磁悬浮列车在世界上的发展与展望

磁悬浮列车在世界上的发展与展望
磁悬浮列车在世界上的发展与展望

上海磁悬浮列车中英双版

上海磁悬浮列车 磁悬浮列车是一种利用磁极吸引力和排斥力的高科技交通工具。简单地说,排斥力使列车悬起来、吸引力让列车开动。磁悬浮列车上装有电磁体,铁路底部则安装线圈。通电后,地面线圈产生的磁场极性与列车上的电磁体极性总保持相同,两者“同性相斥”,排斥力使列车悬浮起来。铁轨两侧也装有线圈,交流电使线圈变为电磁体。它与列车上的电磁体相互作用,使列车前进。列车头的电磁体(N极)被轨道上靠前一点的电磁体(S极)所吸引,同时被轨道上稍后一点的电磁体(N极)所排斥——结果是一“推”一“拉”。磁悬浮列车运行时与轨道保持一定的间隙(一般为1—10cm),因此运行安全、平稳舒适、无噪声,可以实现全自动化运行。磁悬浮列车的使用寿命可达35年,而普通轮轨列车只有20—25年。磁悬浮列车路轨的寿命是80年,普通路轨只有60年。此外,磁悬浮列车启动后39秒内即达到最高速度,目前的最高时速是552公里。据德国科学家预测,到2014年,磁悬浮列车采用新技术后,时速将达1000公里。而一般轮轨列车的最高时速为350公里。 “常导型”磁悬浮列车 世界第一条磁悬浮列车示范运营线——上海磁悬浮列车,建成后,从浦东龙阳路站到浦东国际机场,三十多公里只需6~7分钟。上海磁悬浮列车是“常导磁吸型”(简称“常导型”)磁悬浮列车。是利用“异性相吸”原理设计,是一种吸力悬浮系统,利用安装在列车两侧转向架上的悬浮电磁铁,和铺设在轨道上的磁铁,在磁场作用下产生的吸力是车辆浮起来。 列车底部及两侧转向架的顶部安装电磁铁,在“工”字轨的上方和上臂部分的下方分别设反作用板和感应钢板,控制电磁铁的电流使电磁铁和轨道间保持1厘米的间隙,让转向架和列车间的吸引力与列车重力相互平衡,利用磁铁吸引力将列车浮起1厘米左右,使列车悬浮在轨道上运行。这必须精确控制电磁铁的电流。 悬浮列车的驱动和同步直线电动机原理一模一样。通俗说,在位于轨道两侧的线圈里流动的交流电,能将线圈变成电磁体,由于它于列车上的电磁体的相互作用,使列车开动。 列车头部的电磁体N极被安装在靠前一点的轨道上的电磁体S极所吸引,同时又被安装在轨道上稍后一点的电磁体N极所排斥。列车前进时,线圈里流动的电流方向就反过来,即原来的S极变成N 极,N极变成S极。循环交替,列车就向前奔驰。 稳定性由导向系统来控制。“常导型磁吸式”导向系统,是在列车侧面安装一组专门用于导向的电磁铁。列车发生左右偏移时,列车上的导向电磁铁与导向轨的侧面相互作用,产生排斥力,使车辆恢复正常位置。列车如运行在曲线或坡道上时,控制系统通过对导向磁铁中的电流进行控制,达到控制运行目的。 “常导型”磁悬浮列车的构想由德国工程师赫尔曼?肯佩尔于1922年提出。 “常导型”磁悬浮列车及轨道和电动机的工作原理完全相同。只是把电动机的“转子”布置在列车上,将电动机的“定子”铺设在轨道上。通过“转子”,“定子”间的相互作用,将电能转化为前进的动能。我们知道,电动机的“定子”通电时,通过电磁感应就可以推动“转子”转动。当向轨道这个“定子”输电时,通过电磁感应作用,列车就像电动机的“转子”一样被推动着做直线运动。 上海磁悬浮列车时速430公里,一个供电区内只能允许一辆列车运行,轨道两侧25米处有隔离网,上下两侧也有防护设备。转弯处半径达8000米,肉眼观察几乎是一条直线;最小的半径也达1300米。

中低速磁悬浮技术简析

中低速磁悬浮技术简析 中低速磁悬浮轨道交通是一种依靠磁悬浮列车五个转向架悬浮系统及直线电机牵引系统实现无接触和非粘着牵引抱轨运行的交通方式,因其技术先进、功能强大、节能环保、性价比高,我国具有自主知识产权,受到社会广泛青睐,是一种先进、经济、环保的交通方式。一般认为,高速磁悬浮适合远距离交通,而中低速磁悬浮适合近距离交通。 长沙中低速磁浮工程连接高铁长沙南站和长沙黄花国际机场,初期设车站3座,预留车站2座,线路全长18.54公里,总投资46.04亿元,于2014年5月开工,2015年12月26日建成并试运行,建设工期20个月,计划2016年上半年正式通车运营。 长沙中低速磁浮工程是中国国内第一条自主设计、自主制造、自主施工、自主管理的中低速磁悬浮,是继上海以来又一个开通磁悬浮的城市,也是湖南省践行“一带一路”的重点项目。铁四院以中国铁建名义采取“股权投资+设计施工总承包+采购+研发+制造+联调联试+运营维护+后续综合开发”独创性建设模式承建的长沙磁悬浮工程,是中国第一条中低速磁悬浮轨道交通商业线。 相对于地铁、轻轨、新型有轨电车等主要城市轨道交通运输方式,中低速磁悬浮轨道交通具有以下优势: 一是低噪音。运行噪声约62分贝,低于人正常说话的噪声值,是“超静交通”的代表。 二是低成本。长沙中低速磁浮交通转弯半径小、爬坡能力强,特别适合在城市中穿梭。综合造价约2亿元/公里,与地铁相比具备明显的价格优势。其次目前轮轨交通的年运营维护成本是总投资的

