关于火焰温度测量方法的介绍要点

摘要: 本文综述了火焰的分类及其温度测量方法,介绍了热电偶法、成象法、激光光谱法、辐射法和声波法的测量原理,并分析比较了它们的适用性和各自特点。简要描述了用于固体火箭发动机羽焰温度测量的多点多波长高温计。最后,展望了火焰温度测量的发展趋势。

关键词:测量,温度,火焰,原理

Abstract:Reviewed in this paper the classification of the flame and the temperature measuring method, introduces the thermocouple method, imaging method and laser spectrum method, radiation method and principle of measurement of the acoustic method, and analysis and comparison of their applicability and their respective characteristics. Briefly describe the used in solid rocket motor plume flame temperature measuring multi-point multiwavelength pyrometer. In the end, prospects the development trend of flame temperature measurement. Keywords: measurement, temperature, flame, and principle

目录

一.引言 (1)

二.火焰的分类及特性 (1)

三.火焰温度的测量方法 (2)

(一)接触法测温 (3)

1.热电偶法 (3)

2.光纤法 (4)

(二)非接触法测温 (4)

1.成象法 (4)

2.激光光谱法 (6)

3.声波法 (8)

4.辐射法 (10)

https://www.360docs.net/doc/361501971.html,D成像法 (12)

四.结语 (18)

致谢 (19)

[参考文献] (20)

一.引言

火焰温度是燃烧过程的重要热力参数之一。火焰温度测试技术的研究,无论对内燃机燃烧过程的理论基础研究,还是为开发设计高效低污染的新型车用发动机、降低汽车排污以及对于研究电站燃煤锅炉煤粉燃烧的稳定性、经济性和清洁性等都具有重要的意义和应用价值。此外,对于各种战术、战略武器发射平台的设计来说,发动机燃气流的火焰温度将直接影响着设计的指标和达到设计指标的途径。火箭发动机喷口的温度,对喉衬材料的选取、增加比冲具有重要的意义。在采用高能推进剂的发射系统中,发射平台的高温烧蚀将比采用中能推进剂的系统更加突出。在各种导弹武器的矢量控制技术中也需要考虑火箭羽焰温度对各部件的影响。火焰温度及其分布的定性或定量的测定,对于观察和了解上述燃烧过程、燃烧流场和燃烧产物的内在特性,建立合理的燃烧模型、进行精确的计算机模拟分析都有着重要的指导作用。以计算机模拟分析来替代有效的实物尺寸模型实验,能够降低实物实验带来的危险并加速新产品、新型号的开发与使用。

二.火焰的分类及特性

根据火焰辐射光谱的不同特点,火焰可分为发光火焰和透明火焰两大类。发光火焰内部含有烟粒,火焰辐射出的是0~∞的连续光谱,在可见光谱区内有辐射;透明火焰的辐射光谱多在红外区段,并呈带状或线状辐射,在λ=0·65μm的红光波长上无辐射能。

通常只有炽热的固体才能辐射连续光谱,在特殊情况下,离子复合、原子或自由基的结合也可能达到连续辐射;但是对于气体分子,每个分子只有为数不多的能级,分子

能够发射和吸收的辐射波长就限于特定的一些谱线。从不同光谱谱段的发射机理来说,紫外区和可见光区的光谱一般取决于电子能量的变化,即分子或原子周围的电子能级跃迁;近红外区的的带状光谱取决于分子的振动能和旋转能的变化,远红外区的光谱则取决于旋转能的变化。

火焰辐射不仅包括羽焰组分的热辐射,而且可能有化学发光。当化学反应直接产生可辐射的受激态的原子或分子时,火焰的这种发光被称为化学发光。完全处于平衡态的可逆化学反应仍有可能形成受激的原子和分子。对于火焰辐射在多大程度上是由一般热激发产生的,在多大程度上是由化学发光产生的,目前尚无定论。一般认为,在高温火焰中,以热辐射为主;而在温度较低的接近燃烧反应临界状态的火焰中,反应区会因化学发光而增加辐射。鉴于火焰气体发光的多原理性和发光光谱的多样性,火焰温度的测量方法亦是多种多样。依据感温元件是否接触火焰对象,火焰温度的测量方法可分为接触法和非接触法两大类[1],如图1所示。

三.火焰温度的测量方法

下面分别介绍各种方法的原理及各自的特点和适用性。

(一)接触法测温

1.热电偶法

热电偶测温是常用的经典测温方法,当不同材料的金属合金导体两端存在温度差异时,导体两端就会产生电势差,热电势与导体两端的温度差存在简单的函数关系,当这种材料的热端与被测对象达到热平衡而冷端处于一恒定的已知温度时,就可以由电势差得到被测对象的温度,该方法结构简单、测量可靠。但用热电偶测量火焰温度还存在如下一些严重缺点:对于高温火焰难以寻求高熔点的热电偶材料来满足测量温区的要求;动态响应差,难以在被测稀薄的火焰气体和热电偶之间达到热平衡,空间和时间分辨率都很差;由于热电偶头实际上浸没在火焰流体中,所以容易被吹断;测得的只是偶头周围火焰气体的滞止温度,动温补偿困难;暴露于火焰气体中的热电偶头还会干扰火焰气体组分发生的化学反应,甚至本身参与火焰气体组分发生化学反应;热电偶本身存在标定问题。由于国际实用温标ITS-90规定了银凝固点以上温区由辐射测温方法来定义并传递,所以热电偶在高温火焰内使用缺乏有效的标定温度源。

但是热电偶方法有相当成熟的常规测温经验,也不需要复杂的连接设备和数据处理方法。因此在火焰温度测量中,国内外也都没有放弃这一传统的方法。在尽量避免上述问题出现的情况下,热电偶在燃烧火焰温度不太高、火焰气体流速不大的燃烧试验场合的温度测量中仍可见到。

2.光纤法

光纤测温法是利用光导纤维材料温度不同,光传输的特性不同来测量对象的温度,除了不参与火焰气体反应以外,它同样存在热电偶测量火焰温度的其它所有问题。(二)非接触法测温

1.成象法

在成象法中,激光散斑照相法、纹影法、干涉仪法和激光全息干涉法均是基于光的干涉原理。从物理模型上来说,基于干涉原理的各种光学方法测量火焰的温度场,均可以等效为首先测量火焰的折射率分布[2]。因为对气体而言,折射率通常是与密度成正比的,所以可以通过理想气体状态方程从测得的密度场数据获得所需的温度场

数据。它们的测量原理是将流场中各处折射率的变化(即密度的变化)转变为各种光参量的变化,并记录在感光胶片上,从而进行定性或定量的分析判断。图2所示为从流场折射率的变化转变为光参量变化的示意图。一束光射入测量区内某处,若区内无密度变化,则光线无偏折地投射在底片上的A点。若测量区内该处有密度变化,光线则发生折射,投射在底片上的B点。这样,有折射和无折射的不同可反映在下列3个偏差量上:光束投影点的偏折位置差Δs,光束偏折角Δθ和两光束的光程差Δl(或位相差)。测出这3种偏差量的任一种,均可获得流场密度的变化。

散斑照相的原理是当光线通过有扰动的气流时,由于局部部位折射率梯度的变化,使通过漫射体的透射光相对于无扰动时发生偏折移位,反映在照相底片上即为散斑位移的变化[3]。纹影法的原理是利用纹影仪将光线通过气流扰动区后引起的不同方向的偏折光区分开来,并用纹影刀口挡掉部分偏折光,使扰动区折射率的变化呈现为底片上明暗变化的纹影图像。干涉仪法的原理[1]是用两束同轴相干光分别通过气流扰动区和非扰动区,由于扰动区内折射率的不同引起光程差的变化,使两束相干光产生了相位的变化,从而反映为底片上干涉条纹的变化。全息干涉法[4,5]仍然基于干涉仪法的原理,不过它采用离轴记录法,不仅记录物波波前的振幅信息,同时还记录波前的相位信息。由此可见,散斑照相法记录的是偏折位置差,反映的是折射率梯度的变化(即折射率的二阶导数);纹影法记录的是偏折角度差,反映的是折射率的梯度(即折射率的一阶导数);干涉仪法记录的是光波相位差,反映的是折射率本身;而全息干涉法既有相位信息又有振幅信息,反映的是折射率本身和三维流场的立体信息。

