函数的值域专题

函数的值域专题
函数的值域专题

函数的值域专题

第I 类:简单的复合函数

引例1:241x y --=;)4(log 22x y -=;124++=x x y ;1sin sin 2++=x x y

第II 类:带分式的复合函数(换元、部分分式法、反解(判别式法)、公式法)

引例2:直接写出函数=y x

x 3121+-的值域为____________,曲线的对称中心为________;若添加条件[]1,0∈x ,则值域为________; 根据以上结论直接写出函数的值域:)2,0(sin 31sin 21??

????∈+-=πx x x y ;[])1,0(3121∈+-=x x x y 引例3:求函数1

32+-=x x y 的值域 变式:求函数312-+=

x x y 的值域 变式:求函数x x x x y cos sin 2cos sin ++=(??

????∈2,0πx )的值域 引例4:求函数1

58522+++=x x x y 的值域 变式:若已知函数)(1

3)(22R x x n x mx x g ∈++-=的值域为[]8,2,求实数n m ,的值 解答:

练:若已知函数)(1

8)(22R x x n x mx x g ∈+++=值域为[]9,1,求实数n m ,的值 第III 类:带根式的复合函数

引例5:求函数x x y 21--=的值域; 思考:根式函数)0(≠+++=AC D Cx B Ax y 的值域如何研究?

引例6:求函数x x x f 211)(--+=的值域;

变式1:求函数x x x f 21)(-=的值域;

变式2:求函数x x y -++=31的值域;

变式3:求函数2111x x x y -+-++=的值域;

变式4:求函数x x y 3154-+-=的值域; 思考:一般地,求函数D Cx B Ax y +++=

(其中0≠AC )的值域如何研究?

练习:已知a 2

12x x a

≥+-对 一切非负实数x 恒成立,则a 的最大值为_____

思考:你能给出本题的几种解法?本题的背景问题是什么? 【高等数学背景】带佩亚诺余项的泰勒展开式)(8

2112

x x x x σ+-+=+,当+∞→x 时,0)(→x σ,故8

2112

x x x -+≥+ 通过无理换元,将无理函数转化为有理函数,从而将问题简化

第IV 类:构造法求函数的值域问题

引例6:求函数2

23)1()(+-=x x x x f 的值域是__________ 变式:若关于x 的方程012

34=++++ax ax ax x 有实数根,求实数a 的取值范围 3

2-≤a 或2≥a 当一个式子中同时出现432,,,x x x x 时,可通过一定手段构造出x x x x 1/1-+和221x

x +两个关联结构 练习:(2015年通州区回归课本专项检测)若函数()432f x x ax bx cx d =++++.

(1)若函数()f x 为偶函数,且在1x =处取得极值1-,求函数()f x 的解析式;

(2)当1a d ==-,0b c ==时,求证:()f x 的图象与x 轴恰有两个交点;

(3)当a c =,1d =时,设函数()f x 有零点,求22a b +的最小值.

解:

29. 已知1≥a ,函数[])1,0(41

94)(∈+++=x x x x f ,1623)(23+--=a x a x x g [])1,0(∈x .

(1)求函数)(x f 与函数)(x g 的值域;

(2)若对任意[]1,01∈x ,存在[]1,02∈x ,使得)()(12x f x g =成立,求实数a 的取值范围.

??

????23,1 变式:函数421()421

x x x x k f x +?+=++,若对于任意的123x x x 、、,均存在以123()()()f x f x f x 、、 为三边长的三角形,求实数k 的取值范围.

30. 若函数)1(log )(2+=x x f 的定义域和值域都是[]b a ,,则____=+b a 1

变式1:是否存在实数n m ,,使函数26)(x x f -=的定义域和值域均为[]n m ,?

变式2:函数x

a x f 1)(-=的定义域与值域均为区间[]n m ,(n m <),求实数a 的取值范围. 变式3:已知函数x x f 11)(-

=,若存在实数)(,b a b a <使得)(x f 的定义域是[]b a ,,值域是[]),0(,R m m mb ma ∈≠,则实数m 的取值范围为_________

变式4:函数()()21x f x x R x =∈+,区间[]()

,M a b a b =<其中,(){},N y y f x x M ==∈ 则使M N =成立的实数对(),a b 有 个.

31. 若,1)(x

x x f -=则方程x x f =)4(的根是________. 32. 已知21)(x x

x f -=,则))((x f f 的定义域为__________.

33. 求下列函数的值域.

(1)1344342+-++-=x x x y ;

(2)用逆求法求函数的值域: 1

232+?=x x

y ;1cos 31sin 2+-=x x y (3)用判别式法求函数的值域:242--+=x x x y ;92342++=x x y ;1

1522+-+-=x x x x y ; 说明:对于分式函数n m p

nx mx c bx ax y ,(22++++=不同时为0)求值域,若c bx ax ++2与p nx mx ++2无公共实根时,可用判别式法.

