首节钢管混凝土柱超声波检测方案

首节钢管混凝土柱超声波检测方案
首节钢管混凝土柱超声波检测方案

广州白云机场扩建工程二号航站楼及配套设施

钢管混凝土柱工程

首节钢管混凝土柱砼超声波检测专项方案

目录

一、工程概况 (1)

二、编制依据 (1)

三、声波透射法检测原理 (2)

四、检测设备仪器 (2)

五、声测管埋设 (3)

5.1声测管的埋设 (3)

5.2声测管埋设常见问题、预防措施及解决方法 (4)

六、现场检测 (5)

6.1检测前准备工作 (5)

6.2检测对象及数量 (5)

6.3现场检测步骤 (7)

七、人员配置 (8)

八、检测成果整理 (8)

九、质量保证措施 (9)

十、安全及文明措施 (9)

一、工程概况

该工程主楼钢管混凝土柱主要有三种型号:T-GGZ-1400、T-GGZ-1800及T-GGZ-1400~1800,共60根(其中一标45根,二标15根)。单根高度为24.3m~46.5m。其中,T-GGZ-1400~1800为锥形柱,T表示主楼,GGZ表示钢管混凝土柱,1400、1800、1400~1800表示外直径。钢管混凝土柱钢材采用Q345B,混凝土强度等级为C50,钢管柱壁厚30mm。

图1-1 钢管柱平面布置图

二、编制依据

1.《超声回弹综合法检测混凝土强度技术规程》(CECS02-2005);

2.《超声法检测混凝土缺陷技术规程》(CECS21-2000);

3.《建筑抗震设计规范》(GB50011-2010);

4.《钢管混凝土工程施工质量验收规范》(GB 50628-2010);

5.《钢管混凝土结构设计与施工规程》(CECS28:90);

6.《广州白云国际机场扩建工程二号航站楼钢管混凝土柱工程服务招标文件》;

7.《广州白云国际机场扩建工程二号航站楼及配套设施施工图》。

三、声波透射法检测原理

本工程首节钢管柱拟采用声波透射法检测混凝土浇筑质量。

声波透射法是将超声波发射探头和接收探头同时放进预先埋入充满水的两根声测管中,发射探头产生的超声波经过水耦合穿透混凝土到达另一个钢管中的接收探头,接收探头将接收到的信息传入仪器,通过综合分析接收到的超声波在混凝土中的信号,如声速、声幅、频率和波形诸参量的特征,从而对钢管混凝土柱质量做出评价。

它的基本依据是:当混凝土中存在缺陷时,超声波声速、声幅、频率和波形诸参量都有反映。首先是当混凝土内部存在缺陷时,在超声波发—收通路上形成了不连续介质,低频超声波将绕过缺陷向前传播,在探测距离内,其绕射到达所需的“声时”比超声波在无缺陷的混凝土中直接传播时所需的“声时”长,反映出超声波的声速减小。其次是由于混凝土存在缺陷时,超声波在混凝土中传播时声能衰减加大,接收信号的首波幅度下降。第三是由于混凝土存在缺陷时,高频成分比低频成分消失快,接收信号的频率总是比通过相同测距的无缺陷混凝土接收到的频率低。最后,由于超声波在缺陷界面上的复杂反射、折射,使声波传播的相位发生差异,叠加的结果导致接收信号的波形发生畸变。据此即可对混凝土内部的质量情况作出判断。

图3-1 声波透射法原理示意图

四、检测设备仪器

主航站楼钢管混凝土柱混凝土质量检测采用北京智博联科技有限公司的ZBL-520A型非金属超声检测仪进行检测,如图4-1所示。ZBL-520A型非金属超声检测仪主要应用领域为:超声-回弹综合法检测混凝土抗压强度;超声法检测混凝土裂缝深度、不密实区域及蜂窝空洞、结合面质量、表面损伤层厚度、钢管混凝土内部缺陷;超声透射法基桩、连续墙完整性快速检测。

图4-1 ZBL-520A型非金属超声检测仪

表4.1 ZBL-520A型非金属超声检测仪技术参数表

名称技术指标名称技术指标

声时精度0.05μs通道数1发射+2接收+外

触发

声时测度范围0~629000μs触发方式信号触发、外触发

接收灵敏度≤30μv提升系统双通道自动提升系

采样间隔(周期)0.05μs~400μs,14档

可调

最小测点间距0.05mm

放大器增益82dB 测试速度1m/s(0.1m一个点)放大器带宽10kHz~250 kHz 单剖面最大测点数1024

幅度分辨率0.39% / /

发射电压(V)65、125、250、500、

1000可选

通用接口

并口+USB口、支持

移动存储

发射脉宽20μs~20ms可调操作方式快捷键+光电旋钮

存储容量256M(CF卡)+1G

(U盘)

管口导向轮

2×0.3kg,

27×9×10cm

五、声测管埋设

5.1声测管的埋设

(1)结合本项目情况及规范要求,声测管采用φ50*2.0的普通钢管。

(2)主楼钢管混凝土柱主要有三种型号:T-GGZ-1400、T-GGZ-1800及T-GGZ-1400~1800。结合实际情况及规范要求,对直径为1400mm的钢管混凝土柱设置3根声测管,对直径为1800mm的钢管混凝土柱设置4根声测管。

3根管(管径1.4m)4根管(管径1.8m)

图5-1 声测管布置图

(3)声测管埋设深度埋设至钢管混凝土柱的底部,其上端高于首节钢管柱混凝土浇筑面30cm,同一根钢管混凝土柱的声测管外露高度相同。

(4)声测管的底部采用焊接盲盖或钢板来保证密封;声测管安装完毕后将上口加盖或加塞封闭,以免浇灌混凝土时落人异物,致使孔道堵塞。

(5)声测管采用钢筋支架固定。固定方式采用焊接,当采用焊接时,应避免烧穿声测管或在管内壁形成焊瘤,影响声测管的通直。为了保证声测管的相互平行,可以在声测管间点焊三角形钢筋架支撑。

(6)每根声测管埋设完成后,均应向声测管内加注清水作为检测用的藕合剂。

(7)混凝土达到设计强度的70%或者15d以后才能进行检测。检测前应用吊锤对声测管进行试探是否畅顺,并向管中注满清水。

5.2声测管埋设常见问题、预防措施及解决方法

5.2.1 声测管埋设常见问题及预防措施

声测管埋设常见问题有以下几种:管体变形、管体堵塞(非混凝土堵塞)、管体堵塞(混凝土堵塞)。

(1)管体变形

产生原因:①搬运过程中的野蛮装卸;②打混凝土时导管撞击管体;③安装时人为弯曲。

预防措施:①装卸时轻拿轻放;②打混凝土时导管垂直升降,避免左右摆动确保不直接撞击管体;③安装时保持声测管始终垂直。

(2)管体堵塞(非混凝土堵塞)

产生原因:从管体顶端掉入杂物。

预防措施:安装完声测管后检查管内是否加满清水,及时密封管体顶端(加盖或内塞)。

(3)管体堵塞(混凝土堵塞)

产生原因:①焊接时焊穿管体;②运输和封装过程中造成管口变形。

预防措施:①如发现管体被焊穿,及时更换声测管;②如发现管口变形,及时更换。

5.2.2 疏通堵管方法

绝大部分堵管情况,都是焊缝砂眼或破裂进入杂物造成的,像这种堵管情况,可用以下两种方法疏通:

(1)用软水管伸到堵管位置并用水进行冲洗,使堵塞的杂物被清水冲出。

(2)加工几米一节直径约25mm的镀锌管,每节管可用套筒机械连接,可随意拆解。声测管内加入适量水,用连接后的镀锌管插到声测管内,一头放到堵管的位置,一头套上空压机气管,用空压机高压气把堵塞的杂物冲掉。

