条件概率1-3

条件概率1-3
条件概率1-3

知识讲解 条件概率 事件地相互独立性(理)(基础)

条件概率事件的相互独立性 【学习目标】 1.了解条件概率的概念和概率的乘法公式. 2.能运用条件概率解决一些简单的实际问题. 3.了解两个事件相互独立的概念,会判断两个事件是否为相互独立事件. 4.能运用相互独立事件的概率解决一些简单的实际问题. 【要点梳理】 要点一、条件概率的概念 1.定义 设A、B为两个事件,且()0 P A>,在已知事件A发生的条件下,事件B发生的概率叫做条件概率。 用符号(|) P B A表示。 (|) P B A读作:A发生的条件下B发生的概率。 要点诠释 在条件概率的定义中,事件A在“事件B已发生”这个附加条件下的概率与没有这个附加条件的概率是不同的,应该说,每一个随机试验都是在一定条件下进行的.而这里所说的条件概率,则是当试验结果的一部分信息已知,求另一事件在此条件下发生的概率. 2.P(A|B)、P(AB)、P(B)的区别 P(A|B)是在事件B发生的条件下,事件A发生的概率。 P(AB)是事件A与事件B同时发生的概率,无附加条件。 P(B)是事件B发生的概率,无附加条件. 它们的联系是: () (|) () P AB P A B P B =. 要点诠释 一般说来,对于概率P(A|B)与概率P(A),它们都以基本事件空间Ω为总样本,但它们取概率的前提是不相同的。概率P(A)是指在整个基本事件空间Ω的条件下事件A发生的可能性大小,而条件概率P(A|B)是指在事件B发生的条件下,事件A发生的可能性大小。 例如,盒中球的个数如下表。从中任取一球,记A=“取得篮球”,B=“取得玻璃球”。基本事件空间Ω包 含的样本点总数为16,事件A包含的样本点总数为11,故 11 () P A=。 如果已知取得玻璃球的条件下取得篮球的概率就是事件B发生的条件下事件A发生的条件概率,那么

北师大数学选修课时分层作业2 条件概率与独立事件 含解析

课时分层作业(二) (建议用时:60分钟) [基础达标练] 一、选择题 1.两人打靶,甲击中的概率为0.8,乙击中的概率为0.7,若两人同时射击一目标,则它们都中靶的概率是() A.0.56B.0.48 C.0.75 D.0.6 A[设甲击中为事件A,乙击中为事件B. 因为A,B相互独立,则P(AB)=P(A)·P(B)=0.8×0.7=0.56.] 2.某人忘记了一个电话号码的最后一个数字,只好任意去试拨,他第一次失败、第二次成功的概率是() A.1 10 B. 2 10 C.8 10 D. 9 10 A[某人第一次失败,第二次成功的概率为P=9×1 10×9 = 1 10,所以选A.] 3.一袋中装有5只白球和3只黄球,在有放回地摸球中,用A1表示第一次摸得白球,A2表示第二次摸得白球,则事件A1与A2是() A.相互独立事件B.不相互独立事件 C.互斥事件D.对立事件 A[由题意可得A2表示“第二次摸到的不是白球”,即A2表示“第二次摸到的是黄球”,由于采用有放回地摸球,故每次是否摸到黄球或白球互不影响,故事件A1与A2是相互独立事件.] 4.如图所示,A,B,C表示3种开关,若在某段时间内它们正常工作的概率分别为0.9,0.8,0.7,那么系统的可靠性是()

A .0.504 B .0.994 C .0.496 D .0.06 B [系统可靠即A ,B , C 3种开关至少有一个能正常工作,则P =1-[1-P (A )][1-P (B )][1-P (C )] =1-(1-0.9)(1-0.8)(1-0.7) =1-0.1×0.2×0.3=0.994.] 5.2018年国庆节放假,甲去北京旅游的概率为1 3,乙,丙去北京旅游的概率分别为14,1 5.假定三人的行动相互之间没有影响,那么这段时间内至少有1个去北京旅游的概率为( ) A.5960 B.35 C.12 D.160 B [用A ,B , C 分别表示甲,乙,丙三人去北京旅游这一事件,三人均不去的概率为P (A B C )=P (A )·P (B )·P (C )=23×34×45=2 5,故至少有一人去北京旅游的概率为1-25=35.] 二、填空题 6.将两枚均匀的骰子各掷一次,已知点数不同,则有一个是6点的概率为________. 1 3 [设掷两枚骰子点数不同记为事件A ,有一个是6点记为事件B .则P (B |A )=2×530=13.] 7.明天上午李明要参加奥运志愿者活动,为了准时起床,他用甲、乙两个闹钟叫醒自己,假设甲闹钟准时响的概率是0.80,乙闹钟准时响的概率是0.90,则两个闹钟至少有一个准时响的概率是________. 0.98 [设A =“两个闹钟至少有一个准时响”,

