蛋白质结构解析六十年来大事件

蛋白质结构解析六十年来大事件
蛋白质结构解析六十年来大事件

蛋白质结构解析六十年来大事件

在1958年,英国科学家John Kendrew和Max Perutz首先发表了用X射线衍射得到的高分辨率的肌红蛋白Myoglobin的三维结构,然后是更加复杂的血红蛋白Hemoglobin。因此,这两个科学家分享了1962年的诺贝尔化学奖。事实上,这项工作在早在1937年就开始了。

然后在1960年代,蛋白质结构解析方法不断进步,获得了更高的解析精度。这个时期,蛋白质序列和DNA序列间关系也被发现,中心法则被Francis Crick提出,然后科学界见证了分子生物学的崛起。分子生物学(Molecular Biology)的名称在1962年开始被广泛接受和使用,并逐渐演变出一些支派,如结构生物学。然后在1964年,Aaron Klug提出了一种基于X射线衍射原理发展而来的全新的方法电子晶体学显微镜(crystallographic electron microscopy),可以解析更大蛋白质或者蛋白质核酸复合体结构。因为这项研究,他获得了1982诺贝尔化学奖。1969年,Benno P.Schoenborn提出可以用中子散射和原子核散射来确定大分子中固定位置的氢原子坐标。

进入1970年代,很多新的方法开始发展。存储蛋白质三维结构的Protein Data Bank(1971年)开始出现,这对于规范化和积累蛋白质数据有着重要意义。1975年新的一种仪器叫做多丝区域检测器,让X-ray的检测和数据收集更加快速高效。次年,Robert Langride 将X-ray衍射数据可视化,并在加州大学圣地亚哥分校成立了一个计算机图形实验室。同年,KeithHodgson和同事首次证明了可以使用同步加速器获得的X射线并对单个晶体进行照射,并取得了很好的实验效果。然后在1978年,核磁共振NMR首次被用于蛋白质结构的解析;同年首个高精度病毒(西红柿丛矮病毒)衣壳蛋白结构被解析。

在1980年代,更多蛋白质结构被解析,蛋白质三维结构的描述越来越成熟,而且蛋白质结构解析也被公认成为药物研发的关键步骤。在1983年,冷冻蚀刻的烟草花叶病毒结构在电子显微镜结构下得到描述。两年后德国科学家John Deisenhofer等解析出了细菌光合反应中心,因此他们共享了1988年的诺贝尔化学奖。次年,两个课题组解析了HIV与复制相关的蛋白酶结构,对针对HIV的药物研发提供了理论基础。

下一个十年,因为大量同步加速器辅助的X射线衍射的使用,数千个蛋白质结构得到解析,迎来了蛋白质结构组的曙光。1990年多

波长反常散射方法(MAD)方法用于X射线衍射晶体成像,与同步辐射加速器一起,成为了近二十多年来的最常用的的方法。Rod MacKinnon在199年发表了第一个高精度的钾离子通道蛋白结构,对加深神经科学的理解起了重要作用,因此他分享了2003年的诺贝尔化学奖。Ada Yonath等领导的课题组在1999年首次解析了核糖体结构(一种巨大的RNA蛋白质复合体)。

进入新千年,更多的技术细节被加入到蛋白质解析研究领域。2001年,Roger Kornberg和同事们描述了第一个高精度的RNA聚合酶三维结构,正因此五年后他们共享了诺贝尔化学奖。2007年,首

个G蛋白偶联受体结构的解析更是对药物研究带了新的希望。近些年来,越来越多的大的蛋白质结构得到解析。Cryo-EM超低温电子显微镜成像用于超大蛋白质结构成像的研究日益成熟,并开始广泛用于蛋白质结构的解析。

蛋白质结构解析的常用实验方法

1.X-ray衍射晶体学成像

X射线衍射晶体学是最早用于结构解析的实验方法之一。X射线是一种高能短波长的电磁波(本质上属于光子束),被德国科学家伦琴发现,故又被称为伦琴射线。理论和实验都证明了,当X射线打击在分子晶体颗粒上的时候,X射线会发生衍射效应,通过探测器收集这些衍射信号,可以了解晶体中电子密度的分布,再据此析获得粒子的位置信息。利用这种特点,布拉格父子研制出了X射线分光计并测定了一些盐晶体的结构和金刚石结构。首个DNA结构的解析便是利用X射线衍射晶体学获得的。

后来,获得X射线来源的技术得到了改进,如今更多地使用同步辐射的X射线源。来自同步辐射的X射线源可以调节射线的波长和很高的亮度,结合多波长反常散射技术,可以获得更高精度的晶体结构数据,也成为了当今主流的X射线晶体成像学方法。由X射线衍射晶体学解析的结构在RCSB Protein Data Bank中占到了88%。

X射线衍射成像虽然得到了长足的发展,仍然有着一定的缺点。X射线对晶体样本有着很大的损伤,因此常用低温液氮环境来保护生物大分子晶体,但是这种情况下的晶体周围环境非常恶劣,可能会对晶体产生不良影响。而且,X射线衍射方法不能用来解析较大的蛋白质。

上海同步辐射加速器外景

2.NMR核磁共振成像

核磁共振成像NMR全称Nuclear magnetic resonance,最早在1938被Isidor Rabi(1946年诺贝尔奖)描述,在上世纪的后半叶得到了长足发展。其基本理论是,带有孤对电子的原子核(自选量子数为1)在外界磁场影响下,会导致原子核的能级发生塞曼分裂,吸收并释放电磁辐射,即产生共振频谱。这种共振电磁辐射的频率与所处磁场强度成一定比例。利用这种特性,通过分析特定原子释放的电磁辐射结合外加磁场分别,可以用于生物大分子的成像或者其他领域的成像。有些时候,NMR也可以结合其他的实验方法,比如液相色谱或者质谱等。

