产品,实际反而是减轻了处罚。 2009年新《食品安全法》执行以前,食品药品监督管理部门在检验中发现食品中如果非法添加了药品成份,一般会以假药论处并移交司法机关追究生产销售者的刑事责任。而2009年新《食品安全法》开始实施以后,因《食品安全法》

菊花化学成分及药理作用

菊花化学成分及药理作用 摘要:概述了菊花的主要化学成分和药理活性研究进展。菊花为药食同源的常 用中药,其主要成分为黄酮、三萜类等化合物,具有多种药理活性,在心血管、抗病毒、抗肿瘤方面活性研究报道较多。菊花还可制成各式糕点及粥膳,让你在享受美食的同时,还能保证身体的健康。 关键词:菊花简介化学成分药理活性保健功效 正文: 一、菊花的介绍 菊花(学名Dendranfthema morifoliuum 常用chrysanthemum,拉丁文 Flos Chrysanthemi),多年生草本,基部木质,全体被白色绒毛。叶片卵形至皮针形,叶缘有粗大锯齿或羽裂。头状花序直径2.5—20cm;总苞片多层,外层绿色,边缘膜质;缘花舌状,雌性,形色多样;盘花管状,两性,黄色,具托片。廋果无冠毛。经长期人工选择培育的名贵观赏花卉,也称艺菊,品种达三千余种。是中国十大名花之一,在中国有三千多年的栽培历史。 二、化学成分 菊花因产地和品种不同,其化学成分有一定的差异。目前对药典收载的四种来源的菊花的化学成分研究均有报道。研究发现,菊花的化学成分比较复杂,其中黄酮类化合物、三萜类化合物和挥发油是其主要有效成分(黄酮类化合物从菊花中已分离得到的黄酮类化合物有:香叶木素、芹菜素、木犀草素、槲皮素、香叶木素7 OβD葡萄糖苷、芹菜素7OβD葡萄糖苷、木犀草素7OβD葡萄糖苷、金合欢素 7 OβD葡萄糖苷、棉花皮素五甲1 醚、5羟基3' ,4' ,6 ,7 四甲氧基黄酮、橙皮素(hesperetin)、刺槐素(acacetin)、橙皮苷、刺槐苷、金合欢素7OβD半乳糖苷、芹菜素7OβD半乳糖苷、4' 甲氧基木犀草素7OβD葡萄糖苷baicalin、金合欢素7OβD葡萄糖、diosmetin7OβD葡萄糖等)。经过各种法测定,不同采收期对菊花中木犀草素及其苷的含量,以考察它们在采摘期内的含量变化,表明木犀草素含量在采摘期中无显著变化,但其糖苷的含量在采摘初期变化不明显,在采摘后期呈下降趋势。 对不同产地四种菊花:即亳菊、怀菊、滁菊和杭菊中挥发油进行了含量测定,发现滁菊中含量最高;同时采用气质联用技术对挥发油成分进行初步研究,鉴定出二十余种萜类成分。应用气质联用技术对怀菊花及大怀菊的挥发油化学成分组成和性质进行了分析,实验结果表明菊花挥发油的主要成分为单萜、倍半萜类及其含氧衍生物;此外从怀菊花挥发油中鉴定了 40 个化合物,从大怀菊中鉴定了27 个化合物。采用气质联用技术,对杭菊中挥发油化学成分进行分析,鉴定出 50 个化合物,并确定了各成分的相对百分含量,其实验值为今后进一步开发杭白菊挥发油资源提供了科学依据。 三、药理作用