高中数学概率统计教案

专题二 概率统计(文科) (一)统计 【背一背基础知识】 一.抽样方法 抽样方法包含简单随机抽样、系统抽样、分层抽样三种方法,三种抽样方法都是等概率抽样,体现了抽样的公平性,但又各有其特点和适用范围. 二.用样本估计总体 1.频率分布直方图:画一个只有横、纵轴正方向的直角坐标系,把横轴分成若干段,每一段对应一个组的组距,然后以此段为底作一矩形,它的高等于该组的 频率 组距 ,这样得出一系列的矩形,每个矩形的面积恰好是该组上的频率,这些矩形就构成了频率分布直方图.在频率分布直方图中,每个小矩形的面积等于相应数据的频率,各小矩形的面积之和等于 1; 2.茎叶图:茎叶图是一种将样本数据有条理地列出来,从中观察样本分布情况的图.在茎叶图中,“茎”表示数的高位部分,“叶”表示数的低位部分. 3.样本的数字特征: (1)众数:一组数据中,出现次数最多的数据就是这组数据的众数(一组数据中的众数可能只有一个,也可能有多个).在频率分布直方图中,最高的矩形的中点的横坐标即为该组数据的众数; (2)中位数:将一组数据由小到大(或由大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数;如果数据的个数是偶数,则中间两个数据的平均数就是这组数据的中位数.在频率分布直方图中,中位数a 对应的直线x a =的左右两边的矩形面积之和均为0.5,可以根据这个特点求频率分布直方图中的中位数; (3)平均数:设n 个数分别为1x 、2x 、L 、n x ,则()121 n x x x x n = +++L 叫做这n 个数的算数平均数.在频率分布直方图中,它等于频率分布直方图中每个小矩形的面积乘以小矩形底边中点的横坐标之和; (4)方差:设n 个数分别为1x 、2x 、L 、n x ,则 ()()() 2222 121n s x x x x x x n ? ?=-+-++-????L 叫做这n 个数的方差,方差衡量样本的稳定

1.2.1条件概率与独立事件

条件概率 【问题导思】 一个家庭有两个孩子,假设男女出生率一样. (1)这个家庭一男一女的概率是多少? (2)预先知道这个家庭中至少有一个女孩,这个家庭一男一女的概率是多少?【提示】 (1)12,(2)2 3 . (1)概念:已知事件B 发生的条件下,A 发生的概率称为B 发生时A 发生的条件概率,记为P (A |B ). (2)公式:当P (B )>0时,P (A |B )= P AB P B .

独立事件 【问题导思】 在一次数学测试中,甲考满分,对乙考满分有影响吗? 【提示】 没有影响. (1)定义:对两个事件A ,B ,如果P (AB )=P (A )P (B ),则称A ,B 相互独立. (2)性质:如果A ,B 相互独立,则A 与B ,A 与B ,A 与B 也相互独立. (3)如果A 1,A 2,…,A n 相互独立,则有P (A 1A 2…A n )=P (A 1)P (A 2)…P (A n ). 应用 在100件产品中有95件合格品,5件不合格品,现从中不放回地 取两次,每次任取一件,试求: (1)第一次取到不合格品的概率; (2)在第一次取到不合格品后,第二次再次取到不合格品的概率. 【思路探究】 求解的关键是判断概率的类型.第一问是古典概型问题;第二问是条件概率问题. 【自主解答】 设“第一次取到不合格品”为事件A ,“第二次取到不合格品”为事件B . (1)P (A )=5 100 =0.05. (2)法一 第一次取走1件不合格品后,还剩下99件产品,其中有4件不合格品.于是第二次再次取到不合格品的概率为 4 99 ,这是一个条件概率,表示为P (B |A )=499 . 法二 根据条件概率的定义计算,需要先求出事件AB 的概率. P (AB )=5100×499,∴有P (B |A )=P AB P A =5100× 4995100 =499 . 1.注意抽取方式是“不放回”地抽取. 2.解答此类问题的关键是搞清在什么条件下,求什么事件发生的概率. 3.第二问的解法一是利用缩小样本空间的观点计算的,其公式为P (B |A )= n AB n A ,此法常应用于古典概型中的条件概率求法.

