基于DSP的光纤光栅波长解调仪的研制

基于DSP的光纤光栅波长解调仪的研制
基于DSP的光纤光栅波长解调仪的研制

嚣半导体光电》2008年10月第29卷第5期邓晓宗等:基于DSP的光纤光栅波长解调仪的研制

(4)通过F式得z的对数值:

Y—logz(z)=30一n+l092(zm)(6)

下面估算一下此种算法的截断误差。根据拉格朗日余项估计定理‘引,线性插值在区间[z[i],z[i+

1]]的截断误差为?

R。(z)一紫(z—z[i])(z—z[i+1]).

则:

旧cz,14等麓杀铲≤

—』罂‰≈0.7x10。6

8?log(2)?0.52一““

可见,通过查表加线性内插的方法计算对数,能精确到小数点后6位,再加上一位或两位整数位,其精度与浮点型表示相当。

5实验及结果分析

实验中,串联两个光纤光栅传感器,传感器1的中心波长为1540Nm,位于频道3,作为温度传感器,不承受应力。传感器2的中心波长为1550nm,位于频道6,粘在悬臂梁上感受应变的变化。将解调仪通过串口与PC相连,在上位机上观察运行结果,如图5所示。

图5上位机程序运行界面

为了验证解调仪的解调精度,对传感器2进行应变实验,实验步骤如下:

1)试验前对光纤光栅传感器预加载三次,加载的应变范围为0~l000肚£,

2)正式加载三次.每次加载至1000弘e,每隔100灶£记录一次读奴;

3)以应变为横坐标,波长变化为纵坐标,绘出光纤光栅传感器工作曲线图,如图6。

可见,波长变化与应变变化具有良好的线性关系。分析试验数据,在三次加载的过程中,最大重复性误差为7pm,对应于7p£的应变测量误差或0.‘7℃的温度测量误差,考虑到传感器本身的误差及加载设备的机械误差,解调仪本身的重复性应更优。

暑1550.4

1550.0

l549.6

6结论

’^

r●

。/∥

j/

h/

一7

,一

+#㈣n

1+《;tlIn

高^I谦

0枷姗I2∞

应变Itte

图6传感器工作曲线

精确地解调出由于被测量的变化引起的波长位移是光纤光栅传感器的一项关键技术。因此,研制性能好、价格低、实用性强的解调设备是当前光纤光栅传感器能够得到更广泛应用的突破口。本文设计的光纤光栅波长解调仪基于高速数字信号处理器及高精度波长查询模块,解调仪的光谱扫描范围为32nm,能对多个传感器同时解调,波长解调的分辨率可达1pm。该解调仪具有结构简单、扫描范围宽、解调速度快的特点,为光纤光栅传感应用提供了新的解决方案。

参考文献:

[1]李川,张以谟,赵永贵,等.光纤光栅:原理、技术与传感应用[M].北京:科学出版社,2005.

[2]赵勇.光纤光栅及其传感技术[M].北京:国防工业出版社,2007.

[3]TexasInstrumentsIncoporated.TMS320F2810,TMS320F2812DigimlSignalProcessorsDataManual

[Z].2002.6.

[4]王潞钢,陈林康,曾岳南,等.DSPC2000程序员高手进阶[M].北京:机械工业出版社,2005.

[5]TexasInstrumentsIncoporated.IQmathLibrary,AVirtualFloatingPointEngine[z].2003.7.

[6]刘钦圣,张晓丹,王兵团.数值计算方法教程[M].北京:冶金工业出版社,2005.

作者简介:

邓晓宗(1982一),男,硕士研究生,主要研究方向为光机电系统检测与数字信号处理。

E-mail:xiaozongdeng@gmail.corn

基于DSP的光纤光栅波长解调仪的研制

作者:邓晓宗, 王长松, 巩宪锋, DENG Xiao-zong, WANG Chang-song, GONG Xian-feng

作者单位:北京科技大学,机械工程学院,北京,100083

刊名:

半导体光电

英文刊名:SEMICONDUCTOR OPTOELECTRONICS

年,卷(期):2008,29(5)

被引用次数:1次

参考文献(6条)

1.李川;张以谟;赵永贵光纤光栅:原理、技术与传感应用 2005

2.赵勇光纤光栅及其传感技术 2007

3.Texas Instruments Incoporated TMS320F2810,TMS320F2812 Digital Signal Processors Data Manual 2002

4.王潞钢;陈林康;曾岳南DSPC2000程序员高手进阶 2005

5.Texas Instruments Incoporated IQmath Library,A Virtual Floating Point Engine 2003

6.刘钦圣;张晓丹;王兵团数值计算方法教程 2005

本文读者也读过(10条)

1.王晓娜.王琦.陈乐华.于清旭.WANG Xiao-na.WANG Qi.CHEN Le-hua.YU Qing-xu基于扫描光纤激光器的光纤传感解调仪研究[期刊论文]-光子学报2009,38(1)

2.王敏.乔学光.贾振安.禹大宽.WANG Min.QIAO Xue-guang.JIA Zhe-nan.YU Da-kuan基于DSP芯片控制的光纤光栅传感解调系统[期刊论文]-光通信技术2006,30(2)

3.王哲.魏玉宾.李淑娟.李艳芳.WANG Zhe.WEI Yu-bu.LI Shu-juan.LI Yan-fang基于C8051F410单片机的光纤光栅解调仪[期刊论文]-山东科学2008,21(6)