六、现场检测

6.1检测前准备工作

(1)采用率定法确定仪器系统延迟时间。

(2)在钢管混凝土柱顶测量相应声测管外壁间净距离。

(3)将各声测管内注满清水,检查声测管是否畅通;换能器应能在全程范围内正常升降。

6.2检测对象及数量

现场共60根钢管柱,根据规范要求对其中25%的钢管柱进行超声波检测,其中Q 轴、M轴共24根钢管柱,规格Φ1400×30,对其中6根进行声波投射检测;K轴、G 轴、1/D轴共36根钢管柱,规格Φ1800×30,对其中9根进行超声波检测。详见图6-1所示。

图6-1 检测对象布置示意图

表6.1 检测钢管混凝土柱参数表

编号首节钢管柱高度(m)声测管数量声测管长度(m)

J-GGZ-1 4.150 3 3.950

J-GGZ-2 4.150 3 3.950

J-GGZ-3 4.150 3 3.950

J-GGZ-4 6.550 3 6.350

J-GGZ-5 6.550 3 6.350

J-GGZ-6 6.550 3 6.350

J-GGZ-7 4.950 4 4.750

J-GGZ-8 6.550 4 6.350

J-GGZ-9 6.550 4 6.350

J-GGZ-10 6.550 4 6.350

J-GGZ-11 6.550 4 6.350

J-GGZ-12 6.550 4 6.350

J-GGZ-13 5.650 4 5.450

J-GGZ-14 5.650 4 5.450

J-GGZ-15 5.650 4 5.450

6.3现场检测步骤

(1)将发射与接收声波换能器通过深度标志分别置于两根声测管中的测点处。

(2)发射与接收声波换能器应以相同标高同步升降(图6-2)。声波发射与接收换能器应从柱底向上同步提升,声测线间距不应大于300mm;提升速度不宜大于0.5m/s。

图6-2 平测法

(3)实时显示和记录接收信号的时程曲线,读取声时、首波峰值和周期值,宜同时显示频谱曲线及主频值。

(4)将多根声测管以两根为一个检测剖面进行全组合,分别对所有检测剖面完成检测。

(5)在钢管柱内混凝土质量可疑的测点周围,应采用加密测点、扇形扫测(图6-3)进行复测,进一步确定钢管柱内混凝土缺陷的位置和范围。采用扇形扫测时,两个换能器中点连线的水平夹角不应大于40°。

图6-3 扇形扫测法

(6)在同一检测剖面的检测过程中,声波发射电压和仪器设置参数应保持不变。

七、人员配置

表7.1 拟投入的主要检测人员基本情况表

序号姓名学历职称专业工作

年限

在本工程承担的

工作岗位

1 刘军生博士研究生正高级工程师15 项目负责人

2 朱武卫硕士研究生正高级工程师15 项目总工

3 王龙海硕士研究生工程师

4 现场负责人

4 刘君宏硕士研究生工程师 3 检测人员

5 雷钊本科初级工程师 2 检测人员

6 任新龙本科初级工程师 2 检测人员

八、检测成果整理

在整个主楼首节钢管混凝土柱砼施工完成,对15根钢管混凝土柱一次性检测。最终向业主提交一份完整的首节钢管混凝土柱混凝土质量检测报告。

九、质量保证措施

(1)贯彻国家和行业法律法规,严格按现行规程规范以及施工方案进行检测。

(2)建立健全各项规章制度,杜绝违规操作。

(3)检测前要进行场地踏勘,收集勘察、施工资料。

(4)检测人员必须符合各项要求,凭检测证在指定岗位上进行检测工作。

(5)组织所有检测人员认真熟悉图纸和技术、规范要求,进行技术交底。

(6)检测原始记录、资料、计算、图标必须真实完整,不得涂改,并妥善保管,严把质量关。

(7)检测遇到异常情况应及时提出,需技术变更待甲方会同设计方同意后方可变更。

(8)检测人员要严格执行有关规范、规程制定的各项技术措施进行检测工作,工作要精益求精,对检测数据负责。

(9)严格执行检测人员自检、项目抽检和公司总检三级检查制度,严把质量关,确保检测成果的科学、公正、真实。

(10)检测仪器设备要有仪器使用标识,对设备运转及技术参数做好详细记录,并规定详细的操作规程。

(11)当标准、规范等文件如有不一致之处,按照标准和要求高者执行。

(12)检测机构履行合同同时使用或参考上述标准,规范以外的技术标准、规范时,应征得业主单位同意。

十、安全及文明措施

(1)检测人员进入施工现场时首先进行安全交底,并接受项目部的安全教育活动和培训,正确佩带安全帽等劳动保护用品。

(2)施工现场不得穿裙子、拖鞋、短裤等宽松衣物;在危险区域作业时应配戴好安全带,并挂在安全可靠处。

(3)新到的检测人员在施工现场必须遵守安全生产管理规章制度。

(4)及时配备各种安全防护用具,确保人身和设备的安全。

(5)检测人员发现不安全隐患必须及时报告检测项目负责人,检测项目负责人做好记录,并报告总承包单位及时处理。

(6)办公场所作好防火、防盗等保卫工作,避免仪器设备丢失,影响工作正常开展。

(7)施工作业之前要求检测项目负责人对检测人员进行安全讲话,每周向本工程检测人员进行书面安全交底,保证检测过程中的安全。

(8)交叉作业时,要有可靠的防护措施,不得伤害他人,避免被他人伤害。

新 钢管柱混凝土浇捣施工方案

宁波坤和中心工程 地下室矩形钢管混凝土柱砼浇捣 施 工 方 案 编制人: 审核人: 编制单位:浙江二建建设集团有限公司宁波坤和中心项目部编制日期:年月日 审核人: 批准人: 审批单位:浙江省二建建设集团有限公司 审批日期:年月日

目录 1、工程概况及编制依据 (3) 2、施工方法及要点 (4) 3、质量安全保证措施 (5) 4、附图 (6)

1、工程概况: 1.1、概况: 宁波坤和中心工程位于宁波中心市区奉化江西侧的商务中心CBD9#、10#地块。由2幢分别为20层和25层的办公楼、1幢40层的酒店及公寓楼、5层商业裙楼和四层地下室组成,总建筑面积168843㎡。建筑最高高度约157米。本工程地下室为型钢砼框架-钢筋砼筒体结构。 1.2、箱形钢柱现状 地下室:地下室型钢混凝土柱底部采用十字形型钢,上部为箱形钢柱,钢柱外包钢筋混凝土柱,根据设计要求以及工程实际情况,除支撑限制钢柱分节安装外,余地下室钢柱一次性安装就位。箱形钢柱顶标高大部分为1.15或1.35米(基础底板面标高为-14.5m)。箱形柱与十字柱的变截面标高主要为:-13.41~-12.2m、-9.6~-8.8 m、-5.3~-1.75 m等。箱形柱钢管截面规格主要有:700×700mm、650×650 mm、600×600 mm、550×550 mm、500×500 mm、450×450 mm等。箱形柱内外均需浇砼,箱形柱内一次性砼浇筑高度为13.41~3.1米等,其中,箱形柱内为无收缩C50砼,掺加HEA膨胀剂,箱形柱柱外为普通C50砼;设计要求先浇箱形柱内砼,后浇柱外砼,故需高空作业进行箱形柱内砼浇筑。箱形柱示意图及变截面图见后附图二所示。 1.3、编制依据: (1)《混凝土结构工程施工质量验收规范》(GB50204-2002)。 (2)《矩形钢管混凝土结构技术规程》(CECS 159:2004)。

首节钢管混凝土柱超声波检测方案

广州白云机场扩建工程二号航站楼及配套设施 钢管混凝土柱工程 首节钢管混凝土柱砼超声波检测专项方案

目录 一、工程概况 (1) 二、编制依据 (1) 三、声波透射法检测原理 (2) 四、检测设备仪器 (2) 五、声测管埋设 (3) 5.1声测管的埋设 (3) 5.2声测管埋设常见问题、预防措施及解决方法 (4) 六、现场检测 (5) 6.1检测前准备工作 (5) 6.2检测对象及数量 (5) 6.3现场检测步骤 (7) 七、人员配置 (8) 八、检测成果整理 (8) 九、质量保证措施 (9) 十、安全及文明措施 (9)

