开关电源输出滤波电容器的选用

开关电源输出滤波电容器的选用
开关电源输出滤波电容器的选用

开关电源输出滤波电容器的选用

任炳旭

【期刊名称】《探测与定位》

【年(卷),期】2011(000)001

【摘要】滤波电容器在开关电源中起着非常重要的作用,由于不了解电容器的基本特性而达不到预期滤波效果的事情时有发生。如何正确选用滤波电容器,尤其是选择输出滤波电容器则是每个设计者都应特别注意的问题。本文将简要介绍开关电源输出滤波电容器的选用方法。

【总页数】4页(P.44-47)

【关键词】等效串联电阻;谐振频率;高频失效

【作者】任炳旭

【作者单位】中国电子科技集团公司第20研究所,西安710068

【正文语种】英文

【中图分类】TN949.7

【相关文献】

1.MHz级高频开关电源输出滤波电容器的参数选择 [C], 关晴予; 杨柏禄; 陈永真

2.开关稳压电源中输出滤波电容器的选用方法 [J], 杨丹萍

3.开关电源滤波用铝电解电容器高频滤波分析 [J], 林飞

4.开关电源整流滤波电容器的安全性讨论 [C], 应祖训

5.开关电源原边滤波铝电解电容器 [J], 孟泽

-逆变器输出滤波器计算-

输出滤波器的计算 一、滤波器选择的部分指标 (1)逆变电源的空载损耗是逆变电源的重要指标之一。空载损耗与空载时滤波器的输入电流有关,电流越大,损耗越大,原因有以下两个方面:一方面,滤波器的输入电流越大,逆变开关器件上的电流越大,逆变器的损耗就越大;另一方面,空载时滤波器的输入电流也流过电抗器及电容器,电流增大也会使电抗器及电容器的损耗增大。所以从限制空载电流的角度来讲,空载时滤波器的输入电流不能太大。一般的,空载时滤波器的输入基波电流不能超过逆变电源的额定输出电流的30%。 设I m 表示空载时输入滤波器的输入基波电流的有效值,U 0表示输出电压基波的有效值,Wo 为基波角 频率, 则由图1可得: 00Im CU ω= (1) 有上式可知,空载时滤波器输入基波电流的大小与C 成正比。所以从限制逆变电源空载损耗的角度来讲,LC 滤波器的电容之不能太大。 (2)逆变电源对非线性负载的适应性指标 逆变电源对非线性负载的适应性是衡量逆变电源性能优劣的重要指标。非线性负载之所以会引起逆变电源输出电压波形的畸变,是因为非线性负载时一种谐波电流源,它产生的谐波电流在逆变电源输出阻抗上产生谐波压降,从而引起输出电压波形畸变。可见逆变电源的输出阻抗直接关系着逆变电源对非线性负载的适应性,输出阻抗越小,逆变电源的输出阻抗直接关系着逆变电源对非线性负载的适应性,输出阻抗越小,逆变电源对非线性负载适应性越好。 开环时逆变电源的输出阻抗就是LC 滤波器的输出阻抗,根据公式LC L Z 201ωω?= (2)

在L 、C 乘积恒定时,L 越小,则输出阻抗值越小。 当逆变电源采用电容电流及电压瞬时值反馈控制方案时,可以得到和开环时相同的结论。 综上说述可以得到以下两点结论: 1)在L 、C 之积恒定时,L 越小,逆变电源的输出阻抗越小,逆变电源对非线性负载的适应性越好; 2)L 越小,越不容易出现过调制,逆变电源对非线性负载的适应性越好。、 (3)在采用同步调制控制方式的逆变电源中,频率为(2ωs -ω0)的谐波是逆变器输出PWM 波中复制最高的谐波,它对输出电压的波形影响最大。输出电压中,只要频率为(2ωs -ω0)的谐波符合要求,则其他高次谐波含量均能符合要求。所以在这种情况下设计LC 滤波器是,只需考虑滤波器对(2ωs -ω0)频率谐波的衰减。 二、输出LC 滤波器的计算 2.1综述 一般说来,空载与负载相比,空载时电压中的频率(2ωs -ω0)的谐波含量是最大的,根据公式: )(*)1(1*2)2(1222200απββπωωJ N Q N b HF s ++=? (3) 式中C L R Q L //=;00/)2(ωωω?=s N ;LC 20ωβ=;E U b /20=;2 2)1(/ββα?+=Q b ;)(1απJ 为1阶的Besset 函数,计算比较繁琐。 空载时,)2(00ωω?s HF 可表示为: )(*11*2)2(1 200απβπωωJ N b HF s ?=? (4) 式中:00/)2(ωωω?=s N ;LC 20ωβ=;E U b /20=;βα?=1b 。 对式(4)进行分析,可得空载时)2(00ωω?s HF 的特性如下: a ,当逆变电源输入电压增大时,输出电压中的频率为 )2(0ωω?s 的谐波的谐波含量将增大。