上述4种方法测得的温度均为传输路径上火焰气体的平均温度。其中,散斑照相适于测量试验段比较长、温度梯度比较大的流场,但它不能进行在线观察和测量,不适于测量瞬态的温度场;纹影法适于测量弱激波和密度梯度变化小的流场,但对火焰的自身发光十分敏感;干涉仪法在测量时对振动相当敏感,故造价昂贵,测试麻烦,实际使

用受到限制;除全息法外,其它3种方法都需要借助计算机扫描技术才能获得火焰的三维立体信息,但全息法的光路比较庞大,对测量系统的防震性能和实验时的工作环境要求较高,因此用该项技术进行火焰诊断的实例还不多见。

2.激光光谱法

2.1瑞利散射和拉曼散射光谱法

当具有单色辐射频率的光线照射一透明物体时,会有少量的光线偏离了原来的传播方向,发生光的散射现象。散射光的大部分频率不发生变化,被称为弹性散射。如果弹性散射由直径远小于入射光波波长的散射粒子所引起,则称这种散射为瑞利(L.Rayleigh)散射;如弹性散射由直径大于入射光波波长的散射粒子所引起,则称这种散射为米氏(G.Mie)散射。同时,在与入射光传播方向成某些角度的地方还可以观测到与入射光频率不同的散射光,它的强度与散射方向无关,这种分子与光子之间的非弹性散射称为拉曼散射,如图3所示[1]。非弹性散射存在能量交换,当介质分子从入射光获得能量时,会跃迁到高能态,产生斯托克斯谱线(Stokes);反之,介质分子损失能量时,产生反斯托克斯谱线(Anti-Stokes)。瑞利光谱的光强正比于气体分子数密度,而拉曼光谱的光强正比于气体分子数,分别根据理想气体状态方程和玻耳兹曼(Boltzmann)分布可知,这两种光谱的光强均是气体温度的函数,这样就可以根据散射光谱的变化得到气体的温度数据。通过测量不同散射的光谱信号,相应地也就产生了瑞利光谱和拉曼光谱这两种不同的测温方法。

瑞利光谱测温法[8]的测试系统简易,脉冲的瑞利光谱技术还可以用来观察瞬时的火焰结构。但由于它是一个弹性散射,所以不能直接提供有关组分的信息,并且受颗粒Mie散射、背景光散射和火焰辐射的干扰,这些缺点限制了它主要应用于自由散流和开口火焰以及某些燃料的干净流场的测量,妨碍了它进一步应用于实际燃烧系统。

相比而言,拉曼散射光谱技术的实用性更好。它的主要应用之一就是测量气体的温度。拉曼光谱测温法根据入射光源的不同形式又分为自发拉曼散射和受激拉曼散射。应用分子转动能态的拉曼光谱法适合较低温度的测量,当火焰温度超过2 000 K 时,则在分子的转动光谱上就会加上高温激励的振动光谱,重叠无法分开,因此,对高温燃气用分子的振动拉曼光谱法更适合。但由于自发拉曼散射的信号微弱和非相干性,对于许多具有光亮背景和荧光干扰的实际体系,它的应用受到一定的限制。与自发拉曼光谱相比,受激拉曼散射能大幅度提高测量的信噪比,常用的方法是相干反斯托克斯拉曼散射(CARS)[9,10]。它可使收集到的有效散射光信号强度比自发拉曼散射提高好几个数量级,同时还具有方向性强、抗噪声和荧光性能好、脉冲效率高和所需脉冲输入能量小等优点。适合于含有高浓度颗粒的两相流场非清洁火焰的温度诊断。但是,CARS法测温还不能完全取代自发拉曼散射测温。这是由于CARS法的整套实

验装置价格十分昂贵;作为一种分析手段,近共振、非共振本底、双光子共振吸收等干涉效应会使得CARS线型变得复杂,使信号的处理相当困难,并影响测温精度。

2.2受激荧光光谱法

一般来讲,处于基态或低能态的分子是比较稳定的,分子受激跃迁到高能态后,还会通过自发辐射的方式释放出所吸收的能量,这时它就会产生荧光。受激荧光光谱(LIF)法测温是通过测量荧光强度随激发光波长的变化,从而得到基态转动能级粒子数的分布或者振动能级粒子数的分布,然后根据玻耳兹曼公式计算出体系的温度[1]。在燃烧过程研究中,当作为温度测量对象的样品浓度比自发拉曼或相干拉曼光谱探测灵敏度所要求的浓度还要低时,荧光光谱就是一种更为有效的探测方法。但测量需要经过激光波长的扫描,即需要经过许多激光脉冲的入射,因此对于紊流和爆炸等类型的快速变化过程是不适合的。

3.声波法

3.1声速法

在热力学中,声波在气体中的传播速度与气体的温度、比热和分子量有关,由下式表示:

其中,T是火焰的绝对温度;u是声波在气体中传播的速度;为气体的平均分子

量;是气体的平均定容比热,是温度的函数;R是气体的普适常数。式中和可根据

已知气体的化学成分从有关手册中查到。声速法就是利用高功率脉冲激光聚焦在被测火焰处形成一个声脉冲。声脉冲与探测光束作用,使得探测光束发生偏转,用示波器测量两平行探测光束的偏转信号便得到了声速,依据上式进行换算便得到了温度

【11】。由于光速法是通过探测声波在气体中的传播速度测量体系温度,因此完全摒弃了燃烧体系中发光背景的干扰。但从该方法的基本出发点来看,它适用于已知气体的温度测量。这里的已知指的是和至少能够计算出来,但是这种计算是相当复杂的,还要考虑不同成分燃烧的先后以及燃烧中发生的化学反应。

3.2微波衰减法

当入射微波通过火焰时,与火焰中的等离子体相互作用,使出射的微波强度减弱,

通过测量入射微波的衰减程度可以确定火焰气体的温度[1]。对于电场强度为E0的入射波,火焰气体中的电场强度E f 和出射波E out 的电场强度分别为:

d

-0out -0f e E E e E E ΓΓ==;χ

式中,x 表示火焰沿微波传播方向的距离,Γ=α+iβ为传播常数,α、β为衰减常数和相位常数,它们是火焰温度、压力、微波频率、气体成分和密度、介质电子密度等的函数。微波衰减法测得的是微波传播方向的加权平均温度。为了产生足够的自由电子,需要在火焰中掺入一定量的高氯酸钾(KClO4) ,因此会破坏被测火焰的组分和热平衡状态。该方法的另一困难还在于测量所需的等离子体的传播常数须经标定获得。

4.辐射法

4.1发射-吸收光谱法

谱线反转法是发射-吸收法的最古老形式,也称自蚀法或谱线隐现法。最常见的是在实验室早已使用的钠D线反转法。它的基本原理是在目标火焰中均匀地加入微量钠盐,钠燃烧产生两条波长为589·0 nm和589·6 nm的黄色明亮谱线。当背景光源的自然光线照射并通过钠蒸气时,钠线相对于背景光源的连续光谱可能发暗或发亮,这取决于被测火焰的温度是低于或高于光源的亮度温度。如果钠线在背景的连续光谱中消失时,光源的亮温就等于火焰的温度。谱线反转法的装置简单,适用于试验室中火焰稳定、测量方向温度梯度不大的场合,由于背景光源亮度变化范围的限制,其测温范围在1 000到2 800 K之间。

发射-吸收法是谱线反转法的发展,它使用光电传感器代替了人眼,而且无需达到谱线反转点,因而有更快的响应速度和更大的测温范围。发射-吸收法在推进剂火焰的测温中研究较多[12,13,14]。该方法结构庞大、造价昂贵、技术复杂,难以推广到大发动机试车现场使用。它的另一局限在于需要向被测火焰中添加染色剂,因此容易破坏被测火焰的组分和热平衡状态。

4.2高温计法

应用高温计测量火焰温度的基础定律为普朗克定律[20]、维恩定律和斯忒藩-玻耳兹曼定律。由于光谱发射率的影响,高温计的温度示值并不是物体的真温,而是根据使用的全辐射高温计、单色高温计和比色温度计的不同,得到辐射温度、亮度温度和

比色温度。若想知道火焰的真温,就需要对上述温度进行发射率修正。以往所采用的方法主要有发射率修正法、逼近黑体法、辅助源法和偏振光法[15]。目前获得物体真温和光谱发射率数据的最有效的方法是多光谱测温法,它是利用多个光谱下的物