4.4%左右。中低速磁悬浮轨道交通后期维护费用较低,年运营维修费理论值约为总投资的1.2%。 三是低辐射。经科学检测,长沙磁浮交通辐射值1米外小于电磁炉、3米外不到微波炉的一半、5米外比电动剃须刀更低,堪称绿色“环保交通”的典范。 四是低震动。列车沿轨道无接触运行,无车轮摩擦与冲击。可实现有害气体零排放,由于没有车轮磨耗,也不会在运行中产生铁粉或橡胶粉尘,最大限度避免环境污染。 中低速磁悬浮在柳州落地,存在以下几点问题: 1、运量较低,且其车厢编组调整较其他制式困难。轻轨每小时运量为1.5至3万人,中低速磁悬浮每小时运量为0.8至1.5万人。目前长沙磁悬浮采用三节车厢编组,每列最大载客量约为500人,且调整其车厢编组过程需要2-3个月周期(咨询中车株机技术人员数据)。轻轨一般采用四节车厢编组,B型车厢最大载客量约为1000人,客流高峰期间增加车厢编组方便。 2、一般来说中低速磁悬浮采用高架敷设。线路经过市区采用高架,对柳州的山水城市景观是否有影响需要进一步论证。 3、中低速磁悬浮在长沙尚处于试运营阶段,国内尚未有成熟的商业运营城市,其技术还在提升阶段,运营的成熟性、可靠性还有待实践检验。 4、中低速磁悬浮作为一种新的技术进行推广,大众的接受需要过程。深圳8号线曾经计划以磁悬浮高架方式建设,曾受到莲塘和沙头角片区居民的强烈反对,导致项目方案全盘否定,前期工作进展缓慢,目前新的方案正在论证中。长沙磁悬浮也是选择从长沙火车南站至黄花机场的郊区线路。

磁悬浮列车发展史

磁悬浮列车发展史 磁悬浮列车 2003-12-31 磁悬浮列车是自大约200年前斯蒂芬森的“火箭”号蒸气机车问世以来铁路技术最根本的突破。磁悬浮列车在今天看似乎还是一个新鲜事物,其实它的理论准备已有很长的历史。磁悬浮技术的研究源于德国,早在1922年德国工程师赫尔曼·肯佩尔就提出了电磁悬浮原理,并于1934年申请了磁悬浮列车的专利。进入70年代以后,随着世界工业化国家经济实力的不断加强,为提高交通运输能力以适应其经济发展的需要,德国、日本、美国、加拿大、法国、英国等发达国家相继开始筹划进行磁悬浮运输系统的开发。而美国和前苏联则分别在七八十年代放弃了这项研究计划,目前只有德国和日本仍在继续进行磁悬浮系统的研究,并均取得了令世人瞩目的进展。下面把各主要国家对磁浮铁路的研究情况作一简要介绍。 日本于1962年开始研究常导磁浮铁路。此后由于超导技术的迅速发展,从70年代初开始转而研究超导磁浮铁路。1972年首次成功地进行了2.2吨重的超导磁浮列车实验,其速度达到每小时50公里。1977年12月在宫崎磁浮铁路试验线上,最高速度达到了每小时204公里,到1979年12月又进一步提高到517公里。1982年11月,磁浮列车的载人试验获得成功。1995年,载人磁浮列车试验时的最高时速达到411公里。为了进行东京至大阪间修建磁浮铁路的可行性研究,于1990年又着手建设山梨磁悬浮铁路试验线,首期18.4公里长的试验线已于1996年全部建设完成。 德国对磁浮铁路的研究始于1968年(当时的联邦德国)。研究初期,常导和超导并重,到1977年,先后分别研制出常导电磁铁吸引式和超导电磁铁相斥式试验车辆,试验时的最高时速达到400公里。后来经过分析比较认为,超导磁浮铁路所需的技术水平太高,短期内难以取得较大进展,遂决定以后只集中力量发展常导磁浮铁路。1978年,决定在埃姆斯兰德修建全长31.5公里的试验线,并于1980年开工兴建,1982年开始进行不载人试验。列车的最高试验速度在1983年底达到每小时300公里,1984年又进一步增至400公里。目前,德国在常导磁浮铁路研究方面的技术已趋成熟。 与日本和德国相比,英国对磁浮铁路的研究起步较晚,从1973年才开始。但是,英国则是最早将磁浮铁路投入商业运营的国家之一。1984年4月,伯明翰机场至英特纳雄纳尔车站之间一条600米长的磁浮铁路正式通车营业。旅客乘坐磁浮列车从伯明翰机场到英特纳雄纳尔火车站仅需90秒钟。令人遗憾的是,在1995年,这趟一度是世界上唯一从事商业运营的磁浮列车在运行了

磁悬浮列车主要由悬浮系统

磁悬浮列车主要由悬浮系统、推进系统和导向系统三大部分组成,见图3。尽管可以使用与磁力无关的推进系统,但在目前的绝大部分设计中,这三部分的功能均由磁力来完成。下面分别对这三部分所采用的技术进行介绍。 悬浮系统:目前悬浮系统的设计,可以分为两个方向,分别是德国所采用的常导型和日本所采用的超导型。从悬浮技术上讲就是电磁悬浮系统(EMS)和电力悬浮系统(EDS)。图4给出了两种系统的结构差别。 电磁悬浮系统(EMS)是一种吸力悬浮系统,是结合在机车上的电磁铁和导轨上的铁磁轨道相互吸引产生悬浮。常导磁悬浮列车工作时,首先调整车辆下部的悬浮和导向电磁铁的电磁吸力,与地面轨道两侧的绕组发生磁铁反作用将列车浮起。在车辆下部的导向电磁铁与轨道磁铁的反作用下,使车轮与轨道保持一定的侧向距离,实现轮轨在水平方向和垂直方向的无接触支撑和无接触导向。车辆与行车轨道之间的悬浮间隙为10毫米,是通过一套高精度电子调整系统得以保证的。此外由于悬浮和导向实际上与列车运行速度无关,所以即使在停车状态下列车仍然可以进入悬浮状态。 电力悬浮系统(EDS)将磁铁使用在运动的机车上以在导轨上产生电流。由于机车和导轨的缝隙减少时电磁斥力会增大,从而产生的电磁斥力提供了稳定的机车的支撑和导向。然而机车必须安装类似车轮一样的装置对机车在“起飞”和“着陆”时进行有效支撑,这是因为EDS在机车速度低于大约25英里/小时无法保证悬浮。EDS系统在低温超导技术下得到了更大的发展。 超导磁悬浮列车的最主要特征就是其超导元件在相当低的温度下所具有的完全导电性和完全抗磁性。超导磁铁是由超导材料制成的超导线圈构成,它不仅电流阻力为零,而且可以传导普通导线根本无法比拟的强大电流,这种特性使其能够制成体积小功率强大的电磁铁。