一、工程概况 该工程主楼钢管混凝土柱主要有三种型号:T-GGZ-1400、T-GGZ-1800及T-GGZ-1400~1800,共60根(其中一标45根,二标15根)。单根高度为24.3m~46.5m。其中,T-GGZ-1400~1800为锥形柱,T表示主楼,GGZ表示钢管混凝土柱,1400、1800、1400~1800表示外直径。钢管混凝土柱钢材采用Q345B,混凝土强度等级为C50,钢管柱壁厚30mm。 图1-1 钢管柱平面布置图 二、编制依据 1.《超声回弹综合法检测混凝土强度技术规程》(CECS02-2005); 2.《超声法检测混凝土缺陷技术规程》(CECS21-2000); 3.《建筑抗震设计规范》(GB50011-2010); 4.《钢管混凝土工程施工质量验收规范》(GB 50628-2010); 5.《钢管混凝土结构设计与施工规程》(CECS28:90); 6.《广州白云国际机场扩建工程二号航站楼钢管混凝土柱工程服务招标文件》; 7.《广州白云国际机场扩建工程二号航站楼及配套设施施工图》。

混凝土裂缝深度超声波检测方法

混凝土裂缝深度超声波检测方法 林维正 1 原来裂缝深度检测方法 对混凝土浅裂缝深度(50cm以下)超声法检测主要有以下几种方法,如图1所示的t c-t0法,图2所示的英国标准BS-4408法等,“测缺规程”推荐使用t c-t0法[2,3]。 上述方法中,声通路测距BS-4408法以二换能器的边到边计算,而t c-t0法则以二换能器的中到中计算,实际上声通路既不是二换能器的边到边距离,也不是中到中距离,“测缺规程”中介绍了以平测“时距”坐标图中L轴的截矩,即直线议程回归系数的常数项作为修正值,修正后的测距提高了t c-t0法测试精度,但增加了检测工作量,实际操作较麻烦,且复测时,往往由于二换能器的耦合状态程度及其间距的变化,使检测结果重复性不良。 应用BS-4408法时,当二换能器跨缝间距为60cm,发射换能器声能在裂缝处产生很大衰减,绕过裂缝传播到接收换能器的超声信号已很微弱,因此日本国提出了“修改BS-4408法”方案,此方案将换能器到裂缝的距离改为a1<10cm,这样就使二换能器跨缝最大间距缩短在40cm以内。 “测缺规程”的条文说明部分(表4.2.1)中,当边-边平测距离为20.25cm时,按t c-t0法计算的误差较大,表4.2.1中检测精度较高的数据处理判定值为舍弃了该两组数据后的平均值。条文说明第4.3.1条仅作了关于舍弃Lˊ<d c数据的提示,实际上当二换能器测距小于裂缝深度时,超声波接收波形产生了严重畸变,导致声时测读困难,这就是造成较大误差的直接原因。表4.2.1中未知数t c-t0法在现场检测中对错误测读数值的取舍是一个不易处理的问题。 “测缺规程”的条文说明第4.1.3条指出:当钢管穿过裂缝而又靠近换能器时,钢管将使声信号“短路”,读取的声时不反映裂缝深度,因此换能器的连线应避开主钢管一定距离a,a 应使绕裂缝而过的信号先于经钢管“短路”的信号到达接收换能器,按一般的钢管混凝土及探测距离L计算,a应大于等于1.5倍的裂缝深度。 根据a≥1.5d c这一要求,如国科3表示,表1给出了相邻钢管的间距S值。 表1 检测不受钢筋影响的相邻钢筋最小间距S值

钢柱顶升复位方案

钢柱顶升复位工程 专 项 施 工 方 案 2017 .11 .22

一、工程概况 十堰市普林南路32号某工厂生产车间,结构形式为联跨门式钢架厂房。因局部基础沉降,致使三根厂房边柱产生倾斜(垂直度最大偏差60mm),影响车间内在用行车使用安全,业主方决定进行纠偏处理,以确保生产安全。 经组织相关施工技术人员现场勘查研究,拟采用以下方案进行顶升复位处理: 1、对三根发生沉降的钢柱进行整体顶升,使其恢复至原设计标高,消除行车行驶隐患。 2、采用牵引法校正钢柱垂直度,使其复位至规范要求范围内。 3、扩大浇筑外包混凝土,对柱脚进行加固。 二、顶升复位工艺设计 经保守估算,该钢柱自重约1t左右,加上行车梁及屋盖、墙面系统自重,以及基础混凝土对钢柱底板的咬合力,选用6个20t机械千斤顶作为顶升动力;采用3个2吨手拉葫芦作为牵引动力,人工进行复位作业,操作流程简述如下: 1、清理、移除厂房内外距钢柱5米范围内设备、机具等杂物(清理范围内现场情况如下图示意)。 2、局部破除柱边矮墙,使焊接在钢柱外侧翼缘板上的拉结筋完全露出;

凿除柱脚外包混凝土使柱脚完全露出;接长柱脚螺栓(如下图示意)。 3、沿钢柱里侧搭设移动脚手架,利用脚手架,人工树立临时支撑(φ180*6钢管),对屋面钢梁进行临时顶撑防护,如下图示意:

钢管临时支撑顶部设耳板两块,采用钢丝绳与屋面钢梁捆绑牢靠,确保支撑不致倾倒,如下图示意: 调整好钢管垂直度后,钢管支撑根部采用木楔对插顶紧打牢,钢柱顶升时安排专人观察,随时用手锤跟进顶紧,如下图示意:

4、采用三副手拉葫芦、钢丝绳,分别连接三根边柱柱顶与中柱柱脚,略微持力,以备调整、校正钢柱垂直度,如下图示意: 5、在三根钢柱下采用H型钢搭设顶升台架,采用H型钢或钢板,在钢柱两侧翼缘板外侧焊接顶升支点“牛腿”,采用6台20吨螺旋千斤顶,同步缓慢顶升钢柱,如下图示意: 顶升过程中采用磁力线坠、钢尺、水平仪同步观测钢柱升起高度和垂直度变化情况。钢柱顶升至预定高度即可停止顶升,垂直度偏差可采用手拉葫芦调整至规范允许范围内。 6、在钢柱柱脚底板下支垫预先准备好的钢垫块,拧紧螺帽;松开、撤

钢管柱施工方案

霞光剧院屋钢管梁柱工程 施 工 案 编制: 审核: 审批人: 单位:集团有限公司

日期:2013年10月 一、工程概况 二、编制依据 1、×××××部分设计图; 2、钢管混凝土叠合柱结构技术规程CECS188:2005 3、高强混凝土结构技术规程CECS104:99 4、《碳钢焊条》GB/T5117-1995 5、《低合金钢焊条》GB/T5118-1995 6、《低合金高强度结构钢》GB/T1591-2008 7、《建筑工程抗震设防分类标准》GB50223-2004 8、《《建筑结构抗震设计规》GB50011-2010 9、《高层建筑混凝土结构技术规程》JGJ3-2002 10、《钢结构工程施工质量验收规》GB50205-2001 11、《混凝土结构工程施工质量验收规》GB50204-2002 12、《建筑钢结构焊接技术规程》JGJ81-2002 13、施工图纸设计要求 三、工艺流程 原材料复试→下料卷板→加工厂埋弧自动焊→加工厂焊缝超声波探伤检测→钢管柱附件焊接、穿→钢管柱进场→环箍现场焊接→钢管柱吊装、固定→现场CO2气体保护焊水平缝→现场焊缝超声波探伤→浇

