等时界面处砂体地震响应特征分析

等时界面处砂体地震响应特征分析
等时界面处砂体地震响应特征分析

Advances in Geosciences地球科学前沿, 2020, 10(8), 714-720

Published Online August 2020 in Hans. https://www.360docs.net/doc/3610531739.html,/journal/ag

https://https://www.360docs.net/doc/3610531739.html,/10.12677/ag.2020.108071

Analysis of Seismic Response Characteristics of Sand Body at Isochronous Interface

Yan Nie, Hongjun Fan, Jianhua Dong, Xianwen Zhang, Xin Du

CNOOC Research Institute Co, Ltd., Beijing

Received: Jul. 31st, 2020; accepted: Aug. 13th, 2020; published: Aug. 20th, 2020

Abstract

With the development of oil and gas exploration and development technology, the development of oil field requires more and more precision. In order to identify effective reservoirs, it is necessary to deepen the understanding of subsurface media. Forward modeling is the process of simplifying

a specific geological or geophysical problem, forming a simplified mathematical model, and ob-

taining the seismic response by means of numerical calculation. It is an effective means to explain the reservoir characteristics and to help geophysicists understand the seismic data quickly. In this paper, the sand bodies in the target block of P oilfield change fast in transverse and have various superposition phenomena. So seismic response characteristics are ambiguous. Therefore two sets of forward modeling are established based on the analysis of 3D seismic data, the data of drilling and logging and comprehensive geological interpretation. Firstly, it is proved that the energy at-tenuation of the seismic amplitude of the upper layer is due to the influence of the lower sand body, excluding the lateral mutation of the upper reservoir. Secondly, it is proved that the upper reservoir is an argillous sand layer, affected by the lower sand body, and the amplitude energy is weakened. The forward modeling of the geological model based on the actual data can obtain cer-tain rules and improve the understanding of the geological body, providing some guidance in the description of the sand body.

Keywords

Forward Modeling, Simplify, Seismic Response, Reservoir Characteristics, Description of the Sand Body

等时界面处砂体地震响应特征分析

聂妍,范洪军,董建华,张显文,杜昕

中海油研究总院有限责任公司,北京

收稿日期:2020年7月31日;录用日期:2020年8月13日;发布日期:2020年8月20日

聂妍 等

摘 要

随着油气勘探开发技术的不断深入,油田开发的精度要求越来越高。识别有效储层,加深对有效储层分布范围和分布规律的认识是十分必要的。正演模拟是对一定的地质、地球物理问题作适当简化,形成数学模型,通过数值计算获取地震响应的过程,是解释储层性质的有效手段,能够帮助开发地震人员快速认识地震资料。本文针对P 油田目标区块砂体横向变化快,叠置现象多样,地震响应特征不清等问题,在精细分析三维地震资料的基础上,结合该区钻井、测井及地质综合解释等资料,建立两套正演模型。首先论证了上层地震振幅能量减弱是由于下层砂体对其的影响,排除上部储层横向突变的情况。其次论证了上层储层为偏泥质砂层才会受下层砂体影响,振幅能量减弱,从而应用负振幅属性预测砂体的展布范围。对根据实际资料建立的地质模型进行正演,可以得到一定的规律,提高地震人员对地质体的认识,从而在砂体描述中提供一定的指导。

关键词

正演模拟,简化,地震响应,储层性质,砂体描述

Copyright ? 2020 by author(s) and Hans Publishers Inc. This work is licensed under the Creative Commons Attribution International License (CC BY 4.0). https://www.360docs.net/doc/3610531739.html,/licenses/by/4.0/

1. 引言

油气勘探开发初期,只需要有限的地震资料就能达到寻找大规模油气藏的目的。随着勘探开发目标逐渐进入小、边际、剩余油、砂描的精细范畴,地球物理工作者迫切需要从地震资料中挖掘更多有用的信息,以求更好地认识有效储层的分布范围及规律,正演模拟就是重要的手段之一[1] [2]。

地震正演模拟技术是一种基础性的工作,因为它为开展储集层预测提供了基础,例如利用正演模拟对储层的岩性、物性、所含流体进行预测等。正演模拟技术在确定储集层和地震属性的关系方面是一种行之有效的方法,它能够揭示不同物性的地震响应特征。精确的正演模拟可以确定储集层岩性和物性与地震响应的关系,这为利用地震资料预测油气提供了基础[3]。

2. 正演模拟的基本理论

其基本原理是基于地下地层结构的认识,通过震源的作用,按特定的计算方法了解地震波在地层中的传播规律的方法。

正演模拟的表达式如下式(1)所示:

()d A m = (1)

上式中,m 为地震模型参考向量;A 为正演模拟算子;d 为向量数据。d 受模拟算子A 和m 的精度影响[4]。该公式的原理是,在建立地质–地球物理模型的基础上,即m ,应用合适的地震子波及地震波方程进行计算,即A ,求解地震波方程数值解,计算波场沿正时间轴方向的传播,最后得到合成地震记录,即d 。

在地层结构已知的情况下,即地质体的空间分布,地下介质的速度、密度等参数明确,根据地震波运动学及动力学基本原理,计算地质模型的地震响应。正演模拟时,利用反射界面来获得零偏移距的地震剖面。反射界面成像原理是这样的,它把自炮点发出的下行波到达反射点后再按原路径按上行波的形Open Access

聂妍等

式返回接收点的传播过程等效为地震波在t = 0时从反射点爆炸后以速度为介质速度一半的上行波向地面传播的过程[5]。

3. 地质背景及地震响应特征

目标油田P位于渤海海域中南部渤南低凸起之上,作为渤海湾盆地最大的新近系油田,具有埋藏深度浅、成藏时间晚以及储量规模大的特征。P油田于1999年钻探发现,经过十余年的勘探、开发,其探明储量和三级地质储量不断增加,是渤海海域主力油田[6]。

目标区位于P油田西南处,受南北向走滑断层控制的断裂背斜构造[7][8][9],本区目前钻井3口,均为A平台所钻大斜度井。钻井揭示该区明化镇组下段发育砂体,砂体厚度范围在7 m到20 m之间。