(4)x x y 21-+=;x x y 292-++=

专题一:求函数值域十六法

求函数值域方法 求函数的值域或最值是高中数学基本问题之一,也是考试的热点和难点之一。遗憾的是教材中仅有少量求定义域的例题、习题,而求值域或最值的例题、习题则是少得屈指可数。原因可能是求函数的值域往往需要综合用到众多的知识内容,技巧性强,有很高的难度,因此求函数的值域或最值的方法需要我们在后续的学习中逐步强化。本文谈一些求函数值域的方法,仅作抛砖引玉吧。 一、基本知识 1. 定义:因变量y 的取值范围叫做函数的值域(或函数值的集合)。 2. 函数值域常见的求解思路: ⑴.划归为几类常见函数,利用这些函数的图象和性质求解。 ⑵.反解函数,将自变量x 用函数y 的代数式形式表示出来,利用定义域建立函数y 的不等式,解不等式即可获解。 ⑶.可以从方程的角度理解函数的值域,如果我们将函数()y f x =看作是关于自变量x 的方程,在值域中任取一个值0y ,0y 对应的自变量0x 一定为方程()y f x =在定义域中的一个解,即方程()y f x =在定义域内有解;另一方面,若y 取某值0y ,方程()y f x =在定义域内有解0x ,则0y 一定为0x 对应的函数值。从方程的角度讲,函数的值域即为使关于x 的方程()y f x =在定义域内有解的y 得取值范围。 特别地,若函数可看成关于x 的一元二次方程,则可通过一元二次方程在函数定义域内有解的条件,利用判别式求出函数的值域。 ⑷.可以用函数的单调性求值域。 ⑸.其他。 3. 函数值域的求法 (1)、直接法:从自变量x 的范围出发,推出()y f x =的取值范围。或由函数的定义域结合图象,或直观观察,准确判断函数值域的方法。 例1:求函数()1y x =≥的值域。 ) +∞ 例2:求函数y = [)1,+∞ 例3:求函数1y = 的值域。 0≥11≥, ∴函数1y = 的值域为[1,) +∞。 (2)、配方法:配方法式求“二次函数类”值域的基本方法。形如2 ()()()F x a f x b f x c =++的函数的值域问题,均可使用配方法。 例1:求函数2 42y x x =-++([1,1]x ∈-)的值域。 解:2 2 42(2)6y x x x =-++=--+,

专题-高中函数值域的求法(讲义与练习)+

专题 求函数值域的常用方法及值域的应用 三、值域的概念和常见函数的值域........................................... 错误!未定义书签。 四、求函数值域(最值)的常用方法......................................... 错误!未定义书签。 .直接法 ............................................................. 错误!未定义书签。 配方法 .............................................................. 错误!未定义书签。 换元法 .............................................................. 错误!未定义书签。 基本不等式法 ........................................................ 错误!未定义书签。 函数的单调性(导数)法 .............................................. 错误!未定义书签。 数形结合法 .......................................................... 错误!未定义书签。 函数的有界性法 ...................................................... 错误!未定义书签。 分离常数法 .......................................................... 错误!未定义书签。 三角函数中的值域问题 ................................................ 错误!未定义书签。 五、高考真题汇编 ........................................................ 错误!未定义书签。 三、值域的概念和常见函数的值域 1、定义:函数值y 的取值范围叫做函数的值域(或函数值的集合)。 函数的值域取决于定义域和对应法则,不论采用什么方法球函数的值域均应考虑其定义域. 2、常见函数的值域: 一次函数()0y kx b k =+≠的值域为R. 二次函数()2 0y ax bx c a =++≠,当0a >时的值域为24,4ac b a ?? -+∞???? ,当0a <时的值域为24,4ac b a ?? --∞ ?? ?., 反比例函数()0k y k x =≠的值域为{}0y R y ∈≠. 指数函数()01x y a a a =>≠且的值域为{}0y y >. 对数函数()log 01a y x a a =>≠且的值域为R. 正,余弦函数的值域为[]1,1-,正,余切函数的值域为R.

函数的最值与值域

函数的最值与值域 求函数值域的基本方法:①直接法;②分离变量法;③⊿判别式法;④换元法;⑤利用函数的单调性;⑥不等式法;⑦导数法 (高二年级学习) [)(][] 0,3,1)()8(3131)7(135)6(;21)5(;3421)4(|;2||1|)()3(;2,11,2,123)()2(;123)()1(. )(22-∈-+=+-=-+-=+-=+-=-++=---∈+-=+-=x x x x f y x x y x x y x x y x x x f x x x x f x x x f x x 值与值域小求下列函数的最大例1

二.拓展问题 (一)基于对钩函数) 1.x x x y 122++=; 2. )21(,1 122<<-++=x x x x y ; 3.)31(,632<<++=x x x x y 4. 的最小值在求),2[)0(+∞∈>+ x a x a x 5. 的最小值求44422+++ +x a x 6.P 、Q 、M 、N 四点都在椭圆2 212y x +=上,F 为椭圆在y 轴正半轴上的焦点.已知PF 与FQ 共线,MF 与FN 共线,且0PF MF ?= .求四边形PMQN 的面积的最小值和最大值.答案:1629 S ≤<

(二)基于二次函数 1.函数)43lg()(2x x x f +-=的定义域为M ,函数124)(+-=x x x g (M x ∈). (1) 求M ,并指出函数)(x f 的单调区间; (2) 求函数)(x g 的值域; (3) 当M x ∈时,若关于x 的方程)(241R b b x x ∈=-+有实数根,求b 的取值范围,并讨论实数根的个数. 2.讨论函数()21f x x x a =+-+的最小值 反馈练习:.)(.,|,1|2)(2的最小值求函数x f R a R x x a x x f ∈∈-+=

