线性代数讲义-01行列式

线性代数讲义-01行列式
线性代数讲义-01行列式

第一章 行列式

第一节 行列式的定义.

一 排列的逆序数

将数n ,,2,1 按照某个顺序排成一行, 称为一个n 阶排列. 记作n p p p 21. 共有!n 种不同的n 阶排列.

按照从小到大的顺序称为标准顺序. 而排列n 12称为标准排列.

定义1.1 如果在一个排列中, 某两个数的先后顺序与标准顺序相反, 则称有一个逆序. 这个排列的逆序的总数称为该排列的逆序数.

在n 阶排列中, 标准排列的逆序数最小, 等于0. 而排列1)1( -n n 的逆序数最大, 等于2/)1(-n n .

定义1.2 如果一个排列的逆序数是奇数(偶数), 则称其为奇排列(偶排列).

例如, 共有6个三阶排列, 其中123, 231, 312是偶排列, 而132, 213, 321是奇排列.

定义 1.3 在排列中, 将任意两个数对调, 其余数不动, 这种产生新排列的过程称为对换. 将两个相邻的数对换, 称为相邻对换.

定理1.1 一个排列中的任意两个数对换, 排列改变其奇偶性.

证 如果这两个数相邻, 进行对换时, 只改变这两个数的先后顺序. 因此, 逆序数或者增加1, 或者减少1. 即进行相邻对换时, 奇偶性改变.

考虑排列n k i i i p p p p p ++11, 其中1>k . 为完成i p 与k i p +的对换, 其余数不动,可按照下面方式进行. 先将i p 与1+i p 对换, 再将i p 与2+i p 对换, 继续进行, 直至i p 与k i p +相邻. 在这个过程中, i p 逐渐向后移动, 而其他数的先后顺序不变. 如此共进行1-k 次对换, 得到排列n k i i i p p p p p ++11. 然后将k i p +与i p 对换, 再将k i p +与1-+k i p 对换, 继续进行, 直至k i p +向前移动到1+i p 的左边为止. 此时恰好得到排列n i i k i p p p p p 11++.如此又进行k 次相邻对换. 总计进行12-k 次相邻对换, 因此, 必然改变奇偶性.

如果用定义计算一个排列的逆序数, 需要观察任意一对数的先后顺序, 比较繁琐. 考虑n ,,2,1 的一个排列n p p p 21, 任取一个数i p , 如果有i t 个比i p 大的数排在i p 的前面, 则称i t 是i p 的逆序数. 所有数的逆序数的和就是排列的逆序数.

例1.1 求排列32514的逆序数.

解 按照上面的方法, 得逆序数为513010=++++.

例1.2 设1>n , 求证: 在n 阶排列中, 奇排列与偶排列各占一半.

证 将一个奇排列中的数1与2对换, 产生一个偶排列. 反之, 将一个偶排列中的数1与2对换, 产生一个奇排列. 如此建立奇排列与偶排列之间的一一对应. 因此, 在n 阶排列中, 奇排列与偶排列的个数相等.

二 行列式定义

以前学过二阶与三阶行列式:

2112221122

21

1211a a a a a a a a -=;

33

32

31

23222113

1211a a a a a a a a a 322113312312332211a a a a a a a a a ++=312213332112322311a a a a a a a a a ---. 为了将他们推广, 首先研究三阶行列式的结构. 行列式中的数ij a 称为它的元素. 其中元素321,,i i i a a a 组成行列式的第i 行, 元素j j j a a a 321,,组成行列式的第j 列, 元素332211,,a a a 组成行列式的主对角线. 每个元素有两个下标. 第一个是行标i , 表示该元素属于第i 行. 第二个是列标j , 表示该元素属于第j 列.

在形式上, 三阶行列式是一个数表. 而实质是其元素的一个多项式. 这个多项式由六项组成, 每项包含三个元素的乘积. 这三个元素分别属于不同的行, 不同的列. 现在每一项中元素的行标组成标准排列, 则其列标恰组成所有的三阶排列. 而且, 如果列标排列是奇排列, 则前面是负号. 如果列标排列是偶排列, 则前面是正号. 于是, 可以将三阶行列式写作

33

32

31

23222113

1211a a a a a a a a a ∑-=321321)1(p p p t a a a , 其中t 是列标排列321p p p 的逆序数, 求和遍及所有三阶排列.

按照三阶行列式的结构进行推广, 得到n 阶行列式的定义. 定义1.4 称

111212122212n n n n nn

a a a a a a a a a

∑-=n np p p t a a a 2121)1(

为n 阶行列式, 其中t 是列标排列n p p p 21的逆序数, 而求和遍及所有n 阶排列.

常将行列式简记作D . 如果需要明确行列式的阶, 则将n 阶行列式记作n D .

一个n 阶行列式有!n 项. 当1>n 时, 其中正项与负项各占一半.

与三阶行列式类似,n 阶行列式也是其元素的多项式. 因此, 如果行列式的元素都是数, 则行列式也是数. 如果行列式的元素是某些字母的多项式, 则行列式也是这些字母的多项式.

注意 一阶行列式||11a 与数的绝对值的符号相同, 但意义不同. 作为行列式2|2|-=-,而作为数的绝对值2|2|=-. 因此必须用文字严格区分这两种不同对象.

例1.3 求四阶行列式中包含元素23a 的所有负项.

解 在四阶排列中, 数3在第二个位置的共有6个. 其中的奇排列为1324, 2341与4312. 于是, 四阶行列式中包含元素23a 的负项为

44322311a a a a -, 41342312a a a a -, 42312314a a a a -.

当n 较大时, n 阶行列式中的项很难一一列举. 不过, 如果一个行列式的许多元素等于0, 则不等于0的项数将大大减少.

例1.4 求证:行列式

11

12122200

n n nn

a a a a a a nn a a a 2211=.

证 为了得到非零项, 在第n 行中只能取nn a . 此后不能再取第n 列的其他元素. 因此,在第1-n 行只能取1,1--n n a . 继续这个讨论可得: 行列式只有一个正项nn a a a 2211.

在这个行列式中, 主对角线下面的元素都等于0, 称为上三角行列式. 类似定义下三角

行列式, 且有相同结果.

例1.5 求证: 行列式

12,1

10

00

00

n n n a a a -

11,212/)1()1(n n n n n a a a ---=.

证 仿照例1.4的推理, 这个行列式也只有一个非零项. 当该项的行标组成标准排列时, 它的列标排列为1)1( -n n . 逆序数为2/)1(1)2()1(-=++-+-n n n n .

例1.6 求证:行列式

000000044

43

42

41

343332312111

=a a a a a a a a a a .

证 因为行列式的每一项需要在前两行取不同列的元素, 所以行列式的每一项都至少包含一个等于0的元素. 因此该行列式等于0.

前面将行列式中每项的行标组成标准排列, 由列标排列的逆序数决定符号. 现在考虑列标组成标准排列时的情形.

定理 1.2 行列式

11

1212122212n n n n nn

a a a a a a a a a

∑-=n p p p s n a a a 2121)1(. 其中s 是行标排列

n p p p 21的逆序数.

证 行列式定义中的一般项为n np p p t

a a a 2121)1(-. 对换它的两个元素, 该项中的元素乘积n np p p a a a 2121不变. 考虑该项前面的符号. 原来的符号是t

)1(-, 其中t 是行标组成标准排列时, 列标排列的逆序数. 经过对换两个元素, 根据定理 1.1, 其行标排列与列标排列同时改变奇偶性. 然而, 行标排列与列标排列的逆序数之和不改变奇偶性. 继续这个过程, 使列标组成标准排列. 由于标准排列的逆序数等于0, 此时行标排列的奇偶性与原来列标排列的奇偶性相同. 即=-s

)1(t

)1(-.

定理1.2说明行标排列与列标排列的地位是相同的. 从定理1.2的证明中还可以看到: 当行标排列与列标排列都不是标准排列时, 行列式的项的符号可以由行标排列与列标排列的逆序数之和的奇偶性决定.

习题1-1

1. 求下列九阶排列的逆序数,从而确定其奇偶性. (1) 135792468; (2) 219786354.