滤波电容的选择

滤波电容起平滑电压的作用;容值大小与输入桥式整流的输入电压无关;一般是越大越好。但要明白它取值的原理:滤波电容的取值与后级电路的突变电流有关。 打个比方:电容就好比一个水桶,输入往这个水桶中倒水,输出(后级电路)从这个水桶中抽水。如果恒定的抽水,只要倒入的水量大于抽水量,那么水桶将永远是满的,所以这个水桶可以不需要(当然这是理想情况)。假如某时刻需要抽出大量的水,大于输入的量,你会怎么办? 你可以准备一个较大的水桶,在这个时刻到来之前,将这个水桶的水灌满;等到了抽水的时刻,水桶中已经有足够的水抽取,就不会出现缺水的情况。 滤波电容就好比这个较大的水桶! 至于它的具体值,你将后级电路的突变电流与电容充、放电系数联系起来考虑,相信你能领悟出合适的计算方法。 滤波电容的作用和大小是怎样的? 一般情况下,电解电容的作用是过滤掉电流中的低频信号,但即使是低频信号,其频率也分为了好几个数量级。因此为了适合在不同频率下使用,电解电容也分为高频电容和低频电容(这里的高频是相对而言)。 低频滤波电容主要用于市电滤波或变压器整流后的滤波,其工作频率与市电一致为50Hz;而高频滤波电容主要工作在开关电源整流后的滤波,其工作频率为几千Hz到几万Hz。当我们将低频滤波电容用于高频电路时,由于低频滤波电容高频特性不好,它在高频充放电时内阻较大,等效电感较高。因此在使用中会因电解液的频繁极化而产生较大的热量。而较高的温度将使电容内部的电解液气化,电容内压力升高,最终导致电容的鼓包和爆裂 滤波电容在电路中作用 滤波电容用在电源整流电路中,用来滤除交流成分。使输出的直流更平滑。 去耦电容用在放大电路中不需要交流的地方,用来消除自激,使放大器稳定工作。 旁路电容用在有电阻连接时,接在电阻两端使交流信号顺利通过。 容的容抗为1/ωC欧姆(类似电阻,如果是非电类大学以上学历就把它当作电容器的电阻看吧),ω为角频率,ω=2πf,f为频率。容抗与自身容量C和频率ω(或者说f)有关,当C一定时,频率越高,容抗越小,对电流的阻碍作用就越小;频率越低,容抗越大。……人们所说的“电容通高频阻低频,通交流阻直流”是在不同情况下说的,也可以说是在不同容量C的情况下说的,都是正确的。 到此就不必再多说了吧,分析1/ωC就行了。 电路中的电容滤波问题解析

如何选择和计算滤波电容--电容使用详述

如何选择和计算滤波电容?--电容使用详述 嵌入式非其他类中的 2009-05-31 17:32 阅读617 评论1 字号:大中小 问:在电路设计过程中,要用电容来进行滤波.有时要用电解电容,有时要陶瓷电容.有时两种均要用到.我想问一下:用电解电容的作用是什么?用普通陶瓷电容的作用是什么?如何计算其容量的???对于电解电容的耐压 又该如何选择确定? 哪些情况用电解电容,哪些情况下用陶瓷电容,哪些情况下两种均要用? ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 答: ----- 滤波电容范围太广了,这里简单说说电源旁路(去藕)电容。 滤波电容的选择要看你是用在局部电源还是全局电源。对局部电源来说就是要起到瞬态供电的作用。为什么要加电容来供电呢?是因为器件对电流的需求随着驱动的需求快速变化(比如DDR controller),而在高频的范围内讨论,电路的分布参数都要进行考虑。由于分布电感的存在,阻碍了电流的剧烈变化,使得在芯片电源脚上电压降低--也就是形成了噪声。而且,现在的反馈式电源都有一个反应时间--也就是要等到电压波动发生了一段时间(通常是ms或者us级)才会做出调整,对于ns 级的电流需求变化来说,这种延迟,也形成了实际的噪声。所以,电容的作用就是要提供一个低感抗(阻抗)的路线,满足电流需 求的快速变化。 基于以上的理论,计算电容量就要按照电容能提供电流变化的能量去计算。选择电容的种类,就需要按照它的寄生电感去考虑--也就是寄生电感要小于电源路径的分布电感。 具体的说明在很多书上都有。提供一个参考书:high speed digital design ch8.2. ------------------------------ 讨论问题必须从本质上出发。首先,可能都知道电容对直流是起隔离作用的,而电感器的作用则相反。所有的都是基于基本原理的。那这时,电容就有了最常见的两个作用。一是用于极间隔离直流,有人也叫作耦合电容,因为它隔离了直流,但要通过交流信号。直流的通路局限在几级间,这样可以简化工作点很复杂的计算,二是滤波。基本上就是这两种。作为耦合,对电容的数值要求不严,只要其阻抗不要太大,从而对信号衰减过大即可。但对于后者,就要求从滤波器的角度出发来考虑,比如输入端的电源滤波,既要求滤除低频(如有工频引起的)噪声,又要滤除高频噪声,故就需要同时使用大电容和小电容。有人会说,有了大电容,还要小的干什么?这是因为大的电容,由于极板和引脚端大,导致电感也大,故对高频不起作用。而小电容则刚好相反。巨细据此可以确定电容量。而对于耐压,任何时候都必须满足,否则,就会爆炸,即使对于非电解电容,有时不爆炸,其性能也有所下降。讲起来,太多了,先谈这么多。 --------------------- 都是滤波的作用,铝电解电容容量比较大,主要用于虑除低频干扰。容量大约为1mA电流对应2~3μf,如过要求高的时候可以1mA对应5~6μf。无极性电容用于虑除高频信号。单独使用的时候大部分是去藕用的。有时可以与电解电容并联使用。陶瓷电容的高频特性比较好,但是在某个频率(大约是6MHz记不 太清了)是容量下降的很快。 ---------- 电容的寄生电感主要包括内部结构决定的电感和引线电感。电解电容的寄生电感主要由内部结构决定。印象中铝电解电容在20~30k以上就表现除明显的电感特性。钽电容在1MHz左右。陶瓷电容的高频特性就好很多。但是陶瓷电容有压电效应,不适于音频放大电路的输入和输出。 --------------- 这是因为大的电容,由于极板和引脚端大,导致电感也大,故对高频不起作用。而小电容则刚好相反。巨