然而,由于该区明下段属于曲流河沉积,砂体横向变化快,叠置现象多样,加剧了该区砂体反射特征认识及识别的难度。

实钻井储层段响应特征如图1所示:A1井测井综合解释L2层油层厚度7.4 m,通过井震标定在地震剖面上对应为L2波谷反射界面,内幕砂体为强波谷反射特征。L1层为区域稳定分布的层序界面。L1及L2地震反射特征均为波谷,依据井震标定的结论,该两层均为含油砂层段,但L2振幅响应强的位置对应L1振幅响应弱的位置,为什么振幅会有此消彼长的现象,L1并未钻井落实因此是否为含油砂层,是品质较好的纯砂还是砂泥混合,这些反映到储层地震响应特征的问题都十分复杂,需要通过正演模拟来建立储层与地震响应特征之间的对应关系。不要使用空格、制表符设置段落缩进,不要通过连续的回车符(换行符)调整段间距。

Figure 1. Seismic profile across A1 well in Mingxia formation

图1. 明下段过A1井地震时间剖面

4. 模型建立及地震响应特征分析

4.1. 正演模型建立

结合钻井、测井及地震解释资料,依据研究区明化镇地层结构及地层岩石物理参数[10][11],建立只有L1层的正演模型(如图2),其中L1上部地层密度为2.2 g/cm3,L1内部地层密度为2.15 g/cm3,正演模拟结果见图3。当只有L1一层时,L1呈现连续强振幅响应特征。当L1层下部发育一套L2好砂层时,正演模型见图4所示,模拟剖面见图5。不难发现,当L2好砂层在L1下部发育时,对应位置的L1响应特征变弱。因此,我们得出结论,L1层振幅响应的变弱并不是因为其本身砂体性质变差,而是由于L2层的影响。那么下一个亟需解决的问题就是L1层的储层性质如何,是好的砂体还是偏泥质的砂体呢?因此我们建立了另一套正演模型。

聂妍等

Figure 2. Forward modeling of L1

图2. L1层正演模型

Figure 3. Forward modeling seismic profile of L1

图3. L1层正演模拟剖面

Figure 4. Forward modeling of L1 and L2

图4. L1与L2正演模型

Figure 5. Forward modeling seismic profile of L1 and L2

图5. L1与L2正演模拟剖面

假设L1层储层由泥到砂分布,密度由2.3 g/cm3变化至2.1 g/cm3,L2层好砂岩发育于L1层下部,正演模型见图6所示,当仅发育L1单层时,由泥至砂界面响应特征由弱变强,正演模拟剖面见图7所示。L2发育于L1下部时,观察正演模拟剖面发现,当L1为泥岩或偏泥质砂岩时,受L2纯砂岩影响较大,地震响应特征消失。当L1为品质较好的砂岩时,L2的砂岩储层不但不会影响L1振幅响应特征,而且L1振幅能量明显增强,L2振幅能量明显减弱,如图8所示。

聂妍等

Figure 6. Forward modeling from mud to sand

图6. 由泥至砂渐变的正演模型

Figure 7. Forward modeling seismic profile from mud to sand

图7. L1由泥至砂渐变的正演模拟剖面

Figure 8. Forward modeling seismic profile with L1 which is from mud to sand and L2

图8. L2发育时L1由泥至砂渐变的正演模拟剖面

Figure 9. Seismic profile across two wells in same block

图9. 同区块两口井地震时间剖面

聂妍等

基于正演模拟分析,L1层地震响应变弱并不是L1层本身储层性质发生变化,而是由于下部L2砂层发育对其造成的影响,致使L1层地震响应减弱。也正是由于其地震响应减弱,说明L1这套储层并非特别好的砂岩储层,而是泥质成分偏多的砂层,因此才造成其响应特征变弱的现象。

为了验证我们的分析是否正确,在同区块找两口已钻井,典型过井剖面如图9所示。D1井及D2井钻遇L1层的振幅相对较强的位置,但根据测井解释结果,D1井及D2井的L1层油层相对较薄,因此验证了我们前面的结论,虽然L1层位为负振幅砂层组响应特征,但砂的品质并不好。

4.2. 储层展布特征预测

基于以上综合分析,认为L1层的强地震反射是该层附近沉积相带变化的界面响应,该区域整体应以泥岩为主,局部发育薄储层。在井震标定分析的基础上,明确负振幅属性可准确刻画该区储层的展布规律,如图10所示。红色区域为砂体分布区,蓝色区域则泥岩发育,红蓝过渡区则为砂泥互层。同样可以通过上图9验证L1砂体平面分布的可靠性。D1井位于属性绿色区,D2井位于属性蓝色区,平面预测结果来看D1井含有少量的砂,D2井基本没有砂分布,此认识与实钻井情况吻合。

Figure 10. Sand distribution map

图10. 应用负振幅属性预测L1层砂体分布

5. 结论

本文采用地震正演模拟技术,对渤海P油田某块的明下段储层特征进行研究,得出以下结论。

1) 基于井震标定,明确该区砂层组对应负振幅响应特征,理论上,负振幅能量越强,砂层组的性质越好。

2) 基于实际地震剖面的砂层组反射,在测井综合解释的基础下,建立了单层砂体模型及两层砂体模型,正演结果表明,下层砂体会影响上层砂体的振幅响应。

3) 基于实际地震剖面的砂层组反射,在测井综合解释的基础下,建立了单层砂体模型及两层砂体模型,其中,上层砂体性质由差至好分布,正演结果表明,当上层砂体性质好时,并不受下层砂体影响,地震振幅响应能量强。当上层砂体性质偏泥质时,受下层砂体影响,地震振幅响应能量减弱。

4) 应用负振幅属性可有效刻画该区砂体展布范围,针对L1层,明确该层的强地震反射是该层附近沉积相带变化的界面响应,整体应以泥岩为主,局部发育薄储层。

聂妍等

5) 针对研究区的储层响应特征的认知可为后续砂体描述、精细储层表征提供地质基础。基于地震正

演的储层研究方法可为其他相似研究提供借鉴。

参考文献

[1]Zeng, H. and Kerans, C. (2003) Seismic Frequency Control on Carbonate Seismic Stratigraphy: A Case Study of the

Kingdom Abo Sequence, West Texas. AAPG Bulletin, 87, 273-293. https://https://www.360docs.net/doc/3610531739.html,/10.1306/0827*******

[2]Zeng, H., Henry, S.C. and Riola, J.P. (1998) Stratal Slicing, Part II: Real 3-D Seismic Data. Geopgysics, 63, 514-522.

https://https://www.360docs.net/doc/3610531739.html,/10.1190/1.1444352

[3]万秀娟. 基于正演模拟的复杂储层特征研究[D]: [硕士学位论文]. 青岛: 中国海洋大学, 2012.