2. 选择i 与k 使下列九阶排列

(1) 9561274k i 为偶排列; (2) 4897251k i 为奇排列.

3. 求证: 用对换将奇(偶)排列变成标准排列的对换次数为奇(偶)数.

4. 已知排列n p p p 21的逆序数为k ,求排列11n n p p p - 的逆序数.

5. 在六阶行列式中, 确定下列项的符号.

(1) 233146521465a a a a a a ; (2) 256651144332a a a a a a . 6. 计算下列行列式.

(1) 6

13322

1

31; (2) 0

5

5

1111

115----. 7. 计算下列行列式.

(1)

000000

1

2,11,11

,22221

11,11211

n n n n n n a a a a a a a a a a ----; (2)

n

n 0

00010

020

0100

-.

8. 求证: 00

00000052

51

42413231

25

24232221

1514131211=a a a a a a a a a a a a a a a a . 9. 设一个n 阶行列式至少有12

+-n n 个元素等于0,求证:这个行列式等于0.

第二节 行列式的性质

用行列式定义计算一般的高阶行列式非常困难. 而计算三角行列式特别简单. 本节研究行列式的性质, 以寻找简单的计算方法.

定义1.5 将行列式D 的行列互换, 而不改变行与列的先后顺序(第一行变成第一列, 第二行变成第二列等等), 所得到的行列式称为原行列式的转置, 记作D '.

例如, 行列式613322

1

31的转置是6

311233

21. 性质1.1 行列式的转置与原行列式相等. 即D D ='.

证 设行列式D 的元素为ij a , 转置D '的元素为ij b , 则有ji ij a b =. 根据定理1.2, 有

D '∑-=n np p p t b b b 2121)1(D a a a n p p p t n =-=∑ 2121)1(.

注意 在行列式中, 行与列的地位是相同的. 因此, 对行列式的行成立的命题, 对列也同样成立.

性质1.2 交换行列式的两行(列), 行列式改变符号.

证 交换D 的第h 行与第k 行产生的新行列式记作hk D . 设hk D 的元素为ij b , 则有

kj hj a b =, hj kj a b =,n j ,,2,1 =, 而hk D 的其他行的元素与D 相同. 设n 阶行列式D 的

一般项为n k h np kp hp p t

a a a a 11)1(-, 其中t 是列标排列n k h p p p p 1的逆序数. 在hk D 的定义中与上面D 的一般项具有相同元素的项为

11(1)h k n s p kp hp np b b b b -= 11(1)k h n s p hp kp np b b b b - ,

其中s 是列标排列n h k p p p p 1的逆序数. 根据定理 1.1, 这两个排列的奇偶性不同, 因此相应的两项符号相反. 因为hk D 与D 的具有相同元素的项符号都相反, 所以D D hk -=. 推论1.1 如果行列式D 中有两行的元素对应相等, 则0=D .

证 设行列式D 的第h 行与第k 行相同, 交换这两行产生的行列式记作hk D , 则

D D hk =. 然而根据性质1.2, 又有D D hk -=. 于是0=D .

性质1.3 用数k 乘以行列式的一行的每个元素,相当于用k 乘以原行列式. 即有

111111

j n i ij in n nj

nn a a a ka ka ka a a a

111111j n

i ij in n nj nn

a a a a a a k a a a =

. 证 设n 阶行列式∑-=

n i np ip p t a a a

D 1

1)1(, 用数k 乘以其第i 行的每个元素产生

的新行列式记作)(k D i , 根据定义, 有

)(k D i ∑-=n i np ip p t a ka a )()1(11kD a a a k n i np ip p t =-=∑ 11)1(.

这个性质可以看作提取行列式的一行(或一列)元素的公因数.

推论1.2 如果行列式D 的某两行的元素对应成比例, 则0=D .

证 设行列式第h 行的每个元素是第i 行的对应元素的k 倍, 提取第h 行元素的公因数k , 根据性质 1.3, 原行列式等于数k 乘以一个新行列式. 由于这个新行列式中有两行相同, 根据推论1.1, 有0=D .

性质1.4 如果行列式的一行的每个元素都是两个数的和,则原行列式等于两个行列式的

和. 即有111111

1

j n i i ij ij in in n nj

nn

a a a

b

c b c b c a a a +++

111111j n i ij in n nj nn

a a a

b b b a a a =

111111j n i ij in n nj nn

a a a c c c a a a +

. 证 设n 阶行列式∑-=n i np ip p t a b a

D 1

11)1(,∑-=n i np ip p t a c a D 112)1(,

其中只有第i 行不同. 将两个行列式的第i 行求和, 其他行不变产生的新行列式记作)(+i D ,

根据行列式定义, 有

)(+i D ∑+-=n i i np ip ip p t a c b a )()1(11

∑-=n i np ip p t a b a 11)1(∑-+n i np ip p t a c a 11)1(21D D +=.

可以将性质1.3看作行列式的数乘运算, 而将性质1.4看作行列式的加法. 行列式的加法

与数乘都是对一行进行, 而不是对整个行列式. 此外, 性质 1.4可以推广为: 如果行列式的一行中所有元素都是k 个数的和, 则它等于k 个行列式的和.

性质1.5 将行列式的某一行的每个元素加上另一行对应元素的k 倍, 行列式不变. 证 设n 阶行列式∑-=

n h i np hp ip p t

a a a a

D 1

1)1(, 将第i 行的元素加上第h 行的

对应元素的k 倍产生的新行列式记作)(k D ih , 根据性质1.4与推论1.2, 有

)(k D ih ∑+-=n h h i np hp hp ip p t a a ka a a )()1(11

∑-=n h i np hp ip p t a a a a 11)1(∑-+n h h np hp hp p t a a ka a )()1(11

D a a a a n h i np hp ip p t =-=∑ 11)1(.

例1.7 求证: 行列式h g i g i

h e d f d f

e b a c a c

b +++++++++i h g f e d

c b a 2=. 证 先用性质1.4将等式左边分成两个行列式, 再用性质1.5, 得

h g i g i h e d f d f e b a c a c b +++++++++h g i g h e d f d e b a c a b ++++++=h g i g i e d f d f

b a

c a c +++++++ g

i g h

d f

d e a c a b +++=h

g g

i e d d f

b a a

c ++++g

i

h

d f

e a c b =h

g

i

e d

f b a c +i

h

g

f e d

c b a 2=. 例1.8 计算行列式

4

321651005311

021.

解 用性质1.5, 得

4

32165100531102133

00651015101021-=

33

00700015101021-=

217

0033001

5101021-=--

=.

注意 用性质将行列式变成三角行列式, 再用定义计算. 这种方法称为消元法.

例1.9 计算行列式

3

111131111311

113.

解 先将下面各行加到第一行, 提取第一行的公因数6, 再用下面各行分别减去第一行. 得

3

1111311113111133111131111316666=

3

1111311113111116

=482

0000200002011116

==.

注意 如果行列式的列和(或行和)相等, 常使用上述技巧.

例1.10 计算行列式

y

y

x x

-+-+1111

1

11

111111111.

解 用第一列减第二列, 提取x ; 第三列减第四列, 提取y . 再用第二列, 第四列分别

减第一列与第三列, 得

y

y x x -+-+1111111111111111y

y y x

x x --=

1101

10101101

y x xy

--=111

1

1

1010111011y

x xy

--=10

00

1

0000

1000122y x =.

有时需要仔细观察行列式的结构, 才能找到最简捷的方法. 计算行列式时, 往往有多种方法. 应该考察各种路线, 从中选择最佳方案.

习题1-2

1. 求证: bz

ay by ax bx az by ax bx az bz

ay bx

az bz ay by ax +++++++++y

x

z

x z y z y x b a )(33+=. 2. 计算行列式ef

cf

bf

de cd bd

ae ac ab

---. 3. 计算下列行列式.

(1)

2

2

2

2

222222222222

)

3()

2()

1()3()2()1()3()2()1()3()2()1(++++++++++++d d d d

c c c c b b b b a a a a ; (2) n

22

2

2322

2222

2221.

4. 求t 的值, 使得行列式22633

211

1=t

t .

5. 计算下列行列式

(1)

3

214214314324

321; (2)

12121

2

n n n x m

x x x x m x x x x m

---

.

