_电风扇无级调速原理

_电风扇无级调速原理
_电风扇无级调速原理

电风扇无级调速原理

【学习目标】:

完成本课题的学习后,能够:

1. 1. 用万用表测试双向晶闸管的好坏。

2. 2. 掌握双向晶闸管工作原理。

3. 3. 分析电风扇无级调速器各部分电路的作用及调光原理。

4. 4. 了解交流开关、交流调功器、固态开关原理。

【描述】:电风扇无级调速器在日常生活中随处可见。图31(a )是常见的电风扇无级调速器。旋动旋钮便可以调节电风扇的速度。图3-1(b )为电路原理图。

(a )

(b)

图3-1电风扇无级调速器

(a) 电风扇无级调速器 (b) 电风扇无级调速器电路原理图

如图3—1(b)所示,调速器电路由主电路和触发电路两部分构成,在双向晶闸管的两端并接RC 元件,是利用电容两端电压瞬时不能突变,作为晶闸管关断过电压的保护措施。本课题通过对主电路及触发电路的分析使学生能够理解调速器电路的工作原理,进而掌握分析交流调压电路的方法。保护电路在课题五中详细介绍。

【相关知识点】:

一、双向晶闸管的工作原理

1. 1. 双向晶闸管的结构

双向晶闸管的外形与普通晶闸管类似,有塑封式、螺栓式、平板式。但其内部是是一种 NPNPN 五层结构的三端器件。有两个主电极T1、T2,一个门极G ,其外形如图3-2所示。

调速

旋钮

图3-2 双向晶闸管的外形

双向晶闸管的内部结构、等效电路及图形符号如图3-3所示。

图2-3 双向晶闸管内部结构、等效电路及图形符号

(a ) 内部结构 (b ) 等效电路 (c )图形符号

从图3-3可见,双向晶闸管相当于两个晶闸管反并联(P1N1P2N2和P2N1P1N4),不过它只有一个门极G ,由于N3区的存在,使得门极G 相对于T1端无论是正的或是负的,都能触发,而且T1相对于T2既可以是正,也可以是负。

常见的双向晶闸管引脚排列如图3-4所示。

螺栓式

平板式

图3-4 常见双向晶闸管引脚排列

2.2.双向晶闸管的特性与参数

双向晶闸管有正反向对称的伏安特性曲线。正向部分位于第Ⅰ象限,反向部分位于第Ⅲ象限如图3-5所示。

图3-5 双向晶闸管伏安特性

双向晶闸管的主要参数中只有额定电流与普通晶闸管有所不同,其他参数定义相似。由于双向晶闸管工作在交流电路中,正反向电流都可以流过,所以它的额定电流不用平均值而是用有效值来表示。定义为:在标准散热条件下,当器件的单向导通角大于170°,允许流

过器件的最大交流正弦电流的有效值,用I T(RMS)表示。

双向晶闸管额定电流与普通晶闸管额定电流之间的换算关系式为

T(RMS)T(RMS)T(AV)45.02I I I ==

π

以此推算,一个100A 的双向晶闸管与两个反并联45A 的普通晶闸管电流容量相等。 国产双向晶闸管用KS 表示。如型号KS50-10-21表示额定电流50A ,额定电压10级(1000V )断态电压临界上升率du /dt 为2级(不小于200V/ μs ),换向电流临界下降率di /dt 为1级(不小于1%I T(RMS))的双向晶闸管。有关KS 型双向晶闸管的主要参数和分级的规定见表3-1。

表3-1 双向晶闸管的主要参数

3. 3. 双向晶闸管的触发方式

双向晶闸管正反两个方向都能导通,门极加正负电压都能触发。主电压与触发电压相互配合,可以得到四种触发方式:

1)Ⅰ+触发方式 主极T1为正,T2为负;门极电压G 为正,T2为负。特性曲线在第 Ⅰ象限。

2)Ⅰ-触发方式 主极T1为正,T2为负;门极电压G 为负,T2为正。特性曲线在第 Ⅰ象限。

3)Ⅲ+触发方式 主极T1为负,T2为正;门极电压G 为正,T2为负。特性曲线在第 Ⅲ象限。

4)Ⅲ-触发方式 主极T1为负,T2为正;门极电压G 为负,T2为正。特性曲线在第 Ⅲ象限。

由于双向晶闸管的内部结构原因,四种触发方式中灵敏度不相同,以Ⅲ+触发方式灵敏度最低,使用时要尽量避开,常采用的触发方式为Ⅰ+和Ⅲ-。

4.双向晶闸管的触发电路

(1)简易触发电路

图3-6为双向晶闸管简易触发电路。图(a)中当开关S拨至“2”双向晶闸管VT只在I+触发,负载R L上仅得到正半周电压;当S拨至“3”时,VT在正、负半周分别在I+、Ⅲ-触发,R L上得到正、负两个半周的电压,因而比置“2”时电压大。图(c)、(d)中均引入了

图2-6 双向晶闸管的简易触发电路

具有对称击性的触发二极管VD,这种二极管两端电压达到击穿电压数值(通常为30V左右,不分极性)时被击穿导通,晶闸管便也触发导通。调节电位器RP改变控制角α,实现调压。图(c)与图(b)的不同点在于(c)中增设了R1、R2、C2。在(b)图中,当工作于大α值时,因RP 阻值较大,使C1充电缓慢,到α角时电源电压已经过峰值并降得过低,则C1上充电电压过小不足以击穿双向触发二极管VD;而图(c)在大α时,C2上可获得滞后的电压u c2,给电容c1增加一个充电电路,保证在大α时VT能可靠触发。

(e)图就是电风扇无级调速电路图,接通电源后,电容C1充电,当电容C1两端电压的峰值达到氖管HL的阻断电压时,HL亮,双向晶闸管VT被触发导通,电扇转动。改变电位

器RP的大小,即改变了C1的充电时间常数,使VT的导通角发生变化,也就改变了电动机两端的电压,因此电扇的转速改变。由于RP是无级变化的,因此电扇的转速也是无级变化的。

(2)单结晶体管触发

图3-7为单结晶体管触发的交流调压电路,调节RP阻值可改变负载R L上电压的大小。

图3-7 用单结晶体管组成的触发电路

(3)集成触发器

图3—8所示即为K006组成的双向晶闸管移相交流调压电路。该电路主要适用于交流

图3-8 集成触发器

直接供电的双向晶闸管或反并联普通晶闸管的交流移相控制。RP1用于调节触发电路锯齿波斜率,R4、C3用于调节脉冲宽度,RP2为移相控制电位器,用于调节输出电压的大小。

二、单相交流调压电路

电风扇无级调速器实际上就是负载为电感性的单相交流调压电路。交流调压是将一种幅值的交流电能转化为同频率的另一种幅值的交流电能。

1. 1. 电阻性负载

图3-9(a)所示为一双向晶闸管与电阻负载R L 组成的交流调压主电路,图中双向晶闸管也可改用两只反并联的普通晶闸管,但需要两组独立的触发电路分别控制两只晶闸管。

在电源正半周ωt =α时触发VT 导通,有正向电流流过R L ,负载端电压u R 为正值,电流过零时VT 自行关断;在电源负半周ωt =π+α时,再触发VT 导通,有反向电流流过R L ,其端电压u R 为负值,到电流过零时VT 再次自行关断。然后重复上述过程。改变α角即可调节负载两端的输出电压有效值,达到交流调压的目的。电阻负载上交流电压有效值为

παπαπωωππα-+==

?2sin 21)()sin 2(1222U t d t U U R

电流有效值 παπαπ-+==

2sin 212R U R U I R

电路功率因数 παπαπ?-+===

2sin 21cos 2I U I U S P R

电路的移相范围为0—π。

通过改变α可得到不同的输出电压有效值,从而达到交流调压的目的。由双向晶闸管组成的电路,只要在正负半周对称的相应时刻(α、π+α)给触发脉冲,则和反并联电路一样可得到同样的可调交流电压。

交流调压电路的触发电路完全可以套用整流移相触发电路,但是脉冲的输出必须通过脉冲变压器,其两个二次线圈之间要有足够的绝缘。

2.电感性负载

图3-10所示为电感性负载的交流调压电路。由于电感的作用,在电源电压由正向负过零时,负载中电流要滞后一定?角度才能到零,即管子要继续导通到电源电压的负半周才能关断。晶闸管的导通角θ不仅与控制角α有关,而且与负载的功率因数角?有关。控制角越小则导通角越大,负载的功率因数角?越大,表明负载感抗大,自感电动势使电流过零的时间越长,因而导通角θ越大。

下面分三种情况加以讨论。

(1)α>?