中低速磁悬浮与轻轨、地铁的比较

中低速磁悬浮在城市轨道交通中的运用 磁悬浮技术的研究源于德国,1922年德国工程师赫尔曼?肯佩尔提出了电磁悬浮原理,1934年他申请了磁悬浮列车的专利,1953年完成科学报告《电子悬浮导向的电力驱动铁路机车车辆》。20世纪70年代以后,世界工业化国家经济实力不断加强,为提高交通运输能力以适应经济发展的需要,德国、日本、美国、加拿大、法国、英国等发达国家相继开始对磁悬浮运输系统进行开发,并取得令人瞩目的进展。 磁悬浮列车与传统轮轨列车不同,它用电磁力将列车浮起,导向和驱动。在运行时不与轨道发生摩擦,中低速磁悬浮列车(时速小于200km)在运行时发出的噪声非常低。此外,磁悬浮列车还具有速度高,制动快,爬坡能力强,转弯半径小,振动小,舒适性好等优点。在修建城市轨道交通线路的造价攀升的情况下,中低速磁悬浮线的性能价格比好的优势得以显示出来。 1磁悬浮技术的种类 目前,载人试验获得成功的磁浮列车系统有3种,它们的磁悬原 理和系统技术完全不同,不能兼容。 (1)用常导磁吸式(EMS进行悬浮导向,同步长定子直线电机驱动的高速磁浮列车系统。以德国的TR( Trans rapid )磁浮列车系统为代表。TR 采用常规电导吸引的方式进行悬浮和导向,悬浮的气隙较小,一般为10mm左右;由地面一次控制的直线同步电机驱动。我国上海 机场磁悬浮线就是引进的德国TR系统 (2)采用超导磁斥式(EDS进行悬浮和导向,同步长定子直线电机驱动的高速磁浮列车系统。 高速超导磁悬浮列车以日本的ML系统为代表。车上的超导线圈在低温下进入超导状态,通电后产生很强的磁场,列车运动时,超导磁体使线路上的导体产生感应电流,该电流也将产生磁场,并与车上的超导磁体形成斥力,使车辆悬浮(悬浮高度较大,一般为100mn左右)。列车由地面一次控制的线性同步电机进行驱动,同步电机定子三相绕组铺设在地面线路两侧,无需通过弓网受电方式供电。

2020年公务员考试常识积累:磁悬浮列车

2020年公务员考试常识积累:磁悬浮列车 磁悬浮列车是由无接触的电磁悬浮、导向和驱动系统组成的新型交通工具,磁悬浮列车分为超导型和常导型两大类。简单地说,从内部技术而言,两者在系统上存在着是利用磁斥力、还是利用磁吸力的区别。从外部表象而言,两者存在着速度上的区别:超导型磁悬浮列车最高时速可达500公里以上(高速轮轨列车的最高时速一般为300—350公里),在1000至1500公里的距离内堪与航空竞争;而常导型磁悬浮列车时速为400~500公里,它的中低速则比较适合于城市间的长距离快速运输。 磁悬浮列车原理 磁悬浮列车利用电磁体“同性相斥”的原理,让磁铁具有抗拒地心引力的能力,使车体完全脱离轨道,悬浮在距离轨道约1厘米处,腾空行驶,创造了近乎“零高度”空间飞行的奇迹。 磁悬浮列车由于磁铁有同性相斥和异性相吸两种形式,故磁悬浮列车也有两种相应的形式:一种是利用磁铁同性相斥原理而设计的电磁运行系统的磁悬浮列车,它利用车上超导体电磁铁形成的磁场与轨道上线圈形成的磁场之间所产生的相斥力,使车体悬浮运行的铁路。 另一种则是利用磁铁异性相吸原理而设计的电动力运行系统的磁悬浮列车,它是在车体底部及两侧倒转向上的顶部安装磁铁,在T形导轨的上方和伸臂部分下方分别设反作用板和感应钢板,控制电磁铁的电流,使电磁铁和导轨间保持10—15毫米的间隙,并使导轨钢板的排斥力与车辆的重力平衡,从而使车体悬浮于车道的导轨面上运行。 磁悬浮列车利用“同性相斥,异性相吸”的原理,让磁铁具有抗拒地心引力的能力,使车体完全脱离轨道,悬浮在距离轨道约1厘米处,腾空行驶,创造了近乎“零高度”空间飞行的奇迹。 相关介绍 磁悬浮列车是一种靠磁悬浮力(即磁的吸力和排斥力)来推动的列车。由于其轨道的磁力使之悬浮在空中,行走时不需接触地面,因此只有空气的阻力。磁悬浮技术的研究源于德国,早在1922年德国工程师赫尔曼·肯佩尔就提出了电磁悬浮原理,并于1934年申请了磁悬浮列车的专利。1970年以后,随着世界工业化国家经济实力的不断加强,为提高交通运输能力以适应其经济发展的需要,德国、日本、美国、加拿大、法国、英国等发达国家相继开始筹划进行磁悬浮运输系统的开发。2009年6月15日,国内首列具有完全自主知识产权