筑钢管柱部混凝土→柱筋绑扎→柱模立支→外柱混凝土浇筑 四、主要施工法 (一)原材料复试 本次钢管柱加工由建设单位委托外加工,故建设单位需要求加工单位出具材料合格证及法定单位出具的有效的检验报告。必要时,可由建设单位组织监理单位、施工单位、质监单位到加工单位进行实物抽样到履行有见证送检。该形式的“有见证检验”“批量需相关单位协商后确定。 (二)下料、卷板 1、钢板的下料 钢板进场复试合格后,可按板厚中心线性长度不变的原理并结合焊缝宽度来计算钢板的下料宽度。 下料长度长度应格按设计层高及预留的弹性压缩量进行加工。其弹性压缩量可与设计单位协商确定,一般不应有正公差。现场焊接后可根据实际测量值予以修正。 下料前可对焊缝坡口进行预加工,加工时应格按照《建筑钢结构焊接规程》(JGJ81-91)中对厚钢板焊接(全熔透焊缝)的坡口加工要求进行。 下料前,应采取措施确保四条边互相垂直,从而保证卷板后的横向平面与柱的母线垂直。 2、钢板的卷管 钢板下料检验合格后,由卷板机完成卷板工作,钢板卷圆后直径允

钢管混凝土密实度检测方案模板

钢管混凝土密实度检测方案 1.超声法检测混凝土缺陷的基本原理 利用超声脉冲法检测混凝土缺陷依据以下原理: ( 1) 超声脉冲波在混凝土中遇到缺陷时产生绕射, 可根据声时和声程的变化, 判别和计算缺陷的大小; ( 2) 超声脉冲波在缺陷界面产生散射和反射, 到达接受换能器的声波能量( 波幅) 显着减小, 可根据波幅变化的程度判断缺陷的性质和大小; ( 3) 超声脉冲波经过缺陷时, 部分声波会产生路径和相位的变化, 不同路径或不用相位的声波叠加后, 造成接收信号波形畸变, 可参考畸变波形分析判断缺陷; ( 4) 超声脉冲波中各频率成分在缺陷界面衰减程度不同, 接收信号的频率明显降低, 可根据接收信号主频或频率谱的变化分析判别缺陷情况。 当混凝土的组成材料、工艺条件、内部质量及测试距离一定时, 各个测点超声传播速度、首波幅度和接收信号主频率等声学参数一般无明显差异。如果某部分混凝土存在空洞、不密实或裂缝等缺陷, 破坏了混凝土的整体性, 经过该处的超声波与无缺陷混凝土相比较, 声时明显偏长, 波幅和频率明显降低。超声法检测混凝土缺陷, 正是根据这一基本原理, 对同条件下的混凝土进行声速、波幅和主频测量值的相对比较, 从而判断混凝土的缺陷情况。

2.超声法检测钢管混凝土缺陷 2.1检测原理 采用超声波检测是钢管混凝土密实度和均匀性无损检测的首选方案。当前该技术已经在钢管混凝土结构中得到了较为广泛的应用。采用超声波检测钢管混凝土的质量, 是由于超声波在混凝土中传播时它的声学参数发生变化, 而超声波的声学参数与核心混凝土的密实度、均匀性及其与钢管壁的粘结情况等有关。根据超声仪接收信号的超声声时或声速、初至波幅度、接收信号的波形和频率的变化情况, 作相对比较分析判定钢管混凝土各类质量问题。 钢管混凝土超声检测方法如图1所示。 图1超声波检测系统方块图 检测钢管混凝土缺陷采用对穿检测法。超声波沿钢管混凝土径向传播的时间t混和沿钢管壁半周长传播的时间t管的关系为: = v R t π 管 管 2 = v R t 混 混 v = 2v t t π 混 混 管 管

混凝土超声波检测实验

混凝土超声波检测实验 一、实验目的: 学习超声波检测仪的使用,掌握混凝土超声波检测的基本原理和方法。掌握首波声时、振幅、频率测定的基本方法。 二、实验仪器及装置: CTS-35A非金属超声波检测仪、超声换能器、混凝土试块。 三、实验原理: 超声波检测技术是利用超声波在物体传播中的反射、绕射和衰减等物理特性,测定物体内部缺陷的一种无损检测方法。 混凝土超声波缺陷检测,目前主要采用“穿透法”,即用发射换能器发射超声波,让超声波在所检测的混凝土中传播,然后由接收换能器接收,它将携带有关混凝土材料性能和内部结构等信息。 超声波在混凝土中传播的速度与混凝土的组成成分,混凝土弹性性质,内部结构的孔隙、密实度等因素有关。混凝土弹性模量高、强度高、混凝土致密,超声波在混凝土中传播的速度也高,因此随混凝土强度不同,超声波传播的声速不同。 超声波在所检测的混凝土传播,遇到空洞、裂缝、疏松等缺陷部位时,超声波振幅和超声波的高频成分发生衰减。超声波传播中碰到混凝土的内部缺陷时,由于超声波的绕射、反射和传播路径的复杂化,不同波的叠加会使波形发生畸变。因此当超声波穿过缺陷区时,其声速、振幅、波形和频率等参数发生变化。 目前对混凝土的超声波检测主要是检测结构混凝土的强度,混凝土的密实度、有无空洞、裂缝等缺陷。 四、实验内容和步骤: 1.根据首波声时判定混凝土试块的强度。 由于混凝土试块的不均匀性,在每个混凝土试块的不同部位进行测试,取其平均值。 表1 混凝土强度与波速关系参考表 混凝土试块强度C25 C30 C35 C40 波速(m/s) 3500-3800 3700-4000 3900-4200 4100-4500 2.混凝土浅裂缝的检测 用平测法(斜测法)测量浅裂缝的位置及深度,如图1所示。 混凝土试块 图1 平测法测量浅裂缝位置及深度示意图

钢管柱混凝土施工方案

钢管柱混凝土施工方案 一、工程概况 本工程钢管混凝土柱有D600、700、800、900、1000mm五种截面,共计474根。钢管柱埋件位于桩顶标高处,固定难度大。钢管柱安装受预应力筋安装等交叉作业的影响较大。单节钢管柱约8t,塔吊选型和布置需同时考虑混凝土结构和钢管柱吊装施工;钢管混凝土柱自密实混凝土施工方案的选择和质量保障直接影响结构使用安全。 二、钢管混凝土施工方法选择 本工程钢管柱管径均大于350mm以下,分节吊装和分段浇筑,每节长度大于4m以上,根据本工程的平面布置和施工现场条件的限制,为了不影响主体结构和钢结构施工,部分钢管柱汽车泵无法辐射到部分,只能利于夜间塔吊空闲时间,采用塔吊将混凝土送入钢管柱内;另本工程设计有变截面钢管柱、钢管斜柱、V形钢管柱,且节点处有水平加劲肋,给施工带了一定的难度,须混凝土自钢管柱上口灌入,一次浇灌高度不大于2m,采用人工和振捣器械对混凝土实施振捣,已达到密室效果,所以选用高抛自密实法+人工浇捣的方法浇筑本工程钢管柱内的混凝土。 三、钢管柱自密实混凝土施工 1 钢管混凝土柱竖向分节及施工机械选择 本工程钢管混凝土泵送高度为-12.03m~35.432m,根据工程设计特点和施工部署,采取分节进行浇筑,其分节见表3.1-1。 2 混凝土配合比设计与配制 本工程钢管柱混凝土设计强度等级为C40,根据本工程特点和选用泵送顶升浇筑法施工,须采用自密实微膨胀混凝土。依据中国土木工程学会标准《自密实混凝土设计与施工指南》CCES 02-2004,对自密实混凝土的组成材料要求,工作性能评价指标及试验方法,配合比设计与配制,按如下要求配制:1)自密实混凝土的组成材料要求 (1)水泥:采用42.5普通硅酸盐水泥,其质量符合现行国家标准《通用硅酸盐水泥》GB175-2007的要求。