函数的值域和最值教案

函数的值域和最值教案 【教学目标】1.让学生了解求函数值域(最值)常用的方法; 2.让学生了解各种方法的适用题型,并能灵活运用各种方法解函数的值域. 【教学重点】直接法、利用函数单调性求值域(最值)、数形结合法 【教学难点】判别式法和数形结合方法的使用 【例题设置】例1(强调定义域的重要性),其它例题主要指出各种方法适用的题型及 注意点. 【教学过程】 第一课时 〖例1〗已知函数3()2log f x x =+(19x ≤≤),求函数22()[()]()g x f x f x =+的最值. 错解:令3log [0,2]t x =∈,则 22222233()[()]()(2log )(2log )(2)22(3)3g x f x f x x x t t t =+=+++=+++=+- ∴当0t =时,min ()6g x =;当2t =时,max 2()()|22t g x g x ===. 错因分析:当2t =时,9x =,2(9)[(9)](81)g f f =+无意义.产生错误的原因主要是忽略了定义域这个前提条件. 正解:由2 1919 x x ≤≤??≤≤?,得()g x 的定义域为[1,3],3log [0,1]t x =∈,则 22222233()[()]()(2log )(2log )(2)22(3)3g x f x f x x x t t t =+=+++=+++=+- ∴当0t =时,min ()6g x =;当1t =时,max 2()()|13t g x g x ===. ★点评:1.求函数的值域(最值)同样得在定义域上进行; 2.运用换元法解题时,一定要注意元的取值范围,这步较容易被忽略; 3.配方法是求“二次函数类”值域的基本方法,形如2()()()F x af x bf x c =++的函数的值域问题,均可用此法解决.该法常与换元法结合使用. 〖例2〗 求下列函数的值域: ⑴ 121 21 x x y ++=+; 法一:(直接法)1212(21)11 2212121 x x x x x y +++-===-+++ 由20x >,211x +>,1 0121 x < <+,故12y <<,即原函数的值域为(1,2)

函数的值域专题

函数的值域专题 第I 类:简单的复合函数 引例1:241x y --=;)4(log 22x y -=;124++=x x y ;1sin sin 2++=x x y 第II 类:带分式的复合函数(换元、部分分式法、反解(判别式法)、公式法) 引例2:直接写出函数=y x x 3121+-的值域为____________,曲线的对称中心为________;若添加条件[]1,0∈x ,则值域为________; 根据以上结论直接写出函数的值域:)2,0(sin 31sin 21?? ????∈+-=πx x x y ;[])1,0(3121∈+-=x x x y 引例3:求函数1 32+-=x x y 的值域 变式:求函数312-+= x x y 的值域 变式:求函数x x x x y cos sin 2cos sin ++=(?? ????∈2,0πx )的值域 引例4:求函数1 58522+++=x x x y 的值域 变式:若已知函数)(1 3)(22R x x n x mx x g ∈++-=的值域为[]8,2,求实数n m ,的值 解答: 练:若已知函数)(1 8)(22R x x n x mx x g ∈+++=值域为[]9,1,求实数n m ,的值 第III 类:带根式的复合函数 引例5:求函数x x y 21--=的值域; 思考:根式函数)0(≠+++=AC D Cx B Ax y 的值域如何研究? 引例6:求函数x x x f 211)(--+=的值域; 变式1:求函数x x x f 21)(-=的值域; 变式2:求函数x x y -++=31的值域;

函数之复合函数之求最值值域

- 3 - 函数之 复合函数之 求最值、值域 1.函数y =(log x )2 -log x 2 +5 在 2≤x ≤4时的值域为 . 2.函数y=)x log 1(log 2221+的定义域为 ,值域为 . 3.求函数y =5 2x +2x 5 1+4(x ≥-32)值域. 4.函数的值域为 A. B. C. D. 5.求下列函数的定义域与值域.(1)y =2 3 1 -x ; (2)y =4x +2x+1 +1. 6.已知-1≤x ≤2,求函数f(x)=3+2·3x+1 -9x 的最大值和最小值 7.设 ,求函数 的最大值和最小值. 8.已知函数 ( 且 ) (1)求 的最小值; (2)若 ,求 的取值范围. 9. 已知9x -10·3x +9≤0,求函数y=( 41)x-1-4·(2 1)x +2的最大值和最小值 10.函数221(01)x x y a a a a =+->≠且在区间[11]-,上有最大值14,则a 的值是_______. 11.若函数0322≤--x x ,求函数x x y 4222 ?-=+的最大值和最小值。 12.已知[]3,2x ∈-,求11 ()142 x x f x = -+的最小值与最大值。 13.若函数3234+?-=x x y 的值域为[]1,7,试确定x 的取值范围。 本类题的特征是:__________________________________________________________________________________ _________________________________________________________________________________________________ 本类题的做法是:__________________________________________________________________________________ _________________________________________________________________________________________________ 答案 1. 2.( 22,1)∪[-1,-22],[0,+∞] 3.解析:设t =x 5 1 ,∵x ≥-32,∴t ≥-2,则y =t 2+2t +4=(t +1)2+3. 当t =-1时,y min =3. 4 14 1()() 2log 31x f x =+()0,+∞)0,+∞??()1,+∞)1,+∞??84 25 ≤≤y

函数的值域与最值

函数的值域与最值 一、基础知识回顾 1. 已知{}{} 12|,log |2+====x y y B x y x A ,则() ∞+= ?,1B A 2.下列函数的值域为()+∞,0的有 4 个 (1)1212+-=x x y (2)21 -=x y (3)x y ?? ? ??=21(4)x y 2log 2=(5)x x y sin 1sin +=(6)x y tan = 3.求函数212++-=x x y )(值域为?? ? ???230, 11222++-+=x x x x y )(的值域为?? ? ???135-, 4.已知:)0)(3sin()(>+ =w wx x f π 在]2,0[上恰有一个最大值1和最小值-1,则w 的取值范围是?? ? ???12 13127π π, 5.已知:x,y 为实数,022 2 =-+x y x ,则2 2 2x y s +=的值域为 [0,4] 6.关于x 的方程02 7 2cos 21cos 4=-+- m x x 有实数解,则m 的取值范围是 [0,8] 7.已知函数f(x)=sinx,g(x)=cosx,直线x=m 与f(x),g(x)的图象分别交于 M ,N 两点,则MN 长度的最大值为2 8.函数x y 2 1log =的定义域为[a,b],值域为[0,2],则b-a 的最小值是 4 3 9.若函数()10,4log ≠>?? ? ??-+ =a a x a x y a 且的值域为R ,则a 的范围是()(]4110,,Y 10.在△ABC 中,若2B=A+C,则y=cosA+cosC 的值域为?? ? ??121, 二.例题精讲 例1.求下列函数的值域 2sin 11+= x y )( 2sin 1sin )2(+-=x x y )80sin()20sin()3(ο ο+++=x x y ?? ????131, [-2,0] [] 33-, )32lg()4(2--=x x y x y sin lg 2)5(= 3sin 2sin )6(2--=x x y R (0,1] {0} )1)(cos 1(sin )7(++=x x y [)()3,11,01 2 2)8(2?∈-+-= x x x x y 且 ?? ????+22230, (][)+∞-∞-,22,Y