4.许儒泉.赵申.张勇东新型高速光纤Bragg光栅解调方案的研究[会议论文]-2003

5.赵立民.王鑫.刁春暖.ZHAO Li-min.WANG Xin.DIAO Chun-nuan基于光纤F-P滤波器的FBG传感解调系统[期刊论文]-仪表技术与传感器2008(2)

6.韩伟.倪江生.金伟明.HAN Wei.NI Jiang-sheng.JIN Wei-ming基于DSP的光纤布拉格光栅波长解调系统[期刊论文]-传感技术学报2007,20(1)

7.叶顺厂.王幸国.胡硕臻.方文明.张晓惠光纤光栅传感器在称重系统中的应用[期刊论文]-传感器世界

2007,13(1)

8.罗铁亮.高雪清.熊浩宇.陆竞晓基于DSP系统的光纤Bragg光栅解调系统的研究[期刊论文]-传感器世界

2005,11(2)

9.宣海燕.刘铁根.王云新.江俊峰.朱均超.Xuan Haiyan.Liu Tiegen.Wang Yunxin.Jiang Junfeng.Zhu Junchao 基于USB2.0的高速光纤光栅解调系统的研制[期刊论文]-现代仪器2007,13(4)

10.吴付岗.张庆山.姜德生.何伟.WU Fu-gang.ZHANG Qing-shan.JIANG De-sheng.HE Wei光纤光栅Bragg波长的高斯曲线拟合求法[期刊论文]-武汉理工大学学报2007,29(12)

引证文献(1条)

1.章荣生.倪江生布拉格波长标定及实时三次样条插值拟合算法的实现[期刊论文]-国外电子测量技术 2010(2)本文链接:https://www.360docs.net/doc/357719558.html,/Periodical_bdtgd200805041.aspx

光纤光栅研究

布拉格光栅的研究 1 概述 光纤光栅是一种通过一定方法使光纤纤芯的折射率发生轴向周期性调制而形成的衍射光栅,是一种无源滤波器件。由于光纤光栅具有高灵敏度、低损耗、易制作、性能稳定可靠、易与系统及其它光纤器件连接等优点,因而在光通信、光纤传感等领域得到了广泛应用[1]。 在光纤通信领域,利用光纤光栅可以制成光纤激光器、光纤色散补偿器、光插、分复用器、光纤放大器的增益均衡器等[2],这些器件都是光纤通信系统中不可缺少的重要器件,可见光纤光栅对光纤通信的重要性,因此光纤光栅也被认为是掺铒光纤放大器之后出现的又一关键器件。 在光纤传感领域,光纤光栅也起到了及其重要的作用。光纤光栅的传感机制包括温度引起的形变和热光效应、应变引起的形变和弹光效应、磁场引起的法拉第效应及折射率引起的有效折射率变化等。当光纤光栅所处的温度、应力、磁场、溶液浓度等外界环境的发生变化时,光栅周期或者光纤的有效折射率等参数也随之改变,通过测量由此带来的光纤光栅的共振波长变化或者共振波长处的透射功率变化可以获取所需的传感信息[3],由此可见,光纤光栅是波长型检测器件,所以其不光具有普通光纤的优良特性,而且测量信号不易受光强波动及系统损耗的影响,抗干扰能力更强,还可利用波分复用技术,实现对信号的分布式测量。 由于光纤光栅的应用范围较为广泛,故本文只针对光纤光栅传感的应变检测机制进行一定的研究。光纤光栅可分为布拉格光栅和长周期光栅,在应变检测中,一般采用的布拉格光栅,下文中出现的光纤光栅指的是布拉格光栅。本文主要的工作主要是分析光纤光栅应变检测的原理,对光纤光栅应变检测进行一定的综述,以及对应变检测中很重要的增敏技术进行研究,并总结。 2 应变检测原理 根据光纤光栅的耦合模理论,光纤光栅的中心波长λB 与有效折射率n eff 和光 栅周期Λ满足如下的关系[4] Λ=eff B n 2λ (2-1) 光纤光栅的反射波长取决于光栅周期Λ和有效折射率n eff ,当光栅外部产生应变变化时,会导致光栅周期Λ和有效折射率n eff 的变化,从而引起反射光波长的偏移,通过对波长偏移量的检测可以获得应力的变化情况。由于课上已经讲过,故不多做赘述,只是简要的回顾一下。接下来主要讨论应变对光纤光栅作用的模