RCSB Protein Data Bank数据库中存在大约11000个用NMR解析的生物大分子结构,占到总数大约10%的结构。NMR结构解析多是在溶液状态下的蛋白质结构,一般认为比起晶体结构能够描述生物大分子在细胞内真实结构。而且,NMR结构解析能够获得氢原子的结构位置。然而,NMR也并非万能,有时候也会因为蛋白质在溶液中结构

不稳定能难得获取稳定的信号,因此,往往借助计算机建模或者其他方法完善结构解析流程。

使用NMR解析的血红蛋白结构建模

3.Cryo-EM超低温电子显微镜成像

电子显微镜最早出现在1931年,从设计之初就是为了试图获得高分辨率的病毒图像。通过电子束打击样本获得电子的反射而获取样本的图像。而图像的分辨率与电子束的速度和入射角度相关。通过加速的电子束照射特殊处理过的样品表明,电子束反射,并被探测器接收,并成像从而获得图像信息。具体做法是,将样品迅速至于超低温(液氮环境)下并固定在很薄的乙烷(或者水中),并置于样品池,在电子显微镜下成像。图像获得后,通过分析图像中数量众多的同一种蛋白质在不同角度的形状,进行多次的计算机建模从而可以获得近原子级别的精度(最低可以到2.0埃)。

Cyro-EM解析TRPV1离子通道蛋白

将电子显微镜和计算机建模成像结合在一起的大量实践还是在新世纪之后开始流行的。随着捕捉电子的探测器技术(CCD技术,以及后来的高精度电子捕捉、电子计数electron counting设备)的提升,更多的信息和更低的噪音保证了高分辨率的图像。

近些年来,Cryo-EM被用来解析很多结构非常大(无法用X-ray 解析)的蛋白质(或者蛋白质复合体),取得了非常好的结果。同时,单电子捕捉技术取代之前的光电转换成像的CCD摄像设备,减少了图像中的噪音和信号衰减,同时并增强了信号。计算机成像技术的成熟和进步,也赋予了Cryo-EM更多的进步空间。然而,Cyro-EM与X-ray 不同,该方法不需要蛋白质成为晶体,相同的是都需要低温环境来减少粒子束对样品的损害。

除去介绍的这三种方法以外,计算机建模技术也越来越多地被用

在了蛋白质结构解析中。而且新解析的结构也会提高计算机建模的精

确度。未来,我们或许能够用计算机构建原子级别的细胞模型,构建在芯片上的细胞。

蛋白质结构对了解生命体的生化反应、有针对性的药物研发有着重要意义。从1958到如今已经接近60年,蛋白质结构解析得到了较快的发展。然而,在如今DNA测序如此高效廉价的时代,蛋白质和DNA结构解析并没有进入真正高速发展阶段,这也导致了在如此多的DNA序列数据非常的今天,结构数据却相对少的可怜。大数据时代的基因组、蛋白质组、代谢组、脂类组等飞速发展的时候,蛋白质结构组也得到了更加广泛的重视。发展高精度、高效的结构解析技术也一直都有着重要意义。未来,蛋白质结构解析,对针对蛋白质的药物筛选,和计算机辅助的药物研究研究不应被低估。未来说不定在蛋白质结构领域有着更多惊喜,让我们拭目以待。

第九章蛋白质分解答案

第九章蛋白质分解答案 名词解释 1.必需氨基酸:指体内需要,但人体本身不能合成或合成速度不足以满足需要,必须由食物蛋白质提供的氨基酸。 2. 蛋白质的营养互补作用:把几种营养价值较低的蛋白质混合食用,使所含的必需氨基酸在组成上能相互补充,从而提高蛋白质营养价值的作用,称为蛋白质的营养互补作用。 3. 一碳单位:某些氨基酸在分解代谢中,可产生含有一个碳原子的有机基团,称为一碳单位错误!未找到引用源。或一碳基团。 4. 蛋白质腐败作用:肠道细菌对那些残余的蛋白质、多肽及未被吸收的氨基酸所起的分解作用,称为蛋白质的腐败作用 简答题 1. 尿素循环是维持血氨低浓度的关键。当肝功能严重损伤时,尿素循环发生障碍,血氨浓度升高,称为高氨血症。一般认为,氨进入脑组织,可与α-酮戊二酸结合成谷氨酸,谷氨酸又与氨进一步结合生成谷氨酰胺,从而使α-酮戊二酸和谷氨酸减少,导致三羧酸循环减弱,从而使脑组织中ATP减少。谷氨酸本身为神经递质,且是另一种神经递质γ-氨基丁酸(GABA)的前体,其减少亦会影响大脑的正常生理功能,严重时可出现昏迷,这就是肝昏迷的氨中毒学说。 2. 体内游离氨基酸构成氨基酸代谢池,代谢池的氨基酸由三种来源:①食物蛋白质消化吸收;②组织蛋白质分解;③体内合成非必需氨基酸。氨基酸的去路有:①合成组织蛋白质;②转变成多种由特殊生理功能的其它含氮化合物,如肾上腺素、黑色素、甲状腺激素、血红素、嘌呤和嘧啶等;③分解代谢。 3. 一碳单位的主要功能,是作为合成嘌呤核苷酸和嘧啶核苷酸的原料,在核酸的生物合成中起重要作用。故一碳单位代谢与细胞增殖、组织生长等过程密切相关。 一碳单位还参与体内许多甲基化反应过程,如卵磷脂的合成。 一碳单位代谢是将氨基酸分解代谢与核酸生物合成及其他代谢密切联系的纽带,对人体的生命活动有重要意义。