体辐射亮度信息,经过数据处理得到物体的真实温度。作为多光谱测温技术的应用,本课题组承担了航天工业总公司第四研究院的“固体火箭发动机喷焰温度测量技术研究”的预研课题,研制了一种能同时测量一定空间分布的6个点、每个点具有8个工作波段的多点多波长高温计,成功地测试了固体火箭发动机的羽焰温场[16]。

固体火箭羽焰在可见光区和近红外区都有很强的热辐射,其产物包括气态和凝

聚相产物。气态成分基本上总是CO、CO2、H2、H2O和N2,含高氯酸铵的推进剂的气态产物还有HCl;凝聚相产物主要是Al2O3,它的熔点为2 350 K,沸点为3 750 K,在固体火箭发动机羽焰温度区间(1 500~3 000 K)内,既可能呈固态,也可能呈液态。因此固体火箭羽焰属于发光火焰,辐射连续光谱。由于不同物质的发射率特性不同,而且影响发射率变化的因素很多,特别是对于固体火箭羽焰这样的特殊辐射体来说,推进剂的种类和成分繁多,发动机的工况和燃烧反应进行的程度也不一样,羽焰的构成成分、成分的比例、不同波长下的发射率和发射率的变化等差异都很大。因此,为使多光谱测温的各个测量通道都能得到有意义的信号,要选择羽焰热辐射的发射物质尽

可能少的光谱区间,以减少测量过程中影响发射率的因素,并有效地避开气态组分的带状光谱的影响。需要指出的是该高温计测得的是羽焰中凝聚相产物Al2O3的温度。

整个仪器由包含前置级放大线路的光学系统、采样保持和记录控制系统3部分构成,如图4所示。采用一点标定法,即使用高精度的定点测量结果,结合高温计波长函数(PWF)外推至仪器工作的全量程。因此标定工作包括高温计波长函数(PWF)和人

工黑体的定点标定两部分。仪器指标:温度量程为1 500~3 000 K;测量距离为3~6 m 和6~8 m; 6个测量目标点,每个点8个工作波长,波长范围为0·4~1·1μm;48个测量通道的采集控制同步优于2μs。一共进行了两次地面搭载试验,第1次实验时间为20 s,记录时间为25 s;第2次实验时间为60 s,记录时间为75 s。

该多波长高温计性能稳定、信噪比高,可对一定空间分布的6个目标点进行测量。

特别设计的同步数据采集系统能实现高时间分辨率的同步测量,以满足目标变化剧烈的情况下多光谱测温理论的要求。这种高温计可用于:一般多波长高温计使用场合;

测量不多于空间6个点的温度分布;通过在温度分布均匀表面的一个或多个目标点钻孔模拟人工黑体,真正实现材料真温和光谱发射率的同步测量;在测量对象变化剧烈的场合,实现多光谱真温测量[17]。

https://www.360docs.net/doc/361501971.html,D成像法

火焰的图像通过摄像机和图像卡后,以数字的形式储存在计算机内。系统中所用的摄像机——CCD(Charge Coupled Devic火焰的图像通过摄像机和图像卡后,以数字的形

式储存在计算机内。系统中所用的摄像机——CCD(Charge Coupled Devices)电荷耦合器件是一种70年代初发展起来的新型半导体器件,已经被越来越广泛地运用到工业诊断和过程监视中。彩色CCD的任务就是把来自景物的入射光分解为波长分别为700 nm、546.1

关于火焰温度测量方法的介绍要点

摘要: 本文综述了火焰的分类及其温度测量方法,介绍了热电偶法、成象法、激光光谱法、辐射法和声波法的测量原理,并分析比较了它们的适用性和各自特点。简要描述了用于固体火箭发动机羽焰温度测量的多点多波长高温计。最后,展望了火焰温度测量的发展趋势。 关键词:测量,温度,火焰,原理

Abstract:Reviewed in this paper the classification of the flame and the temperature measuring method, introduces the thermocouple method, imaging method and laser spectrum method, radiation method and principle of measurement of the acoustic method, and analysis and comparison of their applicability and their respective characteristics. Briefly describe the used in solid rocket motor plume flame temperature measuring multi-point multiwavelength pyrometer. In the end, prospects the development trend of flame temperature measurement. Keywords: measurement, temperature, flame, and principle

温度常用测量方法及原理

温度常用测量方法及原理 (1)压力式测温系统是最早应用于生产过程温度测量方法之一,是就地显示、控制温度应用十分广泛的测量方法。带电接点的压力式测温系统常作为电路接点开关用于温度就地位式控制。 压力式测温系统适用于对铜或铜合金不起腐蚀作用场合,优点是结构简单,机械强度高,不怕振动;不需外部电源;价格低。缺点是测温范围有限制(-80~400℃);热损失大,响应时间较慢;仪表密封系统(温包,毛细管,弹簧管)损坏难以修理,必须更换;测量精度受环境温度及温包安置位置影响较大;毛细管传送距离有限制。 (2)热电阻热电阻测量精度高,可用作标准仪器,广泛用于生产过程各种介质的温度测量。优点是测量精度高;再现性好;与热电偶测量相比它不需要冷点温度补偿及补偿导线。缺点是需外接电源;热惯性大;不能使用在有机械振动场合。 铠装热电阻将温度检测元件、绝缘材料、导线三者封焊在一根金属管内,它的外径可以做得很小,具有良好的力学性能,不怕振动。同时,它具有响应快,时间常数小的优点。铠装热电阻可制成缆状形式,具有可挠性,任意弯曲,适应各种复杂结构场合中的温度测量。 (3)双金属温度计双金属温度计也是用途十分广泛的就地温度计。优点是结构简单,价格低;维护方便;比玻璃温度计坚固、耐振、耐冲击;示值连续。缺点是测量精度较低。 (4)热电偶热电偶在工业测温中占了很大比重。生产过程远距离测温大多使用热电偶。优点是体积小,安装方便;信号远传可作显示、控制用;与压力式温度计相比,响应速度快;测温范围宽;测量精度较高;再现性好;校验容易;价

低。缺点是热电势与温度之间是非线性关系;精度比电阻低;在同样条件下,热电偶接点易老化。 (5)光学高温计光学高温计结构简单、轻巧、使用方便,常用于金属冶炼、玻璃熔融、热处理等工艺过程中,实施非接触式温度测量。缺点是测量靠人眼比较,容易引入主观误差;价格较高。 (6)辐射高温计辐射高温计主要用于热电偶无法测量的超高温场合。优点是高温测量;响应速度快;非接触式测量;价格适中。缺点是非线性刻度;被测对象的辐射率、辐射通道中间介质的吸收率会对测量造成影响;结构复杂。(7)红外测温仪(便携式)特点是非接触测温;测温范围宽(600~1800℃ /900~2500℃);精度高示值的1%+1℃;性能稳定;响应时间快(0.7s);工作距离大于0.5m。