光纤光栅传感器的封装

光纤光栅传感器的封装 光纤光栅是一种新型的光无源器件,它通过在光纤轴向上建立周期性的折射率分布来改变或控制光在该区域的传播行为和方式。其中,具有纳米级折射率分布周期的光纤光栅称为光纤布喇格光栅(即FBG ,若非特别声明,下文中的光纤光栅均指光纤布喇格光栅)。光纤光栅因具有制作简单、稳定性好、体积小、抗电磁干扰、使用灵活、易于同光纤集成及可构成网络等诸多优点,近年来被广泛应用于光传感领域。 经过近十几年来的研究,光纤光栅的传感机理己基本探明,用于测量各种物理量的多种结构光纤光栅传感器己被制作出来。目前,光纤光栅传感器可以检测的物理量包括温度、应变、应力、位移、压强、扭角、扭知(扭应力)、加速度、电流、电压、磁场、频率及浓度等。 一、光纤光栅的封装技术 由于裸的光纤光栅直径只有125m μ,在恶劣的工程环境中容易损伤,只有对其进行保护性的封装(如埋入衬底材料中),才能赋子光纤光栅更稳定的性能,延长其寿命传感器才能交付使用。同时,通过设计封装的结构,选用不同的封装材料,可以实现温度补偿,应力和温度的增敏等功能,这类“功能型封装”的研究正逐渐受到重视。 1、 温度减敏和补偿封装 由于光纤光栅对应力和温度的交叉敏感性,在实际应用中,经常在应力传感光栅附近串联或并联一个参考光栅,用于消除温度变化的影响。这种方法需要消耗更多的光栅,增加了传感系统的成本。若用热膨胀系数极小且对温度不敏感的材料对光纤光栅进行封装,将很大程度上减小温度对应力测量精确性的影响。 另外,采用具有负温度系数的材料进行封装或设计反馈式机构,可以对光纤光栅施加一定应力,以补偿温度导致的布喇格波长的漂移,使0/λλ?的值趋近于0。对于封装的光纤布喇格光栅而言,其波长漂移λ?与应变ε和温度变化T ?的关系式可表示为式(1),基于弹性衬底材料的光纤光栅温度补偿关系式为 ()1 s e a a a T p ξε++-=?- (1) 式中:(1/)(/)n dn dT ξ=;(1/)(/)e p n dn d ε=-;(1/)(/)a L dL dT =。实验表明,采用负温度系数的材料对光纤光栅进行封装,可以在20~44-℃温度区获得波长变化仅为0.08nm 的温度补偿效果。 2、应力和温度的增敏封装 光纤布喇格光栅的温度和应变灵敏度很低,灵敏度系数分别约为2 1.1310-?nm/℃和31.210/nm με-?,难以直接应用于温度和应力的测量中。对光纤光栅进行增敏性封装,可实现微小应变和温度变化量的“放大”,从而提高测量精度,同时,亦使传感器的测量范围得以扩展。 2.1温度增敏封装 在无应变条件下,由式(2)得 0[(1)()]e s a p a a T λλξ?=++--? (2)

一种高精度光纤光栅传感器解调系统.

测试系统与组件电子测量技术第 30卷第 1期 一种高精度光纤光栅传感器解调系统 刘胜洋 1, 2 曹明娜 2 李刚 1 (1. 天津大学 A DI 联合实验室天津 300072; 2. 蚌埠医学院蚌埠 233000 摘要 :如何实时检测传感光栅 Br agg 波长的微小偏移 , 是光纤光栅传感器实用化面临的关键技术。本文选择线性滤波法解调光纤光栅传感器。为使设计的解调系统具有结构紧凑、便于携带、使用方便、适用于野外作业的特点 , 并达到系统对测量精度和动态范围的要求 , 本文采用锁相放大电路和 24位高精度 A /D 转换模块采集有用信号 , 降低了噪声 , 提高了信噪比 , 并且节省了系统的空间。同时 , 本文采用 U SB 接口模块使数据存储和数据传输方便快捷 , 满足解调系统用于现场测量的要求。文中给出了系统的硬件设计和软件实现。最后通过实验和数据处理证明了该系统的精度。 关键词 :光纤光栅传感器 ; 信号解调 ; 线性滤波器 ; 便携式 中图分类号 :T P212. 4 文献标识码 :A Optical fiber Bragg grating sensor demodulation system with high precision L iu Sheng yan 1, 2 Cao M ing na 2 L i G ang 1 (1. ADI Joint LAB, Tianjin Un iversity, T ianjin 300072; 2. Bengbu M edical Colleg e, Bengbu 233000 Abstract:Wav eleng th detection is the key techno lo gy o f F iber Brag g G rating senso r. T he demo dulat ion mechanism is based o n linear filter demodulatio n method by using W DM. T he demo dulation system of fiber Bragg gr ating senso r not o nly has the outstanding featur es o f simple structure, low co st, easily o per ated and por tability, but also realizes r eal t ime and on line mo nitor ing. In o rder to meet the demands of hig

GM8037 高分辨率光纤光栅传感器解调仪

GM8037 High Resolution Fiber Grating Sensor Interrogating System / 高分辨率光纤光栅传感器解调仪 The GM8037 high resolution fiber grating sensor interrogating system is a PC-based, compact sized, high accurate, big dynamic range FBG sensors interrogating system. With a built-in tunable laser source and dual-channel photo detectors, the system can perform a high accuracy FBG sensor interrogation and optical spectrum analysis. It can be used for a wide variety of fiber optic sensors. The system provides users with a dynamic diagram of the FBG sensor spectrum shape which updates according to physical conditions. spectral shape of the fiber Bragg grating sensors react to varying physical conditions- rather than only reporting shifts in central wavelengths. The FBG sensor interrogation system can be used for long-term field measurements while the optical spectrum analysis system is useful to the development of a high volume custom sensing system. Two sensor channels allow simultaneous interrogation of multiple sensors on two fibers or channels. Both channels can be used to interrogate gratings in transmission or reflection and the system can be modified to support many types of sensors. All data can be transferred to an external PC via RS232 or USB communication ports. GM8037高分辨率光纤光栅传感器解调仪是一个PC机控制的、大功率,高精度、大动态范围的光纤布拉格光栅传感器解调系统及高精度的光谱分析系统。通过内置的可调谐光源和双通道光电探测器,组成了一个高精度的光纤光栅传感器解调及光谱分析仪。GM8037可用于各种类型的光纤传感器。系统不仅显示中心波长随着外界条件改变的偏移量,还可以清楚明了地显示出光纤布拉格光栅传感器的光谱形状如何随着外界条件而变化。该仪器既可用于开发大容量定制的感测系统的第一步,也可用于长期的现场测量。两个传感器通道可以同时解调两条光纤上的多个传感器或进行通道分析,任何一个通道都可以调解光栅在传输或反射中的信息。系统 可适用于多种类型的传感器。所有的数据都可以通过RS232 或 USB 通讯接口传送 至外接的PC 机。 技术规格 Specification 型号 Model # GM8037 内置光源波长范围 Build-in Laser Wavelength range 1528.00 to 1565.00 nm 内置光源输出功率 Build-in Laser Output Power ≥ 20 mW 波长分辨率 Wavelength resolution 1.0 pm 光通道数量 Optical Channel Number 2 通道 (最多可达 64 通道) 2CH (up to 64 channels optional) 每个通道的光纤布拉格光栅传感器最大值 Maximum FBG sensor Per Channel 全光谱 Full Spectrum 1525 ~ 1566 nm 内置光源重复性 Build-in Laser Wavelength repeatability ± 3 pm, typ. ±1 pm 光电探测器动态范围 Photo Sensor Dynamic Range > 70 dB 扫描速度 Sweep speed Up to 10 Hz 连接器类型 Connector FC/APC 典型的光栅配置 Typical grating configuration Reflectivity: 90%, BW: 0.25nm 通讯接口 Communication Interface RS232, USB 电源功率 Power AC 100 - 240 V ± 10%, 48 - 66 Hz, 100 VA max. 储存温度 Storage temperature ?40°C to +80°C 工作温度 Operating temperature 0°C to +45°C ,<95% R.H. 外形尺寸 Dimensions 200 mm W, 105 mm H, 250 mm D 重量 Weight 6.0 lbs