【广东】钢管混凝土超声波检测方案

钢管混凝土检测方案 一、工程概况 本工程外框筒由30根巨型钢管混凝土柱斜交组成,共分成17个区域。其中构件1~7区混凝土强度等级为C70,8~17区为C60;节点JA ~JG 区混凝土强度等级为C90,JH ~JP 区为C80,JQ 区为C60。各区域钢管柱倾斜角度为8.06°~17.07°(钢管柱中心线与大地垂线的夹角)。 构件区单根混凝土浇筑量为7~43m 3,单个节点混凝土浇筑量为2~47m 3。 α/2α/2 α/2α/2 椭圆拉板加劲板 加强环板 非节点区 节点区 非节点区 非节点区 节点区 非节点区 钢管分节示意图(正面)钢管分节示意图(侧面) (构件区) (构件区) (构件区) (构件区) 二、检测目的 评价钢管混凝土浇筑质量。 三、检测依据 《钢管混凝土结构设计与施工规程》(CECS28:90); 《建筑结构检测技术标准》(GB/T50344-2004); 《超声法检测混凝土缺陷技术规程》(CECS21:2000)。 四、钢管混凝土的检测

为确保钢管混凝土的浇筑质量,拟从以下方面进行控制和检查: 1、在钢管混凝土施工之前,进行钢管混凝土1:1现场模拟试验,以验证浇筑工艺及混凝土浇筑质量; 2、根据广州市质检站有关规定,对构件区抽取10%进行现场超声波检测,共分8次进行(共17个构件区,每个构件区30根钢管柱,17*30*10%=51根,现场实际需抽取51根)。 3、由于声管法超声波检测要求3根声管平行布置伸到同一高度,考虑到塔吊的吊运能力,本工程节点部位直段较短,只有50cm左右,不能满足上述要求,且混凝土浇筑工艺已从试验中得到认证,所以只针对直管段进行声管法超声波检测。 (一)、超声波检测 构件1区现场已抽取6个直段钢管(角部、中部和边部各2根,具体为Z4a、Z5a、Z6a、Z7a、Z8a、Z8b,具体位置详后附图)进行埋设声管超声波检测,(已由广东省建筑科学研究院检测完成,混凝土质量检测为合格)。 构件区2已抽取3根钢管柱。 根据广州市质检站的有关规定进行检测的10%(51根,由广州市穗监来完成)现场的布置如下:构件4区抽取30根钢管柱、构件9区抽取10根钢管柱、构件14区抽取7根钢管柱。 各区段具体布置如后附图所示。 (二)、检测方法如下: 根据广州市有关规定,质监站将对本工程钢管混凝土进行10%抽检,检测方法如下:(1)声管埋设: 三根钢管成等边三角形布置, 沿长度方向每隔2米设置焊接 点与钢管柱焊接牢固。 检测管上口应低于钢管柱上口 或连接隔板下口200mm左右, 检测管之间的连接应严密,防 止混凝土进入钢管引起堵塞。 标高最低点 钢管柱 钢管柱内声管埋设示意图

超声波测试混凝土的基本方法

超声波测试混凝土的基本方法 声波在均匀的固体介质中传播时,特别是在金属中定向传播过程中,实际上并没有什么衰减,而在金属与空气界面上则几乎全被反射回来。这就是利用声波来检测金属零部件均匀性和零件内是否有气孔、裂缝、铸造等缺陷的物理基础。而混凝土超声探测亦是根据这一原理来研究混凝土的结构形态。目前比较成功的方法有以下几种类型: (1)用超声波通过混凝土来判断混凝土内部结构的方法,叫透射法或穿透法; (2)用声波所产生的回波信号来研究混凝土内部结构及裂缝位置及波速叫反射法; (3)用声波的界面滑行波来研究岩体的下伏界面速度及界面位置的方法叫折射法; (4)用钻孔来了解混凝土内波速及结构特征随深度的变化,称为孔中测定法。 下面分别介绍各种方法工作的特点及使用条件. 〔I〕透射波(直达波)法: 混凝土超声波透射法,是一种简单而效果又是最好的探测方法?采用透射法发收、换能器机-电,电-机转换效率高,因而在混凝土中的穿透能力相对较强,传播距离相对较长,可以扩大探测范围。透射波法可以获得较反射波法大几倍,较折射波法大几十倍的能量,因而波形单纯、清楚、干扰较小,初至清晰,各类波形易于辨认。透射波法要求发射探头和接受探头之间的距离必须能够准确丈量,否则计算出来的误差值较大,反而影响了测量的精度。 当被测对象较破碎,或存在张裂缝时岩体对声波的衰减系数较大,以及做大距离测试, 可采用锤击法。这时接收仍可采用单片弯曲式换能器接收,其谐振频率以10千赫左右为宜。因为在混凝土上加板的激发频率主频约在数千赫。鉴于这时所测声时值较大,发射到接收的系统延时值在数微秒,可忽略,故不再计较t o的值。 〔U〕反射波(回波)法 用发射、接收换能器检测混凝土质量。超声波在混凝土中传播时,所遇到的每个波阻抗面上,都将发生反射、透射现象,在有几个波阻抗面存在时,则在每个界面上都将发生反射和透射。这样我们在混凝土表面上可以观测到一系列依次到达的反射波如图1所示, 反射波的强度不仅与入射波的强度有关外,而且决定界面的反射系数,即决定两种介质的声阻抗。声波在介质中传播过程中,由于波前的发散作用和凝滞及阻尼等吸收作用,波内稀疏部分与压缩部分中间之热传导及辐射,以及反射波形成过程中都会使入射波的振幅随着传播的距离增加而迅速衰减,在均匀同性介质中,振幅随距离按指数规律衰减。在各向异性介质中,振幅一方面要随距离衰减外,而且随着节理、层理、界面曲率、混凝土结构的破碎程度、裂缝的宽度和长度及与波传播的方向等因素有关,无一定规律的衰减,在计算时,这要看诸影响因素中起主导作用的是什么,抓住主要矛盾,再考虑其它因素。 混凝土不均匀或者由界面破碎等波阻抗面的不同所造成的反射波,当波阻抗面距离小于波形振动的延续面时,则往往造成两个波形振动带的干涉使之产生叠加,反射波多层薄层分辩率最好的位置

混凝土超声检测知识(完整)

混凝土超声检测知识 第一章声学概念 一、波形及其参数 波是物质运动的一种运动型式。波动可分为两大类:一类是机械波,它是由机械振动在弹性介质中引起的波动过程,如水波、声波等;另一类是电磁波,它是由电磁振荡所产生的变化电场和变化磁场在空间的传播过程,如无线电波、红外线、可见光等。 声波是物体机械振动时迫使周围介质也发生振动并使振动向外传播而形成的一种波动。人们通常听到的声波频率范围是20~20000Hz,叫可闻声波。但声波频率超过20000Hz 时,人耳就听不见了,这种声波叫超声波。频率低于20Hz的叫次声波,人耳也听不到。各种声波的频率范围见表1-1。 表1-1 各种声波的频率范围(Hz) 在弹性介质中,任何一个质点作机械振动时,因为这个质点与其邻近的质点间有相互作用的弹性力联系着,所以它的振动将传递给与之相邻的质点,使邻近的质点也同样发生振动然后振动又传递给下一个质点,依次类推。这样振动就由近至远向各个方向以一定速度传播出去,从而形成机械波。从上述可知,机械波的产生必须要有产生机械振动的振源和传播振动的介质。 将接收换能器置于某点接收由声源传过来的声波,实际上就是接收该点在声波作用下的振动过程。振动大小和方向随时间而变化的过程曲线就称为波形。超声仪屏幕上的图形就是传播到接收换能器所在位置质点振动位移随时间变化的曲线。 由于谐振运动是最简单的振动,所以它产生的余弦波是最简单、最基本的波。先讨论

余弦振动在均匀介质中传播的波动方程。图1-1表示离振源一定距离处的质点位移随时间的变化曲线,振源为一余弦振动。其振动方程如下: t A y ωcos (1-1) 式中 A ——振幅 ω——角频率 t ——时间 y ——质点在t 时刻离开平衡位置的位 移 波形参数: 周期T ——相位相同的相邻的波之间所经历的时间称为周期。 频率f ——周期的倒数称为频率,单位赫兹或 千赫兹(Hz ,kHz )。混凝土超声检测使用频率一般在20~200kHz 之间,f 与圆频率的关系为ω=2πf 。 振幅A ——波动的幅度,表征波的强弱,通常以分贝(db )或直接以屏幕上波高度的电压表示。 波长λ——声波波动一次所传播的距离。 波速v ——单位时间波传播的距离,以m/s 或km/s 表示。 波长、频率、波速间有如下关系: λ=f v (1-1) 例如超声波通过混凝土后被接收到,测得其频率为50 kHz ,超声波在混凝土中的传播速度为4500 m/s ,则由(1)式可计算出混凝土中超声波的波长: 间 图1-1 波形图