(最全)高中数学概率统计知识点总结

概率与统计 一、普通的众数、平均数、中位数及方差 1、 众数:一组数据中,出现次数最多的数。 2、平均数:①、常规平均数:12n x x x x n ++???+= ②、加权平均数:112212n n n x x x x ωωωωωω++???+=++???+ 3、中位数:从大到小或者从小到大排列,最中间或最中间两个数的平均数。 4、方差:2222121 [()()()]n s x x x x x x n = -+-+???+- 二、频率直方分布图下的频率 1、频率 =小长方形面积:f S y d ==?距;频率=频数/总数 2、频率之和:121n f f f ++???+=;同时 121n S S S ++???+=; 三、频率直方分布图下的众数、平均数、中位数及方差 1、众数:最高小矩形底边的中点。 2、平均数: 112233n n x x f x f x f x f =+++???+ 112233n n x x S x S x S x S =+++???+ 3、中位数:从左到右或者从右到左累加,面积等于0.5时x 的值。 4、方差:22221122()()()n n s x x f x x f x x f =-+-+???+- 四、线性回归直线方程:???y bx a =+ 其中:1 1 2 22 1 1 ()() ?() n n i i i i i i n n i i i i x x y y x y nxy b x x x nx ====---∑∑== --∑∑ , ??a y bx =- 1、线性回归直线方程必过样本中心(,)x y ; 2、?0:b >正相关;?0:b <负相关。 3、线性回归直线方程:???y bx a =+的斜率?b 中,两个公式中分子、分母对应也相等;中间可以推导得到。 五、回归分析 1、残差:??i i i e y y =-(残差=真实值—预报值)。分析:?i e 越小越好; 2、残差平方和:21?()n i i i y y =-∑, 分析:①意义:越小越好; ②计算:222211221 ????()()()()n i i n n i y y y y y y y y =-=-+-+???+-∑ 3、拟合度(相关指数):221 2 1 ?()1() n i i i n i i y y R y y ==-∑=- -∑,分析:①.(]20,1R ∈的常数; ②.越大拟合度越高; 4、相关系数 :()() n n i i i i x x y y x y nx y r ---?∑∑= = 分析:①.[r ∈-的常数; ②.0:r >正相关;0:r <负相关 ③.[0,0.25]r ∈;相关性很弱; (0.25,0.75)r ∈;相关性一般; [0.75,1]r ∈;相关性很强; 六、独立性检验 1、2×2列联表: 2、独立性检验公式 ①.2 2() ()()()() n ad bc k a b c d a c b d -= ++++ ②.犯错误上界P 对照表 3、独立性检验步骤

高中数学学案条件概率

2.2.1条件概率 教学目标: 知识与技能:通过对具体情景的分析,了解条件概率的定义。 过程与方法:掌握一些简单的条件概率的计算。 情感、态度与价值观:通过对实例的分析,会进行简单的应用。 教学重点:条件概率定义的理解 教学难点:概率计算公式的应用 授课类型:新授课 课时安排:1课时 教具:多媒体、实物投影仪 教学设想:引导学生形成“自主学习”与“合作学习”等良好的学习方式。 教学过程: 一、复习引入: 探究: 三张奖券中只有一张能中奖,现分别由三名同学无放回地抽取,问最后一名同学抽到中奖奖券的概率是否比前两名同学小. 若抽到中奖奖券用“Y ”表示,没有抽到用“Y”,表示,那么三名同学的抽奖结果共有三种可能:Y Y Y,Y Y Y和Y Y Y.用B 表示事件“最后一名同学抽到中奖奖券”, 则B 仅包含一个基本事件Y Y Y.由古典概型计算公式可知,最后一名同学抽到中奖奖券 的概率为 1 () 3 P B=. 思考:如果已经知道第一名同学没有抽到中奖奖券,那么最后一名同学抽到奖券的概率又是多少? 因为已知第一名同学没有抽到中奖奖券,所以可能出现的基本事件只有Y Y Y和Y Y Y.而“最后一名同学抽到中奖奖券”包含的基本事件仍是Y Y Y.由古典概型计算公式 可知.最后一名同学抽到中奖奖券的概率为1 2 ,不妨记为P(B|A ) ,其中A表示事件“第 一名同学没有抽到中奖奖券”. 已知第一名同学的抽奖结果为什么会影响最后一名同学抽到中奖奖券的概率呢? 在这个问题中,知道第一名同学没有抽到中奖奖券,等价于知道事件A 一定会发生,导致可能出现的基本事件必然在事件A 中,从而影响事件B 发生的概率,使得P ( B|A )≠P ( B ) . 思考:对于上面的事件A和事件B,P ( B|A)与它们的概率有什么关系呢? 用Ω表示三名同学可能抽取的结果全体,则它由三个基本事件组成,即Ω={Y Y Y, Y Y Y,Y Y Y}.既然已知事件A必然发生,那么只需在A={Y Y Y, Y Y Y}的范围内考虑

条件概率公式

条件概率(conditional probability)就是事件A在另外一个事件B已经发生条件下的发生概率。条件概率表示为P(A|B),读作“在B条件下A的概率”。 联合概率表示两个事件共同发生的概率。A与B的联合概率表示为或者或者。 边缘概率是某个事件发生的概率。边缘概率是这样得到的:在联合概率中,把最终结果中不需要的那些事件合并成其事件的全概率而消失(对离散随机变量用求和得全概率,对连续随机变量用积分得全概率)。这称为边缘化(marginalization)。A的边缘概率表示为P(A),B的边缘概率表示为P(B)。 需要注意的是,在这些定义中A与B之间不一定有因果或者时间序列关系。A可能会先于B发生,也可能相反,也可能二者同时发生。A可能会导致B的发生,也可能相反,也可能二者之间根本就没有因果关系。 例如考虑一些可能是新的信息的概率条件性可以通过贝叶斯定理实现。 换句话说,如果A与B是相互独立的,那么A在B这个前提下的条件概率就是A自身的概率;同样,B在A的前提下的条件概率就是B自身的概率。 考虑概率空间Ω(S, σ(S)),其中σ(S)是集S上的σ代数,Ω上对应于随机变量X的概率测度(可以理解为概率分布)为PX;又A ∈σ(S),PX(A)≥0(这里可以理解为事件A,A不是零测集)。则?E∈σ(S),可以定义集函数PX|A如下: PX|A(E)=PX(A∩E)/PX(E)。 易知PX|A也是Ω上的概率测度,此测度称为X在A下的条件测度(条件概率分布)。