[4]郭轩. 二位地震正演模拟的储层特征研究[D]: [硕士学位论文]. 成都: 成都理工大学, 2014.

[5]韩建彦. 复杂地质体地震正演与偏移[D]: [硕士学位论文]. 成都: 成都理工大学, 2008.

[6]薛永安, 邓运华, 王德英, 等. 蓬莱19-3特大型油田成藏条件及勘探开发关键技术[J]. 石油学报, 2019, 40(9):

1125-1146.

[7]赵志平, 官大勇, 刘朋波, 等. 等蓬莱19-3油田西北斜坡带构造特征及控藏作用[J]. 海洋地质前沿, 2019, 35(3):

59-67.

[8]邓运华, 李秀芬. 蓬莱19-3油田的地质特征及启示[J]. 中国石油勘探, 2001, 6(1): 68-71.

[9]郭太现, 刘春成, 吕洪志, 等. 蓬莱19-3油田地质特征[J]. 石油勘探与开发, 2001, 28(2): 26-28.

[10]王文枫, 岳大力, 赵继勇, 等. 利用地震正演模拟方法研究地层结构——以鄂尔多斯盆地合水地区延长组三段

为例[J]. 石油地球物理勘探, 2020, 55(2): 411-418.

[11]王保才, 刘军, 马灵伟, 等. 塔中顺南地区奥陶系缝洞型储层地震响应特征正演模拟分析[J]. 石油物探, 2014,

53(3): 344-359.

地震响应的反应谱法与时程分析比较 (1)

发电厂房墙体地震响应的反应谱法与时程分析比较 1问题描述 发电厂房墙体的基本模型如图1所示: 图1 发电厂墙体几何模型 基本要求:依据class 9_10.pdf的最后一页的作业建立ansys模型,考虑两个水平向地震波的共同作用(地震载荷按RG1.60标准谱缩放,谱值如下),主要计算底部跨中单宽上的剪力与弯矩最大值,及顶部水平位移。要求详细的ansys反应谱法命令流与手算验证过程。以时程法结果进行比较。分析不同阻尼值(0.02,0.05,0.10)的影响。 RG1.60标准谱 (1g=9.81m/s2) (设计地震动值为0.1g) 频率谱值(g) 33 0.1 9 0.261 2.5 0.313 0.25 0.047 与RG1.60标准谱对应的两条人工波见文件rg160x.txt与rg160y.txt 2数值分析框图思路与理论简介 2.1理论简介 该问题主要牵涉到结构动力分析当中的时程分析和谱分析。时程分析是用于确定承受任意随时间变化荷载的结构动力响应的一种方法。谱分析是模态分析的扩展,是用模态分析结果与已知的谱联系起来计算模型的位移和应力的分析技术。 2.2 分析框架: 时程分析:在X和Z两个水平方向地震波作用下,提取底部跨中单宽上的剪力、弯矩值和顶部水平位移,并求出最大响应。 谱分析:先做模态分析,再求谱解,由于X和Z两个方向的单点谱激励,因此需进行两次谱分析,分别记入不同的工况最后组合进行后处理得出结够顶部水平位移、底部单宽上剪力和弯矩的最大响应。 3有限元模型与荷载说明 3.1 有限元模型 考虑结构的几何特性建立有限元模型,首先建立平面几何模型,并将模型进行合理的切割,采用plane42单元,使用映射划分网格的方法生产平面单元(XOY平面)。然后,采用solid45

TMD多点控制体系随机地震响应分析的虚拟激励法_朱以文

收稿日期:2003-10-26; 修回日期:2003-11-22 基金项目:国家电力公司资助项目(KJ 00-03-26-01) 作者简介:朱以文(1945-),男,教授,主要从事计算力学和结构防灾减灾研究 文章编号:1000-1301(2003)06-0174-05 TM D 多点控制体系随机地震响应 分析的虚拟激励法 朱以文,吴春秋 (武汉大学土木建筑工程学院,湖北武汉430072) 摘要:对于频率分布密集或受频带较宽的地震激励的结构,其响应不再以某一单一振型为主,须考虑采用多点控制。本文对受T M D 多点控制的结构进行了研究。文中建立了带有多个子结构系统的以模态坐标和子结构自由度为未知量的统一运动方程。针对所得方程为非对称质量、非对称刚度、非经典阻尼的情况,本文给出了使用直接法求解的格式。地震随机响应分析采用了虚拟激励法,可以考虑各振型之间的耦合项,计算量小且精度高。本文的方法适用于带有多个子结构的系统的一般性问题,具有广泛的应用价值。 关键词:多点控制;主结构;子结构;随机地震响应中图分类号:P315.96 文献标识码: A Pseudo -excitation method for random earthquake response analysis of control system with MTMD ZH U Yi -wen ,WU Chun -qiu (Civil and structural engineering school ,W uhan university ,Wuhan 430072,China ) A bstract :The response of the structure is no t constituted with one sing le mode shape w hen the frequency distri -bution is dense o r the earthquake excitation 's frequency band is w ide .At this time ,it is necessary to adopt the multi -point control sy stem .The study on the structures w ith M TMD is carried out in this paper .The uniform dynamic equation w ith mode coordinate and slave system 's DOF as variables is established fo r the system w ith multi slave sy stem .The equatio n has asy mmetric mass m atrix ,asymmetric stiffness matrix and nonclassical damping m atrix ,and the direct solving format is given in this paper .The random earthquake response is studied by using pseudo -excitation method ,thus the coupling items between modes can be considered .The calculation is cheap and precision is high .The method in this paper is adaptable to the general case of the sy stem with multi -slave structures and has broad application wo rth .Key words :multi -point control ;master structure ;slave structure ;random earthquake response 1 引言 对于高层建筑、大跨桥梁、高耸塔架等高柔结构采用TMD (Tuned Mass Damper )减小风振及地震响应是有效的,这一点得到了人们的普遍认同。TMD 对建筑结构的功能影响较小,便于安装、维修和更换控制元 第23卷第6期2003年12月地 震 工 程 与 工 程 振 动EA RT HQ UAK E ENG IN EERI NG A ND ENG IN EERIN G V IBRA T ION V ol .23,No .6 Dec .,2003DOI :10.13197/j .eeev .2003.06.028