最全函数值域的12种求法(附例题,习题)

通过对函数定义域、性质的观察,结合函数的解析式,求得函数的值域。 例1求函数y=3+√(2-3x)的值域。 点拨: 根据算术平方根的性质,先求出√(2-3x)的值域。 解: 由算术平方根的性质,知√(2-3x)≥0, 故3+√(2-3x)≥3。 ∴函数的知域为. 点评: 算术xx具有双重非负性,即: (1)被开方数的非负性, (2)值的非负性。 本题通过直接观察算术平方根的性质而获解,这种方法对于一类函数的值域的求法,简捷明了,不失为一种巧法。 练习: 求函数y=[x](0≤x≤5)的值域。( 答案: 值域为: {0,1,2,3,4,5}) 二.反函数法 当函数的反函数存在时,则其反函数的定义域就是原函数的值域。

例2求函数y=(x+1)/(x+2)的值域。 点拨: 先求出原函数的反函数,再求出其定义域。 解: 显然函数y=(x+1)/(x+2)的反函数为: x=(1-2y)/(y-1),其定义域为y≠1的实数,故函数y的值域为 {y∣y≠1,y∈R}。 点评: 利用反函数法求原函数的定义域的前提条件是原函数存在反函数。这种方法体现逆向思维的思想,是数学解题的重要方法之一。 练习: 求函数y=(10x+10-x)/(10x-10-x)的值域。( 答案: 函数的值域为{y∣y<-1或y>1}) 三.配方法 当所给函数是二次函数或可化为二次函数的复合函数时,可以利用配方法求函数值域 例3:求函数y=√(-x+x+2)的值域。 点拨: 将被开方数配方成完全平方数,利用二次函数的最值求。 解: 由-x2+x+2≥0,可知函数的定义域为x∈[-1,2]。此时-x2

函数的最值与值域知识梳理

函数的最值与值域 【考纲要求】 1. 会求一些简单函数的定义域和值域; 2. 理解函数的单调性、最大(小)值及其几何意义; 3. 会运用函数图象理解和研究函数的性质. 4. 在某些实际问题中,会建立不等式求参数的取值范围,以及求最大值和最小值. 【知识网络】 【考点梳理】 考点一、函数最值的定义 1.最大值:如果对于函数()f x 定义域D 内的任意一个自变量x ,存在0x D ∈,使得0()()f x f x ≤成立,则称0()f x 是函数()f x 的最大值. 注意:下面定义错在哪里?应怎样订正. 如果对于函数()f x 定义域D 内的任意一个自变量x ,都有()f x M ≤,则称M 是函数()f x 的最大值. 2.最小值的定义同学们自己给出. 考点二、函数最值的常用求法 1.可化为二次函数的函数,要特别注意自变量的取值范围. 2.判别式法:主要适用于可化为关于x 的二次方程,由0?≥(要注意二次项系数为0的情况)求出函数的最值,要检验这个最值在定义域内是否有相应的x 的值. 3.换元法:很多含根式的函数的最值的求法经常用到换元法来求.常用的换元有———三角代换,整体代换. 4.不等式法:利用均值不等式求最值. 5.利用函数的性质求函数的最值 6.含绝对值的函数或分段函数的最值的求法 7.利用导数求函数的最值。 要点诠释: (1)求最值的基本程序:求定义域、求导数、求导数的零点、列表、根据表比较函数值大小给出最值; (2)一些能转化为最值问题的问题: ()f x A >在区间D 上恒成立?函数min ()()f x A x D >∈ 函数的最值与值域 函数的值域 函数的最大值 函数的最小值

求三角函数值域及最值的常用方法+练习题

求三角函数值域及最值的常用方法 (一)一次函数型 或利用:=+ =x b x a y cos sin )sin(22?+?+x b a 化为一个角的同名三角函数形式,利用三角函数的有界性或单调性求解; (2)2sin(3)512 y x π =-- +,x x y cos sin = (3)函数x x y cos 3sin +=在区间[0,]2 π 上的最小值为 1 . (4)函数tan( )2 y x π =- (4 4 x π π - ≤≤ 且0)x ≠的值域是 (,1][1,)-∞-?+∞ (二)二次函数型 利用二倍角公式,化为一个角的同名三角函数形式的一元二次式,利用配方法、 换元及图像法求解。 (2)函数)(2cos 2 1 cos )(R x x x x f ∈- =的最大值等于43. (3).当2 0π <