独立性:设A,B∈σ(S),称A,B在概率测度P下为相互独立的,若P(A∩E)=P(A)P(E)。 若想分辨某些个体是否有重大疾病,以便早期治疗,我们可能会对一大群人进行检验。虽然其益处明显可见,但同时,检验行为有一个地方引起争议,就是有检出假阳性的结果的可能:若有个未得疾病的人,却在初检时被误检为得病,他可能会感到苦恼烦闷,一直持续到更详细的检测显示他并未得病为止。而且就算在告知他其实是健康的人后,也可能因此对他的人生有负面影响。

概率 2 条件概率与相互独立事件

概率 2 条件概率与相互独立事件 基础梳理 1.条件概率及其性质 (1)对于任何两个事件A 和B ,在已知事件A 发生的条件下,事件B 发生的概率叫做条件概率,用符号P (B |A )来表示,其公式为P (B |A )= P (AB ) P (A ) . 在古典概型中,若用n (A )表示事件A 中基本事件的个数,则P (B |A )=n (AB ) n (A ) . (2)条件概率具有的性质: ①0≤P (B |A )≤1; ② 如果B 和C 是两互斥事件,则P (B ∪C |A )=P (B |A )+P (C |A ). 2.相互独立事件 (1)对于事件A 、B ,若A 的发生与B 的发生互不影响,则称A 、B 是相互独立事件. (2)若A 与B 相互独立,则P (B |A )=P (B ), P (AB )=P (B |A )·P (A )=P (A )·P (B ). (3)若A 与B 相互独立,则A 与B ,A 与B ,A 与B 也都相互独立. (4)若P (AB )=P (A )P (B ),则A 与B 相互独立. 基础训练 1.甲、乙两队进行排球决赛,现在的情形是甲队只要再赢一局就获冠军,乙队需要再赢两局才能得冠军.若两队胜每局的概率相同,则甲队获得冠军的概率为( ). A.34 B.23 C.35 D.12 2.如图,用K 、A 1、A 2三类不同的元件连接成一个系统,当K 正常工作且A 1、A 2至少有一个正常工作时,系统正常工作,已知K 、A 1、A 2正常工作的概率依次为0.9,0.8,0.8,则系统正常工作的概率为( ). A .0.960 B .0.864 C .0.720 D .0.576

条件概率公式

条件概率 示例:就是事件A在另外一个事件B已经发生条件下的发生概率。条件概率表示为P(A|B),读作“在B条件下A的概率”。 若只有两个事件A,B,那么,P(A|B) = P(AB)/P(B)。 条件概率示例:就是事件A在另外一个事件B已经发生条件下的发生概率。条件概率表示为P(A|B),读作“在B条件下A的概率”。 联合概率:表示两个事件共同发生的概率。A与B的联合概率表示为P(AB) 或者P(A,B),或者P(A∩B)。 边缘概率:是某个事件发生的概率,而与其它事件无关。边缘概率是这样得到的:在联合概率中,把最终结果中不需要的那些事件合并成其事件的全概率而消失(对离散随机变量用求和得全概率,对连续随机变量用积分得全概率)。这称为边缘化(marginalization)。A的边缘概率表示为P(A),B的边缘概率表示为P(B)。 需要注意的是,在这些定义中A与B之间不一定有因果或者时间顺序关系。A可能会先于B发生,也可能相反,也可能二者同时发生。A可能会导致B的发生,也可能相反,也可能二者之间根本就没有因果关系。条件概率公式例如考虑一些可能是新的信息的概率条件性可以通过贝叶斯定理实现。 定理1

设A,B 是两个事件,且A不是不可能事件,则称 为在事件A发生的条件下,事件B发生的条件概率。一般地,,且它满足以下三条件: (1)非负性;(2)规范性;(3)可列可加性。 定理2 设E 为随机试验,Ω为样本空间,A,B 为任意两个事件,设P(A)>0,称 为在“事件A 发生”的条件下事件B 的条件概率。 上述乘法公式可推广到任意有穷多个事件时的情况。 设A1,A2,…An为任意n 个事件(n≥2)且P(A1A2…An-1)>0,则P(A1A2…An)=P(A1)P(A2|A1)…P(An|A1A2…An-1)定理3(全概率公式1) 设B1,B2,…Bn是一组事件,若(1)BiBj≠j,i≠j,i,j=1,2,…,n;(2)B1∪B2∪…∪Bn=Ω则称B1,B2,…Bn样本空间Ω的一个部分,或称为样本空间Ω的一个完备事件组。 定理4(全概率公式2) 设事件组B1,B2是样本空间Ω的一个划分,且P(Bi)>0(i=1,2,…n),则对任一事件B,有