6. 计算行列式0121111

1

001

n

a a a a

, 其中021≠n a a a .

7. 用两种方法计算行列式a

b c

c a

b

b

c a

, 从而证明因式分解: ))((3222333bc ac ab c b a c b a abc c b a ---++++=-++.

8. 计算行列式

11

1212122212n n

n n n n

a b a b a b a b a b a b a b a b a b ---------

, 其中2>n .

9. 计算行列式

1231110

000220000020

011n n n

n n

------

.

10. 计算行列式a

b

a b

a b b a b a b

a D n

=

2,其中未写出的元素都等于0.

第三节 行列式的展开

在本节中研究行列式按照一行或一列展开的公式, 从而可以将一个高阶行列式的计算转化为若干低阶行列式的计算.

定义1.6 考虑n 阶行列式

11

1212122212n n n n nn

a a a a a a a a a

∑-=n np p p t a a a 2121)1(. 将行列式的

元素ij a 所在的行与列删除(其余元素保持原来的相对位置), 得到的1-n 阶行列式称为元素

ij a 的余子式, 记作ij M . 而称ij j i ij M A +-=)1(为元素ij a 的代数余子式.

例如,行列式33

32

31

232221

13

1211

a a a a a a a a a 中元素12a 的余子式为21

231231

33

a

a M a a =, 而代数余子式为

212312

1231

33

(1)

a a A a a +=-.

注意 左上角元素11a 的代数余子式11A 取正号, 其余正负相间. 特别, 主对角元素ii

a 的代数余子式ii A 全取正号.

引理1.1 如果一个n 阶行列式D 的第i 行中只有ij a 不等于0, 则这个行列式等于ij a 与其代数余子式ij A 的乘积. 即ij ij A a D =.

证 先考虑n j i ==的特殊情况. 根据定义, 为了产生非零项, 在行列式D 的第n 行只能取nn a . 于是, 有

∑---=nn p n p p t a a a a D n 121)1(21)1( ∑---=121)1(21)1(n p n p p t nn a a a a ,

其中t 是列标排列n p p p n 121- 的逆序数, 求和遍及1,,2,1-n 的所有排列121-n p p p . 然而排列n p p p n 121- 与排列121-n p p p 的逆序数相等, 因此, 上式右边的和式为

nn p n p p t

M a a a

n =-∑--121

)1(21)1( nn nn n n A M =-=+)1(.

于是, 有nn nn A a D =.

现在考虑一般情况, 设行列式D 的第i 行中只有ij a 不等于0. 将D 的第i 行与第1+i 行交换, 再将所得行列式的第1+i 行与第2+i 行交换, 继续进行, 直到D 的第i 行移到最后一行, 而其他行的上下顺序不变. 在这个过程中, 共进行i n -次交换行. 用同样的方法, 将所得的行列式的第j 列逐步移到最后一列, 而其他列的左右顺序不变. 在这个过程中, 共进行

j n -次交换列. 最后得到的行列式记作B , 则在B 的最后一行中只有最后一个元素ij a 不等

于0, 而且ij a 在B 中的代数余子式就是ij a 在D 中的余子式ij M . 由前面证明的特殊情况, 有ij ij M a B =. 另一方面, 根据性质1.2, 有D B j n i n )

()()1(-+--=, 即B D j i +-=)1(. 于是,

有ij ij ij ij j

i A a M a D =-=+)

1(.

定理1.3 对于n 阶行列式D , 有

in in i i i i A a A a A a D +++= 2211; nj nj j j j j A a A a A a D +++= 2211.

证 将行列式D 的第i 行的每个元素改写成n 个数的和, 其中由ij a 改写成的和中的第j 个加数等于ij a , 其他元素等于0. 用性质1.4的推广, 则D 等于n 个行列式的和. 在第j 个行列式的第i 行中, 只有属于第j 列的元素等于ij a , 其他元素等于0.

对这n 个行列式分别用引理1.1, 得in in ij ij i i A a A a A a D ++++= 11.

注意 用定理 1.3, 可以将一个n 阶行列式的计算转化为n 个1-n 阶行列式的计算. 不过, 当行列式的阶数较大时, 计算量仍然相当大. 除非在行列式中有很多元素等于0. 联合使用消元与按照一行(列)展开, 常能得到最简捷的计算路线.

例1.11 计算行列式

500134267002

430.

解 先按照第四行展开, 得

50013426

700243043032

(1)5006241

+=-32

1018006

=-=-.

有时用数学归纳法计算n 阶行列式是比较方便的. 不过此时需要行列式n D 与1-n D ,

2-n D 之间的关系.

例1.12 求证: 0001

00

0100

0000

1

n a b ab a b ab a b D a b ab a b

+++=

++

b a b a n n --=

++1

1. 证 计算可得b

a b a b a D --=+=221, b a b a b ab a D --=++=332

22. 设命题对于

1-n 阶与2-n 阶行列式成立.

考虑n 阶行列式, 按第一行展开, 得

000

1

00010000000

1n a b ab a b ab a b D a b

ab a b +++=

++

00

1

00()000

1

a b

ab

a b a b a b ab a b

++=+++

1

00000000

1

ab a b ab a b

ab a b

+-++

21)(---+=n n abD D b a b a b a n n --=++1

1.

例1.13 求证: 1

2

3

2

2

22

1

2

3

1

11112

31111n

n n

n n n n n

x x x x D x x x x x x x x ----=

∏<-=j

i i j x x )(. 解 当2=n 时, 有122x x D -=. 设命题对于1-n 阶行列式1-n D 成立. 考虑n 阶行列式n D , 从下边开始, 下面一行减去上面一行的1x 倍, 得

1

2

3

2

222

12

3

11

1112

31111n

n n

n n n n n

x x x x D x x x x x x x x ----=

213112213311222

2213311111

100()()()0

()()()

n n n n n n n n x x x x x x x x x x x x x x x x x x x x x x x x ------=------

23213112

222

31

11()()()

n n n n n n

x x x x x x x x x x x x ---=---

111312)())((----=n n D x x x x x x ∏<-=j

i i j x x )(.

与前面的例题不同, 这里不是下面各行减去第一行, 而是下面一行减去其上面一行. 当

然现在必须从第n 行开始, 逐行向上做.

这个行列式称为范德蒙行列式. 易见, 当n x x x ,,,21 两两不同时, 范德蒙行列式不等于0. 这个性质产生了范德蒙行列式的许多应用.

例1.14 求证: 2

11212

21222

1

2

12n n n n n n

a a a a a a a a a a D a a a a n a ++=

+

)1(!12∑=+=n

k k

k

a n .

解 当1=n , 2

111a D +=. 设命题对于1-n 阶行列式1-n D 成立. 考虑n 阶行列式n D , 按照最后一行分成两个行列式的和, 得

2

112

12

212

22

121200n n n n n n

a a a a a a a a a a D a a a a n a ++=

+++

211212

21221200n n

a a a a a a a a a a n

++= 2

11212

212221

2

12n n

n n n

a a a a a a a a a a a a a a a +++

2112112

21221211

121

12(1)n n n n n a a a a a a a a a a n

a a a a n a -----++=-+

1

10002

n

n n

a a a a +

=2

1)!1(n

n a n nD -+-21

1[(1)!(1)]n k k a n n k -==-+∑2

(1)!n n a +-)1(!12∑=+=n

k k k

a n .

推论 1.3 行列式的任意一行(列)的元素与另一行的元素的代数余子式的乘积之和等于零. 即当j i ≠时, 有

02211=+++nj ni j i j i A a A a A a ; 02211=+++jn in j i j i A a A a A a .

证 只证第一个等式. 反向用定理1,3, 则nj ni j i j i A a A a A a +++ 2211等于一个n 阶行列式. 这个行列式的第i 行与第j 行相同, 根据推论1.1, 该行列式等于0.

习题1-3

1. 计算行列式1

13

12

11

1311021

---=

D 的第二行所有元素的余子式与代数余子式.

2. 计算行列式0000

000000000000n x y x y x D x y y

x =

.