测温原理

热电偶的测温原理和常用材料 这就要从热电偶测温原理说起,热电偶是一种感温元件,是一次仪表,它直接测量温度,并把温度信号转换成热电动势信号, 通过电气仪表(二次仪表)转换成被测介质的温度。热电偶测温的基本原理是两种不同成份的材质导体组成闭合回路,当两端存在温度梯度时,回路中就会有电流通过,此时两端之间就存在电动势——热电动势,这就是所谓的塞贝克效应。 两种不同成份的均质导体为热电极,温度较高的一端为工作端,温度较低的一端为自由端,自由端通常处于某个恒定的温度下。根据热电动势与温度的函数关系, 制成热电偶分度表; 分度表是自由端温度在0℃时的条件下得到的,不同的热电偶具有不同的分度表。 在热电偶回路中接入第三种金属材料时, 只要该材料两个接点的温度相同, 热电偶所产生的热电势将保持不变,即不受第三种金属接入回路中的影响。因此, 在热电偶测温时, 可接入测量仪表, 测得热电动势后, 即可知道被测介质的温度。 热电偶工作原理:两种不同成份的导体(称为热电偶丝材或热电极)两端接合成回路,当接合点的温度不同时,在回路中就会产生电动势,这种现象称为热电效应,而这种电动势称为热电势。热电偶就是利用这种原理进行温度测量的,其中,直接用作测量介质温度的一端叫做工作端(也称为测量端),另一端叫做冷端(也称为补偿端);冷端与显示仪表或配套仪表连接,显示仪表会指出热电偶所产生的热电势。 热电偶实际上是一种能量转换器,它将热能转换为电能,用所产生的热电势测量温度,对于热电偶的热电势,应注意如下几个问题: 1:热电偶的热电势是热电偶两端温度函数的差,而不是热电偶两端温度差的函数; 2 :热电偶所产生的热电势的大小,当热电偶的材料是均匀时,与热电偶的长度和直径无关,只与热电偶材料的成份和两端的温差有关; 3:当热电偶的两个热电偶丝材料成份确定后,热电偶热电势的大小,只与热电偶的温度差有关;若热电偶冷端的温度保持一定,这进热电偶的热电势仅是工作端温度的单值函数。 常用的热电偶材料有:热电偶分度号热电极材料正极负极S 铂铑10 纯铂R 铂铑13 纯铂B 铂铑30 铂铑6 K 镍铬镍硅T 纯铜铜镍J 铁铜镍N 镍铬硅镍硅E 镍铬铜镍 (T型热电偶)铜-铜镍热电偶 铜-铜镍热电偶(T型热电偶)又称铜-康铜热电偶,也是一种最佳的测量低温的廉金属的热电偶。它的正极(TP)是纯铜,负极(TN)为铜镍合金,常之为康铜,它与镍铬-康铜的康铜EN通用,与铁-康铜的康铜JN不能通用,尽管它们都叫康铜,铜-铜镍热电偶的盖测量温区为-200~350℃。 T型热电偶具有线性度好,热电动势较大,灵敏度较高,稳定性和均匀性较好,价格便宜等优点,特别在-200~0℃温区内使用,稳定性更好,年稳定性可小于±3μV,经低温检定可作为二等标准进行低温量值传递。T型热电偶的正极铜在高温下抗氧化性能差,故使用温度上限受到限制。

红外线测温仪原理及应用

红外线测温仪原理及应用 摘要:测量温度的方法有很多种,温度计大致可以分为接触式测温仪表和非接触式测温仪表两类。其中接触式的有我们熟悉的液体式温度计,热电偶式温度计和 热电阻式温度计等等。 关键词:红外线测温辐射光纤 众所周知,温度是供热,供燃气,通风及空调系统中最重要的参数之一。尤其在热工测量过程中,温度的精准程度往往是决定实验成败的关键。因此,一个精确度高的测温仪器在工程中是必不可少的。因此本文就温度测量工具中的红外线测温仪的原理及应用进行一些介绍。 一,红外测温的理论原理 在自然界中,当物体的温度高于绝对零度时,由于它内部热运动的存在,就会不断的向四周辐射电磁波,其中就包含了波段位于0.75μm~100μm的红外线。他最大的特点是在给定的温度和波长下,物体发射的辐射能有一个最大值,这种物质称为黑体,并设定他的反射系数为1,其他的物质反射系数小于1,称为灰体,由于黑体的光谱辐射功率P(λT)与绝对温度T之间满足普朗克定。说明在绝对温度T下,波长λ处单位面积上黑体的辐射功率为P(λT)。根据这个关系可以得到图1的关系曲线,从图中可以看出: (1)随着温度的升高,物体的辐射能量越强。这是红外辐射理论的出发点,也是单波段红外测温仪的设计依据。 (2)随着温度升高,辐射峰值向短波方向移动(向左),并且满足维恩位移定理,峰值处的波长与绝对温度T成反比,虚线为处峰值连线。这个公式告诉我们为什么高温测温仪多工作在短波处,低温测温仪多工作在长波处。 (3)辐射能量随温度的变化率,短波处比长波处大,即短波处工作的测温仪相对信噪比高(灵敏度高),抗干扰性强,测温仪应尽量选择工作在峰值波长处,特别是低温小目标的情况下,这一点显得尤为重要。 二,红外线测温仪的原理

温度检测技术文献综述

温度检测技术文献综述 1 温度检测的意义 温度是一个非常重要的物理量,因为它直接影响燃烧、化学反应、发酵、烘烤、煅烧、蒸馏、浓度、挤压成形、结晶以及空气流动等物理和化学过程。温度控制失误就可能引起生产安全、产品质量、产品产量等一系列问题。因此对温度的检测的意义就越来越大。温度采集控制系统在工业生产、科学研究和人们的生活领域中,得到了广泛应用。在工业生产过程中,很多时候都需要对温度进行严格的监控,以使得生产能够顺利的进行,产品的质量才能够得到充分的保证。使用自动温度控制系统可以对生产环境的温度进行自动控制,保证生产的自动化、智能化能够顺利、安全进行,从而提高企业的生产效率。 2 接触式测温方法原理及特点 接触式测温方法包括膨胀式测温、电量式测温和接触式光电、热色测温等几大类。接触测温法在测量时需要与被测物体或介质充分接触,一般测量的是被测对象和传感器的平衡温度,在测量时会对被测温度有一定干扰。 2.1 电量式测温方法 电量式测温方法主要利用材料的电势、电阻或其它电性能与温度的单值关系进行温度测量,包括热电偶温度测量、热电阻和热敏电阻温度测量、集成芯片温度测量等。 热电偶的原理是两种不同材料的金属焊接在一起,当参考端和测量端有温差时,就会产生热电势,根据该热电势与温度的单值关系就可以测量温度。热电偶具有结构简单,响应快,适宜远距离测量和自动控制的特点,应用比较广泛。热电阻是根据材料的电阻和温度的关系来进行测量的,输出信号大,准确度比较高,稳定性好,但元件结构一般比较大,动态响应较差,不适宜测量体积狭小和温度瞬变区域。热敏电阻是一种电阻值随温度呈指数变化的半导体热敏感元件,具有灵敏度高、价格便宜的特点,但其电阻值和温度的关系线性度差,且稳定性和互换性也不好。 石英温度传感器是以石英晶体的固有频率随温度而变化的特性来测量温度的。石

表面温度测量方法

表面温度测量方法 表面热电偶在结构上坚固得多,并且不受因安装材料或方法所引起的应变的影响。它们具有设计简单的固有特点,从而使成本较低。所有热电偶表面传感器都具有能够在与表面热电阻传感器相比高出很多的温度下正常工作以及响应更加快速的特定。但是,热电偶传感器生成的电压信号较低,可能需要进行附加放大,这在电气噪声很高的环境中是一个缺点。 与表面热电偶传感器不同,表面热电阻传感器不需要参考点、冰浴或温度补偿电路。这些传感器具有非常低的热质量,因此可提供真实的表面温度测量值以及快到50ms的响应时间。铂传感器被公认为是一种精密温度测量传感器,它可在-190℃~660℃温度范围来定义国际温标(ITS-90)。将铂温度计选择作为首要标准的主要原因是,它的电阻温度参数具有优异的稳定性和重复性。表面热电阻的信号输出大小是热电偶输出的50~200倍。这意味着温度测量常常可使用标准仪表来进行。 TOBTO拓必拓TM-1300A微型测温笔主要用于物体表面温度的精确测量。 TOBTO拓必拓TM-1300A微型测温笔特点: 1、LCD4位数字液晶显示 2、采用集成电路稳定可靠 3、使用充电锂电池,使用周期长

TOBTO拓必拓TM-1300A微型测温笔技术指标: 1、分辨率:1℃;单位:℃ 2、精度:±(2%+1℃) 3、测量范围:TP─01-20℃──300℃ 比例系数:12:1; 4、测量环境:0℃──50℃相对湿度≤80%RH; 5、保存环境:-30℃──60℃相对湿度≤75%RH; 6、电池连续使用寿命720小时。 TOBTO拓必拓TM-1300A微型测温笔使用方法: 1、按开关键开机,红外对准要测量的设备,再按“M”执行键开始 测量,仪器显示采集到的数值后测量完成。 2、手动开/关机。