概率统计知识点全面总结

知识点总结:统计与概率 I 统计 1.三大抽样 (1)基本定义: ① 总体:在统计中,所有考查对象的全体叫做全体. ② 个体:在所有考查对象中的每一个考查对象都叫做个体. ③ 样本:从总体中抽取的一部分个体叫做总体的样本. ④ 样本容量:样本中个体的数目叫做样本容量. (2)抽样方法: ①简单随机抽样:逐个不放回、等可能性、有限性。=======★适用于总体较少★ 抽签法:整体编号( 1~N )放入不透明的容器中搅拌均匀逐个抽取n 次,即可得样本容量为 n 的样本。 随机数表法:整体编号(等位数,如001、111不能是1、111) 从0~9中随机取一行一列然后初方向随机 (上、下、左、右)重复,超过范围则忽略不计直至取得以n 为样本容量的样本。 ②系统抽样:容量大.等距,等可能。=======★适用于总体多★ 用随机方法编号,若N 无法被整除,则剔除后再分组,n N k 。再用简单随机抽样法来抽取一个个体,设为l ,则编号为l ,k+l ,2k+l ……(n-1)k ,抽出容量为n 的样本。(每组编号相同)。 ③分层抽样:总体差异明显.按所占比例抽取.等可能.=======★适用于由差异明显的几部分构成的总体★ 总体有几个差异明显的部分构成,经总体分成几个部分,然后按照所占比例进行抽样.抽样比为:k =n N 3.总体分布的估计: (1)一表二图: ①频率分布表——数据详实 ②频率分布直方图——分布直观 ③频率分布折线图——便于观察总体分布趋势 ★注:总体分布的密度曲线与横轴围成的面积为1。 (2)茎叶图: ①茎叶图适用于数据较少的情况,从中便于看出数据的分布,以及中位数.众位数等。 ②个位数为叶,十位数为茎,右侧数据按照从小到大书写,相同的数据重复写。

条件概率与独立事件、二项分布练习题及答案

条件概率与独立事件、二项分布 1.(2012·广东汕头模拟)已知某射击运动员,每次击中目标的概率都是0.8,则该射击运动员射击4次至少击中3次的概率为( ) A .0.85 B .0.819 2 C .0.8 D .0.75 2.(2011·广东高考)甲、乙两队进行排球决赛,现在的情形是甲队只要再赢一局就获冠军,乙队需要再赢两局才能得冠军.若两队胜每局的概率相同,则甲队获得冠军的概率为( ) A.34 B.23 C.35 D.12 3.(2011·湖北高考)如图,用K 、A 1、A 2三类不同的元件连接成一个系统.当K 正常工作且A 1、A 2至少有一个正常工作时,系统正常工作.已知K 、A 1、A 2正常工作的概率依次为0.9、0.8、0.8,则系统正常工作的概率为( ) A .0.960 B .0.864 C .0.720 D .0.576 4.(2011·辽宁高考)从1,2,3,4,5中任取2个不同的数,事件A =“取到的2个数之和为偶数”,事件B =“取到的2个数均为偶数”,则P (B |A )=( ) A.18 B.14 C.25 D.1 2 5.(2012·山西模拟)抛掷一枚硬币,出现正反的概率都是1 2 ,构造数列{a n },使得a n = ????? 1 (第n 次抛掷时出现正面),-1 (第n 次抛掷时出现反面), 记S n =a 1+a 2+…+a n (n ∈N *),则S 4=2的概率为( ) A.116 B.18 C.1 4 D.1 2 6.高三毕业时,甲、乙、丙等五位同学站成一排合影留念,已知甲、乙二人相邻,则甲、丙相邻的概率是( ) A.12 B.13 C.14 D.25 7.某篮球队员在比赛中每次罚球的命中率相同,且在两次罚球中至多命中一次的概率为16 25 ,则该队员每次罚球的命中率为________. 8.某次知识竞赛规则如下:在主办方预设的5个问题中,选手若能连续正确回答出两个问题,即停止答题,晋级下一轮.假设某选手正确回答每个问题的概率都是0.8,且每个问题的回答结果相互独立,则该选手恰好回答了4个问题就晋级下一轮的概率等于