由图3-11可见,当α>?时,θ<180°,即正负半周电流断续,且α越大,θ越小。可见,α在?~180°范围内,交流电压连续可调。电流电压波形如图3-11(a)所示。

(2)α=?

由图3-11可知,当α=?时,θ=180°,即正负半周电流临界连续。相当于晶闸管失去控制,电流电压波形如图3-11(b)所示。

(3)α<?

此种情况若开始给VT1管以触发脉冲,VT1管导通,而且θ>180°。如果触发脉冲为窄脉冲,当ug 2出现时,VT1管的电流还未到零,VT1管关不断,VT2管不能导通。当VT1

(a ) (a )

(b)

管电流到零关断时,ug2脉冲已消失,此时VT2管虽已受正压,但也无法导通。到第三个半波时,ug1 又触发VT1导通。这样负载电流只有正半波部分,出现很大直流分量,电路不能正常工作。因而电感性负载时,晶闸管不能用窄脉冲触发,可采用宽脉冲或脉冲列触发。

综上所述,单相交流调压有如下特点:

①电阻负载时,负载电流波形与单相桥式可控整流交流侧电流一致。改变控制角α可以连续改变负载电压有效值,达到交流调压的目的。

②电感性负载时,不能用窄脉冲触发。否则当α<?时,会出现一个晶闸管无法导通,产生很大直流分量电流,烧毁熔断器或晶闸管。

③电感性负载时,最小控制角αmin=?(阻抗角)。所以α的移相范围为?~180°,电阻负载时移相范围为0~180°。

图3-10 单相交流调压电感负载电路图

图3-11 单相交流调压电感负载波形图

(a) α>?(b) α=?(c) α<?

【扩展内容】:

一、交流开关及其应用电路

1.晶闸管交流开关的基本形式

图3-12 晶闸管交流开关的基本形式

晶闸管交流开关是以其门极中毫安级的触发电流,来控制其阳极中几安至几百安大电流通断的装置。在电源电压为正半周时,晶闸管承受正向电压并触发导通,在电源电压过零或为负时晶闸管承受反向电压,在电流过零时自然关断。由于晶闸管总是在电流过零时关断,因而在关断时不会因负载或线路中电感储能而造成暂态过电压。

图3-12所示为几种晶闸管交流开关的基本形式。图3-12(a)是普通晶闸管反并联形式。当开关S闭合时,两只晶闸管均以管子本身的阳极电压作为触发电压进行触发,这种触发属于强触发,对要求大触发电流的晶闸管也能可靠触发。随着交流电源的正负交变,两管轮流导通,在负载上得到基本为正弦波的电压。图3-12(b)为双向晶闸管交流开关,双向晶闸管工作于I+、Ⅲ—触发方式,这种线路比较简单,但其工作频率低于反并联电路。图3-12(c)为带整流桥的晶闸管交流开关。该电路只用一只普通晶闸管,且晶闸管不受反压。其缺点是串联元件多,压降损耗较大。

图2-13是一个三相自动控温电热炉电路,它采用双向晶闸管作为功率开关,与KT温控仪配合,实现三相电热炉的温度自动控制。控制开关S有三个挡位:自动、手动、停止。当S拨至“手动”位置时,中间继电器KA得电,主电路中三个本相强触发电路工作,VTl —VT3导通,电路一直处于加热状态,须由人工控制SB按钮来调节温度。当S拨至“自动”位置时,温控仪KT自动控制晶闸管的通断,使炉温自动保持在设定温度上。若炉温低于设定温度,温控仪KT(调节式毫伏温度计)使常开触点KT闭合,晶闸管VT4被触发,KA得电,使VTl—VT3导通,R L发热使炉温升高。炉温升至设定温度时,温控仪控制触点KT 断开,KA失电,VTl—VT3关断,停止加热。待炉温降至设定温度以下时,再次加热。如此反复,则炉温被控制在设定温度附近的小范围内。由于继电器线圈KA导通电流不大,故VT4采用小容量的双向晶闸管即可。各双向晶闸管的门极限流电阻(R1*、R2*)可由实验确定,其值以使双向晶闸管两端交流电压减到2—5V为宜,通常为30Ω—3kΩ。

图3-13 三相自动控温电热炉电路图

2.交流调功器

前述各种晶闸管可控整流电路都是采用移相触发控制。这种触发方式的主要缺点是其所产生的缺角正弦波中包含较大的高次谐波,对电力系统形成干扰。过零触发(亦称零触发)方式则可克服这种缺点。晶闸管过零触发开关是在电源电压为零或接近零的瞬时给晶闸管以触发脉冲使之导通,利用管子电流小于维持电流使管子自行关断。这样,晶闸管的导通角是2π的整数倍,不再出现缺角正弦波,因而对外界的电磁干扰最小。

利用晶闸管的过零控制可以实现交流功率调节,这种装置称为调功器或周波控制器。其控制方式有全周波连续式和全周波断续式两种,如图3-14所示。如果在设定周期内,将电路接通几个周波,然后断开几个周波,通过改变晶闸管在设定周期内通断时间的比例,达到调节负载两端交流电压有效值即负载功率的目的。

如在设定周期Tc内导通的周波数为n,每个周波的周期为T(50Hz,T=20ms),则调

功器的输出功率

n

C

P

T

nT

P=

调功器输出电压有效值

n

C

U

T

nT

U=

P n、U n为在设定周期Tc内晶闸管全导通时调功器输出的功率与电压有效值。显然,改变导通的周波数n就可改变输出电压或功率。

图3-14 全周波过零触发输出电压波形

调功器可以用双向晶闸管,也可以用两只晶闸管反并联联结,其触发电路可以采用集成过零触发器,也可利用分立元件组成的过零触发电路。图3-15为全周波连续式的过零触发电路。电路由锯齿波发生、信号综合、直流开关、同步电压与过零脉冲输出五个环节组成。

图3-15 过零触发电路

1)锯齿波是由单结晶体管V6和R1、R2、R3、RP1和C1组成张驰振荡器产生的,经射极跟随器(V1、R4)输出。其波形如图3-16(a)所示。锯齿波的底宽对应着一定的时间间隔(Tc)。调节电位器RP1即可改变锯齿波的斜率。由于单结晶体管的分压比一定,故电容C1放电电压为一定,斜率的减小,就意味着锯齿波底宽增大(Tc增大),反之,底宽减小。

2)控制电压(Uc)与锯齿波电压进行叠加后送至V2基极,合成电压为u s。当u s>0(0.7V),则V2导通;u s<0,则V2截止,如图3-16(b)所示。

3)由V2、V3及R8、R9、VD6组成一直流开关。当V2基极电压U be2>0(0.7V)时,V2管导通,U be3接近零电位,V3管截止,直流开关阻断。

当U be2<0时,V2截止,由R8、VD6和R9组成的分压电路使V3导通,直流开关导通,输出24V直流电压,V3通断时刻如图3-16(c)所示。VD6为V3基极提供一阀值电压,使V2导通时,V3更可靠地截止。

4)过零脉冲输出。由同步变压器TS,整流桥VD1~VD4及R10、R11、VD5组成一削波同步电源,如图2-16(d)所示。它与直流开关输出电压共同去控制V4和V5,只有当直流开关导通期间,V4和V5集电极和发射极之间才有工作电压,才能进行工作。在这期间,同步电压每次过零时,V4截止,其集电极输出一正电压,使V5由截止转为导通,经脉冲变压器输出触发脉冲。此脉冲使晶闸管导通,如图2-16(e)所示。于是在直流开关导通期间,便输出连续的正弦波,如图2-16(f)所示。增大控制电压,便可加长开关导通的时间,也就增多了导通的周波数,从而增加了输出的平均功率。

过零触发虽然没有移相触发高频干扰的问题,但其通断频率比电源频率低,特别是当通断比较小时,会出现低频干扰,使照明出现人眼能觉察倒的闪烁,电表指针的摇摆等。所以调功器通常用于热惯性较大的电热负载。

图3-16 过零触发电路的电压波形

3.固态开关

固态开关也称为固态继电器或固态接触器,它是以双向晶闸管为基础构成的无触点通断组件。

图3-17 固态开关

图3-17(a)为采用光电三极管耦合器的“0”压固态开关内部电路。1、2为输入端,相当于继电器或接触器的线圈;3、4为输出端,相当于继电器或接触器的一对触点,与负载串联后接到交流电源上。