3. 求证: 11

21

10000

1000000000

1n n

n n x x x D x

a a a a a +----=

-

n n n n a x a x a x a ++++=--1110 .

4. 求证: 210001

2100012001000210

1

2

n D n =

=+

.

5. 设常数c b a ,,两两不等, 解方程01111

)(3

3

3

3

2222==

x c b a x c b a x c b a x f .

6. 求证: 1

23222212312

3

1111n

n n n n n n

n n n n

n

x x x x D x x x x x x x x ----=

∑∏=<-=n

k k i

j j i x x x 1

)(.

7. 求证: 12

311111

11111111

1

1

1n n

a a D a a ++=

++

???

?

?

?+=∑=n

i i n a

a a a 1211

1 , 其中 021≠n a a a .

补充材料

一 拉普拉斯展开

前面是行列式按一行或一列展开. 这个结果可以推广为按若干行展开.

行列式中任意k 行与k 列交叉处的元素, 按照原来相对位置组成的k 阶行列式称为原行列式的一个k 阶子式k D . 删除这k 行与k 列得到的k n -阶行列式k M 称为k 阶子式k D 的余子式, 而=k A ∑-+h

h h j i )

()

1(k M 称为k D 代数余子式. 其中h h j i ,是k D 所在的行标与列标. 命题 设||A 是n 阶行列式, 任意取其中的k 行,n k <<0, 则行列式等于这k 行中所有k 阶子式与其代数余子式的乘积之和.

证明略.

注意 这个命题称为行列式的拉普拉斯展开. 展开时有k

n C 项, 每项是一个k 阶子式与其代数余子式的乘积.

例1 求证:行列式a

b

a b

a b b a b a b a D n

=

2n n b a b a )()(-+=.

证 按照第一行与第n 2行展开, 得)1(22

2

2)(--=n n D b a D . 用这个递推式即可得到所

需结果.

例2 求证:

nn

k n nk

n n

k k k k k k kk k k a a a a a a a a a a a a

1

,1

,11,1.11,111110000++++++

kk k k a a a a 1111=nn

k n n k k k a a a a 1,,11,1++++ 证 按照前k 行展开.

注意 由于右上角的元素都等于0,左下角的元素对行列式没有贡献. 当然, 如果左下角的元素都等于0, 也有类似结果.

线性代数行列式算与性质

线性代数行列式的计算与性质 行列式在数学中,是一个函数,其定义域为的矩阵,取值为一个标量,写作或。行列式可以看做是有向面积或体积的概 念在一般的欧几里得空间中的推广。或者说,在维欧几里得空间中,行列式描述的是一个线性变换对“体积”所造成的影响。无论是在线性代数、多项式理论,还是在微积分学中(比如说换元积分法中),行列式作为基本的数学工具,都有着重要的应用。 行列式概念最早出现在解线性方程组的过程中。十七世纪晚期,关孝和与莱布尼茨的著作中已经使用行列式来确定线性方程组解的个数以及形式。十八世纪开始,行列式开始作为独立的数学概念被研究。十九世纪以后,行列式理论进一步得到发展和完善。矩阵概念的引入使得更多有关行列式的性质被发现,行列式在许多领域都逐渐显现出重要的意义和作用,出现了线性自同态和矢量组的行列式的定义。 行列式的特性可以被概括为一个多次交替线性形式,这个本质使得行列式在欧几里德空间中可以成为描述“体积”的函数。 矩阵 A 的行列式有时也记作 |A|。绝对值和矩阵范数也使用这个记法,有可能和行列式的记法混淆。不过矩阵范数通常以双垂直线来表示(如: ),且可以使用下标。此外,矩阵的绝对值是没有定义的。因此,行 列式经常使用垂直线记法(例如:克莱姆法则和子式)。例如,一个矩阵: A= ? ? ? ? ? ? ? i h g f e d c b a , 行列式也写作,或明确的写作: A= i h g f e d c b a , 即把矩阵的方括号以细长的垂直线取代 行列式的概念最初是伴随着方程组的求解而发展起来的。行列式的提出可以追溯到十七世纪,最初的雏形由日本数学家关孝和与德国数学家戈特弗里德·莱布尼茨各自独立得出,时间大致相同。

线性代数练习题(行列式)

线性代数练习题(行列式)A 一、填空题 1、-=--362 2 36623 2、 =00010020 03004000 3、_____________)631254 (=N 4、四阶行列式)det(ij a 的反对角线元素之积(即41322314a a a a )一项的符号为 5. 行列式2 430123 21---中元素0的代数余子式的值为_______ 二、选择题 1、 =11 a a ( ) ----+1111A a B a C a D a 3、+=-010 111111a a ( ) +++-11(1)(1)A a B a C a D a a 5、若≠314 001 0x x x ,则=x ( )

≠≠≠≠≠≠020202且或A x x B x x C x D x 6、=111011011011 0111 ( ) --2331A B C D 7、=222 111 x y z x y z ( ) ---+++++()()()()()()A y x z x z y B xyz C y x z x z y D x y z 三、设行列式 2 92170216 3332314----=D ,不计算ij A 而直接证明: 444342412A A A A =++

线性代数练习题(行列式)B 一、填空题 1、 设ij A 是n 阶行列式中元素ij a 的代数余子式,则 =∑1 n ik jk k a A = 2、 设=3(1,2,3,4)i A i 是行列式12345678 2348 6789 中元素3i a 的代数余子式, +++=132********A A A A 3、 各列元素之和为零的n 阶行列式之值等于 4、 设A 为m 阶方阵,B 为n 阶方阵,则 =00 A B ; =00 A B 5、 设=(,1,2)ij A i j 为行列式= 21 31 D 中元素ij a 的代数余子式,则=1121 12 22A A A A 6、 方程 -+-= ----1321360 1 2 2 14 x x x x 的根为 7、 已知齐次线性方程组λ+-=?? +-=??-+=?1231231 232020340 x x x x x x x x x 有非零解,则λ= 8、 若11223344,,,a a a a 都不等于零,则方程组 +++=??++=? ? +=??=? 1111221331441 22223324423333443 3444a x a x a x a x b a x a x a x b a x a x b a x b 有 解。

考研数学线性代数行列式的计算方法

考研数学线性代数行列式的计算方法考研数学线性代数行列式的计算方法 一、基本内容及历年大纲要求。 本章内容包括行列式的定义、性质及展开定理。从整体上来看,历年大纲要求了解行列式的概念,掌握行列式的性质,会应用行列 式的性质及展开定理计算行列式。不过要想达到大纲中的要求还需 要考生理解排列、逆序、余子式、代数余子式的概念,以及性质中 的相关推论是如何得到的。 二、行列式在线性代数中的地位。 行列式是线性代数中最基本的运算之一,也是考生复习考研线性 代数必须掌握的基本技能之一(另一项基本技能是求解线性方程组),另外,行列式还是解决后续章节问题的一个重要工具,不论是后续 章节中出现的重要概念还是重要定理、解题方法等都与行列式有着 密切的联系。 三、行列式的计算。 由于行列式的计算贯穿整个学科,这就导致了它不仅计算方法灵活,而且出题方式也比较多变,这也是广大考生在复习线性代数时 面临的第一道关卡。虽然行列式的计算考查形式多变,但是从本质 上来讲可以分为两类:一是数值型行列式的计算;二是抽象型行列式 的计算。 1.数值型行列式的计算 主要方法有: (1)利用行列式的定义来求,这一方法适用任何数值型行列式的 计算,但是它计算量大,而且容易出错;

(2)利用公式,主要适用二阶、三阶行列式的计算; (3)利用展开定理,主要适用出现零元较多的行列式计算; (4)利用范德蒙行列式,主要适用于与它具有类似结构或形式的行列式计算; (5)利用三角化的思想,主要适用于高阶行列式的计算,其主要思想是找1,化0,展开。 2.抽象型行列式的计算 主要计算方法有: (1)利用行列式的性质,主要适用于矩阵或者行列式是以列向量的形式给出的; (2)利用矩阵的运算,主要适用于能分解成两个矩阵相乘的'行列式的计算; (3)利用矩阵的特征值,主要适用于已知或可以间接求出矩阵特征值的行列式的计算; (4)利用相关公式,主要适用于两个矩阵相乘或者是可以转化为两个矩阵相乘的行列式计算; (5)利用单位阵进行变形,主要适用于既不能不能利用行列式的性质又不能进行合并两个矩阵加和的行列式计算。 我们究竟该做多少年的真题? 建议大家在刚开始复习的时候,不要去做真题,因为以你刚开始复习的程度还不足以支撑起真题的难度和深度。我们做真题的时间是在我们的强化阶段结束之后,也就是提高阶段和冲刺模考去做真题。 应该怎么样去做真题? 第一:练习重质不重量