地震反应谱分析实例

结构地震反应谱分析实例 在多位朋友的大力帮助下,经过半个多月的努力,鄙人终于对结构地震反应谱分析有了一定的了解,现将其求解步骤整理出来,以便各位参阅,同时,尚有一些问题,欢迎各位讨论! 为叙述方便,举一简单实例: 在侧水压与顶部集中力作用下的柱子的地震反应谱分析,谱值为加速度反应谱,考虑X与Y向地震效应作用。已知地震影响系数a与周期T的关系: a(T)= 0.4853*(0.4444+2.2222*T) 0

!进行模态求解 ANTYPE,MODAL MODOPT,LANB,30 SOLVE FINISH !进行谱分析 /SOLU ANTYPE,SPECTR SPOPT,SPRS,30,YES SVTYP,2 !加速度反应谱 SED,1,1 !X与Y向 FREQ,0.2500,0.2632,0.2778,0.2941,0.3125,0.3333,0.3571,0.3846,0.4167 FREQ,0.4545,0.5000,0.5556,0.6250,0.7143,0.8333,1.1111,2.0000,10.0000 FREQ,25.0000,1000.0000 SV,0.05,0.0797,0.0861,0.0934,0.1018,0.1114,0.1228,0.1362,0.1522,0.1716 SV,0.05,0.1955,0.2255,0.2642,0.3152,0.3851,0.4853,0.4853,0.4853,0.4853 SV,0.05,0.2588,0.2167 SOLVE FINISH !进行模态求解(模态扩展) /SOLU ANTYPE,MODAL EXPASS,ON MXPAND,30,,,YES,0.005 SOLVE FINISH !进行谱分析(合并模态) /SOLU ANTYPE,SPECTR SRSS,0.15,disp SOLVE FINISH /POST1 SET,LIST !结果1 /INP,,mcom

ANSYS地震反应谱SRSS分析共24页

ANSYS地震反应谱SRSS分析 我在ANSYS中作地震分解反应谱分析,一次X方向,一次Y 方向,他们要求是独立互不干扰的,可是采用直进行一次模态分析的话,他生成的*.mcom文件好像是包含了前面的计算 结果,命令流如下: !进入PREP7并建模 /PREP7 B=15 !基本尺寸 A1=1000 !第一个面积 A2=1000 !第二个面积 A3=1000 !第三个面积 ET,1,beam4 !二维杆单元 R,1,0.25,0.0052,0.0052,0.5,0.5 !以参数形式的实参 MP,EX,1,2.0E11 !杨氏模量 mp,PRXY,1,,0.3 mp,dens,1,7.8e3 N,1,-B,0,0 !定义结点 N,2,0,0,0 N,3,-B,0,b

N,4,0,0,b N,5,-B,0,2*b N,6,0,0,2*b N,7,-B,0,3*b N,8,0,0,3*b E,1,3 !定义单元 E,2,4 E,3,5 E,4,6 E,3,4 E,5,6 e,5,7 e,6,8 e,7,8 D,1,ALL,0,,2 FINISH ! !进入求解器,定义载荷和求解 /SOLU D,1,ALL,0,,2 !结点UX=UY=0

sfbeam,1,1,PRES,100000, sfbeam,3,1,PRES,100000, sfbeam,7,1,PRES,100000, SOLVE FINISH allsel NMODE=10 /SOL !* ANTYPE,2 !* MSAVE,0 !* MODOPT,LANB,NMODE EQSLV,SPAR MXPAND,NMODE , , ,1 LUMPM,0 PSTRES,0 !* MODOPT,LANB,NMODE ,0,0, ,OFF

反应谱与时程理论对比

反应谱是在给定的地震加速度作用期间内,单质点体系的最大位移反应、速度反应和加速度反应随质点自振周期变化的曲线。用作计算在地震作用下结构的内力和变形。更直观的定义为:一组具有相同阻尼、不同自振周期的单质点体系,在某一地震动时程作用下的最大反应,为该地震动的反应谱。 反应谱理论考虑了结构动力特性与地震动特性之间的动力关系,通过反应谱来计算由结构动力特性(自振周期、振型和阻尼)所产生的共振效应,但其计算公式仍保留了早期静 力理论的形式。地震时结构所受的最大水平基底剪力,即总水平地震作用为: FEK= αG 其中α为地震影响系数,即单质点弹性体系在地震时最大反应加速度。另一方面地震影响系数也可视为作用在质点上的地震作用与结构重力荷载代表值之比。 目前,反应谱分析法比较成熟,一些主要国家的抗震规范均将它作为基本设计方法。不过,它主要适合用于规则结构。对于不规则结构以及高层建筑,各国规范多要求采用时程分析法进行补充计算。 地震作用反应谱分析本质上是一种拟动力分析,它首先使用动力法计算质点地震响应,并使用统计的方法形成反应谱曲线,然后使用静力法进行结构分析。但它并不是结构真实的动力响应分析,只是对于结构动力响应最大值进行估算的近似方法,在线弹性范围内,反应谱分析法被认为是高效而且合理的方法。反应谱分为加速度反应谱、速度反应谱和位移反应谱。基于不同周期结构相应峰值的大小,我们可以绘制结构速度及加速度的反应谱曲线。一般情况下,随着周期的延长,位移反应谱为上升曲线,速度反应谱为平直曲线,加速度反应谱为下降曲线,目前结构设计主要依据加速度反应谱。 加速度反应谱在短周期部分为快速上升曲线,并且在结构周期与场地特征周期接近时出现峰值,后面更大范围为逐渐下降阶段。峰值出现的时间与对应的结构周期和场地特征周期有关。一般来说结构自振周期的延长,地震作用将减小。当结构自振周期接近场地特征周期时,地震作用最大。 反应谱分析方法需要先求解一个方向地震作用响应,再基于三个正交方向的分量考虑结构总响应,即基于振型组合求解一个方向的地震响应,再基于方向组合求解结构总响应。 振型组合方法有SRSS法,CQC法。 1.SRSS法 SRSS法是平方和平方根法,这种方法假定所有最大模态值在统计上都是相互独立的,通过求各参与阵型的平方和平方根来进行组合。该法不考虑各振型间的藕联作用,实际上结构模态都是相互关联的,不可避免的存在藕联效应,对那些相邻周期几乎相等的结构,或者不规则结构不适用此法。《抗规》GB50011-2010规定的SRSS法为如下所示:

大型地下结构三维地震响应特点研究

第43卷第3期2003年5月 大连理工大学学报 Jour nal of Dalian University of Technology Vol .43,No .3May 2003 文章编号:1000-8608(2003)03-0344-05 收稿日期:2002-04-01; 修回日期:2003-03-25. 基金项目:国家自然科学基金资助项目(50209002);辽宁省自然科学基金资助项目(20022130). 作者简介:陈健云*(1968-),男,副教授;林 皋(1929-),男,教授,博士生导师,中国科学院院士. 大型地下结构三维地震响应特点研究 陈健云*, 胡志强, 林 皋 (大连理工大学土木水利学院,辽宁大连 116024) 摘要:采用阻尼影响抽取法分析了地下结构无限围岩介质的动刚度特性,建立了岩石地下 结构抗震分析的实用相互作用分析时域模型,比较研究了地下结构-围岩动力相互作用分析中地震动输入机制、无限围岩动刚度及结构特性等各种主要因素对地下结构地震响应的影响程度.指出几种常用地下结构地震响应近似分析方法只在一定条件下适用,无限介质的阻尼特性对结构响应起着重要的作用. 关键词:地下洞室;地震反应分析;动刚度;优化;阻尼影响抽取法中图分类号:T U 35;TU 9;TV3 文献标识码:A 0 引 言 随着国民经济的发展,地下空间得到了越来越广泛的使用.然而近几年世界范围内发生了一 系列大地震,造成了巨大的灾难,不少地下结构遭受破坏.由于与围岩的相互作用,地下结构的动力特性十分复杂,其响应特点与地面结构有明显的差别.研究表明[1] ,对地下结构采用施加惯性力的地震响应分析,即使采用几倍于结构尺寸的地基离散模型,施加不同的边界条件对地震位移响应的影响可达10倍,应力差别达5~6倍. 目前各种实际地下结构的动力响应分析仍以各种近似方法为主.包括各种拟静力方法,如位 移响应法[2、3] ,地基影响参数通常根据简化假定采 用经验参数.动力近似分析通常将结构简化为二维问题处理[4],对于地下管线等结构形式具有一定的适用性.对于处于比较复杂地质、地形条件下的地下结构,或者形式较复杂的大型地下空间结构,要合理地反映地下结构的地震响应,则必须进行三维动力响应分析. 当前常用的地下结构三维地震分析方法,主要有在模型外边界施加各种人工透射边界解决能量向无限远处辐射[5]的波动分析方法;以地下结构为主体,围岩的作用通过相互作用力来求解的相互作用分析方法[6] ,通常采用有限元、边界元、 解析法或半解析法等耦合求解;以及在外边界施 加粘性阻尼器的惯性力方法.前两种方法属于较精确的数值方法,后一种方法则为近似方法. 由于围岩介质对结构的动力影响在时间与空 间都是耦合的,较精确的地下结构地震响应分析具有一定难度,时域求解复杂且求解代价很大. 本文采用相互作用分析方法,结合溪洛渡超 大型地下洞室群的地震响应分析,研究动力相互 作用运动方程中各主要因素对地下结构地震响应的影响程度,为地下结构的简化分析提供依据. 1 地下结构地震响应的相互作用分 析方法 地下结构的相互作用分析主要采用各种耦合 方法,如有限元与边界元的耦合分析.本文则采 用阻尼影响抽取法得到地基刚度与有限元进行耦合分析. 1.1 阻尼影响抽取法的基本概念 [7] 将无限地基截取有限区域,其刚度阵为S t (X )=K -X 2 M (1) 式中:K 和M 分别为有限域的刚度阵与质量阵. 引入量纲一的频率a 0=X ?r 0/c s 及刚度阵K 与质量阵M ,则式(1)可表达为  S t (X )=Gr s -2 0(K -a 20M )=Gr s -2 0S (a 0) (2)

ANSYS地震分析实例

ANSYS地震分析实例 土木工程中除了常见的静力分析以外,动力分析,特别是结构在地震荷载作用下的受力分析,也是土木工程中经常碰到的题目。结构的地震分析根据现行抗震规范要求,一般分为以下两类:基于结构自振特性的地震反应谱分析和基于特定地震波的地震时程分析。 本算例将以一个4质点的弹簧-质点体系来说明如何使用有限元软件进行地震分析。更复杂结构的分析其基本过程也与之类似。 关键知识点: (a) 模态分析 (b) 谱分析 (c) 地震反应谱输进 (d) 地震时程输进 (e) 时程动力分析 (1) 在ANSYS窗口顶部静态菜单,进进Parameters菜单,选择Scalar Parameters选项,在输进窗口中填进DAMPRATIO=0.02,即所有振型的阻尼比为2% (2) ANSYS主菜单Preprocessor->Element type->Add/Edit/Delete,添加Beam 188单元 (3) 在Element Types窗口中,选择Beam 188单元,选择Options,进进Beam 188的选项窗口,将第7个和第8个选项,Stress/Strain (Sect Points) K7, Stress/Strain (Sect Nods) K8,从None 改为Max and Min Only。即要求Beam 188单元输出积分点和节点上的最大、最小应力和应变 (4) 在Element Types 窗口中,继续添加Mass 21集中质量单元 (5) 下面输进材料参数,进进ANSYS主菜单Preprocessor->Material Props-> Material Models菜单,在Material Model Number 1中添加Structural-> Linear-> Elastic->Isotropic 属性,输进材料的弹性模量EX和泊松比PRXY分别为210E9和0.3。 (6) 继续给Material Model Number 1添加Density属性,输进密度为7800。 (7) 继续给Material Model Number 1添加Damping属性,采用参数化建模,输进阻尼类型为Constant,数值为DAMPRATIO