光纤光栅传感器封装技术

光纤光栅传感器的封装技术

摘要 光纤布拉格光栅传感器是一种新型的光纤传感器,它利用的是布拉格波长对温度、应变敏感的原理.及传统的电学传感器相比,它还具有体积小、质量轻、抗电磁干扰、复用性强等优点。正因为这些独特的优点,光纤布拉格光栅越来越多的被应用到大型结构、电力、安防、石化、医学、矿井、军事等领域,其中,最引人瞩目的是光纤光栅温度传感器在长距离测温系统中的应用。随着中国物联网发展战略的实施,光纤传感领域的研究和产业化面临着巨大的机遇和挑战。 本文综述了光纤光栅温度传感器的传感原理,光纤光栅传感器封装技术分类,分为保护性封装,敏化封装,以及补偿性封装,列举了三个封装技术的实例,对他们的封装结构,封装中的技术工艺,以及封装后的一些参数进行了介绍。

目录 1、绪论 (44) 1.1 光纤光栅传感器封装技术概述 (44) 2、光纤光栅传感原理 (55) 2.1光纤光栅传感器的结构和原理 (55) 2.2光纤光栅传感技术的类型简介 (66) 3.光纤光栅传感器封装技术分类 (77) 3.1保护性封装 (77) 3.2 敏化封装 (88) 3.3补偿性封装 (88) 4.封装技术实例 (99) 4.1光纤光栅温度传感器抗应变串扰封装 (99) 4.2Polyimide(聚酰亚胺)光纤光栅温度传感器的封装 (1212) 4.3镀铜光纤光栅的全金属封装 (1313) 参考文献 (1616)

1、绪论 1.1 光纤光栅传感器封装技术概述 光纤光栅是普通光纤经过特殊的光学工艺处理后,使纤芯折射率沿轴向,呈现周期性规律分布的物理结构,其实质就是在纤芯内形成一个窄带的(透射或反射)光滤波器或反射镜。通过人为改变光纤光栅结构的分布,我们可以主动控制光在光纤中的传播行为,光纤光栅结构的多样化可以使其光谱响应特显得非常丰富.同时,光纤光栅具有结构简单、器件微型化、带宽范围广、耦合性好、附加损耗小、可及其他光纤器件融成一体等特点,除此之外光纤本身具有轻质、电绝缘、柔韧、抗电磁干扰、径细、化学稳定等优点,使得光纤光栅在光纤传感、全光通信、光信息处理等领域具有巨大的应用前景。 光纤光栅传感器是以布拉格条件为基础,以光纤光栅为载体,发展起来的一种本征波长调制型传感器。光纤光栅传感器是利用透射或反射谱波长峰值的变化,进而实现对物理量的测量.透射(反射)谱波长及光栅纤芯的有效折射率及折射率调制周期密切相关。当外界应变及温度发生变化时,光纤光栅的纤芯折射率及折射率调制周期就随之变化,然后影响光纤光栅的透射(反射)谱峰值波长的移动,通过测量Bragg峰值波长的移动量,实现对外界物理量变化的测量,上述即是光纤光栅传感器的基本工作原理。光纤光栅传感器可以实现对应变、温度、压力、电流、振动等基本物理量测量。 利用光纤光栅进行传感,需要适当的封装技术,增加其敏感度,以利于检测解调。在某些情况下,我们不希望温度仁或应变、压力)对布拉格波长产生影响,就要对光栅进行减敏封装,降低它对温度仁或应变、压力)的灵敏度.这两种技术统称敏化技术。目前,一些敏化技术已经在实际中得到应用,但还有相当一部分停留在实验室阶段。 利用光纤光栅进行传感面临的又一难题是温度、应变交叉敏感问题。温度和应变都能引起布拉格波长的漂移,从单一的波长漂移量,我们无法区分其中哪些是温度变化引起的,哪些是应变引起的。这给我们出了很大的难题。要实现光纤光栅传感器的实用化,就必须采用各种封装技术,或者剔除温度的影响,或者实现温度、应变双参数及多参数的同时测量。 光纤光栅传感技术适合应用在很多恶劣的环境中,但由于光纤纤细柔软,容易被损坏,因此需要采用一些封装方法,保护光栅. 在实用中对光纤光栅进行恰当的封装非常必要,封装工艺的好坏直接影响到光纤光栅传感器能否从实验室走向实用,对光纤光栅封装技术进行研究,设计更好的封装结构和工艺尤为重要.