线性代数技巧行列式的计算方法

计算n 阶行列式的若干方法举例 n 阶行列式的计算方法很多,除非零元素较多时可利用定义计算(①按照某一列或某一行展开②完全展开式)外,更多的是利用行列式的性质计算,特别要注意观察所求题目的特点,灵活选用方法,值得注意的是,同一个行列式,有时会有不同的求解方法。下面介绍几种常用的方法,并举例说明。 1.利用行列式定义直接计算 例1 计算行列式 00100 20010000 n D n n = - 解 D n 中不为零的项用一般形式表示为 112211!n n n nn a a a a n ---= . 该项列标排列的逆序数t (n -1 n -2…1n )等于 (1)(2) 2 n n --,故 (1)(2) 2 (1) !.n n n D n --=- 2.利用行列式的性质计算

例2 一个n 阶行列式n ij D a =的元素满足 ,,1,2,,,ij ji a a i j n =-= 则称D n 为反对称行列式,证明:奇数阶反对称行列式为零. 证明:由i j j a a =-知i i i a a =-,即 0,1,2,,ii a i n == 故行列式D n 可表示为 1213112 23213 2331230000 n n n n n n n a a a a a a D a a a a a a -=----- 由行列式的性质A A ' = 1213112 23213 2331230000n n n n n n n a a a a a a D a a a a a a -----=- 1213112 23213 23312300(1)00 n n n n n n n a a a a a a a a a a a a -=------ (1)n n D =- 当n 为奇数时,得D n =-D n ,因而得D n = 0.

线性代数行列式基本概念

目录 目录 (1) 一、行列式 (2) 见ppt。 (2) 二、矩阵特征值 (2) 三、正定矩阵 (2) 四、幺模矩阵 (3) 五、顺序主子阵 (4) 六、正定二次型 (6) 七、矩阵的秩 (6) 八、初等变换(elementary transformation) (7)

一、行列式 见ppt。 二、矩阵特征值 设 A 是n阶方阵,如果存在数m和非零n维列向量 x,使得 Ax=mx 成立,则称 m 是A的一个特征值(characteristic value)或本征值(eigenvalue)。非零n维列向量x称为矩阵A的属于(对应于)特征值m的特征向量或本征向量,简称A的特征向量或A的本征向量。 求矩阵特征值的方法 Ax=mx,等价于求m,使得(mE-A)x=0,其中E是单位矩阵,0为零矩阵。 |mE-A|=0,求得的m值即为A的特征值。|mE-A| 是一个n次多项式,它的全部根就是n阶方阵A的全部特征值,这些根有可能相重复,也有可能是复数。 如果n阶矩阵A的全部特征值为m1 m2 ... mn,则|A|=m1*m2*...*mn 如果n阶矩阵A满足矩阵多项式方程g(A)=0, 则矩阵A的特征值m一定满足条件g(m)=0;特征值m可以从解方程g(m)=0求得。 三、正定矩阵 设M是n阶实系数对称矩阵,如果对任何非零向量 X=(x_1,...x_n),都有XMX′>0(X'为X的转置矩阵 ),就称M正定(Positive Definite)。 正定矩阵在相合变换下可化为标准型,即单位矩阵。 所有特征值大于零的对称矩阵(或厄米矩阵)也是正定矩阵。 另一种定义:一种实对称矩阵.正定二次型f(x1,x2,…,xn)=X′AX的矩阵A(A′)称为正定矩阵. 判定定理1:对称阵A为正定的充分必要条件是:A的特征值全为正。 判定定理2:对称阵A为正定的充分必要条件是:A的各阶顺序主子式都为正。 判定定理3:任意阵A为正定的充分必要条件是:A合同于单位阵。 正定矩阵的性质: 1.正定矩阵一定是非奇异的。非奇异矩阵的定义:若n阶矩阵A的行列式不为零,即|A|≠0,则称A为非奇异矩 2.正定矩阵的任一主子矩阵也是正定矩阵。

#线性代数技巧行列式的计算方法

计算n 阶行列式的若干方法举例 n 阶行列式的计算方法很多,除非零元素较多时可利用定义计算(①按照某一列或某一行展开②完全展开式)外,更多的是利用行列式的性质计算,特别要注意观察所求题目的特点,灵活选用方法,值得注意的是,同一个行列式,有时会有不同的求解方法。下面介绍几种常用的方法,并举例说明。 1.利用行列式定义直接计算 例1 计算行列式 0010020010000 00n D n n = - 解 D n 中不为零的项用一般形式表示为 112211!n n n nn a a a a n ---=. 该项列标排列的逆序数t (n -1 n -2…1n )等于 (1)(2) 2 n n --,故 (1)(2) 2 (1) !.n n n D n --=- 2.利用行列式的性质计算 例2 一个n 阶行列式 n ij D a =的元素满足 ,,1,2, ,,ij ji a a i j n =-= 则称D n 为反对称行列式,证明:奇数阶反对称行列式为零. 证明:由i j j i a a =-知i i i i a a =-,即 0,1,2, ,ii a i n ==

故行列式D n 可表示为 1213112 23213 2331230000 n n n n n n n a a a a a a D a a a a a a -=----- 由行列式的性质A A '= 1213112 23213 2331230000 n n n n n n n a a a a a a D a a a a a a -----=- 1213112 23213 23312300(1)0 n n n n n n n a a a a a a a a a a a a -=------ (1)n n D =- 当n 为奇数时,得D n =-D n ,因而得D n = 0. 3.化为三角形行列式 若能把一个行列式经过适当变换化为三角形,其结果为行列式主对角线上元素的乘积。 因此化三角形是行列式计算中的一个重要方法。 例3 计算n 阶行列式 a b b b b a b b D b b a b b b b a = 解:这个行列式的特点是每行(列)元素的和均相等,根据行列式的性质,把第2,3,…,

线性代数-特殊行列式及行列式计算方法总结

特殊行列式及行列式计算方法总结 一、 几类特殊行列式 1. 上(下)三角行列式、对角行列式(教材P7例5、例6) 2. 以副对角线为标准的行列式 111121 12,1221222,11,21,1 1,1 12 ,1 (1)2 12,1 1 000000000000000 00 (1) n n n n n n n n n n n nn n n n n n nn n n n n n a a a a a a a a a a a a a a a a a a a a a a ---------= ==- 3. 分块行列式(教材P14例10) 一般化结果: 00n n m n n m n m m n m m n m A C A A B B C B ????==? 0(1)0n m n n m n mn n m m m n m m n A C A A B B C B ????==-? 4. 范德蒙行列式(教材P18例12) 注:4种特殊行列式的结果需牢记! 以下几种行列式的特殊解法必须熟练掌握!!! 二、 低阶行列式计算 二阶、三阶行列式——对角线法则 (教材P2、P3) 三、 高阶行列式的计算 【五种解题方法】 1) 利用行列式定义直接计算特殊行列式; 2) 利用行列式的性质将高阶行列式化成已知结果的特殊行列式;

3) 利用行列式的行(列)扩展定理以及行列式的性质,将行列式降 阶进行计算——适用于行列式的某一行或某一列中有很多零元素,并且非零元素的代数余子式很容易计算; 4) 递推法或数学归纳法; 5) 升阶法(又称加边法) 【常见的化简行列式的方法】 1. 利用行列式定义直接计算特殊行列式 例1 (2001年考研题) 0001000200019990002000000 002001 D = 分析:该行列式的特点是每行每列只有一个元素,因此很容易联想到直接利用行列式定义进行计算。 解法一:定义法 (1,2,...,2,1,)012...19990(1)2001!(1)2001!2001!n n n D τ--+++++=-=-= 解法二:行列式性质法 利用行列式性质2把最后一行依次与第n -1,n -2,…,2,1行交换(这里n =2001),即进行2000次换行以后,变成副对角行列式。 2001(20011) 20011 20011 2 000020010 001000200(1) (1) (1)2001!2001!019990002000 00 D ?---=- =--=