输入端接上控制电压,使发光二极管VD2发光,光敏管V1阻值减小,使原来导通的晶体管V2截止,原来阻断的晶闸管VT1通过R4被触发导通。输出端交流电源通过负载、二极管VD1~VD6、VT1以及R6构成通路,在电阻R5上产生电压降作为双向晶闸管VT2的触发信号,使VT2导通,负载得电。由于VT2的导通区域处于电源电压的“0”点附近,因而具有“0”电压开关功能。

图3-17(b)为光电晶闸管耦合器“0”电压开关。由输入端1、2输入信号,光电晶闸管耦合器B中的光控晶闸管导通;电流经3一VD4一B—VD1一R4一4构成回路;借助R4上的电压降向双向晶闸管VT的控制极提供分流,使VT导通。由R3、R2与V1组成“0”电压开关功能电路。即当电源电压过“0”并升至一定幅值时,V1导通,光控晶闸管则被关

断。

图3-17(c)为光电双向晶闸管耦合器非“0”电压开关。由输入端1、2输入信号时,光电双向晶闸管耦合器B导通;电流经3一R2一B一R3一4形成回路,R3提供双向晶闸管VT的触发信号。这种电路相对于输入信号的任意相位,交流电源均可同步接通,因而称为非“0”电压开关。

二、三相交流调压

单相交流调压适用于单相容量小的负载,当交流功率调节容量较大时通常采用三相交流调压电路,如三相电热路、电解与电镀等设备。三相交流调压的电路有多种形式,负载可连接成△或Y形。三相交流调压电路接线方式及性能特点如表3-2所示。

表3-2 三相交流调压电路接线方式及性能特点

思考题与习题:

3-1 双向晶闸管额定电流的定义和普通晶闸管额定电流的定义有何不同?额定电流为100A的两只普通晶闸管反并联可以用额定电流为多少的双向晶闸管代替?

3-2 双向晶闸管有哪几种触发方式?一般选用哪几种?

3-3 说明图3-23所示的电路,指出双向晶闸管的触发方式。

图3-23 习题3-3图

3-4 在交流调压电路中,采用相位控制和通断控制各有何优缺点?为什么通断控制适用于大惯性负载?

3-5 单相交流调压电路,负载阻抗角为30°,问控制角α的有效移相范围有多大?

3-6 单相交流调压主电路中,对于电阻-电感负载,为什么晶闸管的触发脉冲要用宽脉冲或脉冲列?

3-7 一台220V/10kW的电炉,采用单相交流调压电路,现使其工作在功率为5kW的电路中,试求电路的控制角α、工作电流以及电源侧功率因数。

3-8 图3-24单相交流调压电路,U2=220V,L=5.516mH,R=1Ω,试求:

1)1)控制角α的移相范围。

2)2)负载电流最大有效值。

3)3)最大输出功率和功率因数。

图3-24 习题3-8图

3-9 采用双向晶闸管组成的单相调功电路采用过零触发,U2=220V,负载电阻R=1Ω,在控制的设定周期Tc内,使晶闸管导通0.3s,断开0.2s。试计算:

1)1)输出电压的有效值。

2)2)负载上所得得平均功率与假定晶闸管一直导通时输出得功率。

3)3)选择双向晶闸管得型号。

自动电风扇控制

课程设计报告题目:自动风扇控制器 学生姓名:程俊学生学号: 0808220104 系别:电气信息工程学院专业:自动化届别: 2013 届 指导教师:廖晓纬电气信息工程学院制

课程设计题目:自动风扇控制器 学生:程俊 指导教师:廖晓纬 电气信息工程 1、课程设计的任务与要求 1.1课程设计的任务 本文设计了基于单片机的自动风扇控制,采用单片机作为控制器,利用温度传感器DS18B20作为温度采集元件,并根据采集到的温度,通过一个达林顿反向驱动器ULN2803驱动风扇电机。根据检测到的温度与系统设定的温度的比较实现风扇电机的自动启动和停止,并能根据温度的变化自动改变风扇电机转速,同时用LED数码管显示检测到的温度与设定的温度。 1.2课程设计的要求 系统采用单片机控制风扇转动,采用单片机,利用温度传感器根据温度的改变来自动控制电风扇转动,从而达到自动控制的效果。 1.3课程设计的研究基础 在现代社会中,风扇被广泛的应用,发挥着举足轻重的作用,如夏天人们用的散热风扇、工业生产中大型机械中的散热风扇以及现在笔记本电脑上广泛使用的智能CPU风扇等。而随着温度控制技术的发展,为了降低风扇运转时的噪音以及节省能源等,温控风扇越来越受到重视并被广泛的应用。在现阶段,温控风扇的设计已经有了一定的成效,可以使风扇根据环境温度的变化进行自动无级调速,当温度升高到一定时能自动启动风扇,当温度降到一定时能自动停止风扇的转动,实现智能控制。 随着单片机在各个领域的广泛应用,许多用单片机作控制的温度控制系统也应运而生,如基于单片机的温控风扇系统。它使风扇根据环境温度的变化实现自动启停,使风扇转速随着环境温度的变化而变化,实现了风扇的智能控制。它的设计为现代社会人们的生活以及生产带来了诸多便利,在提高人们的生活质量、生产效率的同时还能节省风扇运转所需的能量。 2、自动风扇控制系统方案制定 设计的整体思路是:利用温度传感器DS18B20检测环境温度并直接输出数字温度信号给单片机AT89C52进行处理,在LED数码管上显示当前环境温度值以及预设温度值。其中预设温度值只能为整数形式,检测到的当前环境温度可精确到小数点后一位。

电风扇无级调速变速原理

电风扇无级调速变速原理 【学习目标】: 完成本课题的学习后,能够: 1. 1. 用万用表测试双向晶闸管的好坏。 2. 2. 掌握双向晶闸管工作原理。 3. 3. 分析电风扇无级调速器各部分电路的作用及调光原理。 4. 4. 了解交流开关、交流调功器、固态开关原理。 【描述】:电风扇无级调速器在日常生活中随处可见。图31(a )是常见的电风扇无级调速器。旋动旋钮便可以调节电风扇的速度。图3-1(b )为电路原理图。 (a ) (b) 图3-1电风扇无级调速器 (a) 电风扇无级调速器 (b) 电风扇无级调速器电路原理图 如图3—1(b)所示,调速器电路由主电路和触发电路两部分构成,在双向晶闸管的两端并接RC 元件,是利用电容两端电压瞬时不能突变,作为晶闸管关断过电压的保护措施。本课题通过对主电路及触发电路的分析使学生能够理解调速器电路的工作原理,进而掌握分析交流调压电路的方法。保护电路在课题五中详细介绍。 【相关知识点】: 一、双向晶闸管的工作原理 1. 1. 双向晶闸管的结构 双向晶闸管的外形与普通晶闸管类似,有塑封式、螺栓式、平板式。但其内部是是一种 NPNPN 五层结构的三端器件。有两个主电极T1、T2,一个门极G ,其外形如图3-2所示。 调速 旋钮

图3-2 双向晶闸管的外形 双向晶闸管的内部结构、等效电路及图形符号如图3-3所示。 图2-3 双向晶闸管内部结构、等效电路及图形符号 (a ) 内部结构 (b ) 等效电路 (c )图形符号 从图3-3可见,双向晶闸管相当于两个晶闸管反并联(P1N1P2N2和P2N1P1N4),不过它只有一个门极G ,由于N3区的存在,使得门极G 相对于T1端无论是正的或是负的,都能触发,而且T1相对于T2既可以是正,也可以是负。 常见的双向晶闸管引脚排列如图3-4所示。 螺栓式 平板式