条件概率

条件概率 1.从1, 2, 3,…, 15中,甲、乙两人各任取一数(不重复),已知甲取到的数是5的倍数,求甲数大于乙数的概率. 解.设事件A表示“甲取到的数比乙大”,设事件B表示“甲取到的数是5的倍数”. 则显然所要求的概率为P(A|B).根据公式而P(B)=3/15=1/5 , ∴P(A|B)=9/14. , 2. 掷三颗骰子,已知所得三个数都不一样,求含有1点的概率. 解.设事件A表示“掷出含有1的点数”,设事件B表示“掷出的三个点数都不一样”. 则显然所要求的概率为P(A|B).根据公式 ∴P(A|B)=1/2. , , 3.袋中有一个白球和一个黑球,一次次地从袋中摸球,如果取出白球,则除把白球放回外再加进一个白球,直至取出黑球为止,求取了N次都没有取到黑球的概率. 解.设事件A i表示“第i次取到白球”.(i=1,2,…,N)则根据题意P(A1)=1/2 , P(A2|A1)=2/3, 由乘法公式可知: P(A1A2)=P(A2|A1)P(A1)=1/3.而P(A3|A1A2)=3/4 , P(A1A2A3)=P(A3|A1A2)P(A1A2)=1/4 . 由数学归纳法可以知道P(A1A2…A N)=1/(N+1). 4. 甲袋中有5只白球, 7 只红球;乙袋中有4只白球, 2只红球.从两个袋子中任取一袋, 然后从所取到的袋子中任取一球,求取到的球是白球的概率. 解.设事件A表示“取到的是甲袋”, 则表示“取到的是乙袋”, 事件B表示“最后取到的是白球”. 根据题意: P(B|A)=5/12 , , P(A)=1/2. ∴ 5.有甲、乙两袋,甲袋中有3只白球,2只黑球;乙袋中有4只白球,4只黑球.现从甲袋中任取2个球放入乙袋,然后再从乙袋中任取一球,求此球为白球的概率 解.设事件A i表示“从甲袋取的2个球中有i个白球”,其中i=0,1,2 . 事件B表示“从乙袋中取到的是白球”. 显然A0, A1, A2构成一完备事件组,且根据题意 P(A0)=1/10 , P(A1)=3/5 , P(A2)=3/10 ; P(B|A0)=2/5 , P(B|A1)=1/2 , P(B|A2)=3/5 ; 由全概率公式 P(B)=P(B|A0)P(A0)+P(B|A1)P(A1)+P(B|A2)P(A2)=2/5×1/10+1/2×3/5+3/5×3/10=13/25. 6.袋中装有编号为1, 2,…, N的N个球,先从袋中任取一球,如该球不是1号球就放回袋中,是1号球就不放回,然后再摸一次,求取到2号球的概率. 解.设事件A表示“第一次取到的是1号球”,则表示“第一次取到的是非1号球”; 事件B表示“最后取到的是2号球”.

初中数学统计与概率知识点精炼

统计与概率 一、统计的基础知识 1、统计调查的两种基本形式: 普查:对调查对象的全体进行调查; 抽样调查:对调查对象的部分进行调查; 总体:所要考察对象的全体; 个体:总体中每一个考察的对象; 样本:从总体中所抽取的一部分个体; 样本容量:样本中个体的数目(不带单位); 平均数:对于n 个数12,,,n x x x ,我们把121()n x x x n +++ 叫做这n 个数的平均数; 中位数:几个数据按大小顺序排列时,处于最中间的一个数据(或是最中间两个数据的平均数)叫做中位数; 众数:一组数据中出现次数最多的那个数据; 方差:2222121()()()n S x x x x x x n ??=-+-++-?? ,其中n 为样本容量,x 为样本平均数; 标准差:S ,即方差的算术平方根; 极差:一组数据中最大数据与最小数据的差称为这组数据的极差; 频数:将数据分组后落在各小组内的数据个数叫做该小组的频数; 频率:每一小组的频数与样本容量的比值叫做这一小组的频率; ★ 频数和频率的基本关系式:频率 = —————— 各小组频数的总和等于样本容量,各小组频率的总和等于1; 扇形统计图:圆表示总体,扇形表示部分,统计图反映部分占总体的百分比,每个扇形的圆心角度数=360°× 该部分占总体的百分比; 会填写频数分布表,会补全频数分布直方图、频数折线图; 频数 样本容量 各 基 础 统 计 量 频 数 的 分 布 与 应 用 2、 3、

二、概率的基础知识 必然事件:一定条件下必然会发生的事件; 不可能事件:一定条件下必然不会发生的事件; 2、不确定事件(随机事件):在一定条件下可能发生,也可能不发生的事件; 3、概率:某件事情A 发生的可能性称为这件事情的概率,记为P(A); P (必然事件)=1,P(不可能事件)=0,0<P(不确定事件)<1; ★概率计算方法: P(A) = ———————————————— 例如 注:对于两种情况时,需注意第二种情况可能发生的结果总数 例:①袋子中有形状、大小相同的红球3个,白球2个,取出一个球后再取出一个球,求两个球都是白球的概率;P = 1 10 ②袋子中有形状、大小相同的红球3个,白球2个,取出一个球后放回 ..,再取出一个球,求两个球都是白球的概率;P = 4 25 1、确定事件 事件A发生的可能结果总数 所有事件可能发生的结果总数 运用列举法(常用树状图)计算简单事件发生的概率 …………