结构地震反应谱分析实例

在多位朋友的大力帮助下,经过半个多月的努力,鄙人终于对结构地震反应谱分析有了一定的了解,现将其求解步骤整理出来,以便各位参阅,同时,尚有一些问题,欢迎各位讨论! 为叙述方便,举一简单实例: 在侧水压与顶部集中力作用下的柱子的地震反应谱分析,谱值为加速度反应谱,考虑X 与Y向地震效应作用。已知地震影响系数a与周期T的关系: a(T)= 0.4853*(0.4444+2.2222*T) 0<T<=0.04 秒 0.4853*(0.10/T)^(-0.686) 0.04<T<=0.1 秒 0.4853 0.1<T<=1.2 秒 0.4853*(1.2/T)^1.5 1.2<T<=4 秒 以下是命令流程序 ---------------------------------------------------------------------------------------------------- /filname,SPEC,1 /PREP7 !定义单元类型及材料特性 ET,1,45 MP,EX,1,2.8E10 MP,DENS,1,2.4E3 MP,NUXY,1,0.18 !建立模型 BLOCK,0,1,0,1,0,5 !网格剖分 ESIZE,0.5 VMESH,all /VIEW,,-0.3,-1,1 EPLOT FINISH /SOLU !施加底部约束 ASEL,,LOC,Z,0 DA,ALL,ALL ALLSEL !施加自重荷载 ACEL,0,0,10 !进行模态求解

ANTYPE,MODAL MODOPT,LANB,30 SOLVE FINISH !进行谱分析 /SOLU ANTYPE,SPECTR SPOPT,SPRS,30,YES SVTYP,2 !加速度反应谱 SED,1,1 !X与Y向 FREQ,0.2500,0.2632,0.2778,0.2941,0.3125,0.3333,0.3571,0.3846,0.4167 FREQ,0.4545,0.5000,0.5556,0.6250,0.7143,0.8333,1.1111,2.0000,10.0000 FREQ,25.0000,1000.0000 SV,0.05,0.0797,0.0861,0.0934,0.1018,0.1114,0.1228,0.1362,0.1522,0.1716 SV,0.05,0.1955,0.2255,0.2642,0.3152,0.3851,0.4853,0.4853,0.4853,0.4853 SV,0.05,0.2588,0.2167 SOLVE FINISH !进行模态求解(模态扩展) /SOLU ANTYPE,MODAL EXPASS,ON MXPAND,30,,,YES,0.005 SOLVE FINISH !进行谱分析(合并模态) /SOLU ANTYPE,SPECTR SRSS,0.15,disp SOLVE FINISH /POST1 SET,LIST !结果1 /INP,,mcom lcwrite,11

三 设计地震动反应谱确定的规范方法

三设计地震动反应谱确定的规范方法 设计地震动是通过对地震环境和场地环境的分析判断和分类方法确定。工程勘察单位至少提供: 设计基本地震加速度和设计特征周期 场地环境:覆盖层厚度、剪切波速、土层钻孔资料 1.设计基本地震加速度和设计特征周期 根据场地在中国地震动参数区划图上的位置判断确定。

土层剪切波速的测量应符合下列要求: 1 在场地初步勘察阶段对大面积的同一地质单元测量土层剪切波速的钻孔数量不宜少于3。 2 在场地详细勘察阶段对单幢建筑测量土层剪切波速的钻孔数量不宜少于2 个数据变化较大时可适量增加对小区中处于同一地质单元的密集高层建筑群测量土层剪切波速的钻孔数量可适量减少但每幢高层建筑下不得少于一个。 3 对丁类建筑及层数不超过10 层且高度不超过30m 的丙类建筑当无实测剪切波速时可根据岩土名称和性状按表 4.1.3 划分土的类型再利用当地经验在下表的剪切波速范围内估计各土层的剪切波速.

建筑场地覆盖层厚度的确定应符合下列要求: 1 一般情况下应按地面至剪切波速大于500m/s 的土层顶面的距离确定(且其下卧层沿途的剪切波速均不小于500m/s)。 2 当地面5m 以下存在剪切波速大于(其上部各土层)相邻上层土剪切波速2.5 倍的土层且其下卧岩土的剪切波速均不小于400m/s 时可按地面至该土层顶面的距离确定 3 剪切波速大于500m/s 的孤石、透镜体应视同周围土层 4.土层中的火山岩硬夹层应视为刚体其厚度应从覆盖土层中扣除

例题:某类建筑场地位于7度烈度区,设计地震分组为第一组,设计基本地震加速度为0.1g,建筑结构自振周期T=1.4s,阻尼比为0.08,该场地在建筑多遇地震条件下地震影响系数a为多少。 同一个场地上甲乙两座建筑物的结构自震周期分别为T甲=0.25sT乙=0.60s,一建筑场地类别为Ⅱ类,设计地震分组为第一组,若两座建筑的阻尼比都取0.05,问在抗震验算时甲、乙两座建筑的地震影响系数之比最接近下列那个选项。 A 1.6 B 1.2 C 0.6 D 条件不足无法计算 例题:吉林省松原市某民用建筑场地地质资料如下: (1)0-5m粉土,=150 =180m/s (2) 5-12m中砂土=200 =240m/s (3)12-24m粗砂土=230 =310m/s (4) 24-45m硬塑粘土=260 =300m/s (5)45-60m泥岩=500 =520m/s 建筑物采用浅基础,埋深2m,地下水位2.0m,阻尼比为0.05,自震周期为1.8s该建筑进行抗震设计时 (1)进行第一阶段设计时,地震影响系数应取多少 (2)进行第二阶段设计时,地震影响系数应取多少 例题:吉林省松原市某民用建筑场地地质资料如下: (1)0-5m粉土,=150 =180m/s (2) 5-12m中砂土=200 =240m/s