(三)借助直线的斜率的关系,用数形结合求解 型如d x c b x a x f ++= cos sin )(型。此类型最值问题可考虑如下几种解法: ①转化为c x b x a =+cos sin 再利用辅助角公式求其最值; ②利用万能公式求解; ③采用数形结合法(转化为斜率问题)求最值。 例1:求函数sin cos 2 x y x = -的值域。 解法1:数形结合法:求原函数的值域等价于求单位圆上的点P(cosx , sinx )与定点Q(2, 0)所确定的直线的斜率的范围。作出如图得图象,当过Q 点的直线与单位圆相切时得斜率便是函数sin cos 2 x y x = -得最值,由几何知识,易求得过Q 的两切线得斜率分别为3 3 -、 33。结合图形可知,此函数的值域是33 [,]33 - 。 解法2:将函数sin cos 2x y x =-变形为cos sin 2y x x y -=,∴22s i n ()1y x y φ+= +由2 |2||sin()|11y x y φ+= ≤+22(2)1y y ?≤+,解得:3333 y - ≤≤,故值域是33 [,]33- 解法3:利用万能公式求解:由万能公式2 12sin t t x +=,221cos 1t x t -=+,代入sin cos 2x y x =-得到2 213t y t =--则有2 320yt t y ++=知:当0t =,则0y =,满足条件;当0t ≠,由2 4120y =-≥△,3333 y ?-≤≤,故所求函数的值域是33[,]33-。 解法4:利用重要不等式求解:由万能公式2 12sin t t x +=,221cos 1t x t -=+,代入sin cos 2x y x = -得到2 213t y t =--当0t =时,则0y =,满足条件;当0t ≠时, 22 113(3) y t t t t = =---+,如果t > 0,则2223113233(3)y t t t t ==-≥-=---+, x Q P y O

专题一求函数值域十六法

求函数值域方法 (1)、直接法:从自变量x 的范围出发,推出()y f x =的取值范围。或由函数的定义域结合图象,或直观观察,准确判断函数值域的方法。 例1:求函数()1y x =≥的值域。 ) +∞ 例2:求函数y = [)1,+∞ 例3:求函数1y = 的值域。 0≥11≥, ∴函数1y = 的值域为[1,)+∞。 (2)、配方法:配方法式求“二次函数类”值域的基本方法。形如2 ()()()F x af x bf x c =++的函数的值域问题,均可使用配方法。 例1:求函数2 42y x x =-++([1,1]x ∈-)的值域。 解:2 2 42(2)6y x x x =-++=--+, ∵[1,1]x ∈-,∴2[3,1]x -∈--,∴2 1(2)9x ≤-≤ ∴2 3(2)65x -≤--+≤,∴35y -≤≤ ∴函数242y x x =-++([1,1]x ∈-)的值域为[3,5]-。 (3).最值法:对于闭区间上的连续函数,利用函数的最大值、最小值求函数的值域的方法。 例1 求函数y=3-2x-x2 的值域。 解:由3-2x-x2≥0,解出定义域为[-3,1]。 函数y 在[-3,1]内是连续的,在定义域内由3-2x-x2 的最大值为4,最小值为0。 ∴函数的值域是[0,2] 例2:求函数2x y =,[]2,2x ∈-的值域。 1,44?? ???? 例3:求函数2 256y x x =-++的值域。 73, 8?? -∞ ??? (4)、反函数法:利用函数和它的反函数的定义域与值域的互逆关系,通过求反函数的定义域,得到原函数的值域。 例1:求函数1212x x y -=+的值域。

高中函数值域的12种解法(含练习题)

高中函数值域的12种求法 一、观察法 通过对函数定义域、性质的观察,结合函数的解析式,求得函数的值域。 例1求函数y=3+√(2-3x) 的值域。 点拨:根据算术平方根的性质,先求出√(2-3x) 的值域。 解:由算术平方根的性质,知√(2-3x)≥0, 故3+√(2-3x)≥3。 ∴函数的知域为[3,+∞]。 点评:算术平方根具有双重非负性,即:(1)被开方数的非负性,(2)值的非负性。本题通过直接观察算术平方根的性质而获解,这种方法对于一类函数的值域的求法,简捷明了,不失为一种巧法。 练习:求函数y=[x](0≤x≤5)的值域。(答案:值域为:{0,1,2,3,4,5}) 二、反函数法 当函数的反函数存在时,则其反函数的定义域就是原函数的值域。 例2求函数y=(x+1)/(x+2)的值域。 点拨:先求出原函数的反函数,再求出其定义域。 解:显然函数y=(x+1)/(x+2)的反函数为:x=(1-2y)/(y-1),其定义域为y≠1的实数,故函数y的值域为{y∣y≠1,y∈R}。 点评:利用反函数法求原函数的定义域的前提条件是原函数存在反函数。这种方法体现逆向思维的思想,是数学解题的重要方法之一。

练习:求函数y=(10x+10-x)/(10x-10-x)的值域。(答案:函数的值域为{y∣y<-1或y >1}) 三、配方法 当所给函数是二次函数或可化为二次函数的复合函数时,可以利用配方法求函数值域。 例3:求函数y=√(-x2+x+2)的值域。 点拨:将被开方数配方成完全平方数,利用二次函数的最值求。 解:由-x2+x+2≥0,可知函数的定义域为x∈[-1,2]。此时-x2+x+2=-(x-1/2)2+9/4∈[0,9/4], ∴0≤√(-x2+x+2)≤3/2,函数的值域是[0,3/2]。 点评:求函数的值域不但要重视对应关系的应用,而且要特别注意定义域对值域的制约作用。配方法是数学的一种重要的思想方法。 练习:求函数y=2x-5+√(15-4x)的值域。(答案:值域为{y∣y≤3}) 四、判别式法 若可化为关于某变量的二次方程的分式函数或无理函数,可用判别式法求函数的值域。 例4求函数y=(2x2-2x+3)/(x2-x+1)的值域。 点拨:将原函数转化为自变量的二次方程,应用二次方程根的判别式,从而确定出原函数的值域。 解:将上式化为(y-2)x2-(y-2)x+(y-3)=0(*) 当y≠2时,由Δ=(y-2)2-4(y-2)(y-3)≥0,解得:2<x≤10/3 当y=2时,方程(*)无解。∴函数的值域为2<y≤10/3。 点评:把函数关系化为二次方程F(x,y)=0,由于方程有实数解,故其判别式为非负数,可