火焰温度测量

火焰温度测量方法分析 聂伟(学号:SA14168089) 1.引言 众所周知,火焰温度很高,一般很难直接精确测量。但由于火焰温度是燃烧过程中的重要热力参数之一。因此,对火焰温度测试技术的研究具有非常大的意义,当前,国家正大力改善自然环境,尤其是招手治理空气污染,在汽车工业方面提出降低汽车尾气排放,鼓励开发设计高效新型低污染发动机,在煤电产业中提出要提高电站煤炭燃烧的效率,这都与火焰温度测量密不可分。在高音时飞行器的研发过程中,要求其发动机有足够的功率,而发动机的功率可由发动机火焰温度来间接说明,以及发动机等部分的材料选取都在一定程度上受到火焰温度的限制,所以火焰温度测量不论是在国民生产中,还是在国防建设中都具有重要的作用]1[。 2.火焰温度的分类 根据火焰辐射光谱的不同特点,火焰光谱可分为发光火焰和透明光谱,发光火焰辐射连续光谱,辐射光波长范围在0- ,在可见光频带内有辐射;透明火焰辐射带状或线状光谱,范围多在红外区段。而根据火焰结构的不同,火焰可分为预混火焰和扩散火焰,预混火焰的特点是:气态的燃烧剂和氧化剂在进入火焰反应区前已经混合均匀。由于其传播速度受化学反应和流动力学过程的控制,预混火焰又分为湍流和层流预混火焰两种类型;扩散火焰的特点是:气态的燃烧剂和氧化剂在进入火焰反应区前处于分离状态,在进入反应区后经混合后再燃烧。 3.火焰温度的测量方法 火焰温度的测量方法根据火焰的不同类型有不同的方法,在实际应用中主要有接触式测温额非接触式测温方法,接触式测温法包括热电偶测温和光纤测温,非接触式测温包括成像法、激光光谱法、辐射法和声波法。如图1所示]2[: 1

3.1接触式测温 接触式测温]2[,具有代表性的就是热电偶测温。热电偶由不同材料的金属合金导体构成,当导体两端存在温度差异时,会产生电势差,而此电势与导体两端的温度差呈数关系。当热电偶的热端与被测对象达到热平衡,另一端处于恒定已知温度时,就可以通过电势差推算出被测对象的温度。微型热电偶测温分为嵌入热电偶法和表面拉紧热电偶法。利于热电偶测温具有结构简单,测量可靠的优点。但是,热电偶用于火焰温度的测量存在着以下缺点:需要直接接触被测火焰,现在采用的热电偶一般为铂铑—铂或钨铼—钨热电偶,一般来说只能测低压(<=2.85Mpa)下的温度分布。而且,浸没在火焰中的热电偶头容易被吹断;金属热电偶丝耐高温有限度,难以寻求到高熔点的材料满足高温火焰的测量;动态特性差,响应速度慢;动温补偿困难,测得的只是偶头周围火焰气体的滞止温度;由于处于火焰之中,需经受各种恶劣条件,如氧化、还原、烧蚀等考验;当被测火焰很小时,热偶头与燃烧区相比显得太大,较大的破坏了温度的原始分布,热偶头会干扰化学反应,甚至参与到反应当中,引起较大的误差;热电偶测温属于点测温,无法获得瞬时温度场分布;缺乏有效的标定温度源。 接触式测温中还包括光纤测温法,其主要是利用不同材料的光导纤维具有的不同的光传输特性来测量被测对象温度。虽然其不存在参与火焰化学反应的问题,但是仍存在同热电偶一样的其它问题。高温火焰中燃烧产物发生电离,形成稠密不均电离的离子体射流,当外加电场时,等离子体中的离子和电子定向运动产生电流。等离子体法就是根

红外测温仪使用说明书

红外测温仪及二次表现场使用 说明书

双波长红外测温仪 为了解决温度的测量问题,温度的自由选择问题,以及长期稳定的校准需要等,威廉姆森设计了双波长高温计,这使得威廉姆森温度的测量上远远超过了业界的其它测温产品,显示出威廉姆森显著的优势 传感器概述: 相对与单波长温度传感器,双波长红外测温仪的主要优点在于: ●对于难测量的物体(如灰色金属表面),红外测温仪采用自动 补偿的方法从而增加准确度。 ●目标大小小于传感器目标直径,如电线,或移动的目标等,它 也可以准确无误的测量。 ●目标在部分受到阻挡镜头模糊时,或干预媒体,如烟雾,灰尘, 和/或水喷雾,双波长红外测温仪仍然可以准确和可靠的测量

williamson 有两种类型的高温计的设计。双波长及双色彩设计。这两种温度测量技术是基于相同的物理原理主要涉及测量红外能量 在两个相邻的波长之间计算的比例通过这两项测量,确定温度。两者的设计不同点在于:双色彩设计采用了两个层次的红外探测器被称为“夹心探测器” ,而双波长技术采用“单一探测器”的设计(见图) 。 基于其独特的技术测量红外能量,双波长红外测温仪设计提供了一些优势。 一, 在恶劣的环境下更高的稀释信号因子。提高了传感器的控制能力,使它可以穿过脏的窗口或水喷淋,喷雾油,烟,和尘埃等。从而也提高了测量精度这使得它对被测物体表面的氧化物,熔融金属,有光泽的金属(低辐射)等都不会受到影响 ,包括应用目标大小小于传感器目标直径,如电线,或移动的目标等,它也可以准确无误的测量。 双波长 双色彩

二、可根据需要定制温度范围,测量目标的温度可以低至300 C 以 下 三、长期稳定的校准过程监测与控制等方面的应用,使得测量结果准 确无误。 红外测温仪现场连接方式按现场接线图连接 工作正常时LCD上应显示LO TEMP 红外测温仪工作基本原理

温度和风速测量方法总结

第一章风速测量1.1风速测量 风是空气流动时产生的一种自然现象。空气流动有上下流动和左右流动,上下流动为垂直运动,也叫对流;左右流动为水平运动,也就是风。风是一个矢量,用风向和风速表示。地面风指离地平面10─12米高的风。风向指风吹来的方向,一般用16个方位或360°表示。以360°表示时,由北起按顺时针方向度量。风速指单位时间内空气的水平位移,常以米/秒、公里/小时、海里/小时表示。 1.2 风杯风速计 风杯风速计是最常见的一种风速计。转杯式风速计最早由英国鲁宾孙发明,当时是四杯,后来改用三杯。它由3个互成120°固定在支架上的抛物锥空杯组成感应部分,空杯的凹面都顺向一个方向。整个感应部分安装在一根垂直旋转轴上,在风力的作用下,风杯绕轴以正比于风速的转速旋转。转速可以用电触点、测速发电机或光电计数器等记录。 图1.1 风杯风速计 1.3 叶轮风速仪 风速计的叶轮式探头的工作原理是基于把转动转换成电信号,先经过一个临近感应开头,对叶轮的转动进行“计数” 并产生一个脉冲系列,再经检测仪转换处理,即可得到转速值。 法国KIKO叶轮风速仪工作原理如图1.2所示。叶轮的轴杆启动内含八个电磁极的原型磁铁,置于磁铁旁的双霍尔传感器感测到侧场中电磁极的转变信号。传感器的信号转换为电子频率且和风速成正比,并感测旋转方向。 图1.2 KIMO原理 1.4 热线风速计 一根被电流加热的金属丝,流动的空气使它散热,利用散热速率和风速的平方根成线性关系,再通过电子线路线性化(以便于刻度和读数),即可制成热线风速计。

金属丝通常用铂、铑、钨等熔点高、延展性好的金属制成。常用的丝直径为5μm,长为2 mm;最小的探头直径仅1μm,长为0.2 mm。根据不同的用途,热线探头还做成双丝、三丝、斜丝及V形、X形等。为了增加强度,有时用金属膜代替金属丝,通常在一热绝缘的基体上喷镀一层薄金属膜,称为热膜探头。热线探头在使用前必须进行校准。静态校准是在专门的标准风洞里进行的,测量流速与输出电压之间的关系并画成标准曲线;动态校准是在已知的脉动流场中进行的,或在风速仪加热电路中加上一脉动电信号,校验热线风速仪的频率响应,若频率响应不佳可用相应的补偿线路加以改善。 0至100m/s的流速测量范围可以分为三个区段:低速:0至5m/s;中速:5至40m/s;高速:40至100m/s。热线风速计用于0至5m/s的精确测量,使用温度约为±70℃。 当在湍流中使用热线风速计时,来自各个方向的气流同时冲击热元件,从而会影响到测量结果的准确性。在湍流中测量时,热敏式风速仪流速传感器的示值往往高于转轮式风速计。因此,风速仪测量过程应尽量在通道的直线部分进行。直线部分的起点应至少在测量点前10×D(D=管道直径,单位为CM)外;终点至少在测量点后4×D处。流体截面应不得有遮挡(棱角,重悬,物等)。 图1.3 热线风速计 1.4.1 恒流式热线风速计 通过热线的电流保持不变,温度变化时,热线电阻改变,因而两端电压变化,由此测量流速。利用风速探头进行测量。风速探头为一敏感部件。当有一恒定电流通过其加热线圈时,探头内的温度升高并于静止空气中达到一定值。此时,其内测量元件热电偶产生相应的热电势,并被传送到测量指示系统,此热电势与电路中产生的基准反电势相互抵消,使输出信号为零,风速仪指针也能相应指于零点或显示零值。若风速探头端部的热敏感部件暴露于外部空气流中时,由于进行热交换,此时将引起热电偶热电势变化,并与基准反电势比较后产生微弱差值信号,此信号被测量仪表系统放大并推动电表指针 变化从而指示当前风速或经过单片机处理后通过显示屏显示当前风速数值。 1.4.2 恒温式热线风速计 风速仪热线的温度保持不变,给风速敏感元件电流可调,在不同风速下使处于不同热平衡状态的风速敏感元件的工作温度基本维持不便,即阻值基本恒定,该敏感元件所消耗的功率为风速的函数。 恒温风速仪则是利用反馈电路使风速敏感元件的温度和电阻保持恒定。当风速变化时热敏感元件温度发生变化,电阻也随之变化,从而造成热敏感元件两端电压发生变化,此时反馈电路发挥作用,使流过热敏感元件的电流发生相应的变化,而使系统恢复平衡。