光纤光栅解调仪技术规格书

光纤光栅解调仪技术规格书 一、设备用途简介 光纤压力调制解调仪是井下F-P腔压力传感器的地面配套解调设备,通过接收和解调压力传感器反射回来的光谱信号,实现对井下单点温度、压力数据的监测。 二、主要技术指标 1.有效测量深度:不小于4km; 2.通道个数:12个; 3.压力测量范围:0—50MPa; 4.压力测量精度:0.1% F.S,且小于0.2MPa; 5.温度测量范围:0—300℃; 6.温度测量精度:0.5℃; 7.单通道压力测量速率:不大于10s/次; 8.单通道温度测量速率:不大于10s/次; 9.配套光纤规格:单模光纤; 10.端口跳线接头类型:E2000或PC/APC; 11.数据存储格式:.CSV格式; 12.数据存储方式:每个通道每日形成一个文件,每月形成一个文件夹且数据存 储格式固定,便于导入oracle数据库; 13.硬盘空间:不小于500GB; 14.工作环境温度:-20℃至50℃环境下能够连续正常工作; 15.工作环境湿度:空气相对湿度不大于90%的环境下,连续正常工作; 16.噪音:≤50dB; 17.设备外形尺寸mm(长×宽×高):不大于500×500×150。 三、设备应具备的功能 1.能够实时显示F—P腔光谱信号图; 2.能够实时显示井下压力传感器温度、压力数据; 3.能够显示压力、温度历史数据及温、压变化趋势; 4.能够计算井下Sub_cool数值及显示其变化趋势。

四、产品执行标准 SYT 6231-2006 压力传感系统性能检测实验 GB/T 17626.2-2006 电磁兼容试验和测量技术静电放电抗扰度试验 GB/T 17626.3-2006 电磁兼容试验和测量技术射频电磁场辐射抗扰度试验GB/T 17626.4-2008 电磁兼容试验和测量技术电快速瞬变脉冲抗扰度试验GB/T 17626.11-2008 电磁兼容试验和测量技术电压暂降短时中断和电压变化的抗扰度试验 GB/T 2423.1-2008 电工电子产品环境试验第2部分:试验方法试验A:低温GB/T 2423.2-2008 电工电子产品环境试验第2部分:试验方法试验B:高温GB/T 2423.3-2006 电工电子产品环境试验第2部分:试验方法试验Ca:恒定湿热试验方法 五、产品主要配置 1.光纤测压主机一台 2.光纤测压主机配套显示器(含鼠标、键盘)一台 3.单模跳线及配套法兰(APC/PC或APC/E2000)十二根 六、技术培训 供方在设备安装完一周内负责对甲方操作人员、技术人员、设备维修人员进行技术培训,讲解设备的工作原理,介绍每个主要部件的用途及日常的维修、保养步骤,并能使操作人员独立操作设备,能有效掌握设备调整和故障排除的技术。 七、质量保证与售后服务 1. 设备到货后,整套设备需供货方出具第三方检测机构的质量检验报告,整套设备的系统调试需在购买方代表现场监督下进行,并取得购买方认可。 2. 设备到货后,供货方与购买方代表共同在使用现场开箱验收。 3. 售后服务承诺:装置保质期为自设备现场应用之日起12个月。其中设备的操作软件终身免费升级。 4. 在质量保证期内发生质量问题,供货方免费进行修理、维护,包括更换设备部件,所发生的技术服务费用由供货方承担。供货方正常的易损件更换以及由购

光纤光栅介绍

2.项目实施内容及目标 隧道是公路、铁路、城市地铁等交通工程项目建设的关键部分,在隧道中进行实时、准确的火情监测对保障公共财产安全和人身安全有着十分重要的意义。 作为一种特殊的建筑物,在其道路运营过程中,如遇火灾发生或其他因素造成隧道主体工程损坏,损失巨大。隧道火灾往往由与汽车相撞、车辆装载物品燃烧或爆炸、电力电气线路短路等事故引发,由于隧道环境密闭、交通量大、人员密集,逃生和救援工作相当困难,若一旦发生火灾后不能迅速报警和及时处理,将导致交通堵塞、重大人员伤亡和财产损失。 火灾检测与报警系统的设置,其宗旨就在于及时发现隧道内异常状态的发生,快速组织救援,最大限度地减少损失。 《公路隧道交通工程设计规范》中对火灾探测器的描述为“火灾形成与发展的阶段分为前期、早期、中期及晚期四个阶段,各阶段特征不一,前期表现有一定的烟雾;早期烟量增加并出现火光;中期表现为火灾形成,火势上升很快;后期表现为火势扩散。由于隧道环境较为恶劣,同时又具有通风装置,烟雾度不便控制。因此,隧道内火灾检测着重点从早期开始”。 针对高速公路隧道的特点我们建议对项目中的隧道线路监控采用光纤光栅感温火灾探测系统,该系统采用线型光纤感温火灾探测器的自动探测报警与手动报警相结合的方式实施隧道的安全监控。在隧道内火灾报警系统采用自动检测和手动报警相结合的方式,检测隧道内的火险情况,并通过计算机系统或区域控制器根据检测到的火灾情况控制隧道风机、照明系统等,实时监测,实现报警联动,按照控制预案组织现场援救,以完全满足本项目隧道火情监测要求。 光纤光栅自动探测系统与火灾手动报警系统相结合,能集多级定差温报警、手动报警以及实时的温度监测于一体,真正做到防患于未然,作为隧道的火情监测系统具有其它技术无可比拟的优势。 火灾报警系统应能及时、准确的反馈出隧道内火灾发生的地点及报警信号。经传输线路至监控计算机系统,火灾报警后应能自动(或手动)将主监视器切换到发生火灾的位置,经人工确认后,由中控室计算机系统制订出相应的控制措施。