中低速磁悬浮列车车下布线方式研究

中低速磁悬浮列车车下布线方式研究 简要介绍了城轨车辆车下主要布线方式。通过对磁悬浮列车车下结构地深入分析,总结出车下结构特点及对布线的影响。并结合此特点,提出了车下型腔穿线、支架布线等线缆布线方式。 标签:磁悬浮列车;车下结构;型腔穿线;支架布线 1 概述 中低速磁悬浮列车是一种新型的城市轨道交通工具。相对于地铁、轻轨等传统轮轨列车,磁悬浮列车运行时由于不与轨道直接接触,具有爬坡能力强、转弯半径小、噪声低、易维护等特点[1],近年来越来越受到关注,已经成为轨道交通领域研究的热点。 由于运行技术原理较轮轨车辆有较大差别,磁悬浮列车在电气系统和列车走形部构成上更加复杂。电气系统一般包括悬浮控制系统、牵引逆变系统、直线电机系统、受流系统等子系统;列车走形部也由悬浮架和迫导向机构等机械构架取代了轮轨列车的转向架[2]。为了传输信号、电能,保证各个系统的协同工作,线缆连接是不可或缺的一部分。线缆布线质量和装配可靠性直接影响车辆性能和可靠性。目前,针对轮轨车辆如地铁、动车等布线技术的研究与应用较多,但对磁悬浮列车这种结构较特殊的车辆车下布线方式缺乏系统的研究。所以,研究如何规划磁悬浮列车线缆敷设路径、选择合理的布线方式具有十分重要的意义。 本文先介绍了城轨车辆电缆的主要布线方式,以中车株机公司某中低磁悬浮列车项目车辆为研究对象,对其电气系统构成及车下设备布置、机械结构进行了详细地分析。并结合车下结构特点,提出了控制电缆采用型腔穿线、主辅电缆用支架布线等线缆布线方法,通过工程实施验证,证明了布线方式的有效性。 2 城轨车辆主要电缆布线方式 城轨车辆所用电缆根据电压等级及功率分类,可分为H、A、B、C四个类别。按照国际布线标准,为防止电磁干扰同时满足各个电气系统的EMC要求,各类别电缆须单独敷设。目前城轨列车车下大多采用如下两种布线方式: 2.1 铝合金悬挂线槽 铝合金悬挂线槽整体呈长方形,包括主辅线槽区和控制线槽区。其中,主辅线槽区用来敷设H、A类别电压等级高的电缆,控制线槽区主要敷设B、C类别控制电缆和信号电缆[3]。线槽制作时,各 个线槽分区用铝合金隔板隔开,每个分区电缆单独设置出线口出线,能有效避免电磁干扰。如图1所示。

磁悬浮的前景展望

1真空磁悬浮列车 目前,西南交通大学牵引动力国家重点实验室课题组正在积极研发试验真空管道高速交通。在未来两三年内,实验室将推出时速600~1000千米的真空磁悬浮列车实验模型,10年之后可能投入运行。根据现在的理论研究,这种列车最高时速可达到2万千米。 2声悬浮 声悬浮是通过声音压力波使物质悬浮在稀薄的空气中。和电磁悬浮技术相比,它不受材料导电与否的限制,且悬浮和加热分别控制,因而可用以研究非金属材料和低熔点合金的无容器凝固。声悬浮现象最早是1886年被发现的,随着航天技术的进步和空间资源的开发利用,声悬浮逐渐发展成为一项很有潜力的无容器处理技术.声悬浮是高声强条件下的一种非线性效应,其基本原理是利用声驻波与物体的相互作用产生竖直方向的悬浮力以克服物体的重量,同时产生水平方向的定位力将物体固定于声压波节处。 3.发展前景问题 由于磁悬浮系统以电磁力完成悬浮、向导和驱动功能的,断电后磁悬浮的安全保障措施,尤其是列车停电后的制动问题仍然是要解决的问题。其高速稳定性和可靠性还需要很长时间的运行考验。常导磁悬浮技术的悬浮高度降低,因此对线路的平整度、路基下沉量级道岔结构方面的要求较超导技术更高。超导磁悬浮技术由于涡流效应悬浮能耗较常导轨技术更大,冷却系统重,强磁场对人体与环境都有影响。每一种新的交通工具的间世, 都极大地推动着社会的进步。回顾交通工具发展史, 我们发现汽车极大地方便了人们的生活,但长途运输能力差, 且日益增多的汽车数量使交通拥挤堵塞现象越来越严重,常规轮轨列车的运输量大, 但运行速度慢, 运行噪声大, 爬坡能力低, 高速轮轨列车要求轨道有很高的平整度, 在高速运行时, 能量消耗大, 铁轨和车轮的磨损很严重, 从而导致维修费用昂贵。飞机运行速度快, 但运精量小, 且事故往往是致命性的,磁悬浮列车是一种新的交通工具, 相对而言, 它有多方面的优点, 如高速, 运输量大, 安全,舒适, 无噪声等。综合各种因素,就目前而言,磁悬浮的发展是最有潜力,最有发展必要的。 纵览磁悬浮列车在世界上的发展状况, 一可以看到由于磁浮运输系统具有无轮轨接触、速度高、噪音小、能耗少、维持费用低、安全舒适等一系列优点, 使磁悬浮列车特别适于城市间或城市内的中短途交通运输, 并将成为介于传统火车、汽车与飞机之间的一种有力运输工具、日、英、美、加、苏等) 都已经或正在考虑将磁悬浮列车投入实际运营 世界上已开发的主要磁悬浮列车的发展现状及其速度适应范围归纳于表 磁悬浮技术在中国的前景 一:与发达国家相比, 我国磁悬浮系统的研发和建设环境具有以下特点: (1)技术上. 我国磁悬浮技术的研发起步较晚, 尤其是工程层面的工作.不过, 我国通过中德技术合 作于2003年建成了世界上第一条商用高速磁悬浮线路, 即上海浦东机场线, 极大地推动了 我国磁悬浮技术的研发.在引进、消化、吸收的基础上, 我国已经逐步具备了再创新的能力. 例如, 20 世纪90 年代以来, 原国家科委正式将“中低速磁悬浮列车关键技术研究”列入“八五”国家科技攻关计划, 由铁道科学研究院牵头, 国防科技大学、中科院电工所、西南交通