测温仪原理

红外测温原理简介 红外测温仪分类 红外测温仪通过物体发出的红外辐射能量大小来确定物体的温度。理论上讲,任何高于绝对零度的物体都能发出红外辐射能量。红外测温仪按测量波长的多少可分为单色测温仪、双色测温仪、多色测温仪。 单色红外测温仪原理 目前市场上的单色测温仪,多为窄波段测温仪。它的测温原理是通过物体某一狭窄波长范围内发生的辐射能量,来决定温度的大小。测温仪测量的是一个区域内的平均温度,测量值受发射率、镜头的污染以及背景辐射的影响。 物体发出辐射能量的大小与发射率有一定关系。发射率越大,物体发出的红外线能量越大。物体的发射率与物体表面的状态有一定关系,表面的粗糙度、亮暗程度、不同材质都会影响发射率。所以在使用单色测温仪时,常会有一张不同材质的发射率表。 (2)双色测温仪原理 不同大气窗口下,选用的探测器类型 窗口1 Si (硅) 窗口2 Ge (锗)InGaAs (铟镓砷) 窗口3 PbS(硫化铅) ExInGaAs (扩展型铟镓砷) 窗口4 PbSe(硒化铅) Thermopile (热电堆) 窗口5 Thermopile (热电堆) 窗口6 发射率变化、镜头的污染以及背景辐射的影响,与波长的选择有关系。选择特殊波长范围 的测温仪,能够使单色测温仪尽量克服传输介质的干扰。比如水蒸汽、各种气体等其它物质的影响。选择短波长测温,可以使红外测温仪受发射率的影响降到最低。长波长测温仪通常用来测量 低于200℃的目标或特殊介质的测量。

双色红外测温原理 比色测温仪又称双色测温仪。它是利用邻近通道两个波段红外辐射能量的比值来决定温度的大小。比值与温度的关系是线性的,这是由探测器的性能决定的。 双色测温仪能够消除水汽、灰尘、检测目标大小变化、部分被遮挡、发射率变化等的影响,双色测温仪测量绝大数灰体材料时不需要修正双色系数,双色测温仪测量一个区域内最高温度的平均值。 思捷光电的双色红外测温仪可以克服严重水汽、灰尘、检测目标大小变化、部分被遮挡、发射率变化等的影响,即使检测信号衰减95%,也不会对测温结果有任何影响。软、硬件设计适用于一百万倍信号动态范围的可靠检测,满足用户对仪器的精度和分辨率等要求。 双色测温仪与单色测温仪比较的优势 双色测温不会随物体表面的状态而变化(表面粗糙度不一样、或表面的化学状态不一样),不会影响测温的准确性,而单色测温仪就会有影响。

温度检测电路工作原理及各器件的参数

温度检测电路工作原理及各器件的参数 在空调整机上,常用到温度传感器检测室内、外环境温度和两器盘管温度,下面根据常用温度检测电路介绍其工作原理及注意事项。 1.电路原理图 2. 工作原理简介温度传感器RT1(相当于可变电阻)与电阻R9形成分压,则T端电压为:5×R9/(RT1+R9);温度传感器RT1的电阻值随外界温度的变化而变化,T端的电压相应变化。RT1在不同的温度有相应的阻值,对应T端有相应的电压值,外界温度与T端电压形成一一对应的关系,将此对应关系制成表格,单片机通过A/D采样端口采集信号,根据不同的A/D值判断外界温度。 3. 各元器件作用及注意事项3.1 RT1与R9组成分压电路,R9又称标准取样电阻,该电阻不可随意替换,否则会影响控温精度。 3.2 D7与D8为钳位二极管,确保输入T端电压不大于+5V、不小于0V;但并不是所有情况下均需要这两个二极管,当RT1引线较短时可根据实际情况不使用这两个二极管。 3.3 E5起到平滑波形的作用, 一般选10uF/16V电解电容,当RT1引线较长时,要求使用100uF/16V电解电容;若E5漏电,T端电压就会被拉低,导致:制冷时压缩机不工作,制热时压缩机不停机。 3.4 R11和C7形成RC滤波电路,滤除电路中的尖脉冲;C7同样会出现E5故障现象。 3.5 电路中,RT1就是我们常说的感温头,实际上它是一个负温度系数热敏电阻,当温度升高时它的阻值下降,温度降低时阻值变大。50℃时,阻值为3.45KΩ。25℃时,为10KΩ;0℃时,为35.2KΩ 。

具体温度与阻值的关系见附表。若RT1开路或短路,空调器不工作,并显示故障代码;若RT1阻值发生漂移(大于或小于标准阻值)则空调器压缩机或关或常开或出现保护代码。空调温度传感器原理及故障分析空调温度传感器为负温度系数热敏电阻,简称NTC,其阻值随温度升高而降低,随温度降低而增大。25℃时的阻值为标称值。NTC常见的故障为阻值变大、开路、受潮霉变阻值变化、短路、插头及座接触不好或漏电等,引起空调CPU检测端子电压异常引起空调故障。空调常用的NTC有室内环温NTC、室内盘管NTC、室外盘管NTC等三个,较高档的空调还应用外环温NTC、压缩机吸气、排气NTC等。NTC在电路中主要有如图一所示两种用法,温度变化使NTC阻值变化,CPU端子的电压也随之变化,CPU根据电压的变化来决定空调的工作状态。本文附表为几种空调的NTC参数。室内环温NTC作用:室内环温NTC根据设定的工作状态,检测室内环境的温度自动开停机或变频。定频空调使室内温度温差变化范围为设定值+1℃,即若制冷设定24℃时,当温度降到23℃压缩机停机,当温度回升到25℃压缩机工作;若制热设定24℃时,当温度升到25℃压缩机停机,当温度回落到23℃压缩机工作。值得说明的是温度的设定范围一般为15℃—30℃之间,因此低于15℃的环温下制冷不工作,高于30℃的环温下制热不工作。变频空调根据设定的工作温度和室内温度的差值进行变频调速,差值越大压缩机工作频率越高,因此,压缩机启动以后转速很快提升。室内盘管NTC 室内盘管制冷

红外测温仪使用指南2

红外测温仪使用指南 红外测温仪是一种非接触式测温仪器,通过吸收被测物体发出的红外辐射来测量其温度。可1秒快速测温,达到快速筛查体温异常的目的,并防止交叉传染。 [种类] ●红外人体表面温度快速筛检仪 (红外筛检仪) 多点测温图像识别追踪,适用于机场口岸、地铁、车站、码头、医院等人流密集的场合,用于体温异常人员的快速筛查。 ●红外体表温度计(红外额温计) 适用于企事业单位、住宅、社区等人流较少的场合,适合移动巡检,目前大量应用于防疫控制中。 ●红外耳温计 通过耳腔和鼓膜测量体温,适用于家庭、个人及严格消毒的医院非发热普通门诊。 [准确性] 红外耳温计>红外额温计>红外筛检仪 [使用须知] ●红外筛检仪 1、通电预热,与环境达到热平衡后再使用; 2、避免强电磁干扰,无较大的气流,环境条件应保持恒定,温度不应有较大变化; 3、当被测者来自与测量环境温度差异较大时,建议等候(5~10)分钟,两者达到热平衡后再测量为佳; 4、保持设备的探测镜头干净整洁,避免触碰损伤镜头,影响测量准确性。 ●红外额温计 1、使用前确认“体温”测量模式; 2、保持额温计在(16~35)℃之间工作,使用时应避免阳光直晒和环境热辐射,额温计、被测者和环境温度保持热平衡为佳; 3、额温计应垂直于额头中心、眉心上方,其距离按说明书规定的要求一般为3~5cm,如未说明的按照3cm距离测量,不能紧贴被测者额头; 4、被测者前额应无水迹、汗渍、无化妆品,无帽子、毛发等遮挡物; 5、严格按照使用说明书进行操作。