等时界面处砂体地震响应特征分析

Advances in Geosciences地球科学前沿, 2020, 10(8), 714-720 Published Online August 2020 in Hans. https://www.360docs.net/doc/3610531739.html,/journal/ag https://https://www.360docs.net/doc/3610531739.html,/10.12677/ag.2020.108071 Analysis of Seismic Response Characteristics of Sand Body at Isochronous Interface Yan Nie, Hongjun Fan, Jianhua Dong, Xianwen Zhang, Xin Du CNOOC Research Institute Co, Ltd., Beijing Received: Jul. 31st, 2020; accepted: Aug. 13th, 2020; published: Aug. 20th, 2020 Abstract With the development of oil and gas exploration and development technology, the development of oil field requires more and more precision. In order to identify effective reservoirs, it is necessary to deepen the understanding of subsurface media. Forward modeling is the process of simplifying a specific geological or geophysical problem, forming a simplified mathematical model, and ob- taining the seismic response by means of numerical calculation. It is an effective means to explain the reservoir characteristics and to help geophysicists understand the seismic data quickly. In this paper, the sand bodies in the target block of P oilfield change fast in transverse and have various superposition phenomena. So seismic response characteristics are ambiguous. Therefore two sets of forward modeling are established based on the analysis of 3D seismic data, the data of drilling and logging and comprehensive geological interpretation. Firstly, it is proved that the energy at-tenuation of the seismic amplitude of the upper layer is due to the influence of the lower sand body, excluding the lateral mutation of the upper reservoir. Secondly, it is proved that the upper reservoir is an argillous sand layer, affected by the lower sand body, and the amplitude energy is weakened. The forward modeling of the geological model based on the actual data can obtain cer-tain rules and improve the understanding of the geological body, providing some guidance in the description of the sand body. Keywords Forward Modeling, Simplify, Seismic Response, Reservoir Characteristics, Description of the Sand Body 等时界面处砂体地震响应特征分析 聂妍,范洪军,董建华,张显文,杜昕 中海油研究总院有限责任公司,北京 收稿日期:2020年7月31日;录用日期:2020年8月13日;发布日期:2020年8月20日

简支梁的地震响应分析

简支梁的地震响应分析 /PREP7 !进入前处理模块 /TITLE, EX 8.4(3) by Zeng P, Lei L P, Fang G ET,1,BEAM3 !设定1号单元 L=240 $A=273.9726 $H=14 $I=1000/3 !设定几何参数 R,1,273.9726,(1000/3),14 !设定1号实常数(梁单元) MP,EX,1,3E7 $MP,PRXY,1,0.3 $MP,DENS,1,73E-5 !设定弹性模量, 泊松比, 密度 K,1,0,0 $K,2,L,0 !生成两个关键点 L,1,2 !由关键点生成线 ESIZE,,8 !设定单元网格划分的分段数 LMESH,1 !对1号线划分单元网格 NSEL,S,LOC,X,0 !选择位置x=0的节点 D,ALL,UY !对所选择的节点施加位移约束UY=0 NSEL,S,LOC,X,L !选择位置x=L的节点 D,ALL,UX,,,,,UY !对所选择的节点施加位移约束UX=UY=0 NSEL,ALL !选择所有节点 FINISH !结束前处理模块 /SOLU !进入求解模块 ANTYPE,MODAL !设定模态分析方式 MODOPT,REDUC,,,,3 !设置缩减算法,提取3阶模态 MXPAND,1,,,YES ! 设定模态扩展的阶数为1,并计算单元及支反力结果 M,ALL,UY !对所有节点定义主自由度UY OUTPR,BASIC,1 !设置输出结果的方式 SOLVE !进行求解 *GET,F1,MODE,1,FREQ !提取第一阶模态频率,赋给F1 FINISH !结束 /SOLU !进入求解模块 ANTYPE,SPECTR !设定谱分析方式 SPOPT,SPRS !设定单点激励谱分析 SED,,1, !设定单点激励的方向为Y轴 SVTYP,3 !指定单点响应谱类型为地震位移谱 FREQ,.1,10 !设定频率数据表格的频率点 SV,,.44,.44 !设定频率数据表格的对应于频率点的激励值SOLVE !进行求解 *GET,F1_COEF,MODE,1,MCOEF !提取模态1的谱分析结果的模态系数FINISH !结束求解 /POST1 !进入一般性后处理模块 SET,1,1,F1_COEF !调出第1阶模态的结果,并乘以模态系数PRNSOL,DOF !打印节点结果 PRESOL,ELEM !打印单元结果 PRRSOL,F !打印支反力结果

地震反应谱的绘制

地震时程曲线与反应谱的绘制 ①地震反应谱的意义 地震反应谱表示的是在一定的地震动下结构的最大反应,是结构进行抗震分析与设计的重要工具。 由于同一结构在遭遇不同的地震作用时的反应并不相同,单独一个地震记录的反应谱不能用于结构设计。但是地震记录的反应谱又有一定的相似性,我们可以将具有普遍特性记录的反应谱进行平均和平滑处理,以用于抗震设计。现在,地震反应谱不但是工程抗震学中最重要的概念之一,还是整个地震工程学中最重要的概念之一。 ②地震反应谱的计算方法 反应谱的计算方法涉及到时域分析方法和频域分析方法。 时域分析方法中的Duhamel 积分,是现在公认精度最高的方法。 绝对加速度反应谱公式如下:(推导略) 但由于实际结构系统的阻尼比ξ通常都小于0.1,所以有阻尼系统和无阻尼系统的自振 周期ω近似相等即由ωζω21-=d (精确度≥99.5%)简化成ωω=d ,实际计算中通常按无阻尼系统的自振周期确定。 从而上式可以简化为 ()()()max 00max sin )(?-==--t t a d t e x t a S ττωτωτζω ③用matlab 画地震时程曲线与绝对加速度反应谱: 所需准备软件: excel ,notepad2,matlab 以NINGHE 地震波为例 Code : %NINGHE 地震波时程曲线 % 加载前用excel 和notepad 对数据进行规整

load NINGHE.txt; % 数据放在安装文件的work目录下 NUMERIC=transpose(NINGHE); % matlab read the data by column, ni=reshape(NUMERIC,numel(NUMERIC),1);% make the date one column t_ni=0:0.002:(length(ni)-1)*0.002; % determine the time plot(t_ni,ni); ylabel('Acceleration'); xlabel('time'); title('NINGHE') %NINGHE绝对加速度反应谱 load NINGHE.txt; NUMERIC=transpose(NINGHE); ni=reshape(NUMERIC,numel(NUMERIC),1);%make the date one column d=0;%d is damping ratio for k=1:600; t(k)=0.01*k;%规范的加速度反应谱只关心前6秒的值 w=6.283185/t(k); t_ni=0:0.02:(length(ni)-1)*0.02; Hw=exp(-1*d*w*t_ni).*sin(w*t_ni); y1=conv(ni,Hw).*(0.02*w);y1=max(abs(y1));%卷积积分 c(k)=y1*10; end;plot(t,c,'black')