逆变电源滤波电容的大小计算

逆变电源滤波电容的大小计算 11-06-19 01:19 逆变电源滤波电容的大小计算电感的阻抗与频率成正比,电容的阻抗与频率成反比.所以,电感可以阻扼高频通过,电容可以阻扼低频通过.二者适当组合,就可过滤各种频率信号.如在整流电路中,将电容并在负载上或将电感串联在负载上,可滤去交流纹波.。电容滤波属电压滤波,是直接储存脉动电压来平滑输出电压,输出电压高,接近交流电压峰值;适用于小电流,电流越小滤波效果越好。 电感滤波属电流滤波,是靠通过电流产生电磁感应来平滑输出电流,输出电压低,低于交流电压有效值;适用于大电流,电流越大滤波效果越好。电容和电感的很多特性是恰恰相反的。 一般情况下,电解电容的作用是过滤掉电流中的低频信号,但即使是低频信号,其频率也分为了好几个数量级。因此为了适合在不同频率下使用,电解电容也分为高频电容和低频电容(这里的高频是相对而言)。 低频滤波电容主要用于市电滤波或变压器整流后的滤波,其工作频率与市电一致为50Hz;而高频滤波电容主要工作在开关电源整流后的滤波,其工作频率为几千Hz到几万Hz。当我们将低频滤波电容用于高频电路时,由于低频滤波电容高频特性不好,它在高频充放电时内阻较大,等效电感较高。因此在使用中会因电解液的频繁极化而产生较大的热量。而较高的温度将使电容内部的电解液气化,电容内压力升高,最终导致电容的鼓包和爆裂。 电源滤波电容的大小,平时做设计,前级用4.7u,用于滤低频,二级用0.1u,用于滤高频,4.7uF的电容作用是减小输出脉动和低频干扰,0.1uF的电容应该是减小由于负载电流瞬时变化引起的高频干扰。一般前面那个越大越好,两个电容值相差大概100倍左右。电源滤波,开关电源,要看你的ESR(电容的等效串联电阻)有多大,而高频电容的选择最好在其自谐振频率上。大电容是防止浪涌,机理就好比大水库防洪能力更强一样;小电容滤高频干扰,任何器件都可以等效成一个电阻、电感、电容的串并联电路,也就有了自谐振,只有在这个自谐振频率上,等效电阻最小,所以滤波最好! 电容的等效模型为一电感L,一电阻R和电容C的串联,

飞机交流电源测频电路低通滤波器的设计与仿真

电子设计工程 Electronic Design Engineering 第23卷Vol.23第2期No.22015年1月Jan.2015 收稿日期:2014-01-09 稿件编号:201401070 作者简介:党媚(1980—),女,陕西西安人,硕士,教师。研究方向:电气自动化专业。 交流电源是大、中型飞机普遍采用的一次电源类型,频率是交流电源一项重要的物理参数,也是评价交流电源电能质量的重要内容之一。在系统运行的过程中,既要保证频率在规定的范围之内,还要在频率超出规定的范围时按要求停止向用电负载供电,从而保护电源设备和用电负载免受危害。然而飞机所处的电磁环境非常复杂,电源系统极易受到电磁干扰的影响,而使测频电路的输入信号中混入高频噪声,导致测频结果产生较大的误差,或者出现频率跳变的现象。在某型机交流电源地面模拟试验的过程中就出现了反复的频率跳变问题,虽然没有导致交流电源频率保护动作,但可以想象,在机上复杂的电磁环境中,尤其是在战时强电磁干扰的条件下,后果不可忽视,轻者将使系统性能降级,重者可能导致交流电源因保护误动作而失效,甚至危机飞行安全。因而,实时、准确地获取系统频率信息成为交流电源系统安全、可靠运行的关键环节。 1原因分析及解决思路 某型飞机是采用脉冲计数法计算系统频率的。该方法首 先将被测信号的波形变换为方波后,向方波中填充计数脉冲进行计数,最后根据计数脉冲的个数和计数脉冲的周期计算被测信号的频率。经分析发现,引起频率产生跳变的原因是测频电路中的过零比较器在信号过零点附近因误触发而翻转,这正是在测频电路的输入信号中混入了高频噪声所致。 为消除或有效减小电磁干扰的影响,保证测频结果的准确性,在被测信号输入过零比较器之前应滤除混入电路中的高频噪声[1],这里选择三阶巴特沃斯有源低通滤波器实现。巴特沃斯滤波器具有通频带内频率响应曲线平坦,阻频带内逐渐下降为零,因此滤波特性好,获得较为普遍的应用。利用巴特沃斯函数,通过选择合适的阶数,可以在一定精度范围内近似实现理想低通滤波器特性。函数的阶数越高,转移特性越逼近理想滤波器,但是所需的元件数量也就越多,电路也就越复杂,对于一般的工程需要采用二阶电路即可满足要求,而对滤波性能要求更高的场合,可选择三阶低通滤波电路。 2二阶有源RC 低通滤波器 一种二阶有源RC 电路如图1所示[2],该电路称为Sallen- Key 低通电路,属于有源滤波器。有源滤波电路不仅能够补偿 无源网络中的能量损耗,提高信号的输出功率;同时,运算放大器有高输入阻抗和低输出阻抗的特点,在实现多级相连时相互之间的影响很小,负载效应也明显下降,尤为适用于低频应用场合。 根据节点电压方程可得电路的电压转移函数为: H sk (s )=V o (s )V i (s )= A f ω2 n s 2+ωn Q s +ω2 n 飞机交流电源测频电路低通滤波器的设计与仿真 党媚 (西安航空职业技术学院陕西西安710089) 摘要:针对型号研制过程中出现的交流电源频率测量出现跳变的问题,进行了故障定位和原因分析,并提出了解决方案。设计了适用于飞机交流电源系统频率测量电路的低通滤波器,对其特性进行了计算分析,并基于SIMULINK 建立了滤波器的模型,进行了仿真验证,结果表明设计的滤波器是有效的。关键词:交流电源;低通滤波器;频率测量;仿真中图分类号:TN713 文献标识码:A 文章编号:1674-6236(2015)02-0102-03 Design and simulation on low pass filter for frequency measurement circuit of aircraft AC power system DANG Mei (Xi ’an Aeronautical Polytechnic Institute ,Xi ’an 710089,China ) Abstract:This paper conducted fault location and causal analysis ,and provided the solution for this problem of Ac power frequency measurement jump In the process of model development .A low pass filter apply to Aircraft Ac power system frequency measurement circuit are Designed ,and it's characteristics are also be analyzed and calculated.The filter model is set up based on Simulink for simulation ,the result shows that the method of filter design is effective.Key words:Ac power ;a low pass filter ;frequency measurement ;simulation -102-