光纤光栅传感器产品及其专利推介

光纤光栅传感器产品及其专利推介 上海科学技术情报研究所罗天雨摘编2009-12-29 关键字:光纤光栅传感器解调仪产品专利浏览量:81

光纤光栅(fiber Bragg grating,FBG)传感器是作为一种新型光纤传感器,对多个物理量敏感,可以用来测量的物理量包括:应变、应力、温度、振动、压力、电压以及一些化学量,其应用领域非常的广泛。同时FBG传感器阵列可以实现分布式的传感网络,对物体进行多点测量,提取相关的信号,进行状态分析,达到示警以及故障诊断的目的。而且其传输距离可以达50多公里。具有测量精度高,测量点多,测量范围大,传感头结构简单、尺寸小,抗电磁干扰等一系列的优点。其主要技术优势包括: ● 可靠性好、抗干扰能力强。光纤光栅对被测信息用波长编码,不受光源功率波动和光纤弯曲等因素引起的损耗的影响。 ● 测量精度高。精确的透射和反射特征(小误差)使其更加准确地反映了应力和温度的变化。 ● 单路光纤上可以制作多个光栅的能力可以对大型工程进行分布式测量,其测量点多,测量范围大。 ● 传感头结构简单、尺寸小,适于各种应用场合,尤其适合于埋入材料内部构成所谓的智能材料或结构。 ● 抗电磁干扰、抗腐蚀、能于恶劣的化学环境下工作。 一、产品情况 国外对光纤光栅传感技术的研究已经基本实现了光纤光栅传感器、解调仪的商品化,工程化,产品生产商有Micron Optics、Smartfibres、Blue Road Research等公司。国内在光纤光栅传感技术方面的研究工作也取得了一定成果,其中一部分已经转化为产品,产品生产商和研究单位有成立于2001年,是国内光纤传感领域实力最雄厚的厂家之一。当前公司主要产品有基于拥有自主知识产权的光纤光栅类产品,包括光纤光栅感温火灾探测系统、光纤光栅温度监测系统、光纤光栅结构监测系统、光纤光栅色散补偿器、滤波器等等。国内外相关产品主要技术指标比较,如下表所示: 表1 国内外光纤光栅传感器产品性能指标对比 中心波长 nm 峰值反射率 % FWHM(3dB)nm测量范围 με Micron Optics 1527-1567 >80 0.3 / Smartfibres 1528-1568 >75 ±0.2 ±9000

光纤光栅的封装

光纤光栅传感器的封装设计 一、高温光纤光栅温度传感器的封装设计 1.实用化高温光纤光栅温度传感器的设计要求 a.高温光纤光栅的自身要求 高温光纤光栅在高温环境下进行长期工作时,要求其反射率不会发生大幅度的衰减。 b.应用环境的要求 传感器的结构设计要能够便于实际的工程安装,尽量避免安装环境的差异导致传感器特性的改变,如外界应力作用于传感器导致光纤光栅的波长漂移、反射率下降等负面影响。同时要确保正常的现场施工不会对传感器和连接的光缆造成严重破坏,要能够保证信号的正常采集与传输。 c.使用寿命的要求 传感器的寿命与传感器的应用环境直接相关,高温环境将大幅度地缩减传感器的寿命。因此,在确保传感元件自身寿命的前提上,要尽量减小因封装技术给传感器寿命带来的负面影响。封装高温光纤光栅传感器的各种材料都要能够承受高温环境的长期考验,尤其需重视胶水的高温稳定性。 2.实用化高温光纤光栅温度传感器的设计思路 高温光纤光栅温度传感器的封装工作主要分为:材料的选择、封装结构的设计、相关的封装工艺。 a.材料的选择 在选择封装材料时,要确保他们在高温环境下的稳定性。 1)胶水的选择 Fireplace Sealant ST-1260 是一种单组份中性结构胶,具有防火阻燃、抗位移、高强度等优良特性。对玻璃、金属、陶瓷等有良好的粘附力,其邵氏硬度为60A,拉伸强度为8 MPa,良好的抗UV 性,防火阻燃等级达UL94-V0 级,温度工作范围从-40°C 到1260°C。因此,Fireplace Sealant ST-1260 胶可以用于光纤光栅尾纤的固定以及传感器的密封。 托马斯耐高温胶(THO4098)是一种单组份粘稠高温胶水,低温加热固化型,固化后表面平整、光洁、无气泡,可用于光纤光栅两侧尾纤的固定。其温度工作范围为-66~460°C,粘接强度高,韧性好、抗冲击等。适应范围广,耐高温、压