ANSYS地震响应分析讨论

地震响应分析 1模态组合就是根据模态分析中的几阶振型(也可以少于这几阶,看你要求的精度)进行组合(类似于结构最不利组合),从而求出地震响应的最大值。 2组合各振型反应的最大值,求得结构地震响应的最大值。 这个问题在论坛上已经有很多人问过,也有各种各样的回答,但是至今没有令人满意的解答。我自己试过很多种方法,加上论坛上其他人提到的方法,大致归类如下: 1.先做静力恒载工况分析,打开预应力pstres开关;然后转到时程分析。 结果:恒载对后面的时程计算不起作用,时程计算依然从0开始。 2.直接在antype,trans中考虑恒载:先把timint,off加acel,,9.81,打开应力刚化,sstif,on,lswrite,1,然后timint,on开始时程计算。 结果:恒载9.81起作用了,但结果是错的,它被积分了。 3.不用什么前处理,直接把9.81加在地震波上acel,9.81+ac(i)。 结果,同2,9.81带入了积分,这个9.81相当于阶跃荷载,而不是产生恒载。 4.ansys帮助中施加初始加速度的方法(篇幅限制请自己看帮助)。 结果,同2、3,9.81还是带进时间积分。 5.这种是我受到别人的启发,通过结构受ramp荷载的特点施加的,可以近似的解决问题。 即1)求出结构的自振一阶频率w 2)令tr=1/w 3) 定义ramp荷载为从0到tr加到9.81,然后在整个时间积分中保持不变 4)antype,trans中分几个荷载步将荷载从0加到9.81 5) 在随后的荷载步中acel,,9.81+ac(i) 这种做法虽然也是将9.81++加到地震波中,但是因为满足TR的要求,所以这个动力效应被削弱到了静力效应,它作用在结构上就像静载一样。对于单自由度结构理论上跟静载是完全一样的,但是多自由度会子静力效应上下很小的范围内波动,所以可以认为相当于静载的作用,这样我们就可以达到考虑恒载的目的了。 第5种是我至今为止考虑恒载的做法,我也很想知道还有没有更简单精确的方法,或者在前4种方法中就有只是我使用不正确,希望大家能一起来讨论,彻底解决这个问题。谢谢! 地震反应怎么考虑重力 SOLU ANTYPE, TRANS TRNOPT,FULL TIMINT,OFF !*先关闭时间积分效应 TIME,1E-8 !*设一个极短的积分时间 acel,,9.8 NSUBST,2 !有时候子步数要增大 KBC,1 LSWR,1 !*把这个写入第一步 TIMINT,ON !*然后再时间积分效应开关,以后就正常写载荷步了 这种方法应该是对的,ANSYS帮助文件中也有提到, 可是,有一个问题:由于是阶跃荷载,就会产生动力效应,整个结构的变形大于实际的情况吧?这样与实际结构在重力下受到的变形就不一样了!

ABAQUS地震反应谱分析

ABAQUS反应谱法计算地震反应的简单实例 Fan.hj 2010年4月4日 清明小长假,琢磨了下ABAQUS如何进行地震反应谱计算。现通过一小算例说明。 问题描述: (本例的问题引用《有限元法及其应用》一书中陆新征博士ANSYS算例的问题) 悬臂柱高12m,工字型截面(图1),密度7800kg/m3,EX=2.1e11Pa,泊松比0.3,所有振型的阻尼比为2%,在3m高处有一集中质量160kg,在6m、9m、12m处分别有120kg的集中质量。反应谱按7度多遇地震,取地震影响系数为0.08,第一组,III类场地,卓越周期Tg=0.45s。 图1 计算对象 几点说明: ●本例建模过程使用CAE; ●添加反应谱必须在inp中加关键词实现,CAE不支持反应谱; ●*Spectrum不可以在keyword editor中添加,keyword editor不支持此关键词读入; ●ABAQUS的反应谱法计算过程以及后处理要比ANSYS方便的多。 操作过程为: (1)打开ABAQUS/CAE,点击create model database。 (2)进入Part模块,点击create part,命名为column,3D、deformation、wire。OK (3)Create lines:connected,分别输入0,0;0,3;0,6;0,9;0,12。OK。退出sketch。(4)进入property模块,create material,name:steel,general-->>density,mass density:7800,mechanical-->>elasticity-->>elastic,young‘s modulus:2.1e11,poisson’s ratio: 0.3.OK

地震反应分析:动力方法

地震反应分析:动力方法Structural Response Analysis: Dynamic Methods 教师:李爽副教授 lleshuang@https://www.360docs.net/doc/3610531739.html, 2015年4月10日 1

本章导读 ?多维动力分析输入的一般处理方法 ?多次动力分析结果的一般处理方法 ?增量动力分析法(Incremental Dynamic Analysis Method,IDA) ?云图分析方法(Cloud Analysis Method)?结构地震模拟振动台试验基本步骤 2

多维动力分析输入的一般处理方法?当结构采用三维空间模型等需要双向 (两个水平方向)或三向(两个水平一 个竖向)地震动输入时,其加速度峰值 可按1(水平1):0.85(水平2):0.65 (竖向)的比例调整 ?具体如何操作? 3

4 多维动力分析输入的一般处理方法 (2)初步选择若干条地震动,将所选择地震动进行反应谱分析,并与设计反应谱绘制在一起 (3)计算结构振型参与质量达到XX %(如50%~90%)对应各周期点处的地震动谱值(或0.2T 1~1.5T 1)。检查各周期处的包络值与设计反应谱值相差是否不超过20%。如不满足,则回到第二步重新选择地震动 (4)将各地震动在主要周期点处各方向上的值,按1(水平1):0.85(水平2):0.65(竖向)加权求和,按该求和值从小到大的顺序输入地震动(仅针对振动台试验,数值 计算不用分先后顺序,因为后者没有损伤)(1)根据研究对象所在场地类型和设防烈度确定地震设计反应谱(加速度反应谱)

多次动力分析结果的一般处理方法 ?《规范》规定 特别不规则的建筑、甲类建筑和下表所列高度范围的高层建筑,应采用时程分析法进行多遇地震下的补充计算;当取三组加速度时程曲线输入时,计算结果宜取时程法的包络值和振型分解反应谱法的较大值。当取七组及七组以上的时程曲线时,计算结果可取时程法的平均值和振型分解反应谱法的较大值 5

相关文档
最新文档