●红外耳温计 1、测量前保持耳道清洁,清理耳垢等污物; 2、测量时对准耳道和鼓膜中心位置,不偏不移; 3、耳温计须配备一次性卫生耳套使用,避免多人使用交叉感染; 4、严格按照仪器使用说明书进行操作。 [遇到红外额温计数值不准怎么办?] 1、确认是否选择“体温”模式; 2、防止额温计长时间暴露在低温环境,一般不超过3分钟,要采取适当保温措施; 3、测量多次取平均值,一般两次测量数据之差不超过0.3℃; 4、人员长时间在寒冷环境下会导致额温偏低,可转移至温暖环境中复测; 5、如出现较大误差或异常情情况时,可用玻璃体温计或电子体温计核查进行数据修正。 ●简易修正方法: 第一步:在相同环境条件下,同时用玻璃体温计(或电子体温计)和红外额温计测量多名健康人员的体温,可测量多次,分别记录玻璃体温计(或电子体温计)和红外额温计测量平均值,两者的差距为修正值; 第二部:使用红外额温计测量时,测量值加上修正值即为人员体温。 [温馨提示] 1、红外测温仪可用于初筛,一旦发现体温异常,应使用经玻璃体温计或医用电子体温计进行二次确认,作为诊断最终依据。 2、如发现红外测温仪数据误差大、示值重复性差、性能不稳定的,则建议停止使用,送计量技术机构校准,并结合校准数据使用,以减少测量误差。 3、测量前20~30分钟要避免剧烈运动、进食、喝酒、喝冷水或热水、冷敷或热敷。测量时须严格按照仪器使用说明执行。

温度测量方法

材料物理专业杨洁学号:0743011033 温度测量方法材料物理专业一班杨洁学号:0743011033 我们大家都知道温度是表征物体冷热程度的物理量. 而测量温度的标尺是温度计,其按照测量方式可以分为接触式和非接触式两种. 通常来说的接触式测量仪表比较简单,可靠,测量精度高,但是因为测温元件与被测介质需要进行充分的热交换,所以其需要一定的时间才能达到热平衡, 所以,存在测温延迟现象,同时受耐高温和耐低温材料的限制,不能应用于这些极端的温度测量.非接触式仪表测温仪是通过热辐射的原理来测量温度的,测温元件不需要与被测介质接触,测温范围广,不受测温上限的限制,也不会破坏被测物体的温度场,反应速度一般也比较快;但受到物体发射率,测量距离,烟尘和水汽等外界因素的影响,其测量误差较大. 下面就简单介绍几种温度计: 1,气体温度计:利用一定质量的气体作为工作物质的温度计.用气体温度计来体现理想气体温标为标准温标. 用气体温度计所测得的温度和热力学温度相吻合.气体温度计是在容器里装有氢或氮气(多用氢气或氦气作测温物质,因为氢气和氦气的液化温度很低,接近于绝对零度,故它的测温范围很广) ,它们的性质可外推到理想气体.这种温度计有两种类型:定容气体温度计和定压气体温度计.定容气体温度计是气体的体积保持不变,压强随温度改变.定压气体温度计是气体的压强保持不变,体积随温度改变. 2,电阻温度计:根据导体电阻随温度而变化的规律来测量温度的温度计. 最常用的电阻温度计都采用金属丝绕制成的感温元件, 主要有铂电阻温度计和铜电阻温度计,在低温下还有碳,锗和铑铁电阻温度计.精密的铂电阻温度计是目前最精确的温度计,温度覆盖范围约为14~903K,其误差可低到万分之一摄氏度,它是能复现国际实用温标的基准温度计.我国还用一等和二等标准铂电阻温度计来传递温标,用它作标准来检定水银温度计和其他类型的温度计.分为金属电阻温度计和半导体电阻温度计,都是根据电阻值随温度的变化这一特性制成的.金属温度计主要有用铂,金,铜,镍等纯金属的及铑铁,磷青铜合金的;半导体温度计主要用碳,锗等.电阻温度计使用方便可靠,已广泛应用.它的测量范围为-260℃至600℃左右. 3,温差电偶温度计:利用温差电偶来测量温度的温度计.将两种不同金属导体的两端分别连接起来,构成一个闭合回路,一端加热,另一端冷却,则两个接触点之间由于温度不同,将产生电动势,导体中会有电流发生.因为这种温差电动势是两个接触点温度差的函数,所以利用这一特性制成温度计.若在温差电偶的回路里再接入一种或几种不同金属的导线, 所接入的导线与接触点的温度都是均匀的,对原电动势并无影响,通过测量温差电动势来求被测的温度,这样就构成了温差电偶温度计.这种温度计测温范围很大.例如,铜和康铜构成的温差电偶的测温范围在200~400℃之间;铁和康铜则被使用在200~1000℃之间;由铂和铂铑合金(铑10%)构成的温差电偶测温可达千摄氏度以上;铱和铱铑(铑50%)可用在2300℃;若用钨和钼(钼25%)则可高达2600℃. 4,高温温度计:是指专门用来测量500℃以上的温度的温度计,有光测温度计,比色温度计和辐射温度计.高温温度计的原理和构造都比较复杂,这里不再讨论.其测量范围为500℃至3000℃以上,不适用于测量低温. 2010-3-25 1 材料物理专业杨洁学号:0743011033 5,指针式温度计:是形如仪表盘的温度计,也称寒暑表,用来测室温,是用金属的热胀冷缩原理制成的.它是以双金属片做为感温元件,用来控制指针. 双金属片通常是用铜片和铁片铆在一起,且铜片在左,铁片在右.由于铜的热胀冷缩效果要比铁明显的多,因此当温度升高时,铜片牵拉铁片向右弯曲,指针在双金属片的带动下就向右偏转(指向高温) ;反之,温度变低,指针在双金属片的带动下就向左偏转(指向低温) . 6,玻璃管温度计:玻璃管液体温度计是应用最广泛的一种温度计,其结构简单,使用方便,准确度高,价格低廉.按用途分类,可分为工业,标准和实验室用三种.标准玻璃温度计是成套供应的,可以作为检定其他温度计用,准确度可达0.05 ~ 0.1 摄氏度;工业用玻璃温度计为了避免使用是被碰碎,在玻璃管外通常由金属保护套管,仅露出标尺部分,供操作人员读数.实验室用的玻璃管温度计的形式和标准的相仿,准确度也较高. 7,压力式温度计:新一代液体压力式温度计以及由此开发的系列化测温仪表,克服了原仪表性能单一,可靠性差以及温包积大的缺点,并将测温元件体积缩小到原

热电偶测温基本原理

1.热电偶测温基本原理 将两种不同材料的导体或半导体A和B焊接起来,构成一个闭合回路。当导体A和B 的两个执着点1和2之间存在温差时,两者之间便产生电动势,因而在回路中形成一个大小的电流,这种现象称为热电效应。热电偶就是利用这一效应来工作的。 A,B 两种导体,一端通过焊接形成结点,为工作端,位于待测介质。另一端接测温仪表,为参考端。为更好地理解下面的内容,我们将以上测温回路中形成的热电动势表示为EAB(T1,T0),理解为:A、B两种导体组成的热电偶,工作端温度为T1,参考端温度为T0,形成的热电动势为EAB(T1,T0)。 需要特别强调的是:热电偶测温,归根结底是测量热电偶两端的热电动势。测量仪表能够让我们看到温度数值,是因为它已经将热电动势转换成了温度。 图中,工作端温度T1, A、B与C、D连接处温度为T2,测量仪表端(参考端)温度为T0。 我们可以把总回路的总电动势E 分成两段热电动势的和,即A、B为一段,热电动势为EAB(T1,T2),C、D为另一段,热电动势为ECD(T2,T0), 即: E= EAB(T1,T2)+ ECD(T2,T0) (热电偶中间导体定律) (1)