非法添加的危害

非法添加的危害 中成药、保健品非法添加化学药品现象在我国屡见不鲜,个别品种非法添加竟成了潜规则。多年来,药品监督管理部门从未停止过对非法添加的专项整治和打击,但面对巨大的市场诱惑,不法商人仍然愿意铤而走险,打着中药治病,纯天然保健的旗号,偷偷在中成药和保健品中加入了西药成分。非法添加化学药品的中成药和保健品多用于治疗慢性病和一些疑难病症,具体来讲,可以概括为以下几种类型。 2.1 补肾类药品 此类中成药及保健品最常非法添加甲磺酸酚妥拉明、伐地那非、枸橼酸西地那非和他达拉非等化学药品。由于此类药物均属处方药物,须凭处方购买,而保健品的生产及销售要求则低很多,因此这些壮阳药成分大都被非法添加在所谓的“抗疲劳”保健品当中。目前市场上80%~90%声称能提高性功能的保健食品中,都非法掺入了此类壮阳药成分。在没有医师指导的情况下,长期大量服用这种非法添加了“壮阳”药物成分的保健食品,有可能对身体造成极大损害。若服用过量,对有高血压等心血管疾病、糖尿病的患者身体危害十分严重甚至会导致死亡。 2.2 抗风湿类药品 此类假药擅自添加醋酸地塞米松、醋酸泼尼松、氢化可的松、丙酸氯倍他索等肾上腺皮质类激素以及对乙酰氨基酚、非那西丁、萘普生、吲哚美辛、双氯芬酸钠、马来酸氯苯那敏等解热镇痛和抗过敏类药物。由于添加了激素类药物,风湿患者在服用假药后,症状能在短时间内得到缓解,因而往往误认为假药的疗效好,但长期服用此类假药会造成药源性疾病。过敏体质的人服用解热镇痛药后,可能引起过敏性反应,如皮疹、哮喘、皮炎等,严重的会出现表皮与粘膜剥落。高热病人,特别是体弱的老人、孩子,滥用解热镇痛药,会使病人出汗过多,体温突然下降而发生虚脱。另外用止痛药会掩盖病情,影响医生做出正确的诊断而影响治疗。 2.3 止咳平喘类药品 正规的治疗哮喘的中成药一般显效较慢,造假者为达到“速效”的目的,多在中成药中添加醋酸泼尼松、醋酸地塞米松等激素以及氨茶碱、磷酸可待因等化学药品。如通过邮政渠道寄递的假药“复方川羚定喘胶囊”“居氏祖传秘方”等,都是在中成药中添加了大量的氨茶碱和激素类药物。长期服用此类药品或保健食品会导致

3 水的地质作用

三、水的地质作用 Ⅰ.名词解释 1.淋滤作用P52 2.水的小循环P50 3.侵蚀作用P51 4.洗刷作用P52 5.洪流P53 6.侵蚀基准面P55 7.河流的分选作用P56 8.水的硬度P65 Ⅱ.单项选择题 1.地表流水逐渐向低洼沟槽中汇集,侵蚀使沟槽向深处下切,同时使沟槽不断变宽,这个过程叫做()。P52 A.洗刷作用B.冲刷作用C.淋滤作用D.河流地质作用2.大气降雨沿坡面漫流,将坡面风化物质搬运到坡脚平缓处堆积,形成()。P52 A.洪积层B.冲积层C.残积层D.坡积层 3.残积层是()。P52 A.淋滤作用的产物B.洗刷作用的产物 C.冲刷作用的产物D.河流地质作用的产物 4.河流的侵蚀、搬运、沉识作用,被称为()。P54 A.第四纪地质作用B.冲刷作用C.成岩作用D.河流地质作用5.河流的侵蚀能力与()关系最大。P55 A.河床宽度B.河流流量C.河流流速D.河床粗糙率6.河流的搬运能力与()关系最大。P56 A.河流流速B.泥沙石块大小C.河流流量D.可溶物溶解度7.河流地质作用产生的沉积物叫做()。P56 A.洪积层B.残积层C.坡积层D.冲积层 8.下面对河漫滩叙述正确的是()。P58 A.平水期可以被淹没B.洪水期不能被淹没 C.平水期不能被淹没,洪水期可以被淹没D.水流流速变快时被淹没9.河流阶地一般用罗马数字编号,编号愈大则()。P58 A.阶地位置愈高,生成年代愈晚B.阶地位置愈低,生成年代愈早 C.阶地位置愈高,生成年代愈早D.阶地位置愈低,生成年代愈晚10.阶地表面主要由被侵蚀的岩石构成的阶地叫做()。P59