钢管混凝土顶升施工方案

一、工程概况 防城港青少年活动工程±0.000以上采用钢框架结构。钢框架柱采用钢管混凝土柱,在螺旋焊接钢管的内部灌注混凝土,钢结构与混凝土结合受力。 工程共计钢管混凝土柱72根,按照钢结构制作安装方案分为五个区,详细 规格( *t) 共计需要浇筑混凝土约300 立方米。

根据以往施工经验和本工程钢柱特点工程采用顶升工艺,在钢结构柱安装验收合格后从底部顶升混凝土,一次顶升浇筑完毕不需要振捣,靠顶升挤压自然密实,节约时间又可以克服钢柱高度高、柱中间节点板多从上而下浇筑造成离析或不密实的质量问题。 二、编制依据 《钢结构工程施工质量验收规范》(GB50205-2001)《混凝土结构工程质量验收规范》(GB50204-2002)《建筑机械使用安全技术规程》(JGJ33-86)《施工现场临时用电安全技术规范》(JGJ46—2005) 公司混凝土顶升工艺工法 三、施工总体安排 3.1、施工工艺流程

3.2、施工进度安排 根据施工总体进度的安排和钢结构施工验收情况初步确定,从2010年6月5日开始混凝土顶升施工,预计在7月30日施工完毕。 6月5日-6月10施工中心区12根钢管柱混凝土柱 6月11日-6月15日施工一区标高13.85m的7根钢管混凝土 6月16日-6月20日施工二区标高13.85m的5根钢管混凝土柱 6月21日-6月25日施工一区标高13.85m以上的4根钢管混凝土柱 6月26日-7月5日施工二区标高13.85m以上的15根钢管混凝土柱 7月6日-7月10日施工三区13.85m的5根钢管混凝土柱 7月11日-7月20日施工三区标高13.85m以上的14根钢管混凝土柱 7月21日-1月25日施工四区标高13.85m的6根钢管混凝土柱 7月26日-7月30日施工四区标高13.85m以上的4根钢管混凝土柱 上述时间安排包括准备工作及拆除修复钢管表面工作的时间,实际顶升混凝土时间按照每次施工顶升5/6根安排。 125

钢管混凝土施工方案

钢管混凝土柱的施工方案 一、工程概况 钢管混凝土柱设计直径为720mm。钢管壁厚一2~10层为14mm,11~30层为12mm,采用Q235A钢板按设计尺寸卷制。按现场施工条件,确定2个楼层作为一个组合件依次对接,钢管制作长度~8.4m。 二、钢管混凝土柱施工 1.钢管柱的制作 钢管柱要求各部件的制作、焊接的尺寸、位置、标高准确。为减少现场工作量,保证质量,钢管及各部件制作、组焊集中在工厂完成,经检验合格运至现场安装。 2.钢管柱与基础底板的连接 柱基础设计为在混凝土底板面下落300mm预埋外径1170mm、内径620mm钢板圆环(图 5-53)。为保证位置、标高的准确及平整度小于2mm要求,在底板钢筋绑扎完后,按预埋板规格做成一个稳定的支架,按垫层上放线位置直接落于垫层。在预埋钢板上钻洞,让锚固筋穿过孔洞,调整标高及板面平整度后,进行塞焊焊接。底板混凝土浇筑时,两侧对称浇筑,防止位移。 3.钢管柱的现场安装 (1)吊装设备与方法吊装利用现场施工用的TL-150型塔式起重机,塔式起重机臂长50m,钢管柱吊装在40m范围内,单根柱最大重量,塔式起重机起重量能满足要求,起吊方法采用两点捆绑垂直起吊。 (2)首节钢管柱的安装安装前先清理预埋钢板面,按柱安装方向(应与柱身划线方向吻合)划出十字线,在线上标出柱半径,焊定位板。安装时,调整柱身划线与预埋钢板划线重合,柱外皮与柱半径标点重合后,塞紧定位板。利用顶拉杆调整垂直度,顶拉杆一端焊于预埋钢板上,一端焊于柱身钢管上。垂直度调整好后,将柱脚与肋板焊牢。 (3)钢管柱现场对接钢管柱从地下室至顶层无变径,只存在同径连接。将吊起的上节柱按母线位置缓慢地插入下节柱内衬管上,上下线稍有偏移时,可采用特制厚钢板抱箍钳调整。上节柱插入内衬管过程中,由于内衬管与钢管内壁局部存在摩擦,导致就位困难,可在上下柱接口处设顶拉杆,相互垂直方向各设1根,待顶拉到位后,再利用顶拉杆调整垂直度。符合要求后,焊接防变形卡板(图5-54)。卡板对称设4块,然后进行钢管对接焊施工,防变形卡板和顶拉杆在对接焊完成后拆除,并将其焊点打磨平整。 (4)垂直度控制用2台经纬仪在相互垂 直的两个方向观测,为方便观测,先行安装角部钢管柱。观测时,经纬仪对中于柱轴线,十字竖丝对准柱脚处柱外边线点,观测者由柱脚从下向上观测柱身母线,同时指挥安装人员调整顶拉杆,直至柱顶母线与经纬竖丝重合。另外,对接环缝焊接好后,卸去卡板,对柱身垂直进行复核,并做好垂直度偏差值记录,以便下次安装调整,防止出现累积误差。 (5)对接焊施工现场对接焊采用人工焊,接口焊缝为熔透二级焊缝,分次焊满。焊接工程中,易产生较大的焊接残余变形,导致垂直度偏差。因此,采取措施如下: 1)每根柱从下至上固定焊工,以明确责任。 2)对称施焊,即分段反向对称顺序施焊。 3)严格控制同类型焊机及焊接电流等参数。 4)对接前根据上节柱安装偏差值,计算后在管口实行机械打磨,保持焊缝间隙基本一致。 5)增设防变形卡板。

超声法检测混凝土缺陷题库-最新版本

“超声法检测混凝土缺陷”题库 Ⅰ、单选题 1、基本概念: 1、超声波频率为50kHz,波速为4500m/s,波长为( )。 (A)9m(B)90cm(C)9cm(正确) (D)9mm 2、超声波频率越高,( )。 (A)在混凝土中传播速度越快(B)在混凝土中传播距离越远 (C)在混凝土中传播速度越慢(D)在混凝土中传播距离越短[正确] 3、在混凝土中传播的超声波是一种( )。 (A)机械振动波[正确] (B)电磁波 (C)不能在液体中传播的波(D)不能在气体中传播的波 4、用于发射超声波的换能器在工作的时候,其内部的晶片产生的变化是( )。 (A)将机械能转化为电能(B)将电能转化为机械振动[正确] (C)将机械能转化为辐射(D)将辐射转化为机械能 5、用于接收超声波的换能器在工作的时候,其内部的晶片产生的变化是( )。 (A)将机械能转化为电能[正确] (B)将电能转化为机械振动 (C)将机械能转化为辐射(D)将辐射转化为机械能 6、超声换能器的工作原理是基于其( ) (A)光电效应(B)压电效应[正确] (C)电磁感应(D)涡流感应 7、超声波从固体进入液体或气体中时,只有( )能继续传播。 (A)横波(B)表面波(C)纵波[正确] (D)剪切波 8、超声波在真空中( )。 (A)速度比空气中慢(B)速度比空气中快(C)不能传播[正确] (D)衰减很大 9、超声波在水中的速度比空气中的( )。 (A)快[正确] (B)慢(C)取决于声波频率(D)取决于温度 10、超声波在空气中的速度比混凝土中的( )。 (A)快(B)慢[正确] (C)取决于声波频率(D)取决于温度 11、空气中的超声波速度随着温度上升( )。 (A)上升[正确] (B)下降(C)不变(D)取决于频率 2、《超声法检测混凝土缺陷技术规程》(CECS21:2000) 12、超声法检测混凝土缺陷所采用的超声波频率一般为( )。(2.1.1) (A)20Hz~250kHz (B) 20kHz~250kHz[正确] (C)20kHz~250MHz (D) 20MHz~250MHz 13、在进行不密实区、空洞或混凝土结合面质量检测时,对于工业与民用建筑,测点间距宜为( )。(6.2.1) (A)50mm (B)500mm (C)100mm~300mm[正确] (D)400mm 14、通常情况下进行上部结构梁柱构件超声法检测时,应优先选用( )换能器。(3.2.1) (A)圆管式(B)高频(C)平面[正确] (D)径向 15、检测不密实区和空洞时构件的被测试范围应( )有怀疑的区域。(6.1.2) (A)大于[正确] (B)小于(C)约等于(D)等于 16、超声波的主频是指在被接收的超声脉冲波各频率成份的( )分布中最大的频率值。 (2.1.6) (A)速度(B)波长(C)幅度[正确] (D)相位 17、依据CECS21:2000规范要求,用于混凝土缺陷检测的超声波检测仪声时最小分度应不