在上图中,如果C、D的材质和A、B完全一样,即C即为A,D即为B,相当于热电偶A、B 在T2(中间温度)处产生了一个连接点,此时,回路总电势为: E= EAB(T1,T2)+ EAB(T2,T0)= EAB(T1,T0) (热电偶中间温度定律) (2) 从式(2)我们可以看出,只要是相同的热电偶,中间产生了连接点,则总电势与连接点的温度(中间温度)无关,而只与工作端和参考端的温度有关。这正是我们希望得到的。我们在热电偶布线中,不需要考虑中间有没有连接点,也不需要考虑连接点的温度,而是和一根热电偶连接到介质和测量仪表一样。 再来比较式(2)和式(1)。如果我们能找到某种材料C、D,它能满足: ECD(T2,T0)= EAB(T2,T0) (3) 则式(1)成为: E= EAB(T1,T2)+ ECD(T2,T0)= EAB(T1,T2)+ EAB(T2,T0)= EAB(T1,T0) (4) 满足式(3)的材料C、D我们称为热电偶A、B的补偿导线。 式(4)还告诉我们,使用了补偿导线,我们将T2延伸到了T0,但最后我们的测量结果与T2无关,这样我们也可以理解为,因为我们使用了导线C、D,是它补偿了T2处连接所产生的附加电势,而使得我们最终测量不需要再考虑T2,这也是C、D为什么叫补偿导线的原因, 2.热电偶冷端的温度补偿 由于热电偶的材料一般都比较贵重(特别是采用贵金属时),而测温点到仪表的距离都很远,为了节省热电偶材料,降低成本,通常采用补偿导线把热电偶的冷端(自由端)延伸到温度比较稳定的控制室内,连接到仪表端子上。必须指出,热电偶补偿导线的作用只起延伸热电极,使热电偶的冷端移动到控制室的仪表端子上,它本身并不能消除冷端温度变化对测温的影响,不起补偿作用。因此,还需采用其他修正方法来补偿冷端温度t0≠0℃时对测温的影响。 在使用热电偶补偿导线时必须注意型号相配,极性不能接错,补偿导线与热电偶连接端的温度不能超过100℃。

传感器原理与应用习题第7章热电式传感器

《传感器原理与应用》及《传感器与测量技术》习题集与部分参考答案 教材:传感器技术(第3版)贾伯年主编,及其他参考书 第7章热电式传感器 7-1 热电式传感器有哪几类?它们各有什么特点? 答:热电式传感器是一种将温度变化转换为电量变化的装置。它可分为两大类:热电阻传感器和热电偶传感器。 热电阻传感器的特点:(1)高温度系数、高电阻率。(2)化学、物理性能稳定。(3)良好的输出特性。(4).良好的工艺性,以便于批量生产、降低成本。 热电偶传感器的特点:(1)结构简单(2)制造方便(3)测温范围宽(4)热惯性小(5)准确度高(6)输出信号便于远传 7-2 常用的热电阻有哪几种?适用范围如何? 答:铂、铜为应用最广的热电阻材料。铂容易提纯,在高温和氧化性介质中化学、物理性能稳定,制成的铂电阻输出-输入特性接近线性,测量精度高。铜在-50~150℃范围内铜电阻化学、物理性能稳定,输出-输入特性接近线性,价格低廉。当温度高于100℃时易被氧化,因此适用于温度较低和没有侵蚀性的介质中工作。 7-3 热敏电阻与热电阻相比较有什么优缺点?用热敏电阻进行线性温度测量时必须注意什么问题? 7-4 利用热电偶测温必须具备哪两个条件? 答:(1)用两种不同材料作热电极(2)热电偶两端的温度不能相同 7-5 什么是中间导体定律和连接导体定律?它们在利用热电偶测温时有什么实际意义? 答:中间导体定律:导体A、B组成的热电偶,当引入第三导体时,只要保持第三导体两端温度相同,则第三导体对回路总热电势无影响。利用这个定律可以将第三导体换成毫伏表,只要保证两个接点温度一致,就可以完成热电势的测量而不影响热电偶的输出。 连接导体定律:回路的总电势等于热电偶电势E AB(T,T0)与连接导线电势E A’B’(Tn,T0)的代数和。连接导体定律是工业上运用补偿导线进行温度测量的理论基础。 7-6 什么是中间温度定律和参考电极定律?它们各有什么实际意义? 答:E AB(T,Tn,T0)=E AB(T,Tn)+E AB(Tn,T0) 这是中间温度定律表达式,即回路的总热电势等于E AB(T,Tn)与E AB(Tn,T0)的代数和。Tn为中间温度。中间温度定律为制定分度表奠定了理论基础。 7-7 镍络-镍硅热电偶测得介质温度800℃,若参考端温度为25℃,问介质的实际温度为多少? 答:t=介质温度+k*参考温度(800+1*25=825) 7-8 热电式传感器除了用来测量温度外,是否还能用来测量其他量?举例说明之。 7-9 实验室备有铂铑-铂热电偶、铂电阻器和半导体热敏电阻器,今欲测量某设备外壳的温度。已知其温度约为300~400℃,要求精度达±2℃,问应选用哪一种?为什么?

红外测温仪操作使用方法

红外测温仪操作使用法 1.操作测温仪 测温仪会在按下扳机或按下黄色键时打开。若连续8秒钟没有检测到活动,测温仪会自动关闭。测量温度时,将测温仪瞄准目标,拉起并保持扳机按下不动。松开扳机以保持温度读数。一定要考虑距离与光点尺寸比以及视场。激光仅用于瞄准目标物体。 1)找出热点或冷点 要找出热点或冷点,将测温仪瞄准目标区域之外。然后,缓慢地上下移动以扫描整个区域,直到找到热点或冷点为止。见图 5。 图5 找出热点或冷点 2)距离与光点尺寸 随着与被测目标距离(D)的增大,仪器所测区域的光点尺寸(S)变大。光点尺寸表示 90 % 圆能量。当测温仪与目标之间的距离为 1000 mm(100 in),产生 20 mm(2 in)的光点尺寸时,即可取得最大 D:S。见图 6。 图6 距离与光点尺寸

3)视场 要确保目标大于光点的大小。目标越小,则应离它越近。(见图7) 图7 视场 4)发射率 发射率表征的是材料能量辐射的特征。大多数有机材料和涂漆或氧化处理表面的发射率大约为。如果可能,可用遮蔽胶带或无光黑漆(< 150 ℃/302℉)将待测表面盖住并使用高发射率设置,补偿测量光亮的金属表面可能导致的错误读数。等待一段时间,使胶带或油渍达到与下面被覆盖物体的表面相同的温度。测量盖有胶带或油漆的表面温度。 如果不能涂漆或使用胶带,可使用发射率选择器来提高您的测量准确度。即使是使用发射率选择器,对带有光亮或金属表面的目标也很难取得完全准确的红外测量值。 5)用户设置操作 SET键:循环切换设置状态,循环次序为发射率设定锁定测量设定℃/℉选择设定正常测量。按黄色键可直接保存设置并退出。 6)发射率设定 此功能为改变发射率的值。 设定时“E=0.”字样闪烁。 单击▲递加,长按快速增加,当加到后停止。 单击▼递减,长按快速减少,当减到后停止。 可根据不同被测物体设置相应的发射率。请参见表2。表所列的发射率设置为对典型情况的建议。您的特定情况可能有所不同。 7)锁定测量设定 此功能设定锁定测量打开或关闭,锁定测量打开后,无需抠扳机仪表保持正常测量;锁定测量关闭后,用户抠住扳机仪表正常测量,放开扳机仪表自动保持测量结果。设定时屏幕下显示“SET”及“on”或“oFF”。单击▲/▼循环选择“on” /“oFF”。 8)℃/℉选择设定 此功能选择仪表显示℃或℉。 设定时屏幕下显示“SET”。 单击▲/▼循环选择“℃”/ “℉”。 9)HAL限值设定 此功能为设定高限值操作,测量时温度高过此值时连续蜂鸣报警。 按黄色键切换至屏幕下显示“HAL”字样,单击▲递增,长按快速增加,当

相关文档
最新文档