蛋白质结构解析的方法对比综述 (1)

蛋白质结构解析的方法对比综述 工程硕士李瑾 摘要:到目前为止,蛋白质结构解析的方法主要是两种,x射线衍射法和NMR法,这两种方法各有优点和不足。 关键词:x射线衍射法 NMR法 到目前为止,蛋白质结构解析的方法主要是两种,x射线衍射法和NMR法。其中X射线的方法产生的更早,也更加的成熟,解析的数量也更多,第一个解析的蛋白的结构,就是用x晶体衍射的方法解析的。而NMR方法则是在90年代才成熟并发展起来的。这两种方法各有优点和不足[1]。 首先是X射线晶体衍射法。该方法的前提是要得到蛋白质的晶体。通常是将表达目的蛋白的基因经PCR扩增后克隆到一种表达载体中,然后转入大肠杆菌中诱导表达,目的蛋白提纯之后摸索结晶条件,等拿到晶体之后,将晶体进行x射线衍射,收集衍射图谱,通过一系列的计算,得到蛋白质的原子结构[2]。 x射线晶体衍射法的优点是:速度快,通常只要拿到晶体,最快当天就能得出结构,另外不受肽链大小限制,无论是多大分子量的蛋白质或者RNA、DNA,甚至是结合多种小分子的复合体,只要能够结晶就能够得到其原子结构。所以x射线方法解析蛋白的关键是摸索蛋白结晶的条件。该方法得到的是蛋白质分子在晶体状态下的空间结构,这种结构与蛋白质分子在生物细胞内的本来结构有较大的差别。晶体中的蛋白质分子相互间是有规律地、紧密地排列在一起的,运动性较差;而自然界的生物细胞中的蛋白质分子则是处于一种溶液状态,周围是水分子和其他的生物分子,具有很好的运动性。而且,有些蛋白质只能稳定地存在于溶液状态,无法结晶[2]。 核磁共振NMR(nuclear magnetic resonance)现象很早就被科研人员观察到了,但将这种方法用来解析蛋白质结构,却是近一二十年的事情。NMR法具体原理是对水溶液中的蛋白质样品测定一系列不同的二维核磁共振图谱,然后根据已确定的蛋白质分子的一级结构,通过对各种二维核磁共振图谱的比较和解析,在图谱上找到各个序列号氨基酸上的各种氢原子所对应的峰。有了这些被指认的峰,就可以根据这些峰在核磁共振谱图上所呈现的相互之间的关系得到它们所对应的氢原子之间的距离。[3]可以想象,正是因为蛋白质分子具有空间结构,在序列上相差甚远的两个氨基酸有可能在空间距离上是很近的,它们所含的氢原子所对应的NMR峰之间就会有相关信号出现[4] 。通常,如果两个氢原子之间距离小于0.5纳米的话,它们之间就会有相关信号出现。一个由几十个氨基酸残基组成的蛋白质分子可以得到几百个甚至几千个这样与距离有关的信号,按照信号的强弱把它们转换成对应的氢原子之间的距离,然后运用计算机程序根据所得到的距离条件模拟出该蛋白质分子的空间结构。该结构既要满足从核磁共振图谱上得到的所有距离条件,还要满足化学上有关原子与原子结合的一些基本限制条件,如原子间的化学键长、键角和原子半径等[4]。 NMR解析蛋白结构常规步骤如下:首先通过基因工程的方法,得到提纯的目的蛋白,在蛋白质稳定的条件下,将未聚合,而且折叠良好的蛋白样品(通常是1mM-3mM,500ul,PH6-7的PBS)装入核磁管中,放入核磁谱仪中,然后由写好的程序控制谱仪,发出一系列的电磁波,激发蛋白中的H、13N、13C原子,等电磁波发射完毕,再收集受激发的原子所放出的“能量”,通过收集数据、谱图处理、电脑计算从而得到蛋白的原子结构[5] [6]。 用NMR研究蛋白质结构的方法,可以在溶液状态进行研究,得到的是蛋白质分子在溶液中的结构,这更接近于蛋白质在生物细胞中的自然状态[7]。此外,通过改变溶液的性质,还可以模拟出生物细胞内的各种生理条件,即蛋白质分子所处的各种环境,以观察这些周围环境的变化对蛋白质分子空间结构的影响。在溶液环境中,蛋白质分子具有与自然环境中类

三种分析蛋白结构域的方法

三种分析蛋白结构域(Domains)的方法 1,SMART入门,蛋白结构和功能分析 SMART介绍 SMART (a Simple Modular Architecture Research Tool) allows the identification and annotation of genetically mobile domains and the analysis of domain architectures. More than 500 domain families found in signalling, extracellular and chromatin-associated proteins are detectable. These domains are extensively annotated with respect to phyletic distributions, functional class, tertiary structures and functionally important residues. Each domain found in a non-redundant protein database as well as search parameters and taxonomic information are stored in a relational database system. User interfaces to this database allow searches for proteins containing specific combinations of domains in defined taxa. For all the details, please refer to the publications on SMART. SMART(,可以说是蛋白结构预测和功能分析的工具集合。简单点说,就是 集合了一些工具,可以预测蛋白的一些二级结构。如跨膜区(Transmembrane segments),复合螺旋区(coiled coil regions),信号肽(Signal peptides),蛋白结构域(PFAM domains)等。 SMART前该知道的 1,SMART有两种不同的模式:normal 或genomic 主要是用的数据库不一样。Normal SMART, 用的数据库 Swiss-Prot, SP-TrEMBL 和 stable Ensembl proteomes。Genomic SMART, 用全基因组序列。详细列表:,一些名词解释 进行时 可以直接用各个数据库蛋白的ID。如Uniprot/Ensembl??ID / Accession number (ACC)。或是直接蛋白序列。运行SMART也可选择signal peptides、PFAM domains等的预测,勾上就是。看下图 SMART结果 运行后的结果用图表表示。其实运行后的结果都有明确的解释。详细请看下面。