基于单片机的电风扇温控调速系统设计

基于单片机的电风扇温控调速系统设计 摘要: 本设计为一种温控电风扇调速系统,具有灵敏的温度测试和显示功能,系统以STC89C52 单片机作为控制平台对风扇转速进行控制,可选择由用户选择手动调速或自动调速。在手动调速时自动调速系统不工作,在自动调速时由系统自动检测外界温度值并对电风扇转速做出相应调整,当温度低于温度设定的最低值时,控制电风扇自动关闭,当温度升到超过所设定的最大值时自动调速到最高挡,控制风速大小随外界温度而定。 关键词: 自动控制单片机 DS18B20 电风扇 引言: 随着人们生活水平及科技水平的不断提高,现在家用电器在款式、功能等方面日益求精,并朝着健康、安全、多功能、节能等方向发展。过去的电器不断的显露出其不足之处。电风扇作为家用电器的一种,同样存在类似的问题。 现在电风扇的现状:大部分只有手动调速,再加上一个定时器,功能单一。 夏秋交替时节,白天温度依旧很高,电风扇应高转速、大风量,使人感到清凉;到了晚上,气温降低,当人入睡后,应该逐步减小转速,以免使人感冒。虽然电风扇都有调节不同档位的功能,但必须要人手动换档,睡着了就无能为力了,而普遍采用的定时器关闭的做法,一方面是定时时间长短有限制,一般是一两个小时;另一方面可能在一两个小时后气温依旧没有降低很多,而风扇就关闭了,使人在睡梦中热醒而不得不起床重新打开风扇,增加定时器时间,非常麻烦,而且可能多次定时后最后一次定时时间太长,在温度降低以后风扇依旧继续吹风,使人感冒;第三方面是只有简单的到了定时时间就关闭风扇电源的单一功能,不能满足气温变化对风扇风速大小的不同要求。 之所以会产生这些隐患的根本原因是:缺乏对环境温度的检测。 为解决上述问题,我们设计了这套电风扇温控调速系统。本系统采用高精度集成温度传感器DS18B20,用单片机控制,能做到实时温度显示,根据外界环境的温度自动作出小风、大风、关闭动作,灵敏度度高,动作准确。 1.系统总体功能描述及系统结构介绍 本设计是以STC89C52单片机为控制中心,主要通过温度传感器DS18B20得到的温度以及内部定时器设定时间长短来控制电风扇的开关及转速的变化。 本系统电路小巧方便,实用性、通用性强。当要用手动调速时只需将执行设备从电风扇调速开关上取下即可由人工控制;在晚上需要选择自动调速时将调速

电风扇无级调速器模板

电风扇无级调速器 电风扇无级调速器在日常生活中的应用非常广泛,本课题通过对与电路相关的知识:双晶闸管、单相交流调压、交流开关等内容的介绍和分析。 一、本课题学习目标与要求 1.掌握用万用表测试双向晶闸管好坏的方法。 2.掌握双向晶闸管的外形及符号;双向晶闸管的触发方式。 3.分析单相交流调压电路 4.了解交流开关、交流调功器、固态开关原理。 二、主要概念提示及难点释疑 1.双向晶闸管的触发方式 双向晶闸管正反两个方向都能导通,门极加正负电压都能触发。主电压与触发电压相互配合,可以得到四种触发方式: 1)Ⅰ+触发方式 主极T1为正,T2为负;门极电压G 为正,T2为负。 2)Ⅰ-触发方式 主极T1为正,T2为负;门极电压G 为负,T2为正。 3)Ⅲ+触发方式 主极T1为负,T2为正;门极电压G 为正,T2为负。 4)Ⅲ-触发方式 主极T1为负,T2为正;门极电压G 为负,T2为正。 2.双向晶闸管的参数 1)双向晶闸管额定通态电流不同于普通晶闸管的额定通态电流。前者用交流有效值标定,后者用正弦半波平均值标定,选择晶闸管时不能混淆。例如双向晶闸管额定通态电流为100A ,若用两个反并联的普通晶闸管代替,按有效相等的原则,得 2100 57.1)(=AV T I ,所以,A I AV T 45257.1100 )(==。因此一个100A 的双向晶闸管与两 个45A 反并联的普通晶闸管等效。 2)在选择双向晶闸管的额定通态电流时,要考虑到电动机的启动电流的影响,在交流开关的主电流中串入空心电抗器,可抑制换向电压上网率,降低对双向晶闸管换向能力

的要求。 3.交流调压电路 (1)单相交流调压电路电感性负载时,要用宽脉冲触发晶闸管,否则在α<?(负载功率因数角)时,会使一个晶闸管不能导通,负载波形只有半周,出现很大的直流分量,电路不能正常工作。 (2)单相交流调压电路电阻性负载时,移相范围是α=0°~180°,而电感性负载时,移相范围是α=?~180° (3)交流功率调节容量较大时,应采用三相交流调压。三相交流调压电路接线方式及性能特点见教材。 (4)交流调压可以采用移相触发也可以采用过零触发来实现。过零触发就是在电压为零附近触发晶闸管导通,在设定的周期内改变晶闸管导通的频率树来实现交流调压或调功率。4.交流开关 交流开关的作用类似普通的接触器,用门极小电流控制阳极大电流的通断,实现开关的无触电化。 三、学习方法 1.对比法:双向晶闸管的学习与普通晶闸管对比,找出他们的异同;移相触发与过零触发比较,找出各自优缺点。 2.波形分析法:交流调压电路的工作原理结合波形来分析,更容易理解。 3.讨论分析法:读者要学习与他人讨论分析问题,并了解其他读者的学习方法和学习收获,提高学习效率。 四、典型题解析 例3-1 在交流调压电路或交流开关中,使用双向晶闸管有什么好处? 解:双向晶闸管不论是从结构上,还是从特性上,都可以把它看作是一对反并联晶闸管集成元件。它只有一个门极,可用交流或直流脉冲触发,使之能正、反向导通。在交流调压电路或交流开关中使用双向晶闸管可以简化电路、减小装置体积和质量、节省投

散热风扇工作原理

散热风扇工作原理 散热器都需要通过风扇的强制对流来加快热量的散失,因此一款风扇的好坏,对整个散热效果起到了决定性的作用。配备一个性能优良的CPU风扇也是保证整部电脑顺利运转的关键因素之一。 DC风扇运转原理:根据安培右手定则,导体通过电流,周围会产生磁场,若将此导体置于另一固定磁场中,则将产生吸力或斥力,造成物体移动。在直流风扇的扇叶内部,附着一事先充有磁性之橡胶磁铁。环绕着硅钢片,轴心部份缠绕两组线圈,并使用霍尔感应组件作为同步侦测装置,控制一组电路,该电路使缠绕轴心的两组线圈轮流工作。硅钢片产生不同磁极,此磁极与橡胶磁铁产生吸斥力。当吸斥力大于虱扇的静摩擦力时,扇叶自然转动。由于霍尔感应组件提供同步信号,扇叶因此得以持续运转,至于其运转方向,可依佛莱明右手定则决定。 AC风扇运转原理:AC风扇与DC风扇的区别。前者电源为交流,电源电压会正负交变,不像DC风扇电源电压固定,必须依赖电路控制,使两组线圈轮流工作才能产生不同磁场。AC风扇因电源频率固定,所以硅钢片产生的磁极变化速度,由电源频率决定,频率愈高磁场切换速度愈快,理论上转速会愈快,就像直流风扇极数愈多转速愈快的原理一样。不过,频率也不能太快,太快将造成激活困难。我们电脑散热器上应用的都是DC风扇。而一般一款好的风扇主要考察风量、转速、噪音、使用寿命长短、采用何种扇叶轴承等。 风量是指风冷散热器风扇每分钟排出或纳入的空气总体积,如果按立方英尺来计算,单位就是CFM;如果按立方米来算,就是CMM。散热器产品经常使用的风量单位是CFM(约为0.028立方米/分钟)。50×50x10mm CPU风扇一般会达到10 CFM,60×60x25mm风扇通常能达到20-30的CFM。在散热片材质相同的情况下,风量是衡量风冷散热器散热能力的最重要的指标。显然,风量越大的散热器其散热能力也越高。这是因为空气的热容比率是一定的,更大的风量,也就是单位时间内更多的空气能带走更多的热量。当然,同样风量的情况下散热效果和风的流动方式有关。风量和风压风量和风压是两个相对的概念。一般来说,要设计风扇的风量大,就要牺牲一些风压。如果风扇可以带动大量的空气流动,但风压小,风就吹不到散热器的底部(这就是为什么一些风扇转速很高,风量很大,但就是散热效果不好的原因)。相反的,风压大、风量就小,没有足够的冷空气与散热片进行热交换,也会造成散热效果不好。一般铝质鳍片的散热片要求风扇的风压足够大,而铜质鳍片的散热片则要求风扇的风量足够大;鳍片较密的散热片相比鳍片较疏的散热片,需要更大风压的风扇,否则空气在鳍片间流动不畅,散热效果会大打折扣。所以说不同的散热器,厂商会根据需要配合适当风量、风压的风扇,而并不是单一追求大风量或者高风压的风扇。 风扇转速是指风扇扇叶每分钟旋转的次数,单位是rpm。风扇转速由电机内线圈的匝数、工作电压、风扇扇叶的数量、倾角、高度、直径和轴承系统共同决定。转速和风扇质量没有必然的联系。风扇的转速可以通过内部的转速信号进行测量,也可以通过外部进行测量(外部测量是用其它仪器看风扇转的有多快,内部测量则直接可以到BIOS里看,也可以通过软件看。内部测量相对来说误差大一些)。? 因为随着环境温度的变化,有时需要不同转速风扇来满足需求。一些厂商特意设计出可调节风扇转速的散热器,分手动和自动两种。手动的主要是让用户可以在冬天使用低转速获得低噪音,夏天时使用高转速获得好的散热效果。自动类调温散热器一般带有一个温控感应器,能够根据当前的工作温度(如散热片的温度)自动控制风扇的转速,温度高则提高转速,温度低则降低转速,以达到一个动态的平衡,从而让风噪与散热效果保持一个最佳的结合点。