框架柱混凝土专项施工方案

框架柱混凝土专项施工方案 一.承重支架的搭设 钢管支架是在外墙安全防护脚手架的基础上形成一个三排全钢脚手架体系,由于柱子较高,框架梁离天面10米,因此,在脚手架安装时,应严格按照脚手架安装规范进行安装。其方案详见脚手架专项施工方案。 二.模板的制作和安装 1. 模板的作用和要求:模板是使混凝土构件按设计图几何尺寸成型的模型板。在施工过程中还要求模板能承受模板的自重,钢筋和混凝土的重量,运输工具,施工人员活荷重和混凝土对侧板的压力及振捣机械的动力作用。要求模板和支撑架必须达到以下几点要求: (1)保证结构和构件各部分形状尺寸和相互位置的正确性, (2)具有足够的强度,刚度和稳定性。 (3)构件简单,便于钢筋绑扎,混凝土浇筑和养护的要求。 (4)模板接缝要严密,不得漏浆。 (5)要选材合理,用料经济。 2.模板选料及制作 (1).本工程钢筋混凝土框架柱选用拼合式模板,采用18mm 厚九夹板,50*70方木和40mm 梁底等材料组成框架柱梁模板。为了保证末班符合要求,便于模板制作安装和拆卸,应该做好放

样工作,这不仅对结构的质量有直接的影响,而且对节约人力物力都有重要意义。 (2). 根据放样图即可制作模板,在制作过程中必须考虑到模板的作用和要求等因素,结合材料规格,加工技术水平,力求省工,省料。 (3). 考虑柱梁模拼接拼装方法,加钉部位及数量,达到制模方便,安装简便,拆模方便。 3.模板安装 模板安装顺序:测量轴线和标高——安装柱模板——调整柱模板的垂直度——加固柱模板——安装大梁底板——侧板——检查轴线偏差——加固梁模板 三.钢筋的制作与安装 1. 本工程钢筋用量大,规格多,为提高钢筋制作效率,施工程序如下:熟悉配筋图——配料——断料——成型——吊运就位——柱梁筋绑扎——箍筋绑架——验收 2.钢筋工程质量要点 (1). 所有钢筋进场必须有产品合格证和试验报告,钢筋的规格,间距根数必须符合设计要求。 (2).定期对钢筋班组进行技术交底工作。 (3). 钢筋的交叉点要用钢丝绑扎牢固,不得有松动和位移现象,箍筋绑扎时应与主筋垂直。

钢管混凝土缺陷处理方案

钢管混凝土缺陷处理方案 该工程经超声波检测后发现局部存在缺陷:包括混凝土与钢管胶结质量较差,或混凝土部存在不密实或空洞问题,由于工期紧并受施工操作难易因素的影响,拟采用从钢管混凝土缺陷部位侧面开孔,往钢管灌注CGM高强无收缩灌浆料的办法,用以修补缺陷,使钢管混凝土柱施工质量达到设计要求。 如果采用以上方法在开孔施钻或灌浆过程中,发现缺陷的贯通性不好致使灌浆效果受到严重影响时,建议改为从钢管混凝土柱顶部向下钻凿竖向取芯孔,穿过和贯通缺陷,从而能够以高压旋喷切割清洗并注浆的方法处理,以确保对缺陷的处理效果。 一、侧向钻孔压力灌浆: 本次处理依据的技术标准: 《混凝土结构加固设计规》GB50367-2006 《混凝土结构加固技术规》CECS25:90 《混凝土用水标准》JGJ63-2006 施工方法、工艺: ①开孔、钻孔 根据声测结论数据放线,配合榔头敲击,在缺陷区(声测建议值围)的底端以上0.1米部位、顶端部位,分别开孔,底端开孔口径20~30MM(与灌浆管口径一致),顶端开孔10~20MM(以冲击电钻

可进入为准),开孔方法待定,宜采用对钢管和混凝土无损方法,在未经设计方、总包方同意的情况下,不宜采用氧割、电焊切割方式。 规规定裂缝宽度大于0.5MM时,钻孔间距可为2-3米,由于缺陷性质并不十分明确,且其连通性并不直观,只能采取探索性钻孔法。 开孔后,如底端孔未揭露缺陷,可以手持冲击电钻(口径20MM 以)方式水平向混凝土中钻孔,如仍未贯通缺陷,应选取同一水平、另一角度重新开孔,宜考虑提高位置重新开孔。如顶端孔开孔后未揭露缺陷,可以手持冲击电钻(口径20MM以)方式取斜向下角度向混凝土中钻孔,如仍未贯通缺陷,宜考虑降低位置重新开孔。 如顶端孔、底端孔均已贯通缺陷部位,应向孔吹气检查两孔的互通性,如连通性不佳可用空压机吹渣清理通道,如基本不具连通性应在两孔之间重新开孔、钻孔,必要时应配合声测手段进一步探查缺陷位置。 ②焊接灌浆管、排气管 底端孔口焊接灌浆钢管,口径20-25,外接转芯阀门和压力灌浆专用钢丝缠绕管,;顶端孔口焊接排气钢管,口径10-15,外接转芯阀门和透明PVC增强水管。 ③制备浆料 CGM高强无收缩灌浆料具有流动性好(在水灰比很低的情况下可获得很大流动性,确保无漏空灌浆)、无收缩(具有微膨胀性能,保证界面紧密接触,灌浆后无收缩)、界面粘接强度高、早强、高强(1—3 天抗压强度可达 30-50MPa 以上)、耐久性强(属无机胶结材料,经