详细解析电源滤波电容的选取与计算

电感的阻抗与频率成正比,电容的阻抗与频率成反比.所以,电感可以阻扼高频通过,电容可以阻扼低频通过.二者适当组合,就可过滤各种频率信号.如在整流电路中,将电容并在负载上或将电感串联在负载上,可滤去交流纹波.。电容滤波属电压滤波,是直接储存脉动电压来平滑输出电压,输出电压高,接近交流电压峰值;适用于小电流,电流越小滤波效果越好。电感滤波属电流滤波,是靠通过电流产生电磁感应来平滑输出电流,输出电压低,低于交流电压有效值;适用于大电流,电流越大滤波效果越好。电容和电感的很多特性是恰恰相反的。 一般情况下,电解电容的作用是过滤掉电流中的低频信号,但即使是低频信号,其频率也分为了好几个数量级。因此为了适合在不同频率下使用,电解电容也分为高频电容和低频电容(这里的高频是相对而言)。 低频滤波电容主要用于市电滤波或变压器整流后的滤波,其工作频率与市电一致为50Hz;而高频滤波电容主要工作在开关电源整流后的滤波,其工作频率为几千Hz到几万Hz。当我们将低频滤波电容用于高频电路时,由于低频滤波电容高频特性不好,它在高频充放电时内阻较大,等效电感较高。因此在使用中会因电解液的频繁极化而产生较大的热量。而较高的温度将使电容内部的电解液气化,电容内压力升高,最终导致电容的鼓包和爆裂。 电源滤波电容的大小,平时做设计,前级用4.7u,用于滤低频,二级用0.1u,用于滤高频,4.7uF的电容作用是减小输出脉动和低频干扰,0.1uF的电容应该是减小由于负载电流瞬时变化引起的高频干扰。一般前面那个越大越好,两个电容值相差大概100倍左右。电源滤波,开关电源,要看你的ESR(电容的等效串联电阻)有多大,而高频电容的选择最好在其自谐振频率上。大电容是防止浪涌,机理就好比大水库防洪能力更强一样;小电容滤高频干扰,任何器件都可以等效成一个电阻、电感、电容的串并联电路,也就有了自谐振,只有在这个自谐振频率上,等效电阻最小,所以滤波最好! 电容的等效模型为一电感L,一电阻R和电容C的串联, 电感L为电容引线所至,电阻R代表电容的有功功率损耗,电容C. 因而可等效为串联LC回路求其谐振频率,串联谐振的条件为WL=1/WC,W=2*PI*f,从而得到此式子f=1/(2pi*LC).,串联LC回路中心频率处电抗最小表现为纯电阻,所以中心频率处起到滤波效果.引线电感的大小因其粗细长短而不同,接地电容的电感一般是1MM为10nH左右,取决于需要接地的频率。 采用电容滤波设计需要考虑参数: ESR ESL 耐压值 谐振频率

电源设计之整流桥和滤波电容的选择

1、整流桥的导通时间与选通特性 50Hz交流电压经过全波整流后变成脉动直流电压u1,再通过输入滤波 电容得到直流高压U1。在理想情况下,整流桥的导通角本应为180°(导通 范围是从0°~180°),但由于滤波电容器C的作用,仅在接近交流峰值电 压处的很短时间内,才有输入电流流经过整流桥对C充电。50Hz交流电的半 周期为10ms,整流桥的导通时间tC≈3ms,其导通角仅为54°(导通范围是36°~90°)。因此,整流桥实际通过的是窄脉冲电流。桥式整流滤波电路 的原理如图1(a)所示,整流滤波电压及整流电流的波形分别如图l(b)和(c) 所示。 总结几点: (1)整流桥的上述特性可等效成对应于输入电压频率的占空比大约为30%。 (2)整流二极管的一次导通过程,可视为一个“选通脉冲”,其脉冲重复频 率就等于交流电网的频率(50Hz)。 (3)为降低开关电源中500kHz以下的传导噪声,有时用两只普通硅整流管 (例如1N4007)与两只快恢复二极管(如FR106)组成整流桥,FRl06的反向恢 复时间trr≈250ns。 2、整流桥的参数选择 隔离式开关电源一般采用由整流管构成的整流桥,亦可直接选用成品整 流桥,完成桥式整流。全波桥式整流器简称硅整流桥,它是将四只硅整流管 接成桥路形式,再用塑料封装而成的半导体器件。它具有体积小、使用方便、各整流管的参数一致性好等优点,可广泛用于开关电源的整流电路。硅整流 桥有4个引出端,其中交流输入端、直流输出端各两个。 硅整流桥的最大整流电流平均值分0.5~40A等多种规格,最高反向工 作电压有50~1000V等多种规格。小功率硅整流桥可直接焊在印刷板上,大、中功率硅整流桥则要用螺钉固定,并且需安装合适的散热器。 整流桥的主要参数有反向峰值电压URM(V),正向压降UF(V),平均整流 电流Id(A),正向峰值浪涌电流IFSM(A),最大反向漏电流IR(μA)。整流 桥的反向击穿电压URR应满足下式要求:

开关电源EMI滤波器原理与设计研究

开关电源EMI滤波器原理与设计研究

开关电源EMI滤波器原理与设计研究 魏应冬,吴燮华 (浙江大学电气工程学院,浙江杭州 310027) 摘要:在开关电源中,EMI滤波器对共模和差模传导噪声的抑制起着显著的作用。在研究滤波器原理的基础上,探讨了一种对共模、差模信号进行独立分析,分别建模的方法,最后基于此提出了一种EMI滤波器的设计程序。 关键词:开关电源;EMI滤波器;共模;差模 0 引言 高频开关电源由于其在体积、重量、功率密度、效率等方面的诸多优点,已经被广泛地应用于工业、国防、家电产品等各个领域。在开关电源应用于交流电网的场合,整流电路往往导致输入电流的断续,这除了大大降低输入功率因数外,还增加了大量高次谐波。同时,开关电源中功率开关管的高速开关动作(从几十kHz到数MHz),形成了EMI(electromagnetic interference)骚扰源。从已发表的开关电源论文可知,在开关电源中主要存在的干扰形式是传导干扰和近场辐射干扰,传导干扰还会注入电网,干扰接入电网的其他设备。 减少传导干扰的方法有很多,诸如合理铺设地线,采取星型铺地,避免环形地线,尽可能减少公共阻抗;设计合理的缓冲电路;减少电路杂散电容等。除此之外,可以利用EMI滤波器衰减电网与开关电源对彼此的噪声干扰。 EMI骚扰通常难以精确描述,滤波器的设计通常是通过反复迭代,计算制作以求逐步逼近设计要求。本文从EMI滤波原理入手,分别通过对其共模和差模噪声模型的分析,给出实际工作中设计滤波器的方法,并分步骤给出设计实例。 1 EMI滤波器设计原理 在开关电源中,主要的EMI骚扰源是功率半导体器件开关动作产生的d v/d t和d i/d t,因而电磁发射EME(Electromagnetic Emission)通常是宽带的噪声信号,其频率范围从开关工作频率到几MHz。所以,传导型电磁环境(EME)的测量,正如很多国际和国家标准所规定,频率范围在0.15~30MHz。设计EMI滤波器,就是要对开关频率及其高次谐波的噪声给予足够的衰减。基于上述标准,通常情况下只要考虑将频率高于150kHz的EME衰减至合理范围内即可。 在数字信号处理领域普遍认同的低通滤波器概念同样适用于电力电子装置中。简言之,EMI滤波器设计可以理解为要满足以下要求: 1)规定要求的阻带频率和阻带衰减;(满足某一特定频率f stop有需要H stop的衰减); 2)对电网频率低衰减(满足规定的通带频率和通带低衰减); 3)低成本。

整流滤波电路中滤波电容的选取

在整流滤波电路中,滤波电容的选取多是使用公式RC≥(3~5)T/2,且在实际电路设计中,一些人也认为滤波电容越大越好,其实这种想法是片面的,本文将对这一问题进行深入的探讨。文章首先阐述了研究滤波电容选取的必要性,其次对电路进行了理论上的分析和计算,然后,根据理论计算结果编写程序,模拟电路的工作过程。最后,通过举例讨论滤波电容对电路中的电流、电压及对其它元件参数的影响,从而为优化电路设计奠定了基础。 关键词:整流;滤波;滤波电容 一、引言 在大多数电源电路中,整流电路后都要加接滤波电路,以减小整流电压的脉动程度,满足稳压电路的需要。在许多文献中,对于滤波电容C的选取,多是使用经验公式RC≥(3~5)T/2[1,2],并认为滤波电容C越大越好;在一些滤波电路的维修中,技术人员经常用比原电路容量大的电容来代替已坏掉的电容。实践证明,在很多情况下这样做是行不通的,电容的选取是否越大越好?电容的选择对前级器件及整体电源的性能有何影响?电容的选取是否有最佳值?本文将对这些问题进行深入的讨论。 如图1所示的简单整流滤波电路,理论上讲,增大电路中的滤波电容C容量的确可以使输出电压的波形变得更为平滑、起伏更小,但在电路接通瞬间,电路中所产生的冲击电流因素却不能被忽略,这是因为,几乎所有的电子元器件都有其可以通过的最大电流值,所以,在选择电子元器件时,必须考虑冲击电流所带来的流过相关元器件瞬间电流的最大值,冲击电流越大,对电子元器件的要求就越高,电路的成本就会提高。 在一些滤波电路的维修中,对滤波电容的替换也存在冲击电流的问题,用大容量的滤波电容代替原来的电容,会使冲击电流增大,在不更换其他元件的前提下,单纯提高滤波电容的容量是危险的,它将使整个电路的实际使用寿命大大缩短,甚至烧毁整个电路。况且,单纯地提高滤波电容的容量对改善输出电压的作用也是有限的,一味地加大滤波电容的容量,只是徒劳地增加电路的成本。 二、简单滤波电路的计算 图 2 如图所示的简单整流滤波电路,以常见的220v50Hz正弦交流电为输入电压。1.充电电路的计算 在电容的充电过程中,二极管等效电阻为R1,则电路等效为图2 由图2得 将其带入U表达式并整理得: 这是一阶非齐次微分方程,其解为: = 2.放电电路的计算 在电容的放电过程中,电容只和电阻组成回路,其放电方程为: 其中,U为电容充电时达到的最大电压。 三、滤波电路的计算机模拟与讨论 在前面我们已经对滤波电路的工作过程进行了数学推导,而要将滤波电路的工作过程模拟下来,必须进行大量的计算,才能够将电源输出波形逐点描绘下来。通过对波形的观察,选择元件参数,使电路在正常工作的前提下,满足用户对电路在效率、功率、纹波、成本等多方面的要求。下面就程序的构思及应用做简要说