风扇无极调速器原理

风扇调速器工作原理-电子调速器工作原理 我们通过电风扇电子调速器的电路来分析,以说明风扇调整器的工作原理,引电路能对风扇电动机进行无级调速,还能使电风扇产生模拟自然风。该电风扇电子调速器电路由电源电路、可控振荡器和控制执行电路组成,如图所示。电源电路由降压电容器Cl、整流二极管VDl、VD2、滤波电容器C2、电源指示发光二极管VL和稳压二极管VS组成。可控振荡器由时基集成电路IC、电阻器RI、R2、电容器C3、电位器RP和二极管VD3、VD4组成。控制执行电路由风扇 我们通过电风扇电子调速器的电路来分析,以说明风扇调整器的工作原理,引电路能对风扇电动机进行无级调速,还能使电风扇产生模拟自然风。 该电风扇电子调速器电路由电源电路、可控振荡器和控制执行电路组成,如图所示。 电源电路由降压电容器Cl、整流二极管VDl、VD2、滤波电容器C2、电源指示发光二极管VL和稳压二极管VS组成。 可控振荡器由时基集成电路IC、电阻器RI、R2、电容器C3、电位器RP和二极管VD3、VD4组成。 控制执行电路由风扇电动机M、晶闸管VT、电阻器R3和IC第3脚内电路组成。 交流220V电压经Cl降压、VDl和VD2整流、VL和VS稳压及C2滤波后,为IC提供约8V的直流电压。 可控振荡器振荡工作后,从IC的3脚输出周期为105、占空比连续可调的振荡脉冲信号,

利用此脉冲信号去控制晶闸管VT的导通状态。 调节RP的阻值,即可改变脉冲信号的占空比(调节范围为1%-99%),控制风扇电动机M转速的高低,产生模拟自然风(周期为10s的阵风)。 改变C3的电容量,可以改变振荡器的振荡周朔,从而改变模拟自然风的周期。 元器件选择 R1-R3选用1/4W碳膜电阻器或金属膜电阻器。 RP选用合成膜电位器或有机实心电位器。 C1选用耐压值为450V的涤纶电容器或CBB电容器;C2和C3均选用耐压值为16V的铝电解电容器。 VDl和VD2均选用lN4007型硅整流二极管;VD3和VD4均选用1N4148型硅开关二极管。VS选用1/2W、6.2V的硅稳压二极管。 VL选用φ5mm的绿色发光二极管。 VT选用MACg4A4(lA、400V)型双向晶闸管。 IC选用NE555或CD7555型时基集成电路。 总的概括,一般风扇调速器的工作原理有三种种方法: 1.用微电路板控制电压高低,改变速度,例如:部分空调室内机; 2.改变电阻来控制电压,改变速度,例如:部分空调柜机; 3.切换线路,通过电机上的几组线圈来改变速度,例如:普通电风扇。

直流风扇电机的基本工作原理

直流风扇电机的基本工作原理 直流风扇电机的基本工作原理根据供电方式的不同,电机有直流电机和交流电机两种类型。电脑中使用的风扇电机为直流电机,供电电压为+12V 直流电机是将直流电能转换为机械能的旋转机械。它由定子、转子和换向器三个部分组成,如图3。 定子(即主磁极)被固定在风扇支架上,是电机的非旋转部分。 转子中有两组以上的线圈,由漆包线绕制而成,称之为绕组。当绕组中有电流通过时产生磁场,该磁场与定子的磁场产生力的作用。由于定子是固定不动的,因此转子在力的作用下转动。 换向器是直流电动机的一种特殊装置,由许多换向片组成,每两个相邻的换向片中间是绝缘片。在换向器的表面用弹簧压着固定的电刷,使转动的电枢绕组得以同外电路联接。当转子转过一定角度后,换向器将供电电压接入另一对绕组,并在该绕组中继续产生磁场。可见,由于换向器的存在,使电枢线圈中受到的电磁转矩保持不变,在这个电磁转矩作用下使电枢得以旋转,如图4。

液态轴承的结构转子利用轴承与外壳之间实现动配合。风扇的扇叶固定在转子上,因此,当转子旋转时,扇叶将与转子一起转动起来。普通风扇一般采用滚珠轴承(如图5),而高档风扇为了提高运转的稳定性和增加使用寿命,通常采用更为先进的液态轴承(如图6)。 图5 滚珠轴承

图6 液态轴承的结构 无刷直流电机原理图直流电机是利用碳刷实现换向的。由于碳刷存在摩擦,使得电刷乃至电机的寿命减短。同时,电刷在高速运转过程中会产生火花,还会对周围的电子线路形成干扰。为此,人们发明了一种无需碳刷的直流电机,通常也称作无刷电机(brushless motor)。 无刷电机将绕组作为定子,而永久磁铁作为转子(如图7),结构上与有刷电机正好相反。无刷电机采用电子线路切换绕组的通电顺序,产生旋转磁场,推动转子做旋转运动。 无刷电机由于没有碳刷,无需维护寿命长,速度调节精度高。因此,无刷电机正在迅速取代传统的有刷电机,带变频技术的家用电器(如变频空调、变频电冰箱等)就是使用了无刷电机,目前散热风扇中几乎全部使用无刷电机。

遥控电扇电原理图

双向可控硅MAC97A6的电路应用 MAC97A6为小功率双向可控硅(双向晶闸管),最多应用于电风扇速度控制或电灯的亮度控制,市场上流行的“电脑风扇”或“电子程控风扇”,不外乎是用集成电路控制器与老式风扇相结合的新一代产品。这里介绍的电路就是利用一块市售的专用集成电路RY901及MAC97A6,将普通电扇改装为具有多功能的高档电扇,很适宜无线电爱好者制作与改装。 这种新型IC的主要特点是:(1)集开关、定时、调速、模拟自然风为一体,外围元件少、电路简单、易于制作;(2)省掉了体积较大的机械定时器和调速器,采用轻触式开关和电脑控制脉冲触发,因而无机械磨损,使用寿命长;(3)各种动作电脑程序具备相应的发光管指示,耗电量少,体积小,重量轻,显示直观,便于操作;(4)适合开发或改造成多路家电的定时控制等。RY901采用双列直插式16脚塑封结构,为低功耗CMOS集成电路。 其外形、引出脚排列及各脚功能如图1所示。工作原理

典型应用电路如图2所示([url=https://www.360docs.net/doc/3516573924.html,/ad/ykkz/fsdlkz.rar]点击下载原理图[/url] )。市电220V 由C1、R1降压VD9稳压,经VD10、C2整流滤波后, 提供5V-6V左右的直流电源作为RY901IC组成的控制器电压。在刚接通电源时,电脑控制器暂处于复位(静止)状态,面板上所有发光二极管VD1-VD8均不亮,电风扇不转。若这时每按动一次风速选择键SB3,可依次从IC的11-13脚输出控制电平(脉冲信号),经发光管VDl-VD3和限流电阻R2-R4,分别触发双向晶闸管VS1-VS3的G极,用以控制它的导通与截止,再经电抗器L进行阻抗变换,即可按强风、中风、弱风、强风……的顺序来改变其工作状态,并且风速指示管VD1-VD3(红色)对应点亮或熄灭;当按风型选择键SB4,电风扇即按连续风(常风)、阵风(模拟自然风)、连续风……的方式循环改变其工作状态,在连续风状

单相电风扇无级调速电路

辽宁工业大学电力电子技术课程设计(论文)题目:单相电风扇无级调速电路 院(系):电气工程学院 专业班级:电气094 学号:090303111 学生姓名:姜佩君 指导教师:(签字) 起止时间:2011-12-26至2011-01-06

