条件概率

条件概率
条件概率

条件概率

1.从1, 2, 3,…, 15中,甲、乙两人各任取一数(不重复),已知甲取到的数是5的倍数,求甲数大于乙数的概率.

解.设事件A表示“甲取到的数比乙大”,设事件B表示“甲取到的数是5的倍数”.

则显然所要求的概率为P(A|B).根据公式而P(B)=3/15=1/5 ,

∴P(A|B)=9/14.

,

2. 掷三颗骰子,已知所得三个数都不一样,求含有1点的概率.

解.设事件A表示“掷出含有1的点数”,设事件B表示“掷出的三个点数都不一样”.

则显然所要求的概率为P(A|B).根据公式

∴P(A|B)=1/2.

,

,

3.袋中有一个白球和一个黑球,一次次地从袋中摸球,如果取出白球,则除把白球放回外再加进一个白球,直至取出黑球为止,求取了N次都没有取到黑球的概率.

解.设事件A i表示“第i次取到白球”.(i=1,2,…,N)则根据题意P(A1)=1/2 , P(A2|A1)=2/3,

由乘法公式可知: P(A1A2)=P(A2|A1)P(A1)=1/3.而P(A3|A1A2)=3/4 ,

P(A1A2A3)=P(A3|A1A2)P(A1A2)=1/4 .

由数学归纳法可以知道P(A1A2…A N)=1/(N+1).

4. 甲袋中有5只白球, 7 只红球;乙袋中有4只白球, 2只红球.从两个袋子中任取一袋, 然后从所取到的袋子中任取一球,求取到的球是白球的概率.

解.设事件A表示“取到的是甲袋”, 则表示“取到的是乙袋”,

事件B表示“最后取到的是白球”.

根据题意: P(B|A)=5/12 , , P(A)=1/2.

5.有甲、乙两袋,甲袋中有3只白球,2只黑球;乙袋中有4只白球,4只黑球.现从甲袋中任取2个球放入乙袋,然后再从乙袋中任取一球,求此球为白球的概率

解.设事件A i表示“从甲袋取的2个球中有i个白球”,其中i=0,1,2 .

事件B表示“从乙袋中取到的是白球”.

显然A0, A1, A2构成一完备事件组,且根据题意

P(A0)=1/10 , P(A1)=3/5 , P(A2)=3/10 ;

P(B|A0)=2/5 , P(B|A1)=1/2 , P(B|A2)=3/5 ;

由全概率公式

P(B)=P(B|A0)P(A0)+P(B|A1)P(A1)+P(B|A2)P(A2)=2/5×1/10+1/2×3/5+3/5×3/10=13/25.

6.袋中装有编号为1, 2,…, N的N个球,先从袋中任取一球,如该球不是1号球就放回袋中,是1号球就不放回,然后再摸一次,求取到2号球的概率.

解.设事件A表示“第一次取到的是1号球”,则表示“第一次取到的是非1号球”;

事件B表示“最后取到的是2号球”.

显然P(A)=1/N,

且P(B|A)=1/(N-1),;

,

∴=1/(N-1)×1/N+1/N×(N-1)/N =(N2-N+1)/N2(N-1).

7. 袋中装有8只红球, 2只黑球,每次从中任取一球, 不放回地连续取两次, 求下列事件的概率.

(1)取出的两只球都是红球; (2)取出的两只球都是黑球;

(3)取出的两只球一只是红球,一只是黑球; (4)第二次取出的是红球.

解.设事件A1表示“第一次取到的是红球”,事件A2表示“第二次取到的是红球”.

(1)要求的是事件A1A2的概率.

根据题意P(A1)=4/5, , P(A2|A1)=7/9,

∴P(A1A2)=P(A1)P(A2|A1)=4/5×7/9=28/45.

(2)要求的是事件的概率.

根据题意: ,,

∴.

(3)要求的是取出一只红球一只黑球,它包括两种情形,即求事件的概率.

,,

,

,

∴.

(4)要求第二次取出红球,即求事件A2的概率.

由全概率公式:

=7/9×4/5+8/9×1/5=4/5.

8. 某射击小组共有20名射手,其中一级射手4人, 二级射手8人, 三级射手7人, 四级射手1人. 一、二、三、四级射手能通过选拔进入比赛的概率分别是0.9、0.7、0.5、0.2 . 求任选一名射手能通过选拔进入比赛的概率.

解.设事件A表示“射手能通过选拔进入比赛”,

设事件B i表示“射手是第i级射手”.(i=1,2,3,4)

显然, B1、B2、B3、B4构成一完备事件组,且

P(B1)=4/20, P(B2)=8/20, P(B3)=7/20, P(B4)=1/20;

P(A|B1)=0.9, P(A|B2)=0.7, P(A|B3)=0.5, P(A|B4)=0.2.

由全概率公式得到

P(A)=P(A|B1)P(B1)+P(A|B2)P(B2)+P(A|B3)P(B3)+P(A|B4)P(B4)

=0.9×4/20+0.7×8/20+0.5×7/20+0.2×1/20=0.645.

9.轰炸机轰炸某目标,它能飞到距目标400、200、100(米)的概率分别是0.5、0.3、0.2,又设它在距目标400、200、100(米)时的命中率分别是0.01、0.02、0.1 .求目标被命中的概率为多少?

解.设事件A1表示“飞机能飞到距目标400米处”,

设事件A2表示“飞机能飞到距目标200米处”,

设事件A3表示“飞机能飞到距目标100米处”,

用事件B表示“目标被击中”.由题意, P(A1)=0.5, P(A2)=0.3, P(A3)=0.2,

且A1、A2、A3构成一完备事件组.

又已知P(B|A1)=0.01, P(B|A2)=0.02, P(B|A3)=0.1.

由全概率公式得到:

P(B)=P(B|A1)P(A1)+P(B|A2)P(A2)+P(B|A3)P(A3)=0.01×0.5+0.02×0.3+0.1×0.2=0.031.

10. 加工某一零件共需要4道工序,设第一﹑第二﹑第三﹑第四道工序的次品率分别为2%﹑3%﹑5%﹑3%, 假定各道工序的加工互不影响, 求加工出零件的次品率是多少?

解.设事件A i表示“第i道工序出次品”, i=1,2,3,4

因为各道工序的加工互不影响,因此A i是相互独立的事件.