日本低速磁悬浮列车发展

综述q浏辩 文章编号:1002—7610(2008)01—0001—03 回零低遭磁悬浮刻辜凌震 陈贵荣,龙志强 (国防科技大学磁悬浮工程研究中心,湖南长沙410073) 摘要:介绍了日本低速磁悬浮列车的发展历程,以及研制的8组磁悬浮列车样车。 关键词:磁悬浮列车;发展;日本 中图分类号:U271文献标识码:B DevelopmentofLowSpeedMaglevTraininJapan CHENGui—rong,LONGZhi—qiang (MAGLEVEngineeringResearchCenter,NationalUniversityofDefenseTechnology,Changsha410073,China)Abstract:DescribedisthedevelopmenthistoryofthelowspeedmaglevtraininJapan.aswellasthe8maglevsampletrain-sets. Keywords:maglevtrain;development;Japan l概述 日本地少人多,历来重视铁路技术的发展,是世界上拥有最长时间发展轮轨高速铁路经验的国家。早在1972年,日本航空公司(JAL)就将磁悬浮列车HSST (HighSpeedSurfaceTransport)作为新一代陆地快速交通工具,其重要性已日益凸现。 HSST系统是以常温吸引方式实现悬浮导向,以 直线感应电机(LIM)为动力的线性机车。随着理论和 技术的日趋成熟,日本、德国等发达国家已具备进入商 业化运营的能力,并作为城市轨道及机场交通工具着 手进行了开发。 2发展历程 2.1开发HSST的动机 HSST的开发始于1974年初,当时德国开发的 TR-04磁悬浮系统令人注目,且可以减少公害。考虑 到日本的实际情况,必须选择对环境影响小的交通工 具,这就是进行开发和研究的动机。 2.2HSST-01磁悬浮列车 日本最早采用德国Kruss—Maffei技术开展低速 磁悬浮技术的研究。它们的特点是: (1)倒U型轨道与U型电磁铁构成悬浮系统,具 有侧向自稳功能; (2)4个电磁铁直接固定在车厢底板上,4个电磁 收稿日期:2007-05—28;修回日期t2007—09—03 作者简介:陈贵荣(1965一),男,湖南浏阳人,副教授。铁之间是一种刚性结构约束,没有相对运动自由度; (3)采用短定子异步电机推进。 日本购买了这个专利,在此基础上开发了HSST一01磁悬浮列车(图1)。1975年12月,在横滨市新杉田建设的长200m的直线轨道上首次悬浮行驶了重1t、长4m的HSST-01磁悬浮列车。9个月后,在川崎市东扇岛建设了全长1000m的直线轨道,开始了提速试验。1978年2月初,试验速度超过了目标速度300km/h,达到307.8km/h。1979年2月,在国家资助下增加了纵曲线和半径2000m及280m的弯道,并且将轨道线延长到了1600m。 图1HSST-01磁悬浮列车 2.3HSST-02磁悬浮列车 日本航空公司在HSST一01的试验没有取得预期效果的基础上,于1978年5月制造了HSST-02磁悬浮列车(图2)。作为载人演示的试验车长约7m,装备 了二系减振系统,乘坐非常舒适,在8人乘坐时以100

磁悬浮列车的工作原理及技术经济特性

磁悬浮机车及技术经济特性 魏庆朝,冯雅薇(北京交通大学土木建筑工程 学院翃北京 100044) 施翃翃(北京城建设计研究总院 北京 100037) 摘要:直线电机已开始在磁悬浮铁路、城市轨道交通中应用。介绍了直线电机的分类、3种典型的磁悬浮铁路和直线电机驱动的轮轨交通,对上述交通方式的技术经济特征进行了对比,总结了上述交通方式的适用范围。 关键词:直线电机;磁悬浮;城市轨道交通;适用范围 The Modes and features of the Transit Systems Driven by Linear Motor WEI Qingchao1, FENG Yawei1, SHI Hong1,2 (1. School of Civil Engineering and Architecture, Beijing Jiaotong University 2. Beijing Urban Engineering Design & Research Institute.) Abstract: Linear motor has been successfully used in Meglev transit system and rapid rail transit system for years. The transit systems driven by linear motor are classified as Maglev system and wheel-rail system. The typical Maglev system includes Japanese MLX system, German TransRapid system and Japanese HSST system. The technical and economic features of these systems are compared and the suitable application fields of these systems are summarized in the paper. Keywords: linear motor; Maglev; urban rapid rail transit; suitable application fields 1、引言 从1825年世界第一条铁路出现算起,轨道交通已有近180年的历史。特别是上个世纪中叶以来,随着科技的进步,轨道交通运输方式不仅在诸如速度、密度、重量等性能方面有了很大提高,而且轨道交通方式本身也发生了巨大的变革。快速轨道交通有地铁、轻轨、单轨等多种方式。牵引方式历经蒸汽牵引、内燃牵引、电力牵引等阶段,目前在世界范围内又发展出直线电机牵引的交通方式,包括磁悬浮铁路、直线电机轮轨交通、磁悬浮飞机等。该交通方式目前正在迅速发展,将来会成

揭开中低速磁浮列车的神秘面纱

揭开中低速磁浮列车的神秘面纱 在畅游通江达海的高铁时代和迈入便捷现代的地铁时代后,长沙又将开启对接磁浮交通时代的历史帷幕。 2015年12月26日,上午9时许,长沙。 一列列车,悬浮在空中,离开地面约0.8厘米,象风儿一样轻轻掠过居民区、工厂、桥梁、乡村,向前飞驰,从高铁南站出发驶向黄花机场站。 中国首列商业运营的中低速磁浮列车这一天开通试运行,贴地飞行今朝梦圆。 刚刚进入地铁时代的千年古城长沙,又阔步迈向磁浮交通时代! 低噪音、低辐射、低振动、很安全 长沙磁浮快线,是国内首条拥有完全自主知识产权的中低速磁浮商业运营示范线,自主设计、自主施工、自主制造、自主管理,标志着继德国、日本、韩国后,中国成为全球第四个掌握磁浮技术的国家。 贴地飞行,“浮”在空中的列车,是否安全可靠?辐射高不高?噪音大不大?振动强不强?对于这些问题,民众都很关心。 “中低速磁浮列车悬浮的原理,是电磁吸力让列车浮起