课程设计(论文)任务及评语 院(系):电气工程学院 教研室: 电气 注:成绩:平时20% 论文质量60% 答辩20% 以百分制计算 学 号 090303111 学生姓名 姜佩君 专业班级 电气094 课程设计 (论文) 题目 单相电风扇无级调速电路 课程设计(论文)任务 课题完成的设计任务及功能、要求、技术参数 实现功能 利用晶闸管构成交流调压电路,调节电风扇电动机电压,从而改变电风扇的转速,可实现无级变速,满足人们对电风扇风速的不同要求,且此调速装置寿命长。 设计任务与要求 1、方案的经济技术论证。 2、主电路设计。 3、通过计算选择整流器件的具体型号。 4、触发电路设计 5、绘制相关电路图 6、保护电路设计 7、电路调试或仿真 8、完成4000字左右说明书。 技术参数 1、交流电源:单相220V 。 2、输出电压在0~220V 连续可调。 3、输出电流最大值1A 。 4、负载为100W 电风扇。 5、根据实际工作情况,最小控制角取20~300左右。。 工作计划 第1天:集中学习;第2天:收集资料;第3天:方案论证;第4天:主电路设计;第5天:选择器件;第6天:触发电路设计;第7天:保护电路设计;第8天:电路调试或仿真;第9天:总结并撰写说明书;第10天:答辩 指导教师评语及成绩 平时: 论文质量: 答辩: 总成绩: 指导教师签字: 年 月 日

风扇工作原理

*AC风扇工作原理:AC风扇与DC风扇的区别。前者电源为交流,电源电压会正负交变,不像DC风扇电源电压固定,必须依赖电路控制,使两组线圈轮流工作才能产生不同磁场。AC风扇因电源频率固定,所以硅钢片产生的磁极变化速度,由电源频率决定,频愈高磁场切换速度愈快,理论上转速会愈快,就像直流风扇极数愈多转速愈快的原理一样。不过,频率也不能太快,太快将造成启动困难 *DC风扇工作原理:导体通过电流,周围会产生磁场,若将此导体置于另一固定磁场中,则将产生吸力或斥力,造成物体移动。在直流风扇的扇叶内部,附着一事先充有磁性之橡胶磁铁。环绕着硅钢片,轴心部份缠绕两组线圈,并使用霍尔感应组件作为同步侦测装置,控制一组电路,该电路使缠绕轴心的两组线圈轮流工作。硅钢片产生不同磁极,此磁极与橡胶磁铁产生吸斥力。当吸斥力大于风扇的静摩擦力时,扇叶自然转动。由于霍尔感应组件提供同步信号,扇叶因此得以持续运转。 *双滚珠轴承:成熟高端产品,从工艺、高精度和高品质控制等方面为产品提供可靠保障。*含油轴承:适用于产品市场生命周期不长,运行环境不苛刻之产品,以期降低成本。工艺、精度和品质控制方面确保产品品质。 *如何选用合适的风扇最主要是能有足够的风量以达到所需之散热效果,考虑因素有:风量、风压、电流、电压、转速、寿命、无异音等。 一、如何测量噪音值 SUNON风扇的噪音是在背景噪音低于15 dBA无回响室中所测量。待测风扇在自由空气中运转,距入风口一米 处置一噪音计。 音压级(Sound Pressure Level)依背景因素而定,与音能级(Sound Power Level)由下列公式表示之:

SPL = 20㏒ P/Pref及SWL = 10㏒ W/Wref 其中, ?P = 音压 ?Pref = 基准音压 ?W = 音源的噪音能量 ?Wref = 音源的噪音能量 风扇的噪音值通常以音压级(SPL)之倍频带绘出。分贝(dBA)的改变所形成的效应,如下列征兆所示: ? 3 dBA 几乎没有感觉 ? 5 dBA 感觉出来 ?10 dBA 感觉两倍大声响 噪音程度: ?0 ~ 20 dBA 很微弱 ?20 ~ 40 dBA 微弱 ?40 ~ 60 dBA 中度 ?60 ~ 80 dBA 大声 ?80 ~ 100 dBA 很大声 ?100 ~ 140 dBA 震耳欲聋 二、如何达成低噪音 下列准则提供风扇使用者最佳方法,以降低噪音至最小: 1.系统阻抗(System Impedance) 一个机壳的入风口与出风口之间范围占全部系统阻抗的60%至80%,另外气流愈大,噪音相对愈高。 系统阻抗愈高,冷却所需的气流愈大,因此为了将噪音降至最小,系统阻抗必须减至最低程度。 2.气流扰乱 沿着气流路径所遇到的阻碍而造成的扰流会产生噪音。因此任何阻碍,特别在关键的入风口与出风口范围,必须避免,以降低噪音。 3.风扇转速与尺寸 由于高转速风扇比低转速风扇产生较大的噪音,因此应尽可能尝试及选用低转速风扇。而一个尺寸较大、转速较低的风扇,通常比小尺寸、高转速的风扇,在输送相同风量时安静。 4.温度升高 一个系统内,冷却所需的风量与允许的温升成反比。允许温升稍微提高,即可大量减少所需的风量。 因此,如果对强加之允许温升的限制略微放松一些,所需风量将可降低,噪音亦可降低。

Dyson无叶风扇原理解析

Dyson无叶风扇原理解析 在高温难耐的伏暑天里,很多朋友最想做的就是躲在清清凉凉的室内,挖着西瓜看电视了。不过,如果你认为想要保持室内凉爽宜人,还必须依靠把空调温度调得很很低,那就大错特错了,因为今年夏天,在潮人圈子里面最流行的已经不是什么“无氟变频空调”之类的大件电器产品,而是既环保又轻便,还拥有时尚线条的“无扇叶风扇”了,而且这种风扇能够形成15倍风力的效果,让你感受到犹如海风一般的凉爽。 Dyson无叶风扇 你相信吗?Dyson无叶风扇能够送出15倍效果的风力

这种无扇叶风扇最早是由美国Dyson公司推出的产品,外形线条相当简约,下面是一个底座,上面是一个出风框,跟我们平常使用的风扇相比,就是少了复杂的扇叶和前后栏栅罩盖,风扇中间完全是空洞洞的。 Dyson无叶风扇各种造型 Dyson无叶风扇整体外观

Dyson无叶风扇侧面,可以形成一定仰角 Dyson无叶风扇配套遥控器 那这样的结构到底是怎么样形成吹风效果的呢?别急,其实设计师在里面运用了很多在飞机构造上应用到的空气动力学原理,下面我们一起来看看。 首先来看看这款风扇的底座设计,并不是简单马达搭配上电源开关、风力档位的组合。底座与风扇的出风框是可以分离开来的,通过卡口装配起来。底座内部除了有马达以外,下面还有布满密孔的进风口,这里是最原始吸取空气的部位。

Dyson无叶风扇出风框部分 Dyson无叶风扇底座部分

Dyson无叶风扇底座下面是布满密孔的进风口 空气进入底座后,由马达带动,再经过底座上方的一层隐藏扇叶向上送风。这一层扇叶是水平旋转的,装上出风框后在外部完全看不到。 Dyson无叶风扇底座上有一层水平扇叶,把空气向吹进出风框内

_电风扇无级调速原理

电风扇无级调速原理 【学习目标】: 完成本课题的学习后,能够: 1. 1. 用万用表测试双向晶闸管的好坏。 2. 2. 掌握双向晶闸管工作原理。 3. 3. 分析电风扇无级调速器各部分电路的作用及调光原理。 4. 4. 了解交流开关、交流调功器、固态开关原理。 【描述】:电风扇无级调速器在日常生活中随处可见。图31(a )是常见的电风扇无级调速器。旋动旋钮便可以调节电风扇的速度。图3-1(b )为电路原理图。 (a ) (b) 图3-1电风扇无级调速器 (a) 电风扇无级调速器 (b) 电风扇无级调速器电路原理图 如图3—1(b)所示,调速器电路由主电路和触发电路两部分构成,在双向晶闸管的两端并接RC 元件,是利用电容两端电压瞬时不能突变,作为晶闸管关断过电压的保护措施。本课题通过对主电路及触发电路的分析使学生能够理解调速器电路的工作原理,进而掌握分析交流调压电路的方法。保护电路在课题五中详细介绍。 【相关知识点】: 一、双向晶闸管的工作原理 1. 1. 双向晶闸管的结构 双向晶闸管的外形与普通晶闸管类似,有塑封式、螺栓式、平板式。但其内部是是一种 NPNPN 五层结构的三端器件。有两个主电极T1、T2,一个门极G ,其外形如图3-2所示。 调速 旋钮

图3-2 双向晶闸管的外形 双向晶闸管的内部结构、等效电路及图形符号如图3-3所示。 图2-3 双向晶闸管内部结构、等效电路及图形符号 (a ) 内部结构 (b ) 等效电路 (c )图形符号 从图3-3可见,双向晶闸管相当于两个晶闸管反并联(P1N1P2N2和P2N1P1N4),不过它只有一个门极G ,由于N3区的存在,使得门极G 相对于T1端无论是正的或是负的,都能触发,而且T1相对于T2既可以是正,也可以是负。 常见的双向晶闸管引脚排列如图3-4所示。 螺栓式 平板式