钢管柱混凝土顶升浇筑

钢管柱混凝土顶升浇筑 摘要:钢管柱混凝土顶升浇筑施工,就是在钢管柱接近地面的适当位置安装一个带闸门的钢管做顶升浇筑的进料浇筑导管,直接与汽车泵的输送软管相连,由汽车泵将混凝土连续不断地自下而上呈泉涌状上升顶入钢管内,无需振捣,密实度好,满足钢管混凝土浇筑质量要求。 关键词:钢管柱;混凝土;顶升浇筑 1 钢管柱混凝土顶升浇筑施工现状 我国目前大型工业厂房结构随着施工技术和施工方法的科学发展,大型工业厂房钢管柱混凝土顶升浇筑施工方法,充分发挥了钢管和混凝土的材料特性及优点,施工简便,施工周期短。钢管柱混凝土顶升浇筑施工就是在钢管中填充微膨胀混凝土,它具有承载力高、抗震性能好、节约钢材和施工周期短。 钢管混凝土顶升浇筑时,由汽车泵将混凝土连续不断地自下而上呈泉涌状上升顶入钢管内,利用汽车泵的压力将混凝土自下而上挤压顶升灌入钢管内,顶升浇筑整根钢管混凝土柱。无需振捣,密实度好,钢管混凝土顶升施工不受混凝土养护时间的影响,施工质量优于传统钢筋混凝土框架柱的浇筑质量。 2 钢管柱混凝土顶升浇筑施工背景 大型钢厂热轧板材项目主厂房,主厂房南北为A-G跨,1-14线,主厂房柱采用双肢格构式钢管混凝土柱,柱肩梁以上柱采用焊接H型钢组合柱,共42根,下柱采用双肢格构式钢柱,钢柱的规格及壁厚为Ф610mm×14mm双面螺旋焊接钢管柱,钢管内顶升浇筑C40微膨胀混凝土,钢管混凝土柱柱高13.74m,每米砼量为0.27m3,双肢钢柱混凝土浇筑量为7.42m3,总混凝土量为311.64m3。 3 钢管柱混凝土顶升浇筑施工方法 本工程钢管柱混凝土顶升浇筑采用商品混凝土,混凝土配合比要根据设计要求,实验室出具的混凝土配合比确定,为满足钢管混凝土顶升浇筑的顺利进行,混凝土采用流动性好的混凝土,粗骨料粒径0.5~3cm,坍落度150~180mm,按照实验室混凝土配合比掺加一定量的减水剂,以减少混凝土的收缩量。 混凝土进料连接导管应与钢管柱有一个向上倾斜的角度,角度为45°,进料导管方向向下。混凝土顶升浇筑前从进料导管口插入软管吸进约2kg饮用水,顶升混凝土时湿润钢管内壁,混凝土顶升开始后,由汽车泵车将混凝土连续不断的自下而上呈泉涌状上升顶入钢管内,泵车压力将混凝土从钢管柱底部顶入,顶升浇筑满整根钢管柱混凝土免振捣的施工方法。钢管柱混凝土顶升以溢出钢管顶部的出气孔导管为准。关闭防混凝土回流装置,同时插入4根Ф16mm钢筋,完成钢柱混凝土顶升浇筑施工。

钢管柱自密实混凝土施工

钢管柱自密实混凝土施工 一、工程概况 本工程钢管混凝土柱有D600、700、800、900、1000mm五种截面,共计474根。钢管柱埋件位于桩顶标高处,固定难度大。钢管柱安装受预应力筋安装等交叉作业的影响较大。单节钢管柱约8t,塔吊选型和布置需同时考虑混凝土结构和钢管柱吊装施工;钢管混凝土柱自密实混凝土施工方案的选择和质量保障直接影响结构使用安全。 二、钢管混凝土施工方法选择 本工程钢管柱管径均大于350mm以下,分节吊装和分段浇筑,每节长度大于4m以上,根据本工程的平面布置和施工现场条件的限制,为了不影响主体结构和钢结构施工,部分钢管柱汽车泵无法辐射到部分,只能利于夜间塔吊空闲时间,采用塔吊将混凝土送入钢管柱内;另本工程设计有变截面钢管柱、钢管斜柱、V形钢管柱,且节点处有水平加劲肋,给施工带了一定的难度,须混凝土自钢管柱上口灌入,一次浇灌高度不大于2m,采用人工和振捣器械对混凝土实施振捣,已达到密室效果,所以选用高抛自密实法+人工浇捣的方法浇筑本工程钢管柱内的混凝土。 三、钢管柱自密实混凝土施工 1 钢管混凝土柱竖向分节及施工机械选择 本工程钢管混凝土泵送高度为-12.03m~35.432m,根据工程设计特点和施工部署,采取分节进行浇筑,其分节见表3.1-1。 2 混凝土配合比设计与配制 本工程钢管柱混凝土设计强度等级为C40,根据本工程特点和选用泵送顶升浇筑法施工,须采用自密实微膨胀混凝土。依据中国土木工程学会标准《自密实混凝土设计与施工指南》CCES 02-2004,对自密实混凝土的组成材料要求,工作性能评价指标及试验方法,配合比设计与配制,按如下要求配制:1)自密实混凝土的组成材料要求 (1)水泥:采用42.5普通硅酸盐水泥,其质量符合现行国家标准《通用硅酸盐水泥》GB175-2007的要求。

钢管混凝土顶升法专项施工方案

一、编制依据 1模块车间工程施工图纸 2模块车间工程施工组织设计 3主要规程、规范 3.1《钢管混凝土结构设计与施工规范》JCJ01-89 3.2《泵送混凝土施工技术规程》YBJ220-90 3.3《粉煤灰混凝土应用技术规范》GBJ146-90 3.4《混凝土外加剂应用技术规范》GBJ119-88 3.5《混凝土外膨胀标准》JC476-1998 二、工程概况 模块装配车间占地面积29983㎡,建筑面积25640㎡,露天原料堆场面积4243 ㎡,1层、总高度42.6m,格构式钢管混凝土柱钢排架结构、高强度预应力混凝土管桩钢筋混凝土承台基础。 三、工艺原理 钢管混凝土柱柱芯混凝土顶升施工工艺是利用混凝土输送泵的泵送压力,在钢管柱脚开压注口,在钢管柱顶开出浆孔,将混凝土从钢管柱底部灌入,直至注满整根钢管柱的一种混凝土免振捣施工方法。本工艺能一次性将钢管混凝土柱内的混凝土顶升至所需高度,可减少工序环节,降低劳动强度,加快施工进度。 四、施工准备及作业条件 钢管柱吊装就位,管内无杂物,杯口砼已浇注完毕,且砼强度等级已达到设计强度75%。 1材料要求:浇筑混凝土中掺加UEA,目的是为了防止混凝土固化收缩后与钢管壁之间产生缝隙。该项工程对混凝土的试配主要提出了两项技术要求: 1.1据《钢管混凝土结构设计与施工规程》第15条规定混凝土的坍落度宜不小于15cm,因此应掺适量减水剂。 1.2在满足混凝土强度的基础上要求混凝土无收缩,混凝土与钢管壁能紧密地结合,为此应在混凝土中掺适量膨胀剂。 1.3制作单向阀和截止阀的钢材均为8mm厚及20mm厚的Q345钢板。 2机械准备

所需机具设备有:混凝土搅拌运输车、混凝土输送泵(HBTC90,理论最大输出压力为21Mpa)、输送管、单向阀、截止阀、铁锹、试件制作器具、电焊机、对讲机等。 3配合比设计 由于钢管内有法兰致使钢管内径存在突变,混凝土泵送高度高达42m、水平距离长达100m,这些因素造成混凝土泵送阻力很大,因此钢管混凝土泵送施工难度大,对混凝土的技术性能提出了更高的要求。配合比设计应遵循以下指标: 3.1混凝土设计强度:C40。 3.2混凝土具有良好的可泵性,即坍落度大,和易性好、不泌水、不离析、自密性好。坍落度为190~220mm。 3.3混凝土具有补偿收缩性,并满足下表要求 项目限制膨胀率 (%) 限制干缩率(%) 抗压强度 (Mpa) 龄期水中14d 水中14d,空气中 28d 28d 性能指标≥1.5×10-2≤3.0×10-2≥54.9 3.4初凝时间必须满足每孔管道的压注完毕后,混凝土仍具有足够的和易性,因此要求混凝土初凝时间大于13小时,终凝时间大于16小时。坍落度控制在20cm~22cm,扩展度大于55cm,压力泌水率S10<15ml、S140=40~100ml。 3.5胶凝材料最少用量(水泥、膨胀剂和掺合料的总量)大于 300kg/m3。 3.6配合比设计必须由具有相应资质的专业试验室完成,并由商混供应单位提前做好试拌,以检验各项技术指标是否满足要求。只有经过试拌检验各项指标合格的配合比,方可正式施工。 4补偿收缩混凝土限制膨胀率的计算及确定 补偿收缩混凝土性能指标的确定,一是在不影响抗压强度的条件下膨胀率尽量增大,二是干缩落差要小。混凝土外加剂应用技术规范 GB50119-2003中规定补偿收缩混凝土的膨胀性能,以限制条件下的膨

相关文档
最新文档