高一数学【函数的定义域值域】练习题集

函数值域、定义域、解析式专题 一、函数值域的求法 1、直接法: 例1:求函数y 例2:求函数1y =的值域。 2、配方法: 例1:求函数2 42y x x =-++([1,1]x ∈-)的值域。 例2:求 函 数]2,1[x ,5x 2x y 2 -∈+-= 的 值域。 例3:求函数2 256y x x =-++的值域。 3、分离常数法: 例1:求函数125 x y x -=+的值域。 例2:求函数1 22+--=x x x x y 的值域. 例3:求函数1 32 x y x -=-得值域. 4、换元法: 例1:求函数2y x =+ 例2: 求 函 数1x x y -+=的 值 域。 5、函数的单调性法:确定函数在定义域(或某个定义域的子集)上的单调性,求出函数的值域。 例1:求函数y x =- 例2:求函数()x x x f -++=11的值域。

例3:求 函 数1x 1x y --+=的 值 域。 6、数型结合法:函数图像是掌握函数的重要手段,利用数形结合的方法,根据函数图像求得函数值域,是一种求值域的重要方法。当函数解析式具有某种明显的几何意义(如两点间距离,直线的斜率、截距等)或当一个函数的图象易于作出时,借助几何图形的直观性可求出其值域。 例1:求函数|3||5|y x x =++-的值域。 7、非负数法 根据函数解析式的结构特征,结合非负数的性质,可求出相关函数的值域。 例1、(1)求函数216x y -=的值域。 (2)求函数1 3 22+-=x x y 的值域。 二、函数定义域 例1:已知函数()f x 的定义域为[]15-,,求(35)f x -的定义域. 例2:若()f x 的定义域为[]35-,,求()()(25)x f x f x ?=-++的定义域. 例3:求下列函数的定义域: ① 21 )(-=x x f ; ② 23)(+=x x f ; ③ x x x f -+ += 211)( 例4:求下列函数的定义域: ④ 14)(2--=x x f ⑤ ②2 14 3)(2-+--= x x x x f ⑥ 3 7 3132+++-= x x y ④x x x x f -+= 0)1()( 三、解析式的求法 1、配凑法 例1:已知 :23)1(2 +-=+x x x f ,求f(x);

高考数学专题复习函数(值域)新课标人教版

20XX 年高考数学必修1专题复习 函数(值域) 一 相关概念 1、值域:函数A x x f y ∈= ,)(,我们把函数值的集合}/)({A x x f ∈称为函数的值域。 2、最值:求函数最值常用方法和函数值域的方法基本相同。事实上,如果在函数的值域中存在一个最小(大)数,这个数就是函数的最小(大)值。因此,求函数的最值和值域,其实质是相同的,只是提问不同而已。 二 确定函数值域的原则 1、当函数)(x f y =用表格给出时,函数的值域指表格中实数y 的集合; 则值域为{1,2,3,4} 2、数)(x f y =的图像给出时,函数的值域是指图像在y 轴上的投影所覆盖的实数y 的集合; 3、数)(x f y =用解析式给出时,函数的值域由函数的定义域及其对应法则唯一确定; 4、由实际问题给出时,函数的值域由问题的实际意义决定。 三 基本函数的值域 1、一次函数)(0≠+=a b kx y 的值域为R ; 2、二次函数)(02≠++=a c bx ax y ; ] 44(0);44[022a b ac ,,a ,a b ac ,a --∞<∞+->值域是时值域是时 3、反比例函数)0(≠=k x k y 的值域为}0/{≠y y ;4、数函数)10(≠>=a a a y x 且的值域为}0/{>y y ;5、对数函数 )10(log ≠>=a a x y a 且的值域为R 。6,函数y=sinx 、y=cosx 的值域是 ][1,1- 四 求函数值域的方法 1、观察法: “直线类,反比例函数类”用此方法; 2、配方法.:“二次函数”用配方法求值域; 例1. ]53(2 32 ,求函数-∈+-=x x x y 的值域; 解:1223 )61(32322+-+-=x x x y =求函数 画出图像(图略)从图可知, .7212 23 )615(35;12 23 612max min =+-=== =,y x ,y x 时时 所以此函数的值域为]7212 23 [,. 例2. 求562---=x x y 函数 的值域; 解:设;0562≥---=μμ ,则x x ;44)3(5622≤++-=---=x x x μ .400≤≤∴≥μμ,又 ].2,0[],2,0[值域为∴∈μ 3、换元法: 形如常用换元法求值域 的函数且为常数、、、)0(≠+±+=a ,d c b a d cx b ax y ;

高中数学-三角函数图像及性质与值域及最值

高中数学总复习-三角函数 第5课 三角函数的图像和性质(一) 【考点导读】 1. 能画出正弦函数,余弦函数,正切函数的图像,借助图像理解正弦函数,余弦 函数在[0,2 ],正切函数在(一,一)上的性质; 2 2 2. 了解函数y Asin( x )的实际意义,能画出y A si n( x )的图像; 3. 了解函数的周期性,体会三角函数是描述周期变化现象的重要函数模型. 【基础练习】 动的最小正周期T _____L_;初相 —- 2. 三角方程2sin(_ - x)=1的解集为 4. 要得到函数y sinx 的图象,只需将函数 y cos x ______ - ____ 个单位. 【范例解析】 例 1.已知函数 f (x) 2sin x(sin x cosx). (I) 用五点法画出函数在区间 ——上的图象,长度 为一个周期; 2’ 2 (H)说明f(x) 2s in x(si nx cosx)的图像可由y si nx 的图像经过怎样变换而 1. 已知简谐运动 f(x) 2sin (3X )( 2)的图象经过点(0,1),则该简谐运 3.函数 y Asin( x )( 0, 尹R)的部分图象如图所示,则函数表达为 y 4si n( x ) 8 4 的图象向右平移

分析:化为Asin( x )形式.得到?