P(A1)=0.02, P(A2)=0.03, P(A3)=0.05, P(A4)=0.03,

只要任一道工序出次品,则加工出来的零件就是次品.所以要求的是(A1+A2+A3+A4)这个事件的概率.

为了运算简便,我们求其对立事件的概率

=(1-0.02)(1-0.03)(1-0.05)(1-0.03)=0.876.

∴P(A1+A2+A3+A4)=1-0.876=0.124.

11. 某人过去射击的成绩是每射5次总有4次命中目标, 根据这一成绩, 求

(1)射击三次皆中目标的概率;

(2)射击三次有且只有2次命中目标的概率;

(3)射击三次至少有二次命中目标的概率.

解.设事件A i表示“第i次命中目标”, i=1,2,3

根据已知条件P(A i)=0.8,,i=1,2,3

某人每次射击是否命中目标是相互独立的,因此事件A i是相互独立的.

(1)射击三次皆中目标的概率即求P(A1A2A3).

由独立性:

P(A1A2A3)=P(A1)P(A2)P(A3)=0.83=0.512.

(2)“射击三次有且只有2次命中目标”这个事件用B表示.

显然,

又根据独立性得到:

.

(3)“射击三次至少有2次命中目标”这个事件用C表示.

至少有2次命中目标包括2次和3次命中目标,所以C=B+A1A2A3

P(C)=P(B)+P(A1A2A3)=0.384+0.512=0.896.

12. 三人独立译某一密码, 他们能译出的概率分别为1/3, 1/4, 1/5, 求能将密码译出的概率. 解.设事件A i表示“第i人能译出密码”, i=1,2,3.

由于每一人是否能译出密码是相互独立的,最后只要三人中至少有一人能将密码译出,则密码被译出,因此所求的概率为P(A1+A2+A3). 已知P(A1)=1/3, P(A2)=1/4, P(A3)=1/5,

而=(1-1/3)(1-1/4)(1-1/5)=0.4.

∴P(A1+A2+A3)=1-0.4=0.6.

13. 用一门大炮对某目标进行三次独立射击, 第一、二、三次的命中率分别为0.4、0.5、0.7, 若命中此目标一、二、三弹, 该目标被摧毁的概率分别为0.2、0.6和0.8, 试求此目标被摧

毁的概率.

解.设事件A i表示“第i次命中目标”, i=1,2,3.

设事件B i表示“目标被命中i弹”, i=0,1,2,3.

设事件C表示“目标被摧毁”.

由已知P (A1)=0.4, P(A2)=0.5, P(A3)=0.7;

P(C|B0)=0, P(C|B1)=0.2, P(C|B2)=0.6, P(C|B3)=0.8.

又由于三次射击是相互独立的,所以

,

=0.6×0.5×0.7+0.6×0.5×0.3+0.4×0.5×0.3=0.36,

=0.6×0.5×0.7+0.4×0.5×0.3+0.4×0.5×0.7=0.41,

.由全概率公式得到

P(C)=P(C|B0)P(B0)+P(C|B1)P(B1)+P(C|B2)P(B2)+P(C|B3)P(B3)

=0×0.09+0.2×0.36+0.6×0.41+0.8×0.14=0.43.

认识概率知识讲解

认识概率知识讲解 LEKIBM standardization office【IBM5AB- LEKIBMK08- LEKIBM2C】

认识概率--知识讲解 【学习目标】 1.通过对生活中各种事件的判断,归纳出必然事件、不可能事件和随机事件的特点,并根据这些特点对有关事件作出准确的判断; 2.理解概率的定义,通过具体情境了解概率的意义; 3.理解频率与概率的关系,能利用频率与概率的关系解决实际问题. 【要点梳理】 要点一、确定事件与随机事件 1.不可能事件 在一定条件下,有些事情我们事先能肯定它一定不会发生,这样的事情是不可能事件. 2.必然事件 在一定条件下,有些事情我们事先能肯定它一定会发生,这样的事情是必然事件.必然事件和不可能事件都是确定事件. 3.随机事件 在一定条件下,很多事情我们事先无法确定它会不会发生,这样的事情是随机事件. 要点诠释: (1)一般地,要知道事件发生的可能性大小首先要确定事件是什么类型. (2)必然发生的事件发生的可能性最大,不可能发生的事件发生的可能性最小,随机事件发生的可能性有大有小,不同的随机事件发生的可能性的大小可能不同. 要点二、频率与概率 1.概率 随机事件发生的可能性有大有小.一个事件发生的可能性大小的数值,称为这个事件的概率(probability).如果用字母A表示一个事件,那么P(A)表示事件A发生的概率.

事件A的概率是一个大于等于0,且小于等于1的数,即, 其中P(必然事件)=1,P(不可能事件)=0,0<P(随机事件) <1. 所以有:P(不可能事件)<P(随机事件)<P(必然事件). 一个随机事件发生的概率是由这个随机事件自身决定的,并且是客观存 在的.概率是随机事件自身的属性,它反映这个随机事件发生的可能性大小. 2.频率 通常,在多次重复实验中,一个随机事件发生的频率会在某一个常数附 近摆动,并且随着试验次数增多,摆动的幅度会减小,这个性质称为频率的 稳定性. 一般地,在一定条件下大量重复进行同一试验时,随机事件发生的频率 m 会在某一个常数附近摆动.在实际生活中,人们常把试验次数很大时,事 n 件发生的频率作为其概率的估计值. 要点诠释: ①概率是频率的稳定值,而频率是概率的近似值; ②频率和概率在试验中可以非常接近,但不一定相等; ③概率是事件在大量重复实验中频率逐渐稳定到的值,即可以用大量重复实验中事件发生的频率去估计得到事件发生的概率,但二者不能简单地等同,两者存在一定的偏差是正常的,也是经常的. 【典型例题】 类型一、确定事件与随机事件 1.(1)指出下列事件中,哪些是不可能事件哪些是必然事件哪些是随机事件