在轨道上方约0.8厘米,最大特点是磁浮车辆上没有传统车 辆赖以传动的轮子,实现了非粘着牵引和无接触运行。”我 国著名轨道电力牵引动力专家、中国工程院院士刘友梅介绍,“磁浮列车通过车身下方的高强度钢结构件围抱轨道,由于车体是‘抱’在轨道上运行,和路基一体化,将桥梁和轨道结合为一个整体,没有脱轨或倾覆的危险。” 万一发生突发性断电,外部电源骤然断掉了,“悬浮” 的列车是否会“坠落”呢?同济大学磁浮交通工程技术研究中心研究员刘万明告诉记者,一方面磁浮列车都安装有备用电源系统,能够在发生断电的情况下维持车身的悬浮状态,直至车辆以平稳的状态缓缓停下;另一方面,就算备用电源系统失灵,车辆与轨道接触的部位还设计有特殊的摩擦件,能够提供适度的摩擦力,确保车辆不会骤然停止,而是以合适的速度慢慢停稳。 由于是依靠磁力悬浮在空中运行,没有车轮与轨道接触时产生的摩擦震动,磁浮列车的振动和噪音都很低。中国中车研制磁浮的首席专家彭奇彪介绍,列车运行时的噪音仅70分贝左右,可以做到车辆从楼宇窗户10米外穿过而楼内的 人员不易察觉。在日常生活中,夜深人静、没有车辆运行的条件下,城市大环境的背景噪音就在50分贝以上。 “高速运行时噪音等级仅相当于普通人对话,低速时则几乎悄无声息。”中车株机公司磁浮研究所副所长李晓春如

中低速磁浮列车的发展与应用

中低速磁浮列车的发展与应用 【摘要】本文阐述了磁浮列车的概念,分析中低速磁浮列车的优缺点,介绍了中低速磁浮列车的发展及应用进程,最后探讨了我国磁浮列车发展及应用。旨在促进我国中低速磁浮列车的进一步发展。 【关键词】中低速磁浮列车;发展;应用 1 磁浮列车概况 2002年12月,世界上第一条高速磁浮商业运营线在上海建成,其通车意味着磁悬浮技术正式从工程应用阶段开始进入商业运营阶段。高速磁浮技术车辆最高速度可以达到500km/h,造价相对较高,对于短站距,高密度要求的城市轨道交通来说并不适宜。 通过国内相关研究机构(如上海磁浮研究中心、上海电气集团)十余年的研究和努力,作为磁浮技术的一种,建设成本低,环保性能好的中低磁浮列车取得了阶段性研究成果。国内制造、研究以及运营单位组建了“产学研用”联合体,对车体、线路轨道以及相关零部件展开了全面试验研究工作,并建设了多条试验线路及各种车型[1]。 中低速磁浮列车作为一种现代化轨道交通工具,有其自身独特性能。首先,它采用的是非接触式的电磁牵引驱动系统、电磁导向系统和电磁悬浮系统。其次,其爬坡能力强、速度快、能耗低、运行过程中产生的噪声小、舒适性及安全性高、无需消耗燃油、对环境造成污染少,而且因其轨道采用的是高架方式,占用地相对较少。磁悬浮列车运行过程中,没有与轨道发生直接接触,从而地克服了传统列车车轮与轨道之间的摩擦损耗、避免了轮轨系统高维护成本、车轮磨损和机械噪声等问题,是理想的地面交通工具。 2 中低速磁浮列车的优缺点 介于目前常导电磁悬浮技术还没有经过试验线的实际运行测试,尚未达到实际运用水平,我国和很多个国家都在开展对常导电磁悬浮型磁浮列车的技术线路的研究。以下就基于常导电磁悬浮系统的中低速磁悬浮列车进行介绍。 通常,磁浮列车是由三个系统组成的,即导向系统、牵引系统和悬浮系统。因为悬浮系统原理的不同,磁悬浮技术又分为常导电磁斥力悬浮型、常导电磁吸引悬浮型和超导斥力悬浮型。 磁浮系统主要具备如下优点: (1)磁悬浮系统中省去了传动机构和车轮支撑,使得轨道和车轮之间没有直接的接触,降低了噪声、摩擦和震动等问题。并且乘坐舒适,运行平稳,较为

磁悬浮列车性能及其前景

磁悬浮列车性能及其前景 摘要:随着中国铁路的几次大提速,磁悬浮列车在速度上一直处于领头羊,各国都在密切地关注着它的发展势头,不断进行科学研究。本文介绍了磁悬浮列车发展的历史背景,磁悬浮列车的悬浮系统、推进系统和导向系统,简单说明了磁悬浮技术在生活中的应用。借此提出磁悬浮列车的发展现状及前景,对中国铁路的光明前途充满信心。 关键词:磁悬浮 EMS制 EDS制推进系统导向系统 1.引言 在本世纪五、六十年代,铁路曾经被认为是一个夕阳运输产业。因为面对航空、高速公路等运输对手的强劲挑战,它蜗牛般的爬行速度,已越来越不适应现代工业社会物流和人流的快速流动需要了。但七十年代以来,特别是近几年,随着铁路高速化成为世界的热点和重点,铁路重新赢回了它在各国交通运输格局中举足轻重的地位。 据科研人员推算,普通轮轨列车最大时速为350-400公里左右。如果考虑到噪音、震动、车轮和钢轨磨损等因素,实际速度不可能达到最大时速。所以,欧洲、日本现在正运行的高速列车,在速度上已没有多大潜力。要进一步提高速度,必须转向新的技术,这就是超常规的列车--磁悬浮列车。 2.磁悬浮列车总览 稍有物理知识的人都知道:把两块磁铁相同的一极靠近,它们就相互排斥,反之,把相反的一极靠近,它们就互相吸引。托起磁悬浮列车的,那似乎神秘的悬浮之力,其实就是这两种吸引力与排斥力。 磁悬浮列车是一种利用磁极吸引力或排斥力悬浮的高科技交通运输工具,是一种采用无接触的电磁悬浮、导向和驱动系统的磁悬浮高速列车系统。磁悬浮列