蛋白质结构分析原理及工具-文献综述

蛋白质结构分析原理及工具 (南京农业大学生命科学学院生命基地111班) 摘要:本文主要从相似性检测、一级结构、二级结构、三维结构、跨膜域等方面从原理到方法再到工具,系统地介绍了蛋白质结构分析的常用方法。文章侧重于工具的列举,并没有对原理和方法做详细的介绍。文章还列举了蛋白质分析中常用的数据库。 关键词:蛋白质;结构预测;跨膜域;保守结构域 1 蛋白质相似性检测 蛋白质数据库。由一个物种分化而来的不同序列倾向于有相似的结构和功能。物种分化后形成的同源序列称直系同源,它们通常具有相似的功能;由基因复制而来的序列称为旁系同源,它们通常有不同的功能[1]。因此,推测全新蛋白质功能的第一步是将它的序列与进化上相关的已知结构和功能的蛋白质序列比较。表一列出了常用的蛋白质序列数据库和它们的特点。 表一常用蛋白质数据库 网址可能有更新 氨基酸替代模型。进化过程中,一种氨基酸残基会有向另一种氨基酸残基变化的倾向。氨基酸替代模型可用来估计氨基酸替换的速率。目前常用的替代模型有Point Accepted Mutation (PAM)矩阵、BLOck SUbstitution Matrix (BLOSUM)矩阵[2]、JTT模型[3]。 序列相似性搜索工具。序列相似性搜索又分为成对序列相似性搜索和多序列相似性搜索。成对序列相似性搜索通过搜索序列数据库从而找到与查询序列相似的序列。分为局部联配和全局联配。常用的局部联配工具有BLAST和SSEARCH,它们使用了Smith-Waterman 算法。全局联配工具有FASTA和GGSEARCH,基于Needleman-Wunsch算法。多序列相似性搜索常用于构建系统发育树,这里不阐述。表二列举了常用的成对序列相似性比对搜索工具

蛋白质结构与功能的关系

蛋白质结构与功能的关系 蛋白质的结构包括一级结构、二级结构、三级结构、四级结构。 一级结构是蛋白质的一级结构指在蛋白质分子从N-端至C-端的氨基酸排列顺序。一级结构是蛋白质空间构象和特异生物学功能的基础,但不是决定蛋白质空间构象的唯一因素。 蛋白质的二级结构是指多肽链的主链骨架本身在空间上有规律的折叠和盘绕,它是由氨基酸残基非侧链基团之间的氢键决定的。常见的二级结构有α螺旋、三股螺旋、β折叠、β转角、β凸起和无规卷曲。α螺旋中肽链骨架围绕一个轴以螺旋的方式伸展,它可能是极性的、疏水的或两亲的。β折叠是肽链的一种相当伸展的结构,有平行和反平行两种。如果β股交替出现极性残基和非极性残基,那么就可以形成两亲的β折叠。β转角指伸展的肽链形成180°的U形回折结构而改变了肽链的方向。β凸起是由于β折叠股中额外插入一个氨基酸残基而形成的,它也能改变多肽链的走向。无规卷曲是在蛋白质分子中的一些极不规则的二级结构的总称。无规卷曲无固定走向,有时以环的形式存在,但不是任意变动的。从结构的稳定性上看,右手α螺旋>β折叠> U型回折>无规卷曲,但在功能上,酶与蛋白质的活性中心通常由无规卷曲充当,α右手螺旋和β折叠一般只起支持作用。 蛋白质的三级结构是指多肽链在二级结构的基础上,进一步盘绕、卷曲和折叠,形成主要通过氨基酸侧链以次级键以及二硫键维系的完整的三维结构。三级结构通常由模体和结构域组成。稳定三级结构的化学键包括氢键、疏水键、离子键、范德华力、金属配位键和二硫键。模体可用在一级结构上,特指具有特殊生化功能的序列模体,也可被用于功能模体或结构模体,相当于超二级结构。结构模体是结构域的组分,基本形式有αα、βαβ和βββ等。常见的模体包括:左手超螺旋、右手超螺旋、卷曲螺旋、螺旋束、α螺旋-环-α螺旋、Rossmann卷曲和希腊钥匙模体。结构域是在一个蛋白质分子内的相对独立的球状结构和/或功能模块,由若干个结构模体组成的相对独立的球形结构单位,它们通常是独自折叠形成的,与蛋白质的功能直接相关。一个结构域通常由一段连续的氨基酸序列组成。根据其占优势的二级结构元件的类型,结构域可分为五大类:α结构域、β结构域、α/β结构域、α+β 结构域、交联结构域。以上每一类结构域的二级结构元件可能有不同的组织方式,每一种组织就是一种结构模体。这些结构域都有疏水的核心,疏水核心是结构域稳定所必需的。 具有两条和两条以上多肽链的寡聚蛋白质或多聚蛋白质才会有四级结构。组成寡聚蛋白质或多聚蛋白质的每一个亚基都有自己的三级结构。蛋白质的四级结构内容包括亚基的种类、数目、空间排布以及亚基之间的相互作用。驱动四级结构形成或稳定四级结构的作用力包括