电风扇无级调速器

电风扇无级调速器实训报告 因本次实训老师要求做个与电力电子有关的产品,经过组员讨论,于是我们决定做电风扇无极调速器。 电风扇无级调速器在日常生活中随处可见。图1(a )是常见的电风扇无级调速器。旋动旋钮便可以调节电风扇的速度。图1(b )为电路原理图。 (a ) 图1电风扇无级调速器 (a) 电风扇无级调速器 (b) 电风扇无级调速器电路原理图 如图1(b)所示,调速器电路由主电路和触发电路两部分构成,在双向晶闸管的两端并接RC 元件,是利用电容两端电压瞬时不能突变,作为晶闸管关断过电压的保护措施。本课题通过对主电路及触发电路的分析使学生能够理解调速器电路的工作原理,进而掌握分析交流调压电路的方法。保护电路在课题五中详细介绍。 一、双向晶闸管的工作原理 1. 双向晶闸管的结构 双向晶闸管的内部结构、等效电路及图形符号如图2所示。 (a ) 内部结构 (b ) 等效电路 (c )图形符号 调速电位器

图2双向晶闸管内部结构、等效电路及图形符号 从图2可见,双向晶闸管相当于两个晶闸管反并联(P1N1P2N2和P2N1P1N4),不过它只有一个门极G,由于N3区的存在,使得门极G相对于T1端无论是正的或是负的,都能触发,而且T1相对于T2既可以是正,也可以是负。 表1 双向晶闸管的主要参数 2.双向晶闸管的触发方式 双向晶闸管正反两个方向都能导通,门极加正负电压都能触发。主电压与触发电压相互配合,可以得到四种触发方式: 1)Ⅰ+触发方式主极T1为正,T2为负;门极电压G为正,T2为负。特性曲线在第Ⅰ象限。 2)Ⅰ-触发方式主极T1为正,T2为负;门极电压G为负,T2为正。特性曲线在第Ⅰ象限。 3)Ⅲ+触发方式主极T1为负,T2为正;门极电压G为正,T2为负。特性曲线在第Ⅲ象限。 4)Ⅲ-触发方式主极T1为负,T2为正;门极电压G为负,T2为正。特性曲线在第Ⅲ象限。 由于双向晶闸管的内部结构原因,四种触发方式中灵敏度不相同,以Ⅲ+触发方式灵敏度最低,使用时要尽量避开,常采用的触发方式为Ⅰ+和Ⅲ-。 二、单相交流调压电路 电风扇无级调速器实际上就是负载为电感性的单相交流调压电路。交流调压是将一种幅值的交流电能转化为同频率的另一种幅值的交流电能。

电风扇工作原理

宝坻一中 校本课程教案 课程题目:电风扇工作原理 年级: 学科: 主讲教师:

电风扇工作原理 电风扇触及到的物理常识 电风扇是人们避暑的常用家电,它在就业时触及到很多物理常识,工作。同时也是中学物理每每窥察的常识点。当前从力、热、电三方面理解如下: 1、当电风扇运动时,竖杆对其拉力等于电风扇自己的重力,电风扇原理图。那么当电风扇就业起来今后有没有必要惦记竖杆因受力增大而掉上去呢? 答案能否认的。你看涉及到。 为什么呢?由于当电风扇转动起来今后,扇叶把气氛推向下方。即扇叶对其下方的气氛有向下的力,学习小电风扇的原理。凭据“物体间力的作用是互相的”可知:气氛对扇叶同时也有向上的力,迷你电风扇团购。清楚这一点今后,再对电风扇实行受力理解,电风扇在竖直方向上遭到3个力的作用,即:听说电风扇工作原理。竖直向下的重力;竖直向上的竖杆对电风扇的拉力和气氛对电风扇的向上的力。所以没关系知道:此时竖杆对电风扇的拉力必然要比运动的期间减小。对于团购电风扇。所以,知识。我们完全没有必要惦记电风扇转动起来今后会由于蒙受的力增大而掉上去。

2、当我们在酷暑的夏天使用电风扇的期间,会感遭到清凉。美的电风扇团购。电风扇。那么清凉的由来是不是电风扇就业起来今后使室内的温度低落了。团购电风扇。 境况恰恰不是这样的。电风扇工作原理。 (假定房间与外界没有热通报)室内的温度不光没有低落,反而会降低。让我们一块来理解一下温度降低的由来:电风扇就业时,看着电扇团购。由于有电畅达过电风扇的线圈,电风扇。导线是有电阻的,所以会不可防止的发作热量向外放热,故温度会降低。 但人们为什么会感遭到清凉呢?由于人体的体表有多量的汗液,艾美特电风扇团购。当电风扇就业起来今后,相比看电风扇涉及到的物理知识。室内的气氛会活动起来,所以就能够推动汗液的速即蒸发,原理。联合“蒸发必要汲取多量的热量”,故人们会感遭到清凉。你知道电扇团购。 3、电风扇的首要部件是:交换电念头。 其就业原理是:通电线圈在磁场中受力而转动。学习物理。 能量的转化体式格局是:你看电风扇工作原理。电能首要转化为机械能,电风扇工作原理。同时由于线圈有电阻,所以不可防止的有一局部电能要转化为内能。鉴于其能量转化体式格局和欧姆定律的使用领域,所以电风扇的电流、电压和电阻不能间接套用欧姆定律。你看无

电风扇电路全集

电风扇电路全集一.金龙牌电风扇电路图 二.可控硅无级调速电风扇

· [组图] 自动风扇控制器电路,Automatic Fan Controller · [图文] 温控风扇电路--Temperature-controlled Fan · [图文] 风扇控制器电路-Fan control · [图文] 冷却风扇的同步控制插座电路原理图 · [图文] 气敏排气扇电路原理图 · [组图] 风扇周波调速电路 · [图文] 节日灯光序列发生器(续) · [图文] DS1620家用电扇控制电路图 · [图文] 电风扇阵风控制电路 · [图文] 用晶体管/三极管以PWM波形来驱动风扇的电路图 · [图文] MAX6660/MAX6653应用电路图 · [图文] usb风扇电路图

· [图文] 可控硅无级调速电风扇 · [图文] 美乐牌SXL-A型多功能旅游电扇电路图 · [图文] 长城牌FS53-40温控落地扇电路图 · [图文] 长城牌FS26-40电脑遥控落地扇电路图 · [图文] 长城牌FS22-40电脑遥控落地扇电路图 · [图文] KB型自然风定时控制电扇电路图 · [图文] 钻石KYT1-30转页扇电路图 · [图文] 钻石KYT1-25转页扇电路图 · [图文] 钻石FS-40P落地扇电路图 · [图文] 钻石FB-40豪华壁扇电路图 · [图文] 粤华KYT10-30转页扇电路图 · [图文] 扬子FS426遥控电扇电路图 · [图文] 扬子FS40-58D遥控落地扇电路图 · [图文] 星辉牌FT-30 FT-40台扇电路图 · [图文] 星辉牌FS-40落地扇电路图 · [图文] 胜美SM-FBI-30B3遥控壁扇电路图 · [图文] 锐发SJ300L型吊扇电子调速器电路图 · [图文] 千叶牌FB30 FB35 FB40壁扇电路图 · [图文] 奇力牌QL-KYT30转页扇电路图 · [图文] 奇力牌FT-40台扇电路图 · [图文] 美的KYT2-25转页扇电路图 · [图文] 美的FS40-A4落地扇电路图 · [图文] 绿环FS40型遥控落地扇电路图 · [图文] 绿风牌KYT3-30D转页扇电路图 · [图文] 绿风牌KYT3-30C转页扇电路图 · [图文] 龙城牌仿自然风落地扇电路图 · [图文] 菊花FL40-19电脑控制电扇电路图 · [图文] 金星JTQ型电扇电子调速器电路图 · [图文] 金龙牌电风扇电路图 · [图文] 华生牌电脑控制落地扇电路图 · [图文] 华丰FS-40落地扇电路图 · [图文] 鸿运牌KYT3-30转页扇电路图 · [图文] 格力电脑程控转页扇电路图 · [图文] 格力KYTA-30B遥控转页扇电路图 · [图文] 格力KYTA-30A KYTB-30A KYSI-30A KYSK-30A 电脑程控转页扇电路图 · [图文] 格力FSA-35B遥控台地扇电路图 · [图文] 格力FB1-40B1遥控壁扇电路图 · [图文] 长凤牌FS-40型落地扇电路图 · [图文] 长城牌遥控落地扇电路图 · [图文] 长城牌FS19-40遥控落地扇电路图 · [图文] 长城牌FS12-40高级落地扇电路图