光纤光栅传感解调系统研究

光纤光栅传感解调系统研究 相比于普通的电类传感器,光纤光栅传感器具有很多独特的优势,比如其在设计上采用分布式传感,波长编码;安装上由于其结构轻巧可方便嵌入物体内部;使用时采用无源操作,低功耗且具有较好的抗干扰能力。可广泛应用于石油工业、航空航天材料结构健康监测、桥梁以及大坝状态监测等领域。 光纤传感中的波长解调则由光纤光栅解调系统来完成,因此,解调系统是光纤传感的重要组成部分之一。本文即围绕光纤光栅传感解调展开研究,开发了一套光纤光栅解调系统,主要完成如下研究工作。 1、在研究了光纤光栅传感原理的基础上,通过对比分析典型光纤传感波长解算技术,最终设计了基于光纤F-P可调谐滤波器的光纤传感解调系统的技术方案,并对系统关键参数进行了分析设计。 2、根据解调系统技术要求,开发了一套基于FPGA的数据采集与驱动控制电路,包括滤波器驱动控制电路、光电信号转换与调理电路、AD采集电路以及以太网通信接口电路。 此外,通过FPGA编程,完成对各模块的驱动控制。3、针对滤波器波长扫描时温度漂移特性、迟滞特性和蠕变特性导致的重复性误差和非线性误差,提出采用加入温控系统和参考光栅的硬件补偿方案,并基于广义回归神经网络对其驱动特性曲线进行拟合,从而建立起完整的滤波器标定模型。 4、在研究了典型寻峰算法的基础上,根据光纤光栅反射谱的特点,设计了滤波、设定阈值、寻峰的寻峰流程模型。并在此基础上,深入研究了光谱信号信噪比、设定阈值大小、寻峰算法对寻峰效果的影响。 5、在系统方案设计和关键技术研究的基础上,构建系统实验测试平台,对解调系统进行光纤光栅温度传感器的温度传感测试实验,并与标准解调仪给出的结

光纤光栅在线监测系统

光纤光栅在线监测系统 FBG-9900光纤光栅在线监测系统

引言 光纤传感技术是20世纪70年代伴随光纤通信技术的发展而迅速发展起来的,以光波为载体,光纤为媒介,感知和传输外界被测量信号的新型传感技术。作为被测量信号载体的光波和作为光波传播媒介的光纤,具有一系列独特的,其它载体和媒介难以相比的有点。具有本身不带电,体积小,质量轻,易弯曲,可靠性好,测量精密度高,抗电磁干扰、抗雷击等优点。能实现对温度、湿度、压力、应变、振动,位移及加速度等参数的精确测量。特别适合于易燃、易爆、空间受严格限制,环境恶劣等场合下使用。因此,光纤传感技术一问世就受到极大重视,几乎各个领域都在进行研究和应用,产业得到蓬勃发展。 系统介绍 北京金石智信科技有限公司研发的光纤光栅在线监测系统QTSD-CF01,采用光放大器(OA)和波分复用(WDM)技术以增加传输距离和比特率,并结合公司独特的光栅切趾技术,使解调仪和光纤光栅传感器的精度和可靠性处于国际领先水平。另外本公司研发的光纤光栅在线监测系统,已通过国家消防认证和ISO9001质量管理认证。 系统原理 光纤光栅传感技术隶属光纤传感技术的一种,它是通过紫外激光照射位于光纤上方的相位掩模板后,在光纤内部形成的一段长为10-15mm的栅状结构,因而被称为“光纤光栅”(Fiber Bragg Grating,FBG)。 光纤光栅是利用光纤材料的光敏性:即外界入射光子和纤芯相互作用而引起后者折射率的永久性变化,用紫外激光直接写入法在单模光纤(直径为0.125 mm~0.25 mm)的纤芯内形成的空间相位光栅,其实质是在纤芯内形成一个窄带的滤光器或反射镜,制作完成后的光纤光栅相当于在普通光纤中形成了一段长度为10 mm左右的敏感区,该区域波长在温度、应变等作用下发生偏移,通过测量中心波长的偏移,可以准确感测温度、压力、应变及位移的变化。

基于光纤光栅的边缘滤波动态解调技术

基于光纤光栅的边缘滤波动态解调技术 Edge Filter Dynamic Demodulation Method Based on Filter Bragg Grating 摘要:本文阐述了基于光纤光栅的边缘滤波动态解调技术的研究。初步实验表明:解调仪适合传感FBG 存在大幅度静态波长变化时,对微幅度动态波长变化的检测,动态波长检测范围分辨率为Hz pm 007.0。 上电时,可调滤波器具有对中心波长为1295.5nm ~1307.5nm 范围光纤光栅自动跟踪能力。 关键词:光纤传感器 光纤光栅 动态应变测量 Abstract :We report Edge Filter Dynamic Demodulation Method Based on Filter Bragg Grating. Initial experiments demonstrated this interrogation technique is suitable for the micro-amplitude dynamic wavelength detection existing in the large static wavelength change of the FBG , the dynamic wavelength detection resolution is Hz pm 007.0. The tunable optical filter can track the FBG center wavelength between 1295.5nm ~1307.5nm when the system powered on. Keywords: Optical fiber sensors, Fiber Bragg grating, Dynamic strain measurements 1 引言 光纤布拉格光栅(Fiber Bragg Grating ,FBG) 是最近几十年来发展最为迅速的光纤无源器件之一。它具有许多独特的优点,例如:抗干扰性(如电磁场、湿度、化学腐蚀等)强、寿命长、复用性好(如WDM 与DWDM)等。因而在光纤激光器、光纤传感器及声光调制器等方面的研制与开发日益受到重视。在光纤光栅传感技术中,探测量是以波长来调制的,因而传感器解调过程是对一个FBG 的反射波长的移动量的检测过程。研究人员已发展了多种动态范波长检测技术,诸如可调谐激光边波法[1]、锁模调制法、非平衡M —Z 干涉法。由于动态范围有限,它们无法实现传感FBG 存在大幅度静态波长漂移时,对叠加在上面的微幅度动态波长变化的检测。而基于光纤布拉格光栅的边缘动态解调技术适合传感FBG 存在大幅度静态波长变化时对微幅度动态波长的检测。该解调技术是针对光纤光栅水听器而研究的,它需要传感FBG 在承受大幅度深水静压条件下,能对微幅度水声动态压力引起的波长变化进行检测。 2 解调原理