开关电源中如何正确选择滤波电容(

开关电源中如何正确选择滤波电容(2009-05-22 16:00:29)转载标签:开关电源明纬电源开关电源厂杂谈分类:开关电源 滤波电容在开关电源中起着非常重要的作用,如何正确选择滤波电容,尤其是输出滤波电容的选择则是每个工程技术人员都十分关心的问题。 50Hz工频电路中使用的普通电解电容器,其脉动电压频率仅为100Hz,充放电时间是毫秒数量级。为获得更小的脉动系数,所需的电容量高达数十万μF,因此普通低频铝电解电容器的目标是以提高电容量为主,电容器的电容量、损耗角正切值以及漏电流是鉴别其优劣的主要参数。而开关电源中的输出滤波电解电容器,其锯齿波电压频率高达数十kHz,甚至是数十MHz,这时电容量并不是其主要指标,衡量高频铝电解电容优劣的标准是“阻抗-频率”特性,要求在开关电源的工作频率内要有较低的等效阻抗,同时对于半导体器件工作时产生的高频尖峰信号具有良好的滤波作用。 普通的低频电解电容器在10kHz左右便开始呈现感性,无法满足开关电源的使用要求。而开关电源专用的高频铝电解电容器有四个端子,正极铝片的两端分别引出作为电容器的正极,负极铝片的两端也分别引出作为负极。电流从四端电容的一个正端流入,经过电容内部,再从另一个正端流向负载;从负载返回的电流也从电容的一个负端流入,再从另一个负端流向电源负端。由于四端电容具有良好的高频特性,为减小电压的脉动分量以及抑制开关尖峰噪声提供了极为有利的手段。 由于四端电容具有良好的高频特性,为减小电压的脉动分量以及抑制开关尖峰噪声提供了极为有利的手段。高频铝电解电容器还有多芯的形式,即将铝箔分成较短的若干段,用多引出片并联连接以减小容抗中的阻抗成份。并且采用低电阻率的材料作为引出端子,提高了电容器承受大电流的能力。

滤波电容的选型与计算详解

电源滤波电容的选择与计算 电感的阻抗与频率成正比,电容的阻抗与频率成反比.所以,电感可以阻扼高频通过,电容可以阻扼低频通过.二者适当组合,就可过滤各种频率信号.如在整流电路中,将电容并在负载上或将电感串联在负载上,可滤去交流纹波.。电容滤波属电压滤波,是直接储存脉动电压来平滑输出电压,输出电压高,接近交流电压峰值;适用于小电流,电流越小滤波效果越好。电感滤波属电流滤波,是靠通过电流产生电磁感应来平滑输出电流,输出电压低,低于交流电压有效值;适用于大电流,电流越大滤波效果越好。电容和电感的很多特性是恰恰相反的。一般情况下,电解电容的作用是过滤掉电流中的低频信号,但即使是低频信号,其频率也分为了好几个数量级。因此为了适合在不同频率下使用,电解电容也分为高频电容和低频电容(这里的高频是相对而言)。 低频滤波电容主要用于市电滤波或变压器整流后的滤波,其工作频率与市电一致为50Hz;而高频滤波电容主要工作在开关电源整流后的滤波,其工作频率为几千Hz到几万Hz。当我们将低频滤波电容用于高频电路时,由于低频滤波电容高频特性不好,它在高频充放电时内阻较大,等效电感较高。因此在使用中会因电解液的频繁极化而产生较大的热量。而较高的温度将使电容内部的电解液气化,电容内压力升高,最终导致电容的鼓包和爆裂。 电源滤波电容的大小,平时做设计,前级用4.7u,用于滤低频,二级用0.1u,用于滤高频,4.7uF的电容作用是减小输出脉动和低频干扰,0.1uF的电容应该是减小由于负载电流瞬时变化引起的高频干扰。一般前面那个越大越好,两个电容值相差大概100倍左右。电源滤波,开关电源,要看你的ESR(电容的等效串联电阻)有多大,而高频电容的选择最好在其自谐振频率上。大电容是防止浪涌,机理就好比大水库防洪能力更强一样;小电容滤高频干扰,任何器件都可以等效成一个电阻、电感、电容的串并联电路,也就有了自谐振,只有在这个自谐振频率上,等效电阻最小,所以滤波最好! 电容的等效模型为一电感L,一电阻R和电容C的串联, 电感L为电容引线所至,电阻R代表电容的有功功率损耗,电容C.

高手教你如何计算逆变器输出滤波电感

高手教你如何计算逆变器输出滤波电感 在全桥的逆变器当中,滤波电感是非常重要的一种元件,电感值的确定将直接影响到电路的工作性能。本篇文章将为大家介绍一种逆变器当中滤波电感的计算方法以及 所用材料。想要确定逆变器当中的滤波电感值,我们首先需要确定电感的LC值,而后在此基础上来进行设计。 一般来说,逆变滤波电感使用Iron Powder材料,或High Flux、Dura Flux材料,Ferrite也可以。一般应保证其铁损与铜损 有一个比例,如0.2~0.4,之所以不用0.5(此时效率最高),是因为散热的问题。对于上图所示的半桥逆变电路,由于其输出为正弦波,按照电路原理,其在输出过零点时,SPWM波的占空比最高(0.5,不计死区时间),此时电感上的dB最高,ripple电流也最大,为:Ippmax=Vi/(4fL)(1)f为SPWM波频率,L为滤波电感量。相应 的B值为:Bpkmax=10e8*Vi/(8fAN)(2)A为磁芯截面,N为匝数,单位为厘米克秒制,磁密单位为Gauss。将(1)式代入(2),可得:Bpkmax=10e8IppL/(2AN)(3)当输出电压瞬时值不为零时,可经由Bus电压减输出电压而得出L上的电压,再按照占空比的频率可得每一个SPWM周期的Bpk,其与输出电压的关系如下:Vo/Vi 在图中最高比例为0.5,这只对输出峰值等于Bus电压的情