第十二章认识概率测试卷基础卷

第十二章认识概率章节测试卷 基础卷 (本卷满分100分) 姓名:成绩: 一、填空题(每题3分,共24分) 1、小明连掷五次骰子都没有得到1点,他第六次得到1点的概率是_________. 2、从1.2.3.4.5.6.7.共7张数字卡片中,任抽一张,抽到偶数卡片的概率____________. 3、质检人员在某超市检查货架上共20袋三鹿奶粉时,发现12袋三聚氰胺严重超标,小明如从货架上任意购买其 中一袋三鹿奶粉,所卖奶粉三聚氰胺超标的概率是_________. 4、星期三下午有数学,体育,政治,三节课,数学排在第一节的概率_________,体育不排在第一节的概率是 _________. 5、小明与小亮在一起做游戏时,需要确定做出游戏的先后顺序,他门约定”锤子,剪刀,布”的方式确定,请问在一回 合内两个人都出”锤子”的概率是________. 6、某视台”购物一条街”节目中有一个摸球游戏,袋中有红,白,黄,绿,黑的球各一个,规定黑色的球为“炸弹”,每次 只能摸一个,摸后球不需要放回,连续摸4次,摸不到炸弹的球,那么游戏者就胜出,摸到炸弹游戏则结束,小红摸第一次碰到炸弹的概率是_______,假设前3次的摸球都胜利,则小红地4次摸到炸弹的概率是________. 7、有大小,形状,颜色完全相同的5个乒乓球,每个球上分别标有数字1.2.3.4.5.将这5个数字不相同的球放入不透 明的袋中搅允,如果不放回的从中随机连续抽取2个球上的数字为偶数的概率是________. 8、以知函数y=x-5,令x= 1/2 ,1, 3/2 ,2, 5/2 ,3,7/2 , 4, 9/2 ,5,可得函数上的十个点,在这十个点中随机取 两个点P(x1 , y1 )Q( x2 , y2 )则P,Q两点在同一反比例函数图象上的概率是_______. 二选择题(8题,每题3分,共24分) 9.袋中放有一套(5枚)北京2008年奥运会吉祥物福娃纪念品币,取出一枚纪念币记下福娃名称,放回在摸一次,两次正好可以组成”欢迎”的概率是( ) A 2/25 B1/20 C1/10 D1/5 10.以上说法合理的是 A小明在10次抛图钉实验中发现3次针尖朝上,由此他说针尖朝上的概率是30% B抛掷一枚均匀的硬币,出现正面的概率是1/2的意思是每两次就有一次是正面 C某彩票的中奖机会是2%,那么如果买100张彩票就一定有2张中奖 D在课堂实验中,甲.乙两组同学估计硬币落地后正面朝上的概率分别为0.48和0.51 11.从n个苹果和3个雪梨中,任选1个,若选中苹果的概率是1/2,则n的值是( ) A.6 B.3 C.2 D.1 12.n只型号相同的杯子,其中上等品7只,中等品3只,次品2只,小军任取一只购买获得中等合格品的概率是( ) A.1/12 B1/6 C1/4 D7/2 13.随机抛掷一枚1元硬币2次,连续两次都掷正面的概率是( ) A.1/6 B.1/3 C.1/4 D1/2 14.在一个不透明的袋子中装有8个除颜色外完全相同的小球,其中白球2个,黄球3个,红球3个,摸出一个球不放

条件概率及其性质

1.条件概率及其性质 (1)条件概率的定义 设A 、B 为两个事件,且P (A )>0,称P (B |A )= 为在事件A 发生的条件下,事件B 发生的条件概率. (2)条件概率的求法 求条件概率除了可借助定义中的公式,还可以借助古典 概型概率公式,即P (B |A )= . (3)条件概率的性质 ①条件概率具有一般概率的性质,即0≤P (B |A )≤1. ②如果B 和C 是两个互斥事件,则P (B ∪C |A )= P(B|A)+P(C|A) ) . 2.事件的相互独立性 (1)设A 、B 为两个事件,如果P (AB )=P(A)P(B) ,则称事件A 与事件B 相互独立. (2)如果事件A 与B 相互独立,那么 与 , 与 , 与也都相互独立.3.二项分布 在n 次独立重复试验中,设事件A 发生的次数为X ,在每次试验中事件A 发生的概率为p ,那么在n 次独立重复试验中,事件A 恰好发生k 次的概率为P (X =k )=C k n p k (1-p ) n -k (k =0,1, 2,…,n ).此时称随机变量X 服从二项分布,记作 X ~B(n ,p) ,并称_p_为成功概率. 若X ~B (n ,p ),则E (X )=np . 1.区分条件概率P (B |A )与概率P (B ) 它们都以样本空间Ω为总样本,但它们取概率的前提是不相同的.概率P (B )是指在整个样本空间Ω的条件下事件B 发生的可能性大小,而条件概率P (B |A )是在事件A 发生的条件下,事件B 发生的可能性大小. 2.求法:(1)利用定义分别求P (A ),P (AB ),得P (B |A )= P (AB ) P (A ) ; (2)先求A 含的基本事件数n (A ),再求在A 发生的条件下B 包含的事件数即n (AB ),得P (B |A )= n (AB ) n (A ) . 1.1号箱中有2个白球和4个红球,2号箱中有5个白球和3个红球,现随机地从1号箱中取出一球放入2号箱,然后从2号箱随机取出一球,问 (1)从1号箱中取出的是红球的条件下,从2号箱取出红球的概率是多少? (2)从2号箱取出红球的概率是多少? 【解】 记事件A :最后从2号箱中取出的是红球;事件B :从1号箱中取出的是红球. P (B )= 42+4=23 ,P (B )=1-P (B )=13, (1)P (A |B )=3+18+1=49.(2)∵P (A |B )=38+1=1 3, ∴P (A )=P (AB )+P (A B ) =P (A |B )P (B )+P (A |B )P (B ) =49×23+13×13=11 27. 2.(2011年湖南)如图,EFGH 是以O 为圆心,半径为1的圆的内接正方形,将一颗豆子随机地扔到该圆内,用A 表示事件“豆子落在正