高三数学概率统计知识点归纳73194

高三数学概率统计知识点归纳73194 -CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN

概率统计知识点归纳 平均数、众数和中位数 平均数、众数和中位数.要描述一组数据的集中趋势,最重要也是最常见的方法就是用这“三数”来说明. 一、正确理解平均数、众数和中位数的概念 平均数平均数是反映一组数据的平均水平的特征数,反映一组数据的集中趋势.平均数的大小与一组数据里的每一个数据都有关系,任何一个数据的变化都会引起平均数的变化. 2.众数在一组数据中出现次数最多的数据叫做这一组数据的众数.一组数据中的众数有时不唯一.众数着眼于对各数出现的次数的考察,这就告诉我们在求一组数据的众数时,既不需要排列,又不需要计算,只要能找出样本中出现次数最多的那一个(或几个)数据就可以了.当一组数据中有数据多次重复出现时,它的众数也就是我们所要关心的一种集中趋势. 3.中位数中位数就是将一组数据按大小顺序排列后,处在最中间的一个数(或处在最中间的两个数的平均数).一组数据中的中位数是唯一的. 二、注意区别平均数、众数和中位数三者之间的关系 平均数、众数和中位数都是描述一组数据的集中趋势的量,但它们描述的角度和适用的范围又不尽相同.在具体问题中采用哪种量来描述一组数据的集中趋势,那得看数据的特点和要关注的问题. 三、能正确选用平均数、众数和中位数来解决实际问题

由于平均数、众数和中位数都是描述一组数据的集中趋势的量,所以利用平均数、众数和中位数可以来解决现实生活中的问题. 极差、方差、标准差 极差、方差和标准差都是用来研究一组数据的离散程度的,反映一组数据的波动范围或波动大小的量. 极差 一组数据中最大值与最小值的差叫做这组数据的极差,即极差=最大值-最小值.极差能够反映数据的变化范围,差是最简单的一种度量数据波动情况的量,它受极端值的影响较大. 二、方差 方差是反映一组数据的整体波动大小的特征的量.它是指一组数据中各个数据与这组数据的平均数的差的平方的平均数,它反映的是一组数据偏离平均值的情况.方差越大,数据的波动越大;方差越小,数据的波动越小. 求一组数据的方差可以简记先求平均,再求差,然后平方,最后求平均数.一组数据x1、x2、x3、…、xn 的平均数为x ,则该组数据方差的计算公式为: ])()()[(1222212x x x x x x n S n -++-+-= . 三、标准差 在计算方差的过程中,可以看出方差的数量单位与原数据的单位不一致,在实际的应用时常常将求出的方差再开平方,此时得到量为这组数据的标准差. 即标准差=方差. 四、极差、方差、标准差的关系

高考数学概率与统计知识点

高中数学之概率与统计 求等可能性事件、互斥事件和相互独立事件的概率 解此类题目常应用以下知识: (1)等可能性事件(古典概型)的概率:P(A)=)()(I card A card =n m ; 等可能事件概率的计算步骤: 计算一次试验的基本事件总数n ; 设所求事件A ,并计算事件A 包含的基本事件的个数m ; 依公式 ()m P A n = 求值; 答,即给问题一个明确的答复. (2)互斥事件有一个发生的概率:P(A +B)=P(A)+P(B); 特例:对立事件的概率:P(A)+P(A )=P(A +A )=1. (3)相互独立事件同时发生的概率:P(A ·B)=P(A)·P(B); 特例:独立重复试验的概率:Pn(k)=k n k k n p p C --)1(.其中P 为事件A 在一次试验中发生的 概率,此式为二项式[(1-P)+P]n 展开的第k+1项. (4)解决概率问题要注意“四个步骤,一个结合”: 求概率的步骤是: 第一步,确定事件性质?? ?? ???等可能事件 互斥事件 独立事件 n 次独立重复试验 即所给的问题归结为四类事件中的某一种. 第二步,判断事件的运算 ?? ?和事件积事件 即是至少有一个发生,还是同时发生,分别运用相加或相乘事件. 第三步,运用公式()()()()()()()()(1)k k n k n n m P A n P A B P A P B P A B P A P B P k C p p -? =???+=+? ??=??=-??等可能事件: 互斥事件: 独立事件: n 次独立重复试验:求解 第四步,答,即给提出的问题有一个明确的答复. 例1. 在五个数字12345,,,,中,。 例2. 若随机取出三个数字,则剩下两个数字都是奇数的概率是 (结果用数值表示). [解答过程]0.3提示:13 35C 33. 54C 10 2P ===?

高中数学条件概率教案

《条件概率》教案 一、[教学目标] 知识与技能:理解条件概率的定义,理解并掌握条件概率的公式,会解决一些条件概率的问题。 过程与方法目标:通过创设问题情境,引发学生思考、探究,在这个过程中体会学习条件概率的必要性,探寻解决问题的方法,培养学生分析问题、解决问题的能力。 情感态度价值观:在问题的解决过程中,学会探究、学会学习;体会数学的应用价值,发展学生学数学用数学的意识。 二、[教学重点] 条件概率的定义,条件概率问题的解决。 三、[教学难点] 对条件概率及公式的理解,条件概率的应用。 四、[教学方法] 1、教法 在教学中,不仅要使学生“知其然”,而且要使学生“知其所以然”。为了体现以生为本,遵循学生的认知规律,坚持以教师为主导,学生为主体的教学思想,体现循序渐进的教学原则,我采用引导发现法、分析讨论法的教学方法,通过提问、启发、设问、归纳、讲练结合、适时点拨的方法,让学生的思维活动在教师的引导下层层展开,让学生大胆参与课堂教学,使他们“听”有所“思”,“练”有所“获”,使传授知识与培养能力融为一体。 2、学法