况。在实际使用中,如果需要更高的输出精度,Bus还会降低,比值相应变小。同时也可以看出,输出电压越高,磁密变化越低。上图可以帮助我们理想磁芯内的磁密变化,却并不利于直接计算损耗。下图给出了在不同输出电压峰值的情况下,平均损耗与最大损耗在不同材料下的比值。当然,损耗最大发生在输出为零的情况。在实际设计时,只需知道输出电压峰值及Bus电压大小。按式(2)或(3)再经由Steinmetz公式Pmax=k*Bpkmax*n*f*m就可知Pmax,从而可知Pave,也就是您所设计电感的铁损。至于铜损,相信再简单不过了,按输出电流有效值乘L的DC 电阻就可以了。ripple就不必考虑了,太麻烦。如果频率够高,有涡流的话,再乘一个系数。倒是温度系数不得不考虑。下面给出一些材料的n值,方便查找曲线:Micrometals 其它材料,厂商都有提供n值,或者其它类似参数,到时再算一下。还有一点,通过控制理论和上述方法算出的最优解未必符合,自已取舍了。本文主要给出了全桥逆变器当中滤波电感的计算方法,并对滤波电感的材质的选择进行了建议,对新手设计者来说有着很大的帮助。希望大家在看过本篇文章之后,能学会逆变器当中滤波电感的计算方法,从而为自己的设计打下坚实的基础。

明纬电源型号有哪些_明纬开关电源的使用方法

明纬电源型号有哪些_明纬开关电源的使用方法 明纬电源介绍明纬电源是我们生活常用电源的一种,如电脑,电视机,碟机,充电器等电源型号也各有不同,其公司历史悠久,电源产品优质口碑好,既安全又耐用,它的总公司在中国台湾,由于其明纬电源的发展前景好,而又其公司的理念更是为更好地服务人民,明纬电源有限公司已在全国许多较繁荣的地方建立了分公司。 明纬开关电源的优势是什么1、明纬开关电源性价比很高,在整个国际市场上占有率很高。明纬电源的质量主要体现在电源所用的元器件上。 2、像电解电容、电源IC等重要元器件都是从国外进口的!且明纬的生产技术和设备都是从美、德两国引进来的。 3、明纬开关电源的品种也很齐全,有用于工业自动化控制、军工设备、科研设备、LED 照明、工控设备、通讯设备、电力设备、仪器仪表、医疗设备、半导体制冷制热、空气净化器,电子冰箱,液晶显示器,LED灯具,视听产品,电脑机箱,数码产品和仪器类等领域的电源;有宽电源、低频、高频、防雷、防水等电源。 明纬电源型号1、明纬开关电源-高性能G3系列 RS-25-24 RS-35-24 RS-50-24 RS-75-24 RS-100-24 RS-150-24 RD-35-24 RD-50-24 RD-65-24 RD-85-24 RD-125-24 RID-50-24 RID-65-24 RID-85-24 RID-125-24 2、明纬开关电源-NE系列 NES-15-24 NES-25-24 NES-35-24 NES-50-24 NES-75-24 NES-100-24 NED-35-24 NED-50-24 NED-75-24 3、明纬开关电源-通用型G2系列 S-25-24 S-40-24 S-60-24 S-100F-24 S-150-24 S-210-24 S-240-24 D-60-24 ID-60-24 D-120-24 S-250-24 S-320-24 4、明纬开关电源-经济型G1系列 S-15-24 S-35-24 S-50-24 S-100-24 S-145-24 S-201-24 S-350-24

滤波电容的选择

滤波电容的选择 2010-02-29 滤波电容的选择 经过整流桥以后的是脉动直流,波动范围很大。后面一般用大小两个电容 大电容用来稳定输出,众所周知电容两端电压不能突变,因此可以使输出平滑 小电容是用来滤除高频干扰的,使输出电压纯净 电容越小,谐振频率越高,可滤除的干扰频率越高 容量选择: (1)大电容,负载越重,吸收电流的能力越强,这个大电容的容量就要越大 (2)小电容,凭经验,一般104即可 2.别人的经验(来自互联网) 1、电容对地滤波,需要一个较小的电容并联对地,对高频信号提供了一个对地通路。 2、电源滤波中电容对地脚要尽可能靠近地。 3、理论上说电源滤波用电容越大越好,一般大电容滤低频波,小电容滤高频波。 4、可靠的做法是将一大一小两个电容并联,一般要求相差两个数量级以上,以获得更大的滤波频段. 具体案例: AC220-9V再经过全桥整流后,需加的滤波电容是多大的?再经78LM05后需加的电容又是多大? 前者电容耐压应大于15V,电容容量应大于2000微发以上。后者电容耐压应大于9V,容量应大于220微发以上。 2.有一电容滤波的单相桥式整流电路,输出电压为24V,电流为500mA,要求: (1)选择整流二极管; (2)选择滤波电容; (3)另:电容滤波是降压还是增压? (1)因为桥式是全波,所以每个二极管电流只要达到负载电流的一半就行了,所以二

极管最大电流要大于250mA;电容滤波式桥式整流的输出电压等于输入交流电压有效值的1.2倍,所以你的电路输入的交流电压有效值应是20V,而二极管承受的最大反压是这个电压的根号2倍,所以,二极管耐压应大于28.2V。 (2)选取滤波电容:1、电压大于28.2V;2、求C的大小:公式RC≥(3--5)×0.1秒,本题中R=24V/0.5A=48欧所以可得出C≥(0.00625--0.0104)F,即C的值应大于6250μF。 (3)电容滤波是升高电压。 滤波电容的选用原则 在电源设计中,滤波电容的选取原则是: C≥2.5T/R 其中: C为滤波电容,单位为UF; T为频率, 单位为Hz R为负载电阻,单位为Ω当然,这只是一般的选用原则,在实际的应用中,如条件(空间和成本)允许,都选取C≥5T/R. 3.滤波电容的大小的选取 PCB制版电容选择 印制板中有接触器、继电器、按钮等元件时.操作它们时均会产生较大火花放电,必须采用RC吸收电路来吸收放电电流。一般R取1~2kΩ,C取2.2~4.7μF 一般的10PF左右的电容用来滤除高频的干扰信号,0.1UF左右的用来滤除低频的纹波干扰,还可以起到稳压的作用滤波电容具体选择什么容值要取决于你PCB上主要的工作频率和可能对系统造成影响的谐波频率,可以查一下相关厂商的电容资料或者参考厂商提供的资料库软件,根据具体的需要选择。至于个数就不一定了,看你的具体需要了,多加一两个也挺好的,暂时没用的可以先不贴,根据实际的调试情况再选择容值。如果你PCB上主要工作频率比较低的话,加两个电容就可以了,一个虑除纹波,一个虑除高频信号。如果会出现比较大的瞬时电流,建议再加一个比较大的钽电容。 其实滤波应该也包含两个方面,也就是各位所说的大容值和小容值的,就是去耦和旁路。 原理我就不说了,实用点的,一般数字电路去耦0.1uF即可,用于10M以下;20M以上用1到10个uF,去除高频噪声好些,大概按C=1/f 。旁路一般就比较的小了,一般根据谐振频率一般为0.1或0.01uF 说到电容,各种各样的叫法就会让人头晕目眩,旁路电容,去耦电容,滤波电容等等,其 实无论如何称呼,它的原理都是一样的,即利用对交流信号呈现低阻抗的特性,这一点可以通过电容的等效阻抗公式看出来:Xcap=1/2лfC,工作频率越高,电容值越大则电容的阻抗越小.。在电路中,如果电容起的主要作用是给交流信号提供低阻抗的通路,就称为旁