2016高中数学人教A版选修221《条件概率》课时作业

【与名师对话】2015—2016学年高中数学 2、2、1条件概率课时作 业 新人教A 版选修2—3 一、选择题 1、已知P (AB )=错误!,P (A )=错误!,则P (B |A )=( ) A 、错误! B 、错误! C 、错误! D 、错误! 解析:P (B |A )=P AB P A =错误!=错误!、 答案:B 2、在5道题中有3道数学题与2道物理题、如果不放回地依次抽取2道题,则在第1次抽到数学题的条件下,第2次抽到数学题的概率就是( ) A 、错误! B 、错误! C 、错误! D 、错误! 解析:设第一次抽到数学题为事件A ,第二次抽到数学题为事件B ,则P (A )=错误!,P (AB )=错误!=错误!, 所以P (B |A )=错误!=错误!、 答案:C 3、在10个球中有6个红球与4个白球(各不相同),无放回地依次摸出2个球,在第一次摸出红球的条件下,第二次也摸到红球的概率为( ) A 、错误! B 、错误! C 、错误! D 、错误! 解析:方法一:设A ={第一次摸到红球},B ={第二次摸到红球},AB ={两次摸出都就是红球},则由古典概型知P (A )=错误!=错误!,P (AB )=错误!=错误!, ∴P (B |A )=错误!=错误!=错误!、 方法二:第一次摸出红球后,9个球中有5个红球,此时第二次也摸出红球的概率为错误!、 答案:D 4、一个盒子中有20个大小形状相同的小球,其中5个红的,5个黄的,10个绿的,从盒子中任取一球,若它不就是红球,则它就是绿球的概率就是( ) A 、错误! B 、错误! C 、错误! D 、错误! 解析:记A :取的球不就是红球,B :取的球就是绿球、则P (A )=错误!=错误!,P (AB )=错误!=错误!,∴P (B |A )=错误!=错误!=错误!、

新教材八年级下认识概率知识点及练习

知识点归纳 (1)事件可分为:必然事件、不可能事件(确定事件)、随机事件(不确定事件)。 (2)一件事件发生的可能性的大小的数值,叫做这件事件的概率。概率通常用大写P表示。(3)0≤ P(A事件)≤1;P(必然事件)=1;P(不可能事件)=0;0

条件概率教学设计教学文案

8.2.2 条件概率 一、教学目标 (一)知识目标 在具体情境中,了解条件概率的概念,掌握条件概率的计算公式,并能运用条件概率公式解决有关的简单概率问题. (二)情感目标 创设教学情境,培养学生学习数学的良好思维习惯和兴趣,加深学生对从特殊到一般的思想认知规律的认识,树立学生善于创新的思维品质. (三)能力目标 在知识的教学过程中,培养学生从特殊到一般的探索归纳能力及运算能力和应用新知的能力,渗透归纳、转化的数学思想方法. 二、教学重点 条件概率的概念,条件概率公式的简单应用. 三、教学难点 正确理解条件概率公式,并能灵活运用条件概率公式解决简单实际问题. 四、教学过程 (一)引入课题 [教师] (配合多媒体演示) 问题1:掷一个骰子,求掷出的点数为3的概率. [学生] (回答) 6 1 [教师] (引导学生一起分析)本次试验的全集Ω={1,2,3,4,5,6},设B ={掷出点数为3},则B 的基本事件数为1. 6 1 )(=中的元素数中的元素数Ω= ∴B B P [教师] (配合多媒体演示) 问题2:掷一个骰子,已知掷出了奇数,求这个奇数是3的概率. [学生] (回答) 3 1 [教师] (引导学生一起分析)已知掷出了奇数后,试验的可能结果只有3个,它们是1,3,5. 本次试验的全集改变为A ={1,3,5},这时相对于问题1,试验的条件已经改变. 设B ={掷出的点数为3},则B ={3},这时全集A 所含基本事件数为3,B 所含基本事件数为1,则P (已知掷出奇数的条件下,掷出3)= 3 1 A =中的元素数中的元素数 B . [教师] (针对问题2再次设问)问题2与问题1都是求掷出奇数3的概率,为什么结果不一样? [学生] 这两个问题的提法是不一样的,问题1是在原有条件(即掷出点数1,2,3,4,5,6的一切可能情形)下求得的;而问题2是一种新的提法,即在原有条件下还另外增加了一个附加条件(已知掷出点数为奇数)下求得的,显然这种带附加条件的概率不同于P(A)也不同P(A ∩B). [教师] (归纳小结,引出条件概率的概念)问题2虽然也是讨论事件B (掷出点数3)的概率,但是却以已知事件A (掷出奇数为前提的,这样的概率称为A 发生条件下的事件B 发生的条件概率. (板书课题——条件概率) (二)传授新知 1.形成概念 [教师] 在引入课题的基础上引出下列概念: (多媒体演示)设A 、B 是事件,用P(B|A)表示已知A 发生的条件下B 发生的条件概

认识概率

八年级下8 、2 认识概率 教学目标 (1)知识与技能:通过抛掷硬币、摸球等活动,帮助学生体会理解概率的意义,探究出计算概率的方法。 (2)过程与方法:学生经历动手实验、分组探讨、猜想验证等一系列活动,感受到数学与现实生活的联系,体验到数学在解决实际问题中的应用,培养学生动手操作能力与合作交流的意识。通过设计游戏,培养学生的逆向思维能力。 (3)情感态度与价值观:通过学生对数据的收集、整理、描述和分析以及对事件可能性的刻画等活动,鼓励学生积极参与,形成自主探索、合作交流意识,养成良好的学习情趣以及实事求是的科学态度。 学情分析: 本节课教学时先通过问题情境让学生在实验中探索,体验什么样的事件的发生是等可能的。通过可能结果有限个、可能结果无限个这两类情境引导学生发现并总结等可能性概念。初二的学生对生活中的概率问题很感兴趣,让学生重点理解和把握:“随机事件”、“有且只有一个”、“机会均等”的含义并通过例题、练习题让学生

根据随机结果的对称性和均衡性,判断是否具有等可能性。在巩固等可能性概念同时让学生感知非机会均等条件下的非等可能性,会简单判断某件事件发生等可能性大小为下一节课求概率作铺垫。本节课活动设计关键是等可能性概念的形成。 教学重点 不确定事件概率的意义的理解。 教学难点 探究一般的不确定事件的概率的表示方法 教学过程 一、实验探讨 师:不透明的袋子中装有3个黄球和1个白球。这些球除颜色外都相同,拌匀后从中任意摸出1个球。 (1)你认为自己摸出的球可能是什么颜色的? (2)如果将每个球都编上号码,分别记为1号、2号、 3号、4号,那么摸到每个球的可能性一样吗? (3)(标号后)任意摸出一球,所有可能出现的结果有几个? 摸到黄球可能出现的结果有几个? 生:回答第一个问题。(黄色) 师:有不同意见吗?看来我们需要用实验来验证了。四名同学为一个小组,请一名同学领实验用具,一名同学记录,一人把球摇匀,