电风扇无级调速器在日常生活中的应用非常广泛

电风扇无级调速器在日常生活中的应用非常广泛,本课题通过对与电路相关的知识:双晶闸管、单相交流调压、交流开关等内容的介绍和分析。使学生能够理解电路的工作原理,掌握分析电路的方法。 一、本课题学习目标与要求 1.掌握用万用表测试双向晶闸管好坏的方法。 2.掌握双向晶闸管的外形及符号;双向晶闸管的触发方式。 3.分析单相交流调压电路 4.了解交流开关、交流调功器、固态开关原理。 二、主要概念提示及难点释疑 1.双向晶闸管的触发方式 双向晶闸管正反两个方向都能导通,门极加正负电压都能触发。主电压与触发电压相互配合,可以得到四种触发方式: 1)Ⅰ+触发方式主极T1为正,T2为负;门极电压G为正,T2为负。 2)Ⅰ-触发方式主极T1为正,T2为负;门极电压G为负,T2为正。 3)Ⅲ+触发方式主极T1为负,T2为正;门极电压G为正,T2为负。 4)Ⅲ-触发方式主极T1为负,T2为正;门极电压G为负,T2为正。 2.双向晶闸管的参数 1)双向晶闸管额定通态电流不同于普通晶闸管的额定通态电流。前者用交流有效值标定,后者用正弦半波平均值标定,选择晶闸管时不能混淆。例如双向晶闸管额定通态电流为100A,若用两个反并联的普通晶闸管代替,按有效相等的原则,得,所以,。因此一个100A的双向晶闸管与两个45A反并联的普通晶闸管等效。 2)在选择双向晶闸管的额定通态电流时,要考虑到电动机的启动电流的影响,在交流开关的主电流中串入空心电抗器,可抑制换向电压上网率,降低对双向晶闸管换向能力的要求。 3.交流调压电路 (1)单相交流调压电路电感性负载时,要用宽脉冲触发晶闸管,否则在<(负载功率因数角)时,会使一个晶闸管不能导通,负载波形只有半周,出现很大的直流分量,电路不能正常工作。 (2)单相交流调压电路电阻性负载时,移相范围是=0°~180°,而电感性负载时,移相范围是= ~180°(3)交流功率调节容量较大时,应采用三相交流调压。三相交流调压电路接线方式及性能特点见教材。(4)交流调压可以采用移相触发也可以采用过零触发来实现。过零触发就是在电压为零附近触发晶闸管导通,在设定的周期内改变晶闸管导通的频率树来实现交流调压或调功率。4.交流开关 交流开关的作用类似普通的接触器,用门极小电流控制阳极大电流的通断,实现开关的无触电化。 三、学习方法 1.对比法:双向晶闸管的学习与普通晶闸管对比,找出他们的异同;移相触发与过零触发比较,找出各自优缺点。 2.波形分析法:交流调压电路的工作原理结合波形来分析,更容易理解。 3.讨论分析法:读者要学习与他人讨论分析问题,并了解其他读者的学习方法和学习收获,提高学习效率。 四、典型题解析 例3-1 在交流调压电路或交流开关中,使用双向晶闸管有什么好处? 解:双向晶闸管不论是从结构上,还是从特性上,都可以把它看作是一对反并联晶闸管集成元件。它只有一个门极,可用交流或直流脉冲触发,使之能正、反向导通。在交流调压电路或交流开关中使用双向晶闸管可以简化电路、减小装置体积和质量、节省投资、方便维护。 例3-2 双向晶闸管额定电流的定义和普通晶闸管额定电流的定义有何不同?额定电流为100A的两只普通晶闸管反并联可以用额定电流为多少的双向晶闸管代替? 解:双向晶闸管的额定电流用有效值表示,而普通晶闸管的额定电流是用平均值表示的。 额定电流100A的普通晶闸管,其通过电流的峰值为100A×π=314A,则双向晶闸管的额定电流为314/

无叶风扇的结构配件

结构配件: 1. 混流式叶轮:集合了航天领域涡轮增压器和喷气引擎的混流叶轮技术产生强大的气流。 2.无刷电机:高效节能,每分钟达到10000转,是传统电机转速10倍。 3.LED灯盖:光触媒杀菌,驱蚊。 4.触摸式倾斜:就其本身的重力重心支点,可用手压的方式来改变风扇的角度。 无扇叶风扇的技术参数: ①额定电压:220V/110V;②输入功率:33(W);③调速挡数:无极变速;④风类选择:自然风;⑤开关类型:旋转式;⑥可否摇头:可摇头;⑦材质:ABS;⑧重量:3(kg);⑨底座直径:14.5cm;⑩风环直径:14cm;⑾总高度:68cm、128cm;⑿风环宽度:9.7cm。 通过基座中带有的40瓦电力马达每秒钟将33升的空气吸入风扇基座内部,经由气旋加速器加速后,空气流通速度最大被增大16倍左右,经由无叶电风扇扇头环形内唇环绕,其环绕力带动扇头附近的空气随之进入扇头,并以每秒405升的速度向外吹出。其中最典型的特点在于其基座中使用了气旋加速器(cyclone accelerator),这是项广泛利用于喷气式飞机引擎及汽车涡轮增压中的技术。 无叶风扇的原理:基座中带有的40瓦电力马达每秒钟将33升的空气吸入风扇基座内部,并通过环形的增压器,从只有1.3mm的孔隙“挤” 出空气,经由气旋加速器加速后,空气流通速度最大被增大15倍左右,经由无风叶电风扇扇头环形内唇环绕,其环绕力带动扇头附近的空气随之进入扇头,并以每秒405升的速度向外吹出 那么,无扇叶风扇是如何工作的呢? 无扇叶风扇由两个部分构成:一个涡轮风机,它安装在风扇底座上;一个环形吹风口,也就是我们能看到的外观圆环。无叶风扇原理其实就是底座中带有的40瓦马达每秒钟将33升的空气吸入风扇基座内部,经由气旋加速器加速后,空气流通速度最大被增大到16-18倍,经由无叶风扇扇头环形内唇环绕,其环绕力带动扇头附近的空气随之进入扇头,并以每秒405升的速度向外吹出,最终形成一股不间断的冷空气流。如此一来,徐徐凉风飘然而至。这种新

无叶风扇是什么黑科技 一图秒懂 坑爹

无叶风扇是什么黑科技? 一图秒懂: 坑爹 作者: 驱动之家来源: 驱动之家 中国曾有一位伟人赵忠祥曾说过:" 春天来了,万物复苏,大草原又到了动物们交配的季节。" 而现在春姑娘提上裤子准备走了,是时候来给你燃烧的欲望之火降降温了!所以今天我们就来聊聊无叶风扇是什么" 黑科技"。 西方有一位长者James Dyson,他认为普通风扇太土气不够装逼,于是他决定搞个大新闻,发明了一款没有扇叶的风扇,并并自恋的把自己的名字作为这家公司的名称" 戴森"。

上面这张图呢,是一款无叶风扇。从外观上看,风经过这个圈儿后,被来自西方的神秘力量给予强大的能量,并转化为动能的形式表现,从前面喷射而出。 如果你认为是这样,那你你就真的too young,too simple,sometimes naive 了。无叶风扇真正的原理是下图这样的。

简单来说,底部是入风口,中间有风扇,在经过奇怪的管道,从这个圈里把风送出去。是的你没有看错,戴森这个老贼,无叶风扇只是把风扇藏里面了!所以无叶风扇的结构还是入风口、风扇、出风口。只是他把风扇和出风口之间加了个高大上的管道。 而如果这个出风管道是跟正常的管道,那么久太不装逼!太!不!拉!风!了!所以这老家伙就把出风管道变成了一个圈。 其实这个圈的内部是空的,尾部有反向的槽,通过缩窄出风口、让风扇加大风俗,所以圈正面的风速就要远大于背面,从而吹到人体皮肤表面,加快人体表面水分的蒸发,蒸发过程中吸热,起到降温的作用。详情看下面的风道截面图。

普通的风扇,便宜一些的几十块,贵一些的二三百块,而戴森就是设计了这么个风道,就让产品的售价直接在后面加了个"0"。真是给这个老家伙的机智贵了,这逼装的我给满分。 所以无叶风扇的优点都有啥呢? 1、拉风 2、逼格高 3、不怕扇叶切手指头 4、清理更方便 缺点呢?

相关文档
最新文档