A.侵蚀阶地B.基座阶地C.冲积阶地D.横向阶地11.上部为冲积层,下部为基岩的河流阶地叫做()。P59 A.侵蚀阶地B.基座阶地C.堆积阶地D.纵向阶地12.吸附在岩、土颗粒表面,不受重力影响的地下水叫做()。P61 A.重力水B.毛细水C.汽态水D.结合水 13.饱水带是指()。P63 A.毛细水带B.毛细水带和重力水带 C.重力水带D.汽态水、吸附水、薄膜水带 14.地下水中所含各种离子、分子及化合物的总量称()。P65 A.总矿化度B.总硬度C.暂时硬度D.永久硬度15.埋藏在地面下第一个稳定隔水层上的重力水叫做()。P68 A.上层滞水B.潜水C.承压水D.裂隙水 16.埋藏并充满两个隔水带之间的重力水叫做()。P70 A.潜水B.承压水C.上层滞水D.包气带水 17.地下水按含水层性质分类,不包括下列哪种类型的地下水()。P72 A.孔隙水B.裂隙水C.潜水D.岩溶水 18.地下水对混凝土的溶出性浸蚀,主要因为地下水中()。P75 A.CO2含量过高B.水质偏酸性 C.硫酸根离子超标D.暂时性硬度小于3 19.地下水中含有侵蚀性CO2时,对混凝土有()。P75 A.一般酸性侵蚀B.溶出性侵蚀C.碳酸侵蚀D.硫酸侵蚀20.侵蚀性CO2是因为地下水中()。P76 A.CO2本来就有侵蚀性B.CO2含量没达到平衡标准 C.CO2含量超过平衡标准D.CO2含量恰好达到平衡标准21.水泥细菌指的是()。P76 A.氢氧化钙B.水化硫铝酸钙C.水化硅酸钙D.二水石膏Ⅲ.多项选择题 1.地表水的地质作用是指()。P51 A.地表流水将风化物质搬运到低洼地方沉积成岩的作用 B.地表流水的侵蚀、搬运和沉积作用 C.淋滤、洗刷、冲刷和河流地质作用 D.地表水对岩、土的破坏作用 2.下列选项中,属于残积层特征的为()。P52 A.物质成分与下伏基岩成分密切相关 B.是位于地表以下、基岩风化带以上的一层松散破碎物质 C.具有较大的孔隙率、较高的含水量,作为建筑物地基,强度较低 D.厚度与地形、降水量、水中化学成分等多种因素有关