初二认识概率-知识点-测试题及答案

初二认识概率-知识点-测试题及答案

认识概率 知识点归纳 (1)事件可分为:必然事件、不可能事件(确定事件)、随机事件(不确定事件)。 (2)一件事件发生的可能性的大小的数值,叫做这件事件的概率。概率通常用大写P表示。(3)0≤ P(A事件)≤1;P(必然事件)=1;P(不可能事件)=0;0

大时,事件发生的频率与概率的差异可能很大。事件发生的频率不能简单地等同于其概率,要通过多次试验,用一事件的频率来估计这一事件发生的概率。 1、确定事件和随机事件。 (1)“必然事件”是指事先可以肯定一定会发生的事件。 (2)“不可能事件”是指事先可以肯定一定不会发生的事件。 (3)“不确定事件”或“随机事件”是指结果的发生与否具有随机性的事件。 2、可能性的大小 (1)很可能发生:如果事件发生的可能性很大,我们也说事件很可能发生.不大可能发生:如果事件发生地可能性很小,我们也说事件不大可能发生。 (2)事件的频数、频率。设总共做n次重复实验,而事件A发生了m次,则称事件A发生的次数m为频数。称比值m/n为A发生的频率。(3)概率:某事件发生的可能性也叫做事件发生的概率。必然事件发生概率为1,不可能事件发生的概率为0,不确定事件发生的概率在0到

1之间。一般地,如果一个实验有n个等可能的结果,而事件A包含其中k个结果,我们定义P (A)=k/n=事件A包含的可能结果数/所有可能结果数。对概率计算应注意:分清所有基本事件的总和(n)和事件A所包含的基本事件总和(k). 3、频率与概率的关系。 (1)事件发生的频率会呈现逐渐稳定的趋势。(2)频率和概率可以非常接近,单不一定相等(3)如何用频率估计机会的大小。 4、树状图与列表法求解概率 测试题 一、填空题(共10个小题,每题给出四 个答案,只有一个是正确的,请将正 确答案填在下面的方框内,每题3分,共30分)1. 下列成语所描述的事件是必然发生的是() A. 水中捞月 B. 拔苗助长 C. 守株待免 D. 瓮中捉鳖 2.一个事件的概率不可能是()

条件概率练习题

条件概率 一、选择题 1.下列式子成立的是( ) A .P (A | B )=P (B |A ) B .0

人教A数学选修23课时规范训练:221条件概率 含解析

第二章 2.2 2.2.1 【基础练习】 1.抛掷一枚均匀的骰子所得的样本空间为Ω={1,2,3,4,5,6},令事件A ={2,3,5},B ={1,2,4,5,6},则P (A |B )等于( ) A.2 5 B.1 2 C.3 5 D.45 【答案】A 2.某班学生考试成绩中,数学不及格的占15%,语文不及格的占5%,两门都不及格的占3%.已知一学生数学不及格,则他语文也不及格的概率是( ) A .0.2 B .0.33 C .0.5 D .0.6 【答案】A 3.(2019年东莞期末)根据历年气象统计资料,某地四月份吹东风的概率为310,下雨的概率为11 30,既吹东风又下雨的概率为4 15,则在吹东风的条件下下雨的概率为( ) A.89 B.25 C.911 D.811 4.从1,2,3,4,5中任取2个不同的数,事件A 为“取到的2个数之和为偶数”,事件B 为“取到的2个数均为偶数”,则P (B |A )=( ) A.18 B.12 C.25 D.14 【答案】A 5.某人一周晚上值班2次,在已知他周日一定值班的条件下,他周六晚上值班的概率为________. 【答案】1 6 【解析】设事件A 为“周日值班”,事件B 为“周六值班”,则P (A )=C 16 C 27,P (AB )=1C 27 , ∴P (B |A )= P (AB )P (A )=1 6 .

6.设袋中有3个白球,2个红球.现从袋中随机抽取2次,每次取一个,取后不放回,则第二次取得红球的概率为________. 【答案】2 5 7.从1到100的整数中,任取一个数,已知取出的数是不大于50的数,求它是2或3的倍数的概率. 【解析】A ={任取一数且该数不大于50},B ={取出的该数是2或3的倍数},则n (A )=50,n (AB )=33. ∴P (B |A )= n (AB )n (A )=3350 ,即该数是2或3的倍数的概率为33 50. 8.1号箱中有2个白球和4个红球,2号箱中有5个白球和3个红球,现随机地从1号箱中取出一球放入2号箱,然后从2号箱随机取出一球,问从2号箱取出红球的概率是多少? 【解析】记事件A ={最后从2号箱中取出的是红球}, 事件B ={从1号箱中取出的是红球}. P (B )=46=23,P (B )=1-P (B )=1 3. P (A |B )=49,P (A |B )=39=13 . 从而P (A )=P (AB )+P (A B )=49×23+13×13=11 27, 即从2号箱取出红球的概率是11 27 . 【能力提升】 A.34 B.58 C.716 D.916 【答案】B 【解析】记第1球投进为事件A,第2球投进为事件B ,则由题意得P(B|A)=34,P(B|_A)=14,P(A)=3 4,则P(B)=P(A)(B|A)+P(_A)P(B|_A)=34×34+(1-34)×14=5 8.故选B. 10.(2018年深圳模拟)如图,EFGH 是以O 为圆心,半径为1的圆的内接正方形.将一

九上概率的进一步认识知识点复习

第三章 概率的进一步认识 一、本章知识结构图 树状图或表格求概率 专题一 用树状图和列表法计算事件发生的概率 1. 一个不透明的口袋中有4个除标号外完全相同的小球,这4个小球分别标号为1,2,3,4. (1)随机摸取一个小球,求恰好摸到标号为2的小球的概率; (2)随机摸取一个小球记下标号然后放回,再随机摸取一个小球,求两次摸取的小 球的标号的和为3的概率. 2. 甲、乙两个盒子中装有质地、大小相同的小球,甲盒中有2个白球,1个黄球和1 个蓝球;乙盒中有1个白球,2个黄球和若干个蓝球.从乙盒中任意摸取一球为蓝球 的概率是从甲盒中任意摸取一球为蓝球的概率的2倍. (1)求乙盒中蓝球的个数; (2)从甲、乙两盒中分别任意摸取一球,求这两球均为蓝球的概率. 现实生活中存在大量的随机事件件 随机事件发生的可能性有大小 随机事件发生的可能性(概率)的计算 概率的应用 理论计算 试验估算 只涉及一步实验的随机事件发生的概率 涉及两步或两步以上实验的随机事件发生的的概率 列表法 树状图法