基于静态网络的蛋白质复合物预测方法综述

Software Engineering and Applications 软件工程与应用, 2018, 7(3), 151-159 Published Online June 2018 in Hans. https://www.360docs.net/doc/365260580.html,/journal/sea https://https://www.360docs.net/doc/365260580.html,/10.12677/sea.2018.73018 A Survey of Computational Methods for Protein Complexes Prediction Based on Static PPI Networks Yang Yu Software College, Shenyang Normal University, Shenyang Liaoning Received: Jun. 6th, 2018; accepted: Jun. 20th, 2018; published: Jun. 27th, 2018 Abstract Protein complexes are formed by interacting proteins and exhibit diverse biological functions. Protein complexes are predicted by computational methods from biological networks, which is not only important for understanding the mechanisms of biological activities and the pathogenesis of diseases, but also for making up the deficiencies of biological high-throughput experimental methods. In this paper, two types of prediction methods based on static network protein com-plexes are introduced and analyzed. Secondly, we discuss the deficiencies of protein complex al-gorithms and the challenges of this field. Keywords Protein-Protein Interaction Network, Clustering, Complex Prediction, Computational Methods 基于静态网络的蛋白质复合物预测方法综述 于杨 沈阳师范大学,软件学院,辽宁沈阳 收稿日期:2018年6月6日;录用日期:2018年6月20日;发布日期:2018年6月27日 摘要 蛋白质复合物通过相互作用蛋白质形成,表现出多样的生物功能。使用计算方法从生物网络中预测蛋白质复合物不仅对于理解生物活动的机制和疾病的发病机理具有重要意义,而且可以弥补生物高通量实验

生物化学蛋白质的结构与功能试题及答案

第一章蛋白质的结构与功能 [测试题] 一、名词解释:1.氨基酸 2.肽 3.肽键 4.肽键平面 5.蛋白质一级结构 6.α-螺旋 7.模序 8.次级键 9.结构域 10.亚基 11.协同效应 12.蛋白质等电点 13.蛋白质的变性 14.蛋白质的沉淀 15.电泳 16.透析 17.层析 18.沉降系数 19.双缩脲反应 20.谷胱甘肽 二、填空题 21.在各种蛋白质分子中,含量比较相近的元素是____,测得某蛋白质样品含氮量为15.2克,该样品白质含量应为____克。 22.组成蛋白质的基本单位是____,它们的结构均为____,它们之间靠____键彼此连接而形成的物质称为____。 23.由于氨基酸既含有碱性的氨基和酸性的羧基,可以在酸性溶液中带____电荷,在碱性溶液中带____电荷,因此,氨基酸是____电解质。当所带的正、负电荷相等时,氨基酸成为____离子,此时溶液的pH值称为该氨基酸的____。 24.决定蛋白质的空间构象和生物学功能的是蛋白质的____级结构,该结构是指多肽链中____的排列顺序。25.蛋白质的二级结构是蛋白质分子中某一段肽链的____构象,多肽链的折叠盘绕是以____为基础的,常见的二级结构形式包括____,____,____和____。 26.维持蛋白质二级结构的化学键是____,它们是在肽键平面上的____和____之间形成。 27.稳定蛋白质三级结构的次级键包括____,____,____和____等。 28.构成蛋白质的氨基酸有____种,除____外都有旋光性。其中碱性氨基酸有____,____,____。酸性氨基酸有____,____。 29.电泳法分离蛋白质主要根据在某一pH值条件下,蛋白质所带的净电荷____而达到分离的目的,还和蛋白质的____及____有一定关系。 30.蛋白质在pI时以____离子的形式存在,在pH>pI的溶液中,大部分以____离子形式存在,在pH

蛋白质结构解析六十年来大事件

蛋白质结构解析六十年来大事件 在1958年,英国科学家John Kendrew和Max Perutz首先发表了用X射线衍射得到的高分辨率的肌红蛋白Myoglobin的三维结构,然后是更加复杂的血红蛋白Hemoglobin。因此,这两个科学家分享了1962年的诺贝尔化学奖。事实上,这项工作在早在1937年就开始了。 然后在1960年代,蛋白质结构解析方法不断进步,获得了更高的解析精度。这个时期,蛋白质序列和DNA序列间关系也被发现,中心法则被Francis Crick提出,然后科学界见证了分子生物学的崛起。分子生物学(Molecular Biology)的名称在1962年开始被广泛接受和使用,并逐渐演变出一些支派,如结构生物学。然后在1964年,Aaron Klug提出了一种基于X射线衍射原理发展而来的全新的方法电子晶体学显微镜(crystallographic electron microscopy),可以解析更大蛋白质或者蛋白质核酸复合体结构。因为这项研究,他获得了1982诺贝尔化学奖。1969年,Benno P.Schoenborn提出可以用中子散射和原子核散射来确定大分子中固定位置的氢原子坐标。 进入1970年代,很多新的方法开始发展。存储蛋白质三维结构的Protein Data Bank(1971年)开始出现,这对于规范化和积累蛋白质数据有着重要意义。1975年新的一种仪器叫做多丝区域检测器,让X-ray的检测和数据收集更加快速高效。次年,Robert Langride 将X-ray衍射数据可视化,并在加州大学圣地亚哥分校成立了一个计算机图形实验室。同年,KeithHodgson和同事首次证明了可以使用同步加速器获得的X射线并对单个晶体进行照射,并取得了很好的实验效果。然后在1978年,核磁共振NMR首次被用于蛋白质结构的解析;同年首个高精度病毒(西红柿丛矮病毒)衣壳蛋白结构被解析。