车意味着这些火车利用磁的基本原理悬浮在导轨上来代替旧的钢轮和轨道列车。磁悬浮技术利用电磁力将整个列车车厢托起,摆脱了讨厌的摩擦力和令人不快的锵锵声,实现与地面无接触、无燃料的快速“飞行”。 3.磁悬浮列车历史背景 磁悬浮列车在今天看似乎还是一个新鲜事物,其实它的理论准备已有很长的历史。磁悬浮技术的研究源于德国,早在1922年德国工程师赫尔曼·肯佩尔就提出了电磁悬浮原理,并于1934年申请了磁悬浮列车的专利。下面把各主要国家对磁浮铁路的研究情况作一简要介绍。 日本于1962年开始研究常导磁浮铁路。此后由于超导技术的迅速发展,从70年代初开始转而研究超导磁浮铁路。德国对磁浮铁路的研究始于1968年。目前,德国在常导磁浮铁路研究方面的技术已趋成熟。英国对磁浮铁路的研究起步较晚,从1973年才开始。但是,英国则是最早将磁浮铁路投入商业运营的国家之一。 4.磁悬浮列车技术原理: 磁悬浮列车主要由悬浮系统、推进系统和导向系统三大部分组成。尽管可以使用与磁力无关的推进系统,但在目前的绝大部分设计中,这三部分的功能均由磁力来完成。下面分别对这三部分所采用的技术进行介绍。 4.1悬浮系统 目前国际上比较成熟的悬浮系统的设计,可以分为两个方向,一类是以德国为代表的常导型磁悬浮列车(即电磁悬浮系统EMS制),另一类是以日本为代表的超导型磁悬浮列车(即电力悬浮系统EDS制)。 电磁悬浮系统(EMS制)

中低速磁悬浮与轻轨、地铁的比较概述.

研究生课程考核试卷 科目:城市轻轨交通工程教师:靳晓光 姓名:林博学号:20151613095 专业:桥梁工程类别:专硕 上课时间:2015 年11 月至2016年1 月 考生成绩: 阅卷评语: 阅卷教师(签名) 重庆大学研究生院制

中低速磁悬浮在城市轨道交通中的运用 磁悬浮技术的研究源于德国,1922年德国工程师赫尔曼·肯佩尔提出了电磁悬浮原理,1934年他申请了磁悬浮列车的专利,1953年完成科学报告《电子悬浮导向的电力驱动铁路机车车辆》。20世纪70年代以后,世界工业化国家经济实力不断加强,为提高交通运输能力以适应经济发展的需要,德国、日本、美国、加拿大、法国、英国等发达国家相继开始对磁悬浮运输系统进行开发,并取得令人瞩目的进展。 磁悬浮列车与传统轮轨列车不同,它用电磁力将列车浮起,导向和驱动。在运行时不与轨道发生摩擦,中低速磁悬浮列车(时速小于200km)在运行时发出的噪声非常低。此外,磁悬浮列车还具有速度高,制动快,爬坡能力强,转弯半径小,振动小,舒适性好等优点。在修建城市轨道交通线路的造价攀升的情况下,中低速磁悬浮线的性能价格比好的优势得以显示出来。 1 磁悬浮技术的种类 目前,载人试验获得成功的磁浮列车系统有3种,它们的磁悬原理和系统技术完全不同,不能兼容。 (1)用常导磁吸式(EMS)进行悬浮导向,同步长定子直线电机驱动的高速磁浮列车系统。以德国的TR(Trans rapid)磁浮列车系统为代表。TR采用常规电导吸引的方式进行悬浮和导向,悬浮的气隙较小,一般为 10mm 左右;由地面一次控制的直线同步电机驱动。我国上海机场磁悬浮线就是引进的德国 TR系统 (2)采用超导磁斥式(EDS)进行悬浮和导向,同步长定子直线电机驱动的高速磁浮列车系统。 高速超导磁悬浮列车以日本的ML系统为代表。车上的超导线圈在低温下进入超导状态,通电后产生很强的磁场,列车运动时,超导磁体使线路上的导体产生感应电流,该电流也将产生磁场,并与车上的超导磁体形成斥力,使车辆悬浮(悬浮高度较大,一般为100mm左右)。列车由地面一次控制的线性同步电机进行驱动,同步电机定子三相绕组铺设在地面线路两侧,无需通过弓网受电方式供电。