线性代数行列式经典例题

线性代数行列式经典例题 例1计算元素为a ij = | i -j |的n 阶行列式. 解 方法1 由题设知,11a =0,121a =,1,1,n a n =- ,故 01110212 n n n D n n --= -- 1,1,,2 i i r r i n n --=-= 01 1111 111 n ---- 1,,1 j n c c j n +=-= 121 1 021 (1)2(1)020 1 n n n n n n ------=---- 其中第一步用的是从最后一行起,逐行减前一行.第二步用的每列加第n 列. 方法2 01110 212 0n n n D n n --= -- 1 1,2,,111 1111 120 i i r r i n n n +-=----=-- 1 2,,100120 1231 j c c j n n n n +=---= --- =12(1)2(1) n n n ---- 例2. 设a , b , c 是互异的实数, 证明: 的充要条件是a + b + c =0. 证明: 考察范德蒙行列式:

= 行列式 即为y 2前的系数. 于是 = 所以 的充要条件是a + b + c = 0. 例3计算D n = 121 100010n n n x x a a a x a ----+ 解: 方法1 递推法 按第1列展开,有 D n = x D 1-n +(-1) 1 +n a n 1 1111n x x x ----- = x D 1-n + a n 由于D 1= x + a 1,221 1x D a x a -=+,于是D n = x D 1-n + a n =x (x D 2-n +a 1-n )+ a n =x 2 D 2-n + a 1-n x + a n = = x 1 -n D 1+ a 2x 2 -n + + a 1-n x + a n =111n n n n x a x a x a --++++ 方法2 第2列的x 倍,第3列的x 2 倍, ,第n 列的x 1 -n 倍分别加到第1列上 12 c xc n D += 21121 10010000n n n n x x x a xa a a x a -----++

线性代数习题-[第一章]行列式

习题1—1 全排列及行列式的定义 1. 计算三阶行列式123 4 56789 。 2. 写出4阶行列式中含有因子1324a a 并带正号的项。 3. 利用行列式的定义计算下列行列式: ⑴0 004003002001 0004 D

⑵0 0000000052 51 42413231 2524232221 151********a a a a a a a a a a a a a a a a D = ⑶0 001 0000 200 0010 n n D n -= 4. 利用行列式的定义计算210111()0211 1 1 x x x f x x x -= 中34 , x x 的系数。

习题1—2 行列式的性质 1. 计算下列各行列式的值: ⑴ 2141 012112025 62 - ⑵ef cf bf de cd bd ae ac ab --- ⑶ 2 2 2 2 2 2 2 2 22222222)3()2()1()3()2()1()3()2()1()3()2()1(++++++++++++d d d d c c c c b b b b a a a a

2. 在n 阶行列式nn n n n n a a a a a a a a a D 2 1 222 2111211 = 中,已知),,2,1,(n j i a a ji ij =-=, 证明:当n 是奇数时,D=0. 3. 计算下列n 阶行列式的值: ⑴x a a a x a a a x D n = ⑵n n a a a D +++= 11 1 1 1111121 ()120n a a a ≠

线性代数行列式经典例题

线性代数行列式经典例题 The Standardization Office was revised on the afternoon of December 13, 2020

线性代数行列式经典例题 例1计算元素为a ij = | i -j |的n 阶行列式. 解 方法1 由题设知,11a =0,121a =, 1,1, n a n =-,故 0111 02 12 n n n D n n --= --1,1,,2 i i r r i n n --=-= 0111111 1 1 n ----

1,,1 j n c c j n +=-= 1 2 110 2 1 ( 1) 2 (1) 20 1 n n n n n n ------=---- 其中第一步用的是从最后一行起,逐行减前一行.第二步用的每列加第n 列.

方法2 01110 21 2 n n n D n n --= --11,2,,1 11111 1 12 i i r r i n n n +-=----= -- 12,, 1 00 1 2 0123 1 j c c j n n n n +=---= ---= 1 2 (1) 2 (1) n n n ----

例2.设a, b, c是互异的实数, 证明: 的充要条件是a + b + c =0. 证明: 考察范德蒙行列式: = 行列式即为y2前的系数. 于是 = 所以的充要条件是a + b + c = 0. 例3计算D n = 121 10 010 n n n x x a a a x a -- - - + 解:方法1 递推法按第1列展开,有

线性代数之行列式的性质及计算讲解学习

线性代数之行列式的性质及计算

第二节 行列式的性质与计算 §2.1 行列式的性质 考虑11 1212122212n n n n nn a a a a a a D a a a = L L L L L L L 将它的行依次变为相应的列,得 11 21112 222 12n n T n n nn a a a a a a D a a a = L L L L L L L 称T D 为D 的转置行列式 . 性质1 行列式与它的转置行列式相等.(T D D =) 事实上,若记111212122212n n T n n nn b b b b b b D b b b = L L L L L L L L L L 则(,1,2,,)ij ji b a i j n ==L 1212() 12(1)n n p p p T p p np D b b b τ∴=-∑L L 1212()12(1).n n p p p p p p n a a a D τ=-=∑L L 说明:行列式中行与列具有同等的地位, 因此行列式的性质凡是对行成立的结论, 对列也同样成立. 性质2 互换行列式的两行(i j r r ?)或两列(i j c c ?),行列式变号. 例如 123 123086351.351 086 =- 推论 若行列式D 有两行(列)完全相同,则0D =. 证明: 互换相同的两行, 则有D D =-, 所以0D =. 性质3 行列式某一行(列)的所有元素都乘以数k ,等于数k 乘以此行列式,即

111211112112121212 n n i i in i i in n n nn n n nn a a a a a a ka ka ka k a a a a a a a a a =L L L L L L L L L L L L L L L L L L L L L L 推论:(1) D 中某一行(列)所有元素的公因子可提到行列式符号的外面; (2) D 中某一行(列)所有元素为零,则0D =; 性质4: 行列式中如果有两行(列)元素对应成比例, 则此行列式等于零. 性质5: 若行列式某一行(列)的所有元素都是两个数的和,则此行列式等于两个行列式的和.这两个行列式的这一行(列)的元素分别为对应的两个加数之一,其余各行(列)的元素与原行列式相同 .即 11121112212 n i i i i in in n n nn a a a a b a b a b a a a +++=L L L L L L L L L L L 1112112 12 n i i in n n nn a a a a a a a a a +L L L L L L L L L L L 111211212 n i i in n n nn a a a b b b a a a L L L L L L L L L L L . 证: 由行列式定义 1212()12(1)()n i i n p p p p p ip ip np D a a a b a τ=-+∑L L L 12121212()()1212(1)(1).n n i n i n p p p p p p p p ip np p p ip np a a a a a a b a ττ=-+-∑∑L L L L L L 性质6 行列式D 的某一行(列)的各元素都乘以同一数k 加到另一行(列)的相应元素上,行列式的值不变()i j r kr D D +=,即 111211212 i j n r kr i i in n n nn a a a a a a a a a +=L L L L L L L L L L L 11121112212 n i j i j in jn n n nn a a a a ka a ka a ka a a a +++L L L L L L L L L L L 计算行列式常用方法: 利用性质2,3,6, 特别是性质6把行列式化为上(下)三角形行列式, 从而, 较容易的计算行列式的值.