蛋白质的结构与功能(含解析)

课时作业(六) [学业水平层次(A)] 1.(2015·济南高一期末)下列物质分子中,不属于构成生物体蛋白质的氨基酸的是( ) 【解析】构成生物体蛋白质的氨基酸必须是有一个氨基和一个羧基连在同一个碳原子上,据此,A、B、C三项的物质分子中都有一个氨基和一个羧基连在同一个碳原子上,而D项是连在不同的碳原子上,因此不属于构成生物体蛋白质的氨基酸。 【答案】 D 2.在活细胞中发生的大多数化学反应中,起重要作用的物质是蛋白质,蛋白质在细胞中的存在方式通常有两种状态,一是游离态,二是被膜结构固定起来的结合态,结合态的蛋白质不可能具有的功能是( )

A .催化作用 B .运输作用 C .免疫作用 D .调节作用 【解析】 蛋白质的功能是:①构成生命体;②催化作用;③运输作用;④调节作用; ⑤免疫作用,而其中起调节作用的蛋白类激素是细胞分泌产物,不是被膜固定起来的蛋白质。 【答案】 D 3.(2015·延安期末)某蛋白质由3条多肽链、n 个氨基酸组成,下列关于该蛋白质说法正确的是( ) A .形成该蛋白质时产生了n 个水分子 B .该蛋白质中至少含有n 个肽键 C .该蛋白质中至少含有3个游离的羧基 D .合成该蛋白质至少需要20种氨基酸 【解析】 形成该蛋白质时,产生水分子数为n -3,含有n -3个肽键。至少含有的游离的羧基数=肽链条数=3。 【答案】 C 4.蛋白质在消化道内的消化过程为:蛋白质――→①多肽――→②氨基酸,则①② 过程中分别破坏了下列什么结构( ) A .肽键 氨基酸 B .肽键 肽键 C .空间结构 肽键 D .空间结构 氨基酸 【解析】 多肽内氨基酸残基之间通过肽键连接,一条或几条多肽链盘曲折叠形成具有一定空间结构的蛋白质。 【答案】 C 5.有一种二肽,化学式是C 8H 14N 2O 5,水解后得到丙氨酸(R 基为—CH 3)和另一种氨基酸M ,则氨基酸M 的R 基的化学式是( ) A .—C 5H 9O 4N B .— C 3H 5NO 2 C .—C 5H 7O 2 D .—C 3H 5O 2 【解析】 丙氨酸的化学式为氨基酸共有部分加上R 基,即C 2H 4O 2N 加上CH 3,为C 3H 7O 2N 。氨基酸M 的化学式为二肽加上水减去丙氨酸, 即C 8H 14N 2O 5

蛋白质结构解析研究进展作业

《蛋白质结构解析研究进展》 一、蛋白质结构分类 人类对于进化的认识及蛋白质结构相似性比较的研究使蛋白质结构分类成为可能,而且近年来取得的研究进展表明,大部分蛋白质可以成功的分入到适当数目的家族中。目前国际上流行的蛋白质结构分类数据库基本上采取两种不同的思路,一种是数据库中储存所有结构两两比较的结果;第二种思路是致力于构建非常正式的分类体系。由于所有分类方法反映了各研究小组在探究这个重要领域的不同角度,所以这些方法是同等有效的。目前,被广泛应用的四种分类标准是:手工构造的层次分类数据库SCOP,全自动分类的MMDB和FSSP,和半手工半自动的CATH。 蛋白质结构自动分类问题可以被纳入机器学习的范畴,通过提取分析蛋白质结构的关键特征,构造算法来学习蕴含于大量已知结构和分类的数据中的专家经验知识,来实现对未知蛋白质结构的分类预测。目前,对蛋白质结构的不同层次分类,结果比较好的机器学习方法是:神经网络多层感知器、支持向量机和隐马尔可夫模型。支持向量机应用于分类问题最终归结于求解一个最优化问题。上世纪90 年代中期,隐马尔可夫模型与其他机器学习技术结合,高效地用于多重比对、数据挖掘和分类、结构分析和模式发现。多层感知器即误差反向传播神经网络,它是在各种人工神经网络模型中,在机器学习中应用最多且最成功的采用BP学习算法的分类器。 二、蛋白质结构的确定 蛋白质三维空间结构测定方法主要包括X射线晶体学分析、核磁共振波谱学技术和三维电镜重构,这三种方法都可以完整独立地在原子分辨水平上测定出蛋白质的三维空间结构。蛋白质数据库PDB中80%的蛋白质结构是由X射线衍射分析得到的,约15%的蛋白质结构是由核磁共振波谱学这种新的结构测定方法得到。 1、X射线晶体学