专题二 概率的应用 3.(2009·重庆)有一个可以自由转动的转盘,被分成了4个相同的扇形,分别标有数1、2、3、4(如图所示),另有一个不透明的口袋装有分别标有数0、1、3的三个小球(除数不同外,其余都相同).小亮转动一次转盘,停止后指针指向某一扇形,扇形内的数是小亮的幸运数,小红任意摸出一个小球,小球上的数是小红的吉祥数,然后计算这两个数的积. (1)请你用画树状图或列表的方法,求这两个数的积为0的概率; (2)小亮与小红做游戏,规则是:若这两个数的积为奇数,小亮赢;否则,小红赢.你认为该游戏公平吗?为什么?如果不公平,请你修改该游戏规则,使游戏公平. 4.小婷和小英做游戏,她们在一个盒子里装了标号为1、2、3、4的四个乒乓球,现在小婷从盒子里随机摸出一个乒乓球后,小英再从盒子里剩下的三个乒乓球中随机摸出第二个乒乓球,如果摸出的乒乓球上的数字和为4或5,则小婷获胜,否则小英获胜,你认为这个游戏对她们公平吗?请说理由. 【知识要点】 用树状图和列表法计算涉及两步实验的随机事件发生的概率. 【方法技巧】 列表法或画树状图法可以不重复不遗漏的列出所有可能的结果,适合于两步完成的事件,概率问题要注意分清放回与不放回,结果是完全不一样的. 1 2 4 3

条件概率1

例1: 根据历年气象统计资料,某地四月份吹东风的概率309,下雨的概率为3011,既吹东风又下雨的概率为308.试求在吹东风 的条件下下雨的概率. 例2: (1)10个球有6个红球和4个白球,不放回地依次摸出2个球,在第一次摸出红球的条件下,第二次也摸出红球的概率是 ; (2)盒中装有6件产品,其中4件一等品,2件二等品,从中不放回地取两次,每次取1件,已知第二次取得一等品,则第一次取得的是二等品的概率是 ; 例2: (1)有一批种子的发芽率为90.,出芽后的幼苗成活率为80.,在这批种子中,

随机抽取一粒,则这粒种子能成长为幼苗的概率为; (2)某项射击游戏规定:选手先后对两个目标进行射击,只有两个目标都射中才能过关.某选手射中第一个目标的概 0.,继续射击,射中第二个目标的率为8 0.,则这个选手过关的概率概率为5 是; (3)袋中装有形状、大小完全相同的5个球,其中黑球3个、白球2个.从中依次取出2个球,则所取出的两个都是白的概率; (4)已知1号箱中有2个白球和4个红球,2号箱中有5个白球和3个红球,现随机地从1号箱中取出1个球放入2号箱中,然后从2号箱中随机地取出1个球,则两次都取到红球的概率是;

例4: (1)设某光学仪器厂制造的透镜,第一次下落时打破的概率为21 ,若第一次落下时未打破,第二次落下时打破的概率为107 ,若前两次落下时未打破,第三次下落时打破的概率为109 ,试求透镜落下三次而未打破的概率; (2)8个人抽签,其中只有1张电影票,7张空票,求每个人抽到电影票的概率; (3) (傅立叶模型)已知一个罐中盛有m 个白球,n 个黑球.现从中任取一只,记下颜色后放回,并同时加入与被取球同色球a 个.试求接连取球3次,3次均为黑球的概率.

条件概率

条件概率 1.条件概率 条件 设A ,B 为两个事件,且P (A )>0 含义 在事件A 发生的条件下,事件B 发生的条件概率 记作 P (B |A ) 读作 A 发生的条件下 B 发生的概率 计算公式 ①事件个数法:P (B |A )= n (AB ) n (A ) ②定义法:P (B |A )= P (AB ) P (A ) 2.条件概率的性质 (1)P (B |A )∈[0,1]. (2)如果B 与C 是两个互斥事件,则P (B ∪C |A )=P (B |A )+P (C |A ). [注意] (1)前提条件:P (A )>0. (2)P (B ∪C |A )=P (B |A )+P (C |A ),必须B 与C 互斥,并且都是在同一个条件A 下. 判断正误(正确的打“√”,错误的打“×”) (1)若事件A ,B 互斥,则P (B |A )=1.( ) (2)P (B |A )与P (A |B )不同.( ) 答案:(1)× (2)√ 已知P (AB )=310,P (A )=3 5 ,则P (B |A )为( ) A.950 B.12 C.910 D.1 4 答案:B 由“0”“1”组成的三位数组中,若用事件A 表示“第二位数字为0”,用事件B 表示“第一位数字为0”,则P (A |B )等于( ) A.12 B.13 C.14 D.18 答案:A 一个盒子里有6只好晶体管,4只坏晶体管,任取两次,每次取1只,每次取出后不放回,则若已知第一次取出的是好的,则第二次取出的也是好的概率为________.

答案:59 探究点1 利用定义求条件概率 甲、乙两地都位于长江下游,根据多年的气象记录知道,甲、乙两地一年中雨天所占的比例分别为20%和18%,两地同时下雨的比例为12%,问: (1)乙地为雨天时甲地为雨天的概率是多少? (2)甲地为雨天时乙地为雨天的概念是多少? 【解】 设“甲地为雨天”为事件A ,“乙地为雨天”为事件B , 根据题意,得 P (A )=0.2,P (B )=0.18,P (AB )=0.12. (1)乙地为雨天时甲地为雨天的概率是 P (A |B )=P (AB )P (B ) =0.120.18=23 . (2)甲地为雨天时乙地为雨天的概率是 P (B |A )=P (AB )P (A )=0.120.2=3 5. 利用定义计算条件概率的步骤 (1)分别计算概率P (AB )和P (A ). (2)将它们相除得到条件概率P (B |A )= P (AB ) P (A ) ,这个公式适用于一般情形,其中AB 表示A , B 同时发生. 如图,EFGH 是以O 为圆心,1为半径的圆的内接正方形, 将一颗豆子随机地掷到圆内,用A 表示事件“豆子落在正方形EFGH 内”, B 表示事件“豆子落在扇形HOE (阴影部分)内”,则P (A )=________,P (B |A )=________. 解析:因为圆的半径为1,所以圆的面积S =πr 2 =π,正方形EFGH 的面积为? ?? ??2r 22 =2,所 以P (A )=2 π . P (B |A )表示事件“已知豆子落在正方形EFGH 中,则豆子落在扇形HOE (阴影部分)”的概率, 所以P (B |A )=1 4 .