列表,取点,描图: x 335 88888 y11逅1 1 V21 故函数y f(x)在区间[-,2]上的图象是: (U)解法一:把y sinx图像上所有点向右平移—个单位,得到y sin(x ) 4 4 1 的图像,再把y sin(x -)的图像上所有点的横坐标缩短为原来的丄(纵坐标不 4 2 变),得到y si n(2x —)的图像,然后把y sin(2x —)的图像上所有点纵坐标 4 4 伸长到原来的倍(横坐标不变),得到y 2 sin(2x -)的图像,再将 4 y . 2 sin(2x )的图像上所有点向上平移1个单位,即得到 4 y 1 - 2 sin(2x -)的图像. 1 解法二:把y sinx图像上所有点的横坐标缩短为原来的-(纵坐标不变),得 2 到y sin 2x的图像,再把y sin 2x图像上所有点向右平移—个单位,得到 8 解:(I)由f(x)2sin2x 2sin xcosx 1 cos2x sin 2x 2(sin 2x cos — 4 cos2xs in ) 4 2sin(2x 4 ).

高中一年级数学_指数函数_函数的值域与最值(教(学)案)

授课类型 T-指数函数 C-函数的值域与最值 T-指数函数 教学目的 1、掌握指数函数的概念和指数运算的性质 2、掌握指数函数的图像和性质,并能够根据指数函数的性质解决一些变形的指数函数的问题;利用指数函数建议数学模型解决实际问题。 3、掌握函数值域与最值的解法 教学内容 1.一张白纸对折一次得两层,对折两次得4层,对折3次得8层,问若对折x 次所得层数为y ,则y 与x 的函数表达式是:2x y =. 2.一根1米长的绳子从中间剪一次剩下 12米,再从中间剪一次剩下1 4 米,若这条绳子剪x 次剩下y 米,则y 与x 的函数表达式是:12x y ?? = ??? . 问题:这两个函数有何特点? 同步讲解 一、指数函数的概念 一般地,函数x y a =()01a a >≠且叫做指数函数,其中x 是自变量,函数的定义域是R . 注意:为何规定0a >,且1a ≠? 你知道么?

图象 性质 ①定义域:R ②值域:(0,+∞) ③过点(0,1),即x =0时y =1 ④在R 上是增函数,当x <0时,0<y <1; 当x >0时,y >1 ④在R 上是减函数,当x <0时,y >1; 当x >0时,0<y <1 利用指数函数的性质,比较下列各组中两个数的大小. (1)3 2和 1.7 2; (2)23 0.6 - 和34 0.6 - . 【分析与解答】(1)因为指数2x y =函数在(),-∞+∞上是增函数,又3 1.7>,所以3 1.72 2>. (2)因为指数函数0.6x y =在(),-∞+∞上是减函数,又2334 ->-,所以23 3 40.60.6-->. 求下列函数的定义域与值域。 (1)1 4 2 x y -= (2)23x y -?? = ? ?? (3)1 42 1x x y +=++ 【分析与解答】根据指数函数的定义域为R ,逐个分析。 【解】(1)由404x x -≠?≠ 所以定义域为}{ ,4x x R x ∈≠且 1 41 0214 x x -≠∴≠-Q 所以值域为{} 0,1y y y >≠ (2)定义域为R 。 2331322x x x y --≥?????? ∴==≥= ? ? ??? ?? ?? Q 故值域为{} 1y y ≥

备战2019年高考数学大一轮复习热点聚焦与扩展专题04函数的定义域值域的求法

专题04 函数的定义域、值域的求法 【热点聚焦与扩展】 函数的定义域作为函数的要素之一,是研究函数的基础,也是高考的热点.函数的值域也是高考中的一个重要考点,并且值域问题通常会渗透在各类题目之中,成为解题过程的一部分.所以在掌握定义域求法的基础上,掌握一些求值域的基本方法,当需要求函数的取值范围时便可抓住解析式的特点,寻找对应的方法从容解决. (一)函数的定义域 1.求函数定义域的主要依据是:①分式的分母不能为零;②偶次方根的被开方式其值非负;③对数式中真数大于零,底数大于零且不等于1. 2.①若()y f x =的定义域为(),a b ,则不等式()a g x b <<的解集即为函数()() y f g x =的定义域; ②若()() y f g x =的定义域为(),a b ,则函数()g x 在(),a b 上的的值域即为函数()y f x =的定义域. 3.对于分段函数知道自变量求函数值或者知道函数值求自变量的问题,应依据已知条件准确找出利用哪一段求解. 4.与定义域有关的几类问题 第一类是给出函数的解析式,这时函数的定义域是使解析式有意义的自变量的取值范围; 第二类是实际问题或几何问题,此时除要考虑解析式有意义外,还应考虑使实际问题或几何问题有意义; 第三类是不给出函数的解析式,而由()f x 的定义域确定函数)]([x g f 的定义域或由)]([x g f 的定义域确定函数 ()f x 的定义域. 第四类是已知函数的定义域,求参数范围问题,常转化为恒成立问题来解决. (二)函数的值域 1.利用函数的单调性:若)(x f 是],[b a 上的单调增(减)函数,则)(a f ,)(b f 分别是)(x f 在区间],[b a 上取得最小(大)值,最大(小)值. 2.利用配方法:形如2 (0)y ax bx c a =++≠型,用此种方法,注意自变量x 的范围. 3.利用三角函数的有界性,如sin [1,1],x ∈-cos [1,1]x ∈-. 4.利用“分离常数”法:形如y=ax b cx d ++ 或2ax bx e y cx d ++=+ (c a ,至少有一个不为零)的函数,求其值域可用此法. 一般地, ① ax b y cx d += +:换元→分离常数→反比例函数模型