蛋白结构分析和比较

蛋白结构分析和比较 姓名________ 学号______________ 日期________年___月___日 阅读分子月报科普短文,参阅相关文献,从蛋白质结构数据库下载以下蛋白质三维结构原子坐标文件,利用Swiss-PdbViewer显示观察,说明其结构特点。 猪胰岛素(4INS): 由几个亚基组成,每个亚基有几条多肽链,每条多肽链由哪些二级结构单元组成; 每条多肽链有几对链内二硫键,多肽链之间由几对二硫键连接; 每个亚基如何与锌原子结合。 抹香鲸肌红蛋白(1MBO): 由几股alpha螺旋组成; 与血色素卟啉环中央铁原子以配位健结合的是哪个组氨酸,该组氨酸位于第几股alpha 螺旋; 与血色素携带的氧分子通过氢键连接的是哪个组氨酸,该组氨酸位于第几股alpha螺旋。 小鼠免疫球蛋白(1IGT): 由几个亚基组成,每个亚基各有几个结构域; 两条重链之间由几对二硫键连接,重链和轻链之间由几对二硫键连接; 每个结构域内部的二硫键和色氨酸如何形成疏水内核; 多糖链对稳定分子结构的作用。 水母(Jellyfish)绿色荧光蛋白(1GFL): 选择PDB原始文件中二聚体A链,保存为单个亚基1GFLa.pdb; 打开1GFLa.pdb,并用不同颜色显示二级结构beta折叠; 找出分子内部发光基团Ser65-Tyr66-Gly67并说明其发光机理。 核小体(1AOI): 用不同颜色显示组蛋白8个亚基; 观察DNA分子碱基配对特点; 显示组蛋白表面与DNA相互作用的碱性氨基酸。 斑头雁和灰雁血红蛋白比较实例 从UniProt数据库中提取斑头雁和灰雁血红蛋白alpha亚基序列,进行序列比对,找出差异位点。 用SwissPDB-Viwer软件中选择并保存灰雁氧合血红蛋白1FAW中四个亚基中的A链B 链两个亚基。 用结构叠合方法分析比较灰雁氧合血红蛋白A链B链两个亚基与斑头雁血红蛋白1A4F 两个亚基的结构,计算基于alpha碳叠合后的均方根误差(RMSD)。 找出斑头雁血红蛋白A链第119位丙氨酸侧链beta碳原子CB和B链55位亮氨酸侧链末端两个碳原子CD1和CD2,分别测量A119CB和B55CD1、B55CD2之间的距离。 找出灰雁血红蛋白A链第119位脯氨酸侧链gamma碳原子CG和B链55位亮氨酸侧链末端两个碳原子CD1和CD2,分别测量A119CG和B55CD1、B55CD2之间的距离。 根据上述分析结果,参阅相关文献,说明斑头雁和灰雁血红蛋白A119侧链大小和柔性不同,如何影响其构象变化,从而进一步引起氧气结合能力的变化。 利用模拟突变的方法,将灰雁血红蛋白A链第119位脯氨酸突变成丙氨酸,测量突变后的A119CB和B55CD1、B55CD2之间的距离。 课题相关蛋白质结构分析

蛋白质结构解析

晶体结构解析过程1 1:分子置换法 使用condition:目标蛋白A有同源1蛋白结构B,同源性30%以上。 用到的软件及程序:HKL2000,CCP4,COOT,Phenix,CNS。 解析过程:收集数据(X-RAY)--> hkl2000 处理数据--> 置换前数据处理分子置换(ccp4Molecular Replacement--MR)-->COOT手工修正,氨基酸序列调换-->phenix refine--coot 手工修正phenix refine。。。__拉氏构象图上outlier为0为之,且R-free,R-work达到足够低的值。-->phenix 加水refine(溶剂平滑)。。。(若修正过程中有bias 最好也用CNS修正一下) 2:同晶置换法--硒代蛋白 使用condition:目标蛋白没有同源结构。 用到的软件及程序:HKL2000,CCP4,COOT,Phenix,CNS。 解析过程:收集数据(X-ray 硒代蛋白及母体蛋白)--> hkl2000处理数据-->ccp4 程序包搜索搜索硒信号(gap),相位确定-->搭模--->以硒代数据得到的pdb为模型和母体高分辨数据得到的mtz进行分子置换--> 后面修正过程与分子置换相似。 各步骤介绍: (1)hkl2000:将x-ray 收集的图像编译转化为数字信息,得到的关键文件有.sca和.log ,log文件会给出hkl2000 处理的过程记录,sca文件是最终处理的输出文件。sca文件包含晶体的空间群等信息。带有可以被转化为电子密度图的信息。评价hkl2000处理是否成功的参数有数据完整度,最高分辨率等,一般希望处理出在完整度允许的情况下最高分辨率的数据。 分子置换前处理:ccp4 软件包 a. data reduction,即将sca文件转换为mtz文件。用imported integrated data。 b. cell content analysis 这个是晶体中蛋白聚集体数的分析,通过分析晶体含水量得到一个晶胞内的蛋白分子数。用mtz文件进行。含水量在40%-60%之间时对应得n即为正确值。这个聚集体数会在mr中使用。

重要蛋白质复合物的结构与功能研究

项目名称:重要蛋白质复合物的结构与功能研究首席科学家:隋森芳清华大学 起止年限:2011.1至2015.8 依托部门:教育部

二、预期目标 1、总体目标 本项目在瞄准蛋白质科学重大前沿问题的基础上,密切结合我国的实际情况,在重要蛋白质复合物结构与功能的研究上取得若干突破,获得一批原创性的成果,力争在国际顶级学术期刊上发表高水平论文。此外,通过本项目的实施,争取建立较完善的蛋白质复合物结构与功能研究的实验体系和技术平台,建立和培养一支具有国际水平的适于蛋白质复合物研究的队伍梯队。本项目把提升我国蛋白质科学的研究水平和国际影响力作为目标之一,通过本项目的实施使我国在蛋白质复合物研究领域在国际上占据重要的地位,并为我国基于蛋白质复合物药物靶点的创新药物研发奠定基础。 2、五年预期目标 1)通过本项目的实施获得一批原创性的研究成果:(1)通过解析蛋白质跨膜转运复合物、膜融和蛋白复合物,以及重要通道蛋白复合物的结构,揭示这些蛋白复合物在膜转运过程中的装配机制及发挥功能的分子机理;(2)通过解析膜受体与其配体以及调控基因表达的一系列蛋白质复合物的结构,揭示其介导的信号通路的分子机制;(3)通过解析调控细胞极化过程的信号通路中几组蛋白质复合物的结构及装配,阐明细胞极化过程的分子调控机理;(4)通过解析ACC、UCA、TC以及PC等具有重要生理功能的羧基转移酶的全酶结构,揭示其在催化代谢过程的生化反应中发挥作用机理。 2)通过本项目的实施,建立完善的蛋白质复合物结构与功能研究的实验研究体系,探索建立运用X-ray、Cryo-EM和NMR三大技术联合攻关高通量解析蛋白质复合物结构的技术平台。 3)通过本项目的实施,培养一批高质量博士后和研究生,扶植一批在蛋白质复合物的结构与功能研究领域具有国际竞争力的优秀中青年科学家和后备人才,建立一支结构合理,具有攻坚能力的国际先进水平的研究队伍。 4)以研究论文形式公布项目研究成果,发表高水平的学术论文。在影响因子大于10的国际一流杂志上发表学术论文15篇以上,其中Cell、Nature、Science论文4篇以上。