磁悬浮列车技术发展路线研究

2017年第24卷第6期 技术与市场技术研发磁悬浮列车技术发展路线研究 张杨,吴超 (中车株洲电力机车有限公司,湖南株洲41001) 摘要:阐述了国内外磁悬浮列车的主要技术研究路线,研究了国内外主要从事磁悬浮技术研究的科研机构与技术特 点,旨在促进我国磁悬浮交通装备产业发展。 关键词:磁浮列车;技术发展;研究 doi:10. 3969/j.issn.1006 - 8554. 2017.06.036 〇引言 磁悬浮列车是根据电磁学原理,利用磁力悬浮与线性驱动 的方法,实现悬浮、导向和推进列车的新型交通工具,据相关机 构统计,磁浮列车在速度上可覆盖100 ~ 600 km/h范围,500 km/h速度下每座位.公里能耗仅为飞机1/3 ~ 1/2,300 k m/h 速度下能耗比I C E高速列车低33%,由于没有机械传动及轮轨 接触,在噪音及振动等方面也表现极佳。正是因其诸多方面的 优势,国内外相关机构开展了大量磁浮列车技术研究。在国际 范围内,开展过磁悬浮列车研究的国家主要有德国、日本、美国 和中国。 1国外磁悬浮列车的发展现状 1.1 超导磁悬浮技术 日本在磁浮列车发展上选择了电动磁浮方式,采用超导材 料作为励磁材料,车辆在轨道上运行时,通过车上移动电磁铁 的作用,使地面悬浮感应线圈产生感应电流及感应磁场,依靠 感应磁场和车上电磁铁的相互作用使车辆悬浮起来,悬浮气隙 可达100 m m。其构建的M L U系统设计速度为500 km/h,2015 年4月,山梨试验线的超导磁浮列车进行载人试验,最高时速 达到663 k m/h,刷新了地面轨道交通工具的最高速度记录。由于其悬浮力必须在一定速度下方能实现,因此只有在速度大于 120 km/h之后才能产生足够的悬浮力使列车起浮,而在低速 范围内仍需依赖车轮支撑运行。因此,这种方式不适合站间距 短、需要频繁启动停车的城市轨道交通系统;同时由于其超导 材料需要在特殊条件下进行管理维护,费用高昂。 1.2 常导磁悬浮技术 德国在技术路线上选择了与日本不同的电磁悬浮方式,采 用普通导电材料作为励磁材料,依靠安装在车体上的电磁铁和 轨道铁轨之间的吸引力使车辆悬浮。其构建的T R系统设计速 度500 k m/h,能实现静止状态下的悬浮;由于悬浮间隙通常为 8 ~ 12 m m,需要动态间隙检测和悬浮控制系统以维持动态间隙 在允许波动范围内。 1.3永磁悬浮技术 美国采用永磁悬浮方式,通过导轨上铺设的直线同步电机线圈来推动,导轨边的供电系统输送可变频率交流电到导轨上 线圈产生移动磁场与车上磁体相互作用而移动,交流电流的频 率控制列车移动速度。其构建的M a g p la n e系统采用弧形断面 轨道来同时提供悬浮和导向力,悬浮间隙为5 ~ 15 m m。与日 本技术类似,车体开始运行时由车轮支撑,轨道两侧的铝制导 轨内产生涡流,当时速达到20 k m以上时实现悬浮。 1.4真空管道磁悬浮技术 美国电动汽车特斯拉和美国科技公司E T3都公布了“真 空管道运输”计划,特斯拉称其为“H y p e r io p”或“超级高铁” E T3称之为“胶囊高铁”单体重183 k g,长约4. 87m,可以容纳 4 ~6名乘客,预计能达到1 200 km/h的速度,主要分为高架低 真空磁悬浮列车和地下真空管道磁悬浮列车。 2我国磁悬浮列车的发展现状 早期国内相关科研机构如国防科技大学、西南交通大学、同济大学、铁科院等开展了相关试验研究工作,并研制了单悬 浮架试验台及原型样车。 21世纪初我国引进德国高速磁悬浮技术,建设了上海高 速磁悬浮交通示范运营线,成立了国家磁浮交通工程技术研究 中心,开展磁悬浮交通技术的自主研究,实现了上海线线路轨 道技术国产化,并在同济大学嘉定校区建成“三个一”高速磁 悬浮试验系统(含一条1.5 k m轨道,一列两节编组磁悬浮车和 一套牵引及运控系统,简称三个一)。在技术转移基础上,主持 研制了我国首列高速磁悬浮国产化样车(四节编组)并投人上 海线示范运行,还实现了高速磁悬浮道岔、定子铁心和线圈国 产化。国家磁浮中心还与上海磁浮公司合作,开发了上海高速 磁浮列车关键设备的备品备件,逐步实现进口替代。目前,西 南交大也正在开展真空管道磁悬浮列车研究。 北京控股磁浮发展有限公司与国防科大、唐山机车车辆有 限公司合作,2008年建设了唐山中低速磁浮试验线路,并研制 了原理性样车。2006年开始,中车株洲电力机车有限公司,联 合株洲电力机车研究所、株洲电机公司、西南交通大学试,开展 磁悬浮列车技术研究。2012年成功3车编组中低速磁悬浮列 车样车一“追风者”号,在株洲建设了 1.6 k m试验线,全盘掌握 101

磁悬浮列车技术论文

磁悬浮列车技术 【摘要】:磁悬浮列车是一种靠磁悬浮力(即磁的吸力和排斥力)来推动的列车。由于其轨道的磁力使之悬浮在空中,行走时不需接触地面,因此其阻力只有空气的阻力。的研究源于德国,早在1922年德国工程师赫尔曼·肯佩尔就提出了电磁悬浮原理,并于1934年申请了磁悬浮列车的专利。1970年代以后,随着世界工业化国家经济实力的不断加强,为提高交通运输能力以适应其经济发展的需要,德国、日本等发达国家相继开始筹划进行磁悬浮运输系统的开发。磁悬浮列车是一种采用无接触的电磁悬浮、导向和驱动系统的磁悬浮高速列车系统。不同于传统列车利用车轮与钢轨之间的粘着力使列车前进。磁悬浮列车运行时与轨道保持10mm或者100mm的间隙,从根本上克服了传统列车轮轨黏着限制、机械噪声和磨损等问题,是一种新型的运载工具,其时速远远超过传动列车。 【关键词】:悬浮、推进、导向、创新 【正文】 一、工作原理 磁悬浮列车利用电磁体“同名磁极相互排斥,异名磁极相互吸引”的原理,让具有抗拒地心引力的能力,使车体完全脱离轨道,悬浮在距离轨道约1厘米处,腾空行驶,创造了近乎“零高度”空间飞行的奇迹磁悬浮列车主要由悬浮系统、推进系统和导向系统三大部分组成,尽管可以使用与磁力无关的推进系统,但在目前的绝大部分设计中,这三部分的功能均由磁力来完成。下面分别对这三分所采用的技术进行介绍。 导向系统 导向系统是一种测向力来保证悬浮的机车能够沿着导轨的方向运动。必要的推力与悬浮力相类似,也可以分为引力和。在机车底板上的同一块电磁铁可以同时为导向系统和悬浮系统提供动力,也可以采用独立的导向系统电磁铁。 悬浮系统 目前悬浮系统的设计,可以分为两个方向,分别是德国所采用的常导型和日本所采用的超导型。从悬浮技术上讲就是电磁悬浮系统(EMS)和电力悬浮系统(EDS)。 图4给出了两种系统的结构差别。(EMS) 辆下部的悬浮和导向电磁铁的电磁排斥力,与地面轨道两侧的绕组发生磁铁反作用将列车浮起。在车辆下部的导向电磁铁与轨道磁铁的反作用下,使车轮与轨道保持一定的侧向距离,实现轮轨在水平方向和垂直方向的无接触支撑和无接触导向。车辆与行车轨道之间的悬浮间隙为10毫米,是通过一套高精度电子调整系统得以保证的。此外

相关文档
最新文档