光纤光栅传感系统数据采集与处理技术

2008年 第5期 仪表技术与传感器 Instrum ent T echn i que and Sensor 2008 N o 5 基金项目:浙江省自然科学基金(X106872) 收稿日期:2007-07-19 收修改稿日期:2007-12-11 光纤光栅传感系统数据采集与处理技术 王晓东,王真之,叶庆卫,周 宇 (宁波大学信息科学与工程学院,浙江宁波 315211) 摘要:在光纤光栅传感系统中,运用多通道智能光纤光栅解调器采集传感信号,并采用TCP /IP 协议采集光纤光栅解调器各通道的光谱数据,经过峰值检测和温度补偿后,根据传感器的标定数据换算出对应各监测点的物理量,较好地实现了光纤光栅传感系统的数据采集与处理。并在光纤光栅反射波形的峰值检测技术中引进了指数平移钝化算法替代计算复杂度较高的高斯拟合算法,能有效地减少各种干扰因素引起的峰值波长抖动。关键词:光纤光栅传感器;数据采集;数据处理;峰值检测 中图分类号:TP212;T P274 文献标识码:A 文章编号:1002-1841(2008)05-0047-02 Techni ques of Data A cquisition and Processi ng i n F i ber G rati ng Sensi ng Syste m W ANG X i ao dong ,W ANG Zhen zh,i YE Q ing w e,i ZHOU Y u (Facu lty of I n for m ation Sc i ence and E ngi n eer i ng ,N i ngbo Un i versity ,N ingbo 315211,Ch ina) Abstract :T echn i ques of data acquisiti on and process i ng i n fibe r g ra ti ng sensi ng sy stem were i m ple m ented by usi ng a m ulti channe l i nte lli gent opti ca l sensing i n terrogato r for sensory signa ls acqu isiti on ,w hich can ga t her spectra da ta o f each channel v i a T CP /IP pro toco ls .A fter detecting peak and compensati ng te m perature ,it can convert its cali brati on data into physical v al ue for each sensor .In peak detection techno l ogy o f fi ber grati ng reflecti on w avefor m,the pape r i n troduced i n t o the exponen ti a lw e i ghted m ov i ng average ar it h m e tic t o i nstead of G auss i an fitti ng a rith m etic that had h i ghe r co m putationa l co m plex ity ,it can reduce effi ciently the jitter o f peak w ave l eng t h t hat caused by var i ous i nterfe rence factors .K ey word s :fi ber g ra ti ng senso rs ;data acqu i sition ;data processi ng ;peak detecti on 0 引言 目前,应用光纤光栅传感器的最主要障碍是传感信号的解调[1],理论上研究的解调方法很多,但能够实际应用的解调产品并不多,而且价格较高;由于光源带宽有限、应用中一般要求光栅的反射谱不能重叠,因此可复用光栅的数目受到限制;同时,还需要解决在复合材料中同时测量多轴向的应变,在复杂环境中识别各种环境因素引起的波长变化并且进行合理的补偿等问题。 在光纤光栅传感器的应用中,使用了s m 125智能光纤光栅解调器,该设备具有标准以太网接口和无线局域网接口,监控系统的采集客户端电脑通过TCP 协议利用Socket 接口采集各通道的光谱数据,根据各反射峰的位置偏移,结合标定数据换算出对应各监控点的物理量,再传输给监控中心服务器,可以实现基于光纤光栅传感器的远程监控。1 光纤光栅传感器典型应用系统 基于光纤光栅传感器和光纤光栅调制解调仪进行数据采集处理的监测系统如图1所示。首先在需要监测的部位布设好相应的压力、应变或气体传感器及对应的温度补偿传感器,将这些传感器通过光纤与智能光纤光栅解调仪相连,其每个通道内的传感器波段不能重叠。监控采集客户端可使用一般的工控电脑,通过Socket 接口和智能光纤光栅解调仪通信并进行 图1 典型远程监测应用系统 传感数据的采集 [2] 。 在监控采集客户端电脑上配置各传感器的类型、标定波长等配置参数,对于不同的传感器,根据类型不同调用不同的数据处理模块。为了标识所布设的各种传感器,监控系统按光纤光栅调制解调仪、采集通道号和传感器波段三级进行编号,针对每个传感器还需要配置传感器类型、温度补偿传感器编号、标定波长值和计算参数等数据。监控采集客户端电脑可定时采集智能光纤光栅调制解调仪各通道的数据,然后再进行峰值监测[3]、偏移计算、温度补偿[4]和物理量换算等工作。 然后,在记录采集日志或存储采集到的原始数据的同时,将得到的监控数据存入1个发送缓存队列,通过发送调度定时将其通过通信网络发送到监控中心服务器。在有线网络可以到达的监控点,可以使用有线宽带接入进行数据传输,在有线网络无法到达的地区,可以采用CDM A 或GPRS 移动信道进行数据传输。中央服务器的接收模块收到监控数据后,根据监控点编号更新传感器的状态和数值、追加历史记录,并根据预设的阈值信息进行阈值报警,任何接入互联网的监控客户端即可在服务器上观测各监控点的情况。

相关文档
最新文档