专题复习之 求函数值域与最值

专题复习之----函数值域与最值 求函数的值域或最值是高中数学基本问题之一,也是高考中的热点和难点之一。因求函数的值域往往需要综合用到众多的知识内容,技巧性强,有很高的难度,而教材中相关内容较分散,如果不经过长期的综合总结,很难比较全面地掌握这部分内容。本专题就求函数值域或最值的方法作个总结与梳理。 一、 基本知识 1、定义:因变量y 的取值范围叫做函数的值域(或函数值的集合)。 2、函数值域常见的求解思路: ⑴.划归为几类常见函数,利用这些函数的图象和性质求解。 ⑵.借助几何直观得出具有几何意义的解析式的范围 ⑶.借助导数来研究函数图象得出最值 3、函数值域的最常用的求法 ⑴ 直接法; (2)配方法; ⑶ 判别式法; ⑷ 逆求法; ⑸ 利用基本不等式法; ⑹ 换元法; ⑺ 数形结合法; ⑻ 图象法; ⑼导数法. 注意:区别函数值域与最值之间的不同 (1)、直接法:从自变量x 的范围出发,推出()y f x =的取值范围。或由函数的定义域结合图象,或直观观察,准确判断函数值域的方法。 例1:求函数()11,1y x x x = -++≥的值域。 例2:求函数2610y x x = ++的最小值为 。 变式练习:函数的)13(log 22++=x y ,(]5,0[∈x 的最大值和最小值分别为m M ,, 则=-m M (2)、配方法:配方法式求“二次函数类”值域的基本方法。形如2()()()F x af x bf x c =++的函数的值域问题,均可使用配方法。 例3:求函数1cos 4sin 2-+=x x y (20π≤ ≤x )的值域。 变式练习:函数1124 323x x y -+=+?-的值域为:___ ________。 (3)、判别式法:形如21112222 a x b x c y a x b x c ++=++(1a 、2a 不同时为零)的函数的值域,把函数转化成关于x 的二次方程(,)0F x y =;通过方程有实数根,判别式0?≥,从而求得原函数的值域,常

函数的最值与值域知识梳理

函数的最值与值域 考纲要求】 1. 会求一些简单函数的定义域和值域; 2. 理解函数的单调性、最大( 小) 值及其几何意义; 3. 会运用函数图象理解和研究函数的性质. 4. 在某些实际问题中,会建立不等式求参数的取值范围,以及求最大值和最小值 知识网络】 考点梳理】 考点一、函数最值的定义 1.最大值:如果对于函数f(x)定义域D内的任意一个自变量x,存在x0 D ,使得f(x) f(x0)成 立,则称f(x0)是函数f (x) 的最大值. 注意:下面定义错在哪里?应怎样订正. 如果对于函数f(x)定义域D内的任意一个自变量x,都有f(x) M ,则称M 是函数f(x)的最大值. 2. 最小值的定义同学们自己给出. 考点二、函数最值的常用求法 1. 可化为二次函数的函数,要特别注意自变量的取值范围. 2. 判别式法:主要适用于可化为关于x 的二次方程,由0(要注意二次项系数为0 的情况)求出 函数的最值,要检验这个最值在定义域内是否有相应的x 的值. 3. 换元法:很多含根式的函数的最值的求法经常用到换元法来求.常用的换元有———三角代换,整体代换. 4. 不等式法:利用均值不等式求最值. 5. 利用函数的性质求函数的最值 6. 含绝对值的函数或分段函数的最值的求法 7. 利用导数求函数的最值。 要点诠释: (1) 求最值的基本程序:求定义域、求导数、求导数的零点、列表、根据表比较函数值大小给出最值; (2) 一些能转化为最值问题的问题: f (x) A在区间D上恒成立函数f(x)min A(x D)

f (x) B 在区间D上恒成立函数f(x)max B(x D) 在区间D上存在实数x使f(x) B 函数f (x)min B(x D) 在区间D上存在实数x使f(x) A 函数f (x)max A(x D) 典型例题】 类型一、通过转化或换元的方法求解函数的值域或最值例 1. 求函数 f (x) e2x me x e2x me x的最值.【解析】 f (x) e2x e2x m(e x e x) x x 2 x x (e e ) m(e e ) 2 令t e x e x(注意t 的范围),这样所求函数就变为二次函数.【总结升华】当式子中同时出现x2 x 2和x x 1时,都可以化为二次式. 举一反三: 【变式】求函数y 1 x x 3 的值域.解:平方再开方,得y 4 2 (1 x)(3 x),x [ 3,1] y [2,2 2] 类型二、函数值的大小比较,求函数值域,求函数的最大值或最小值例 2. 求下列函数值域: 2x-1 (1) y ;1)x ∈[5 ,10] ;2)x ∈(-3 ,-2) ∪(-2 ,1);x2 2 (2)y=x 2-2x+3 ;1)x ∈[-1 ,1];2)x ∈[-2 ,2]. 【解析】(1) Q y2(x 2)-5 -5 +2可看作是由y-5左移 2 个单位,x 2 x 2 x 再上移 2 个单位得到,如图 9 19 1)f(x) 在[5 ,10]上单增,y [ f (5), f (10)]即[ , ]; 7 12 2) y (- , f (1)) ( f (-3), )即(- ,3) (7,); (2) 画出草图

相关文档
最新文档