第八章 认识概率 复习

第八章 认识概率 复习目标: 1、在具体情境中了解概率的意义,体会概率是描述随机现象的数学模型; 2、知道通过大量的重复试验,可以用频率来估计概率。 学习重点:了解概率的意义,体会概率是描述随机现象的数学模型。 学习难点:可以用频率来估计概率。 学习过程: 【课前准备】知识点回顾: 1、确定事件和随机事件: 在特定条件下,有些事情我们事先能肯定它一定不会发生,这样的事情是__________事件。 在特定条件下,有些事情我们事先能肯定它一定会发生,这样的事情是____________事件。 _________事件和_____________事件都是确定事件。 在特定条件下,生活中也有很多事情我们事先无法确定它会不会发生,这样的事情是_________事件。 2、概率: 随机事件发生的可能性有大有小。一个事件发生可能性大小的_________,称为这个事件的概率。若用A 表示一个事件,则我们就用()A P 表示事件A 发生的概率。 通常规定,必然事件发生的概率是______,记作()___=A P ;不可能事件发生的概率为___,记作()___=A P ;随机事件发生的概率是___和____之间的一个数,即____<()A P <____。 任一随机事件,它发生的概率是由它自身决定的,且是客观存在的,概率是随机事件自身的属性。它反映这个随机事件发生的可能性大小。 一般地,在一定条件下大量重复进行同一试验时,事件A 发生的频率 n m 会稳定地在某一个常数附近摆动,这个常数就是事件A 发生的概率()A P 。事实上,事件A 发生的概率()A P 的精 确值,即这个常数还是未知的,但是在实际工作中,人们常把试验次数很大时事件发生的频率作为概率的近似值。 在充分多次试验中,一些事件的频率总在一个定值附近摆动,试验次数越多,摆动幅度越小,这个性质称为频率的稳定性。 通过试验用频率估计概率的大小,必须要求试验是在相同条件下进行。 基础演练: 1.口袋里有3个红球和2个白球,球除颜色外完全相同。从中任意摸出一个球,摸出红球的可能 性是( )( ) ,摸出白球的可能性是( )( ) 。 2.八(1)班参加植树活动,班主任问班长出勤的情况,班长说:“我们班共有50人,没有全部到齐,但大部分来了。”出勤率可能是( )。 A 、48% B 、50% C 、100% D 、96% 3.A 、B 、C 、D 表示四个袋子,每个袋子中所装的白球和黑球数如下:如果闭着眼睛从袋子中取出一个球,那么从哪个袋中最有可能取到黑球?( ) A 、12个黑球和4个白球 B 、20个黑球和20个白球 C 、20个黑球和10个白球 D 、12个黑球和6个白球 4.在不透明的袋中装有大小一样的红球和黑球各一个,从中摸出一个球恰为红球的概率与一枚均匀硬币抛起后落地时正面朝上的概率( ) A 、摸出红球的概率大于硬币正面朝上的概率 B 、摸出红球的概率小于硬币正面朝上的概率 C 、相等 D 、不能确定 5.随机掷一枚均匀的硬币两次,两次正面都朝上的概率是( ) A 、 41 B 、21 C 、4 3 D 、1

第三章 概率的进一步认识知识点复习

第三章 《概率的进一步认识》知识点复习 姓名:_______ 知识点1:求“连续两次完成某事件”的概率 1、有两辆车按1,2编号,舟舟和嘉嘉两人可任意选坐一辆车.则两个人同坐2号车的概率为________. 2、抽屉里放着黑白两种颜色的袜子各1双(除颜色外其余都相同),在看不见的情况下随机摸出两只袜子,它们恰好同色的概率是________. 3、盒子里放有三张分别写有整式a +1,a +2,2的卡片,从中随机抽取两张卡片,把两张卡片上的整式分别作为分子和分母,则能组成分式的概率是________. 4、“服务社会,提升自我.”凉山州某学校积极开展志愿者服务活动,来自九年级的5名同学(三男两女)成立了“交通秩序维护”小分队.若从该小分队任选两名同学进行交通秩序维护,则恰是一男一女的概率是________. 5、一个袋中有2个红球,2个黄球,每个球除颜色外都相同,从中一次摸出2个球,2个球都是红球的可能性是( ) A.21 B. 31 C. 41 D. 6 1 6.若从长度是3,5,6,9的四条线段中任取三条,则能构成三角形的概率是( ) A. 21 B.43 C.31 D.41 7.在x 2□4x □4的空格中,任意填上“+”或“-”,在所得到的整式中,恰好是完全平方式的概率是( ) A .1 B.21 C.31 D.4 1 8.假定鸟蛋孵化后,雏鸟为雌与雄时概率相同,如果三枚蛋全部成功孵化,则三只雏鸟中恰有两只雄鸟的概率是( ) A.61 B.83 C.85 D.3 2 9.我市辖区内景点较多,李老师和刚高中毕业的儿子准备从A ,B ,C 列三个景点去游玩.如 果他们各自在这三个景点中任选一个作为游玩的第一站,那么他们都选择B 景点的概率是_ _. 10.从甲地到乙地有A 1,A 2两条路线,从乙地到丙地有B 1,B 2,B 3三条路线,从丙地到丁地有C 1,C 2两条路线,一个人任意选了一条从甲地经乙地、丙地到丁地的路线,求他选到B 2路线的概率. 11.一个口袋中有4个完全相同的小球,把它们分别标号为①,②,③,④,随机地摸出一 个小球,记录后放回,再随机摸出一个小球,则两次摸出的小球的标号相同的概率是( ) A.161 B.163 C.41 D.16 5 12.一枚质地均匀的正方体骰子,连续抛掷两次,两次点数相同的概率是( )