线性代数行列式基本概念

目录 一、行列式 (2) 二、矩阵特征值 (2) 三、正定矩阵 (2) 四、幺模矩阵 (3) 五、顺序主子阵 (4) 六、正定二次型 (6) 七、矩阵的秩 (6) 八、初等变换(elementary transformation) (7)

一、行列式 见ppt。 二、矩阵特征值 设 A 是n阶方阵,如果存在数m和非零n维列向量 x,使得 Ax=mx 成立,则称 m 是A的一个特征值(characteristic value)或本征值(eigenvalue)。非零n维列向量x称为矩阵A的属于(对应于)特征值m的特征向量或本征向量,简称A的特征向量或A的本征向量。 求矩阵特征值的方法 Ax=mx,等价于求m,使得(mE-A)x=0,其中E是单位矩阵,0为零矩阵。 |mE-A|=0,求得的m值即为A的特征值。|mE-A| 是一个n次多项式,它的全部根就是n阶方阵A的全部特征值,这些根有可能相重复,也有可能是复数。 如果n阶矩阵A的全部特征值为m1 m2 ... mn,则|A|=m1*m2*...*mn 如果n阶矩阵A满足矩阵多项式方程g(A)=0, 则矩阵A的特征值m一定满足条件g(m)=0;特征值m可以从解方程g(m)=0求得。 三、正定矩阵 设M是n阶实系数对称矩阵,如果对任何非零向量 X=(x_1,...x_n),都有XMX′>0(X'为X的转置矩阵 ),就称M正定(Positive Definite)。 正定矩阵在相合变换下可化为标准型,即单位矩阵。 所有特征值大于零的对称矩阵(或厄米矩阵)也是正定矩阵。 另一种定义:一种实对称矩阵.正定二次型f(x1,x2,…,xn)=X′AX的矩阵A(A′)称为正定矩阵. 判定定理1:对称阵A为正定的充分必要条件是:A的特征值全为正。 判定定理2:对称阵A为正定的充分必要条件是:A的各阶顺序主子式都为正。 判定定理3:任意阵A为正定的充分必要条件是:A合同于单位阵。 正定矩阵的性质: 1.正定矩阵一定是非奇异的。非奇异矩阵的定义:若n阶矩阵A的行列式不为零,即|A|≠0,则称A为非奇异矩 2.正定矩阵的任一主子矩阵也是正定矩阵。

线性代数之行列式的性质和计算

第二节 行列式的性质与计算 §2.1 行列式的性质 考虑11 12121 22 212 n n n n nn a a a a a a D a a a = 将它的行依次变为相应的列,得 11 21112 22212n n T n n nn a a a a a a D a a a = 称T D 为D 的转置行列式 . 性质1 行列式与它的转置行列式相等.(T D D =) 事实上,若记1112 12122212 n n T n n nn b b b b b b D b b b = 则(,1,2, ,)ij ji b a i j n == 12 12 () 12(1)n n p p p T p p np D b b b τ∴=-∑12 12() 12(1).n n p p p p p p n a a a D τ=-=∑ 说明:行列式中行与列具有同等的地位, 因此行列式的性质凡是对行成立的结论, 对列也同样成立. 性质2 互换行列式的两行(i j r r ?)或两列(i j c c ?),行列式变号. 例如 123 123086351.351 086 =- 推论 若行列式D 有两行(列)完全相同,则0D =. 证明: 互换相同的两行, 则有D D =-, 所以0D =. 性质3 行列式某一行(列)的所有元素都乘以数k ,等于数k 乘以此行列式,即 111211112 112121 2 1 2 n n i i in i i in n n nn n n nn a a a a a a ka ka ka k a a a a a a a a a = 推论:(1) D 中某一行(列)所有元素的公因子可提到行列式符号的外面;

线性代数第一章行列式试题及答案

如何复习线形代数 线性代数这门课的特点主要有两个:一是试题的计算量偏大,无论是行列式、矩阵、线性方程组的求解,还是特征值、特征向量和二次型的讨论都涉及到大量的数值运算,稍有不慎,即会出错;二是前后内容紧密相连,纵横交织,既相对独立又密不可分,形成了一个完整、独特的知识体系. 在掌握好基本概念、基本原理和基本方法的前提下,下面谈谈在复习过程中应注意的一些问题. 一、加强计算能力训练,切实提高计算的准确性 二、扩展公式结论蕴涵,努力探索灵活解题途径 三、注重前后知识联系,努力培养综合思维能力 线性代数不仅概念多,公式结论多,而且前后知识联系紧密,环环相扣,几乎从任何一个知识点都可切入将前后知识联系起来考查 四、加强综合题型训练,全面系统地掌握好知识 计算能力的提高不是一朝一夕的事,除了要不断归纳总结一些重要公式和结论并加以巧妙、适当的应用外,还要靠平时的积累,要养成踏踏实实、有始有终将最后结果计算出来的习惯,只要持之以恒、坚持练习,计算准确性的提高并不是一件困难的事. 而对整个知识的融会贯通、综合应用也有赖于适当地多做这方面的练习, 第一章行列式 一.概念复习 1. 形式和意义 形式:用n2个数排列成的一个n行n列的表格,两边界以竖线,就成为一个n阶行列式: a11 a12 (1) a21 a22 (2) ………. a n1 a n2…a nn 如果行列式的列向量组为1,2, …,n,则此行列式可表示为|1,2, …,n|. 意义:是一个算式,把这n2个元素按照一定的法则进行运算,得到的数值称为这个行列式的值. 请注意行列式和矩阵在形式上和意义上的区别. 当两个行列式的值相等时,就可以在它们之间写等号! (不必形式一样,甚至阶数可不同.) 每个n阶矩阵A对应一个n阶行列式,记作|A|. 行列式这一讲的的核心问题是值的计算,以及判断一个行列式的值是否为0. 2. 定义(完全展开式) 一般地,一个n阶行列式 a11 a12 (1) a21 a22 (2) ……… a n1 a n2…a nn 的值是许多项的代数和,每一项都是取自不同行,不同列的n个元素的乘积,其一般形式为: n nj j j a a a 2 1 2 1 ,这里把相乘的n个元素的行标按自然顺序排列,它们的列标j1j2…j n构成1,2, …,n的一个全排列(称为一个n元排列), 一个n元排列的总项数共有n!个,因此n阶行列式的值是n!项的代数和。 所谓代数和是在求总和时每项先要乘+1或-1.规定(j1j2…j n)为全排列j1j2…j n的逆序数,全排列的逆序数即小数排列在大数右面的现象出现的个数. 逆序数可如下计算:标出每个数右面比它小的数的个数,它们的和就是逆序数.例如求436512的逆序数: 2 3 2 3 215 6 3 4,(436512)=3+2+3+2+0+0=10. 则项 n nj j j a a a 2 1 2 1 所乘的是. )1 () (2 1n j j j 即逆序数是偶数时,该项为正;逆序数是奇数时,该项为负;在一个n元排列的n!项中,奇排列和偶排列各有n!/2个。至此我们可以写出n阶行列式的值: a11 a12 (1) a21 a22…a2n =. )1 ( 2 1 2 1 2 1 2 1 ) ( n n n nj j j j j j j j j a a a ……… a n1 a n2…a nn 这里 n j j j 2 1 表示对所有n元排列求和.称此式为n阶行列式的完全展开式. 用完全展开式求行列式的值一般来说工作量很大.只在有大量元素为0,使得只有少数项不为0时,才可能用它作行列式的计算. 3、对角行列式计算

线性代数习题册行列式-习题详解

行列式的概念 一、选择题 1. 下列选项中错误的是( ) (A) b a d c d c b a - = ; (B) a c b d d c b a = ; (C) d c b a d c d b c a = ++33; (D) d c b a d c b a ----- =. 答案:D 2.行列式n D 不为零,利用行列式的性质对n D 进行变换后,行列式的值( ). (A)保持不变; (B)可以变成任何值; (C)保持不为零; (D)保持相同的正负号. 答案:C 二、填空题 1. a b b a log 1 1 log = . 解析: 0111log log log 1 1log =-=-=a b a b b a b a . 2. 6 cos 3sin 6sin 3 cos π π ππ = . 解析: 02cos 6sin 3sin 6cos 3cos 6 cos 3 sin 6sin 3 cos ==-=πππππππ π π 3.函数x x x x x f 1213 1 2)(-=中,3x 的系数为 ; x x x x x x g 2 1 1 12)(---=中,3x 的系数为 . 答案:-2;-2.