化妆品里的化学成分的作用

化妆品里的化学成分的作用 (一)油脂 油脂是油和脂的总称,油脂包括植物性油脂和动物性油脂。油脂主要成分为脂肪酸和甘油组成的脂肪酸甘油酯。 植物性油脂分三类,干性油、半干性油和不干性油。干性油如:亚麻仁油、葵花籽油;半干性油如棉籽油、大豆油、芝麻油;不干性油指的象橄榄油、椰子油、蓖麻油等。用于化妆品的油脂多为半干性油,干性油几乎不用于化妆品原料。常用的油脂有:橄榄油、椰子油、蓖麻油、棉籽油、大豆油、芝麻油、杏仁油、花生油、玉米油、米糠油、茶籽油、沙棘油、鳄梨油、石栗子油、欧洲坚果油、胡桃油、可可油等。 动物性油脂用于化妆品的有水貂油、蛋黄油、羊毛脂油、卵磷脂等,动物性油脂一般包括高度不饱和脂肪酸和脂肪酸,他们和植物性油脂相比,其色泽、气味等较差,在具体使用时应注意防腐问题。水貂油具有较好的亲和性,易被皮肤吸收,用后滑爽而不腻,性能优异,故在化妆品中得到广泛应用,如营养霜、润肤霜、发油、洗发水、唇膏及防晒霜化妆品等。蛋黄油含油脂、磷脂、卵磷脂以及维生素A、D、E 等,可作唇膏类化妆品的油脂原料。羊毛脂油对皮肤亲和性、渗透性、扩散性较好,润滑柔软性好,易被皮肤吸收,对皮肤安全无刺激;主要作用于无水油膏、乳液、发油以及浴油等。卵磷脂是从蛋黄、大豆和谷物中提取的,具有乳化、抗氧化、滋润皮肤的功效,是一种良好的天然乳化剂,常使用于润肤膏霜和油中。 1、蜡类蜡类是高碳脂肪酸和高碳脂肪醇构成的酯。这种酯在化妆品中起到稳定性、调节黏稠度、减少油腻感等作用。主要应用于化妆品的蜡类有:棕榈蜡、小烛树蜡、霍霍巴蜡、木蜡、羊毛酯、蜂蜡等。 棕榈蜡精致产品为白色或淡黄色脆硬固体,具有愉悦的气味。主要成分为蜡酸蜂花醇酯和蜡酸蜡酯。在化妆品中主要提高蜡酯的熔点,增加硬度、韧性和光泽,也有降低粘性、塑性和结晶的倾向。主要用于唇膏、睫毛膏、脱毛蜡等制品。 小烛树蜡是一种淡黄色半透明或者不透明的固体。精致产品有光泽和芳香气味,略带黏性。主要成分为碳水化合物、蜡酯、高级脂肪酸、高级醇等。应用于唇膏等淀状化妆品中。 霍霍巴蜡是一种透明无臭的浅黄液体。主要为十二碳以上脂肪酸和脂肪醇构成的蜡酯。其特点不易氧化和酸败,无毒、无刺激,易于被皮肤吸收以及具有良好的保湿等作用。因此,广泛应用于润肤膏、面霜、香波、头发调理剂、唇膏、指甲油、婴儿护肤用品以及清洁剂等用品。 木蜡又叫日本蜡,为淡奶色蜡状物,具有酸涩气味,不硬,具有韧性、可延展和黏性。其主要成分为棕榈酸的甘油三酯,为植物性脂肪或高熔性脂肪。易于与蜂蜡、可可脂和其它甘油三酯配伍,易被碱皂化形成乳液。用于乳液和膏霜类化妆品中。 蜂蜡又叫蜜蜡,它具有熔点高的特点,因此自古为冷霜原料,还是制造发蜡、胭脂、唇膏、眼影棒、睫毛膏等美容修饰类化妆品的原料。此外,它具有抗细菌、真菌、愈合创伤的功能,还用在香波、洗发剂、高效去头屑洗发剂等。 羊毛酯是羊的皮质腺分泌物,该产品为黄色半透明油性的粘稠软膏状半固体。有有水以及无水之分。主要成分为各种脂肪酸与脂肪醇的脂,属于熔点蜡。它具有较好的乳化、润湿和渗透作用。具有柔软皮肤、防止脱脂和防止皮肤皲裂的功能,可以和多种原料配伍,是一种良好的化妆品原料。广泛用于护肤膏霜、防晒制品以及护发酯品种,也用于香皂、唇膏等美容化妆品中。 2、烃类 烃是指来源于天然的矿物精加工而得到的一类碳水化合物。它们的沸点高,多在300 C以上,无动植物油脂的皂化价与酸价。按着其性质和结构,可分为脂肪烃、脂环烃和芳香烃三大类。在化妆品中,主要是其溶剂作用,用来防止皮肤表面水分的蒸发,提高化妆品的保湿效果。通常用于化妆品的烃类有液体石蜡、固体石蜡、微晶石蜡、地蜡、凡士林等。 液体石蜡又叫白油或者蜡油。是一种无色透明、无味、无臭的黏稠液体。广泛用在发油、发蜡、发

相关文档
最新文档