高一学生知识上已经掌概率的概念,但对知识的理解和方法的掌握上不完备,反应在解题中就是思维不严密,过程不完整;能力上具备了一定的观察、类比、分析、归纳能力,但知识整合和主动迁移的能力较弱,数形结合的意识和思维的深刻性还需进一步培养和加强,通过让学生“设问、尝试、归纳、总结、运用”,重视学生的主动参与,注重信息反馈,通过引导学生多思、多说、多练,使认识得到深化。 五、[教学过程] (一)复习旧知、导入新课 为了让学生更好的进入本节课,我先让学生复习前面所学习什么是随机变量、离散型的随机变量以及分布列,这样设计既巩固了前面相关知识的学习,也为本节课的学习奠定了良好的知识基础。有利学生理解本节课的知识。 (二)主动探索,获取新知 通过具体的例子讲解,让学生理解什么是条件概率。例如,投掷一均匀骰子,并且已知出现的是偶数点,那么对试验结果的判断与没有这一已知条件的情形有所不同. 一般地,在已知另一事件B发生的前提下,事件A发生的可能性大小不一定再是P(A). 任一个随机试验都是在某些基本条件下进行的,在这些基本条件下某个事件A的发生具有某种概率. 但如果除了这些基本条件外还有附加条件,所得概率就可能不同.这些附加条件可以看成是另外某个事件B发生. 条件概率这一概念是概率论中的基本工具之一. 给定一个概率空间,并希望知道某一事件A发生的可能性大小. 尽管我们不可能完全知道试验结果,但

高三数学概率统计知识点归纳

高三数学概率统计知识 点归纳 Company number:【WTUT-WT88Y-W8BBGB-BWYTT-19998】

概率统计知识点归纳 平均数、众数和中位数 平均数、众数和中位数.要描述一组数据的集中趋势,最重要也是最常见的方法就是用这“三数”来说明. 一、正确理解平均数、众数和中位数的概念 平均数平均数是反映一组数据的平均水平的特征数,反映一组数据的集中趋势.平均数的大小与一组数据里的每一个数据都有关系,任何一个数据的变化都会引起平均数的变化. 2.众数在一组数据中出现次数最多的数据叫做这一组数据的众数.一组数据中的众数有时不唯一.众数着眼于对各数出现的次数的考察,这就告诉我们在求一组数据的众数时,既不需要排列,又不需要计算,只要能找出样本中出现次数最多的那一个(或几个)数据就可以了.当一组数据中有数据多次重复出现时,它的众数也就是我们所要关心的一种集中趋势. 3.中位数中位数就是将一组数据按大小顺序排列后,处在最中间的一个数(或处在最中间的两个数的平均数).一组数据中的中位数是唯一的. 二、注意区别平均数、众数和中位数三者之间的关系 平均数、众数和中位数都是描述一组数据的集中趋势的量,但它们描述的角度和适用的范围又不尽相同.在具体问题中采用哪种量来描述一组数据的集中趋势,那得看数据的特点和要关注的问题. 三、能正确选用平均数、众数和中位数来解决实际问题 由于平均数、众数和中位数都是描述一组数据的集中趋势的量,所以利用平均数、众数和中位数可以来解决现实生活中的问题.

极差、方差、标准差 极差、方差和标准差都是用来研究一组数据的离散程度的,反映一组数据的波动范围或波动大小的量. 极差 一组数据中最大值与最小值的差叫做这组数据的极差,即极差=最大值-最小值.极差能够反映数据的变化范围,差是最简单的一种度量数据波动情况的量,它受极端值的影响较大. 二、方差 方差是反映一组数据的整体波动大小的特征的量.它是指一组数据中各个数据与这组数据的平均数的差的平方的平均数,它反映的是一组数据偏离平均值的情况.方差越大,数据的波动越大;方差越小,数据的波动越小. 求一组数据的方差可以简记先求平均,再求差,然后平方,最后求平均数.一组数据x1、x2、x3、…、xn 的平均数为x ,则该组数据方差的计算公式为: ])()()[(1222212x x x x x x n S n -++-+-= . 三、标准差 在计算方差的过程中,可以看出方差的数量单位与原数据的单位不一致,在实际的应用时常常将求出的方差再开平方,此时得到量为这组数据的标准差. 即标准差=方差. 四、极差、方差、标准差的关系 方差和标准差都是用来描述一组数据波动情况的量,常用来比较两组数据的波动大小.两组数据中极差大的那一组并不一定方差也大.在实际问题中有时用到标

高二数学条件概率综合测试题

条件概率练习题 一、选择题 1.下列式子成立的是( ) A .P (A | B )=P (B |A ) B .0

相关文档
最新文档