1条件概率

§2.2.1条件概率 知识点 1.条件概率:对于任何两个事件A 和B ,在已知事件A 发生的条件下,事件B 发生的概率叫做条件概率,记作“)(A B P ”。 2.由事件A 和B 所构成的事件D ,称为事件A 和B 的交(或积),记作 3.条件概率计算公式:)(A B P 数发生的条件下基本事件在包含的基本事件数发生的条件下在A B A =包含的基本事件数 包含的基本事件数A B A = 总数 包含的基本事件数总数包含的基本事件数A B A =)()(A P B A P = )0)((>A P 一 问题分析 问题1:抛掷红、蓝两颗骰子,设事件=A “蓝色骰子的点数为3或6”,事件=B “两颗骰子的点数之和大于8”,求: (1)事件A 发生的概率; (2)事件B 发生的概率; (3)已知事件A 发生的情况下,事件再B 发生的概率。 问题2:三张奖券中只有一张能中奖,现分别由三名同学无放回地抽取,思考: (1) 三名同学中奖的概率各是多少?是否相等? (2) 若已知第一名同学没有中奖,那么第二名同学中奖的概率各是多少? (3) 在(1)和(2)中第二名同学中奖的概率是否相等?为什么? 二 典型例题分析 例1:抛掷一颗骰子,观察出现的点数 =A {出现的点数是奇数}=}531{,,,=B {出现的点数不超过3}=}3,2,1{,若已知出现的点数不超过3,求出现的点数是奇数的概率。 例2:一个家庭中有两个小孩。假定生男、生女是等可能的,已知这个家庭有一个是女孩,问这时 另一个小孩是男孩的概率是多少? 例3:甲、乙两地都位于长江下游,根据一百多年的气象记录,知道甲、乙两地一年中雨天占的比例分别为20%和18%,两地同时下雨的比例为12%,问: (1) 乙地为雨天时甲地也为雨天的概率是多少? (2) 甲地为雨天时乙地也为雨天的概率是多少? 例4: 某险种的基本保费为a (单位:元),继续购买该险种的投保人称为续保人,续保人本年度的保费与其上年度出险次数的关联如下:

条件概率(教案)

2.2.1条件概率 寿阳县第一职业中学` 付慧萍 教学目标: 知识与技能:通过对具体情景的分析,了解条件概率的定义。 过程与方法:掌握一些简单的条件概率的计算。 情感、态度与价值观:通过对实例的分析,会进行简单的应用。 教学重点:条件概率定义的理解 教学难点:概率计算公式的应用 授课类型:新授课 课时安排:1课时 教具:多媒体 教学设想:引导学生形成“自主学习”与“合作学习”等良好的学习方式。 教学过程: 一、复习引入: 探究: 三张奖券中只有一张能中奖,现分别由三名同学无放回地抽取,问最后一名同学抽到中奖奖券的概率是否比前两名同学小. 若抽到中奖奖券用“Y ”表示,没有抽到用“Y”,表示,那么三名同学的抽奖结果共有三种可能:Y Y Y,Y Y Y和Y Y Y.用B 表示事件“最后一名同学抽到中奖奖券”, 则B 仅包含一个基 本事件Y Y Y.由古典概型计算公式可知,最后一名同学抽到中奖奖券的概率为 1 () 3 P B=. 思考:如果已经知道第一名同学没有抽到中奖奖券,那么最后一名同学抽到奖券的概率又是多少? 因为已知第一名同学没有抽到中奖奖券,所以可能出现的基本事件只有Y Y Y和Y Y Y.而“最后一名同学抽到中奖奖券”包含的基本事件仍是Y Y Y.由古典概型计算公式可知.最后一名同学抽到中奖 奖券的概率为1 2 ,不妨记为P(B|A ) ,其中A表示事件“第一名同学没有抽到中奖奖券”. 已知第一名同学的抽奖结果为什么会影响最后一名同学抽到中奖奖券的概率呢? 在这个问题中,知道第一名同学没有抽到中奖奖券,等价于知道事件A 一定会发生,导致可能出现的基本事件必然在事件A 中,从而影响事件B 发生的概率,使得P ( B|A )≠P ( B ) . 思考:对于上面的事件A和事件B,P ( B|A)与它们的概率有什么关系呢? 用Ω表示三名同学可能抽取的结果全体,则它由三个基本事件组成,即Ω={Y Y Y, Y Y Y,Y Y Y}.既然已知事件A必然发生,那么只需在A={Y Y Y, Y Y Y}的范围内考虑问题,即只有两个基本事件Y Y Y和Y Y Y.在事件A 发生的情况下事件B发生,等价于事件A 和事件B 同时发生,即AB 发生.而事件AB 中仅含一个基本事件Y Y Y,因此 (|) P B A=1 2 = () () n AB n A .

条件概率

第四节条件概率 一、条件概率 二、乘法定理 三、全概率公式与贝叶斯公式 四、小结

将一枚硬币抛掷两次,观察其出现正反两面的情况,设事件A 为“至少有一次为正面”,事件B 为“两次掷出同一面”. 现在来求已知事件A 已经发生的条件下事件B 发生的概率.解:分析样本空间}. , , , {TT TH HT HH S =()P B =事件A 已经发生的条件下事件B 发生的概率,记为 ),(A B P 31)(=A B P 则).(B P ≠4341=()P AB =. , 为反面为正面设T H 引例1 一、条件概率 },,{},,,{TT HH B TH HT HH A ==21.42=() P A

) ()()(B P AB P B A P =同理可得为事件B 发生的条件下事件A 发生的条件概率. 条件事件不能是不可能事件条件事件不能是不可能事件,,概率总大于0. . ) ()()(,0)(,,条件概率发生的发生的条件下事件为在事件称 且是两个事件设B A A P AB P A B P A P B A =>定义定义::条件概率Conditional Probability

例1.家有枣树(Luxun's Jujube Tree) 鲁迅在散文里说道鲁迅在散文里说道::自家院子里有两棵树,一 棵是枣树,另一棵也是枣树; 如果我们还不知道另一棵是什么树, 求另一棵也是枣树的概率.

不妨设另一棵可能是榆树不妨设另一棵可能是榆树((或槐树或槐树,,等等等等),),),则事件则事件 “院子里有两棵树院子里有两棵树””为样本空间为样本空间,,其元素构成为 ()P A B =S ={(={(枣枣,枣),(),(枣枣,榆),(),(榆榆,榆)} 事件B :已知一棵是枣树已知一棵是枣树,,(即有一棵是枣树即有一棵是枣树);); 事件A :另一棵也是枣树另一棵也是枣树.. 则二者的交事件为则二者的交事件为::两棵都是枣树两棵都是枣树。。 由条件概率计算公式由条件概率计算公式:: ()()P AB P B =1/32/312 =

相关文档
最新文档