电源设计中的电容选用规则

电源设计中的电容选用规则 电源往往是我们在电路设计过程中最容易忽略的环节。作为一款优秀的设计,电源设计应当是很重要的,它很大程度影响了整个系统的性能和成本。电源设计中的电容使用,往往又是电源设计中最容易被忽略的地方。 一、电源设计中电容的工作原理 在电源设计应用中,电容主要用于滤波(filter)和退耦/旁路(decoupling/bypass)。滤波是将信号中特定波段频率滤除的操作,是抑制和防止干扰的一项重要措施。根据观察某一随机过程的结果,对另一与之有关的随机过程进行估计的概率理论与方法。滤波一词起源于通信理论,它是从含有干扰的接收信号中提取有用信号的一种技术。“接收信号”相当于被观测的随机过程,“有用信号”相当于被估计的随机过程。 滤波主要指滤除外来噪声,而退耦/旁路(一种,以旁路的形式达到退耦效果,以后用“退耦”代替)是减小局部电路对外的噪声干扰。很多人容易把两者搞混。下面我们看一个电路结构: 图中电源为A和B供电。电流经C1后再经过一段PCB走线分开两路分别供给A和B。当A 在某一瞬间需要一个很大的电流时,如果没有C2和C3,那么会因为线路电感的原因A端的电压会变低,而B端电压同样受A端电压影响而降低,于是局部电路A的电流变化引起了局部电路B 的电源电压,从而对B电路的信号产生影响。同样,B的电流变化也会对A形成干扰。这就是“共路耦合干扰”。 增加了C2后,局部电路再需要一个瞬间的大电流的时候,电容C2可以为A暂时提供电流,即使共路部分电感存在,A端电压不会下降太多。对B的影响也会减小很多。于是通过电流旁路起到了退耦的作用。 一般滤波主要使用大容量电容,对速度要求不是很快,但对电容值要求较大。如果图中的局部电路A是指一个芯片的话,而且电容尽可能靠近芯片的电源引脚。而如果“局部电路A”是指一个功能模块的话,可以使用瓷片电容,如果容量不够也可以使用钽电容或铝电解电容(前提是功能模块中各芯片都有了退耦电容—瓷片电容)。 滤波电容的容量往往都可以从电源芯片的数据手册里找到计算公式。如果滤波电路同时使用电解电容、钽电容和瓷片电容的话,把电解电容放的离开关电源最近,这样能保护钽电容。瓷片电容放在钽电容后面。这样可以获得最好的滤波效果。

逆变器滤波器参数设置

1滤波特性分析 输出滤波方式通常可分为:L 型、LC型和 LCL 型, 滤波方式的特点比较如下: (1)中的单L型滤波器为一阶环节,其结构简单,可以比较灵活地选择控制器且设计相对容易,并网控制策略不是很复杂,并网容易实现,是并网逆变器常用的滤波方式。缺点在于其滤波能力有限,比较依赖于控制器的性能。 (2)中的 LC型滤波器为二阶环节, C 的引入可以兼顾逆变器独立、并网双模式运行的要求,有利于光伏系统功能的多样化。然而,滤波电容电流会对并网电流造成一定影响。 (3)中的 LCL型滤波器在高频谐波抑制方面更具优势,在相同高频电流滤波效果下,其所需总电感值较小。但因为其为三阶环节,在系统中引入了谐振峰,必须引入适当的阻尼来削减谐振峰,这就导致了其控制策略复杂,系统稳定性容易受到影响。当三相光伏逆变器独立运行时,一般均采用 LC型滤波方式。 并网逆变器的滤波器要在输出的低频段(工频 50Hz)时要尽量少的衰减,而要尽量衰减输出的高频段(主要是各次谐波)。 采用伯德图来分析各种滤波器的频域响应。[1] 一般并网逆变器滤波部分的电感为毫亨级,电容为微法级,这里电感值取 1m H,电容取 100u F,电感中的电阻取0.02Ω,在研究LCL滤波器时,取电感值为 L1=L2=0.5m H,电阻R1=R2=0.01Ω。

对于单电感滤波器,以输入电压和输出电流为变量,并且实际的电感中含有一定电阻,其传递函数为: 对于采用LC滤波器的并网逆变器,在并网运行时,电网电压直接加在滤波器中的电容两端,因此此时电容不起滤波作用,可以看作是一个负载,从滤波效果上来说,它等同于单电感滤波器。并且对于被控量选取为电感电流IL 的采用 LC滤波的并网逆变器,由于有电容的作用,其控制电流IL与实际输出电流Io 之间有如下图所示: 上式中可以看出,电感电流LI 将受到电网电压gU 的变化与并网电流0I 的影响。所以在控制过程中要参照电网电压的有效值不断调整基准给定的幅值与相位。 对于 LCL 滤波电路,逆变器输出电流与输入电压之间的传递函数可以表示为:

相关文档
最新文档