阶行列式n D 中的n 最小值是 . 答案:1. 5. 三阶行列式11342 3 2 1-中第2行第1列元素的代数余子式 等于 . 答案:5. 6.若 02 1 8 2=x ,则x = . 答案:2. 7.在 n 阶行列式ij a D =中,当i

线性代数第1章行列式试卷及答案

第一章 行列式 一、单项选择题 1.行列式D 非零的充分条件是( D ) (A) D 的所有元素非零 (B) D 至少有n 个元素非零 (C) D 的任何两行元素不成比例 (D)以D 为系数矩阵的非齐次线性方程组有唯一解 2.二阶行列式 1 2 21--k k ≠0的充分必要条件是( C ) A .k ≠-1 B .k ≠3 C .k ≠-1且k ≠3 D .k ≠-1或≠3 3.已知2阶行列式 2 21 1b a b a =m , 2 21 1c b c b =n ,则 2 22 111c a b c a b ++=( B ) +n (m+n ) 4.设行列式==1 11103 4 222,1111304z y x z y x 则行列式( A ) A.32 D.3 8 5.下列行列式等于零的是(D ) A .100123123- B. 031010300- C . 100003010- D . 2 61422613- 6.行列式 1 1 1 101111011110------第二行第一列元素的代数余子式21A =( B ) A .-2 B .-1 C .1 D .2 8.如果方程组?? ? ??=+=-=-+0404033232321kx x x x x kx x 有非零解,则 k =( B ) 9.(考研题)行列式 0000000a b a b c d c d =( B ) A.()2ad bc - B.() 2ad bc -- C.2222 a d b c - D.22 2 2 b c a d - 二、填空题 1.四阶行列式中带负号且含有因子12a 和21a 的项为 44332112a a a a 。 2. 行列式11 1 2 3 44916 中(3,2)元素的代数余子式A 32=___-2___. 3. 设7 3 43690211 1 1 875 1----= D ,则5A 14+A 24+A 44=_______。 解答:5A 14+A 24+A 44= 1501 3430 90211 1 15751-=--- 4.已知行列式01 110321 2=-a ,则数a =____3______. 5.若a ,b 是实数,则当a =___且b =___时,有=---10100 a b b a 0。 解答:0)(1 0100 22=+-=--=---b a a b b a a b b a a =0, b =0 6. 设1 31 2 4321322 )(+--+-+= x x x x f ,则2 x 的系数为 23 。 7. 五阶行列式=6 200357020381002 300031000___________。 解答:4232 1 2 331)1(6 200357020381002 30003100032=?? -=? 8. (考研题)多项式2 1 1 111 )(32 132132 1321+++++= x a a a a x a a a a x a a a a x f 的所有零 点为 01=x ,12-=x ,23-=x 。 9、(考研题)设x d c b d x c b d c x b d c b x x f = )(,则方程0)(=x f 的根为=x 。 【分析】 )(x f 是关于x 的四次多项式,故方程0)(=x f 应有四根,利用行列式的性质知,当d c b x ,,=时,分别会出现两行相等的情况,所以 行列式为零,故d c b x ,,=是方程的三个根。 再将后三列均加到第一列上去可以提取一个公因子为 d c b x +++,所以当)(d c b x ++-=时,满足0)(=x f ,所以得方程的 第四根)(d c b x ++-=。 故方程的四个根分别是:)(,,,d c b d c b ++-。 二、计算题 1、计算000100 20 0020120002013000 002014 D = L M M M M M M L L L 。 【分析】方法一:此行列式刚好只有n 个非零元素 nn n n n a a a a ,,,,112211---Λ,故非零项只有一项: nn n n n t a a a a 112211)1(----Λ,其中2 ) 2)(1(--= n n t , 因此 (20141)(20142) 2 (1) 2014!2014!D --=-= 方法二:按行列展开的方法也行。 2、计算行列式 3 214214314324 321= D 。 分析:如果行列式的各行(列)数的和相同时,一般首先采用的是将各列(行)加到第一列(行),提取第一列(行)的公因子(简称列(行)加 法). 解 这个行列式的特点是各列4个数的和为10 ,于是,各行加到第一行,得

(精选)线性代数行列式第一章练习题答案

《线性代数》(工)单元练习题 一、填空题 1、设矩阵A 为4阶方阵,且|A|=5,则|A*|=__125____,|2A|=__80___,|1-A |= 1/5 2、若方程组?? ? ??=+=+=+a bz cy b az cx ay bx 0 有唯一解,则abc ≠ 0 3、把行列式的某一列的元素乘以同一数后加到另一列的对应元素上,行列式 0 . 4、当a 为 1 or 2 时,方程组??? ??=++=++=++0 40203221321321x a x x ax x x x x x 有非零解. 5、设=-+----=31211142,4 101322 13A A A D 则 .0 二、单项选择题 1.设) (则=---===33 3231312322212113 1211113332312322 211312 11324324324,1a a a a a a a a a a a a D a a a a a a a a a D B (A)0 ; (B)―12 ; (C )12 ; (D )1 2.设齐次线性方程组??? ??=+-=++=+02020z y kx z ky x z kx 有非零解,则k = ( A ) (A )2 (B )0 (C )-1 (D )-2 3.设A=7 925138 02-,则代数余子式 =12A ( B ) (A) 31- (B) 31 (C) 0 (D) 11- 4.已知四阶行列式D 中第三列元素依次为-1,2,0,1,它们的余子式依次分别为5,3,-7,4, 则D= ( A ) (A ) -15 (B ) 15 (C ) 0 (D ) 1 三、计算行列式

线性代数之行列式的性质及计算

第二节 行列式的性质与计算 § 行列式的性质 考虑111212122212 n n n n nn a a a a a a D a a a = 将它的行依次变为相应的列,得 112111222212n n T n n nn a a a a a a D a a a = 称T D 为D 的转置行列式 . 性质1 行列式与它的转置行列式相等.(T D D =) 事实上,若记1112 12122212 n n T n n nn b b b b b b D b b b = 则(,1,2, ,)ij ji b a i j n == 12 12 () 12(1)n n p p p T p p np D b b b τ∴=-∑12 12() 12(1).n n p p p p p p n a a a D τ=-=∑ 说明:行列式中行与列具有同等的地位, 因此行列式的性质凡是对行成立的结论, 对列也同样成立. 性质2 互换行列式的两行(i j r r ?)或两列(i j c c ?),行列式变号. 例如 123 123086351.351 086 =- 推论 若行列式D 有两行(列)完全相同,则0D =. 证明: 互换相同的两行, 则有D D =-, 所以0D =. 性质3 行列式某一行(列)的所有元素都乘以数k ,等于数k 乘以此行列式,即 111211112 11212 1 2 12 n n i i in i i in n n nn n n nn a a a a a a ka ka ka k a a a a a a a a a =

推论:(1) D 中某一行(列)所有元素的公因子可提到行列式符号的外面; (2) D 中某一行(列)所有元素为零,则0D =; 性质4: 行列式中如果有两行(列)元素对应成比例, 则此行列式等于零. 性质5: 若行列式某一行(列)的所有元素都是两个数的和,则此行列式等于两个行列式的和.这两个行列式的这一行(列)的元素分别为对应的两个加数之一,其余各行(列)的元素与原行列式相同 .即 1112111221 2 n i i i i in in n n nn a a a a b a b a b a a a +++=1112112 12n i i in n n nn a a a a a a a a a +1112112 12 n i i in n n nn a a a b b b a a a . 证: 由行列式定义 12 12() 12(1)()n i i n p p p p p ip ip np D a a a b a τ=-+∑ 12 12 12 12() () 1212(1)(1).n n i n i n p p p p p p p p ip np p p ip np a a a a a a b a ττ=-+-∑∑ 性质6 行列式D 的某一行(列)的各元素都乘以同一数k 加到另一行(列)的相应元素上,行列式的值不变()i j r kr D D +=,即 11121121 2 i j n r kr i i in n n nn a a a a a a a a a +=1112111221 2 n i j i j in jn n n nn a a a a ka a ka a ka a a a +++ 计算行列式常用方法: 利用性质2,3,6, 特别是性质6把行列式化为上(下)三角形行列式, 从而, 较容易的计算行列式的值. 例1: 计算行列式 2 324311112321311 (1)(2) 323 4 11310 4 25 1113 D --= -

相关文档
最新文档