蛋白质结构分析方法

蛋白质结构分析方法:X射线晶体衍射分析和核磁共振 x 射线衍射法的分辨率可达到原子的水平,使它可以测定亚基的空间结构、各亚基间的相对拓扑布局,还可清楚的描述配体存在与否对蛋白质的影响。多维核磁共振波谱技术已成为确定蛋白质和核酸等生物分子溶液三维结构的唯一有效手段。NM R技术最大的优点不在于它的分辨率,而在于它能对溶液中和非晶态的蛋白质进行测量。 蛋白质的序列结构测定: 1.到目前为止,最经典的蛋白质的氨基酸序列分析方法是,sarI等人基于Edman降解原理研制的液相蛋白质序列仪,及后来发展的固相和气相的蛋白质序列分析仪。 2.质谱:早期的质谱电离的方式主要是电子轰击电离(EI),它要求样品的挥发性好,一般与气相色谱联用。但使用G C/M S分析,肽的长度受到限制,只能分析小的肽段。近年来,在离子化的技术及仪器方面取得了突破性进展,使得质谱所能测定的分子量的范围大大超出了10k u。因此,软离子化技术、基质辅助的激光解吸/离子化(MALDI)和电喷雾离子化(E SI)显得尤为有前途。通过串联质谱技术(MS/MS)和源后衰减基质辅助的激光解吸/离子化(PSD—MAIDI—MS),人们就可以从质谱分析中获得肽及蛋白质的结构信息。 蛋白质三维结构的研究: 1.X射线单晶衍射分析 2.核磁共振分析 3.蛋白质的二维晶体与三级重构: 蛋白质二维结晶及其电子晶体学的结构分析是目前结构生物学最活跃的领域之一。此法既适用于水溶性蛋白质,也适用于脂溶性膜蛋白的研究。电子晶体学的结构分析源于早期的电子衍射分析。与X射线衍射方法类似,电子衍射数据的实验分析得到的只是结构因子的振幅部分,丢掉了相位信息。但从剑桥MRC分子生物学实验室的Klug和DeRo sier建立了三维重构的方法开始,电子晶体学才真正发展成为一种独立的空间结构的分析方法,并从传统的X射线晶体学中脱胎出来。所谓电镜图像的三维重构是指由样品的一个或多个投影图得到样品中各成分之间的三维关系。这一方法的基本思路是电子显微图像含有振幅和相位的信息,二者可通过数字图像处理的傅立叶变换方法提取出来。蛋白质溶液构想的光谱技术: 紫外-可见差光谱:紫外一可见差光谱也是电子光谱,由电子跃迁产生。而蛋白质在紫外区的光吸收是由于芳香族氨基酸侧链吸收光引起的。可见区的研究则限于蛋白质一蛋白质、酶一辅酶、酶一底物的相互作用等,有时还需引人生色团才能进行。差光谱的产生是基于生色团经受一定的环境变化时,吸收峰发生位移,吸光度和谱带半宽度也有改变。生色团经受的这种环境变化称为微扰作用,变化后和变化前的光谱差称为差光谱。根据差光谱的光谱参数,可以推断这些生色团在大分子中是隐藏的半暴露的还是暴露的。 荧光探针法:荧光光谱法是研究蛋白质分子构象的一种有效方法,它能提供包括激发光谱、发射光谱、斯托克斯位移,荧光强度、总荧光量、量子产率、荧光偏振和荧光寿命等参数,这些参数从各个角度反映了分子的成键和结构情况。通过这些参数的测定,不但可以做一般的定量分析,而且还可以推断蛋白质分子在各种环境下的构象变化,从而阐明蛋白质分子在各种环境下的构象变化,进而阐明蛋白质结构与功能之间的关系。 圆二色谱:圆二色性和旋光色散都可用于测定分子的立体结构。旋光色散利用不对称分子对左、右圆偏振光折射的不同进行结构分析,而圆二色性则利用不对称分子对左、右圆偏振光吸收的不同进行结构分析。在蛋白质分子中,每个氨基酸残基的a碳是不对称碳,再加上主链构象也是不对称结构,因而蛋白质分子具有光学活性。通过圆二色的测定和计算可以了解蛋白质分子在溶液状态下的二级结构。圆二色对构象变化敏感,故它可灵敏的检测一些反应引起的构象变化,特别是用于观测蛋白质的变性是最方便的.

蛋白质结构与功能的生物信息学研究

实验名称:蛋白质结构与功能的生物信息学研究 实验目的:1.掌握运用BLAST工具对指定蛋白质的氨基酸序列同源性搜索的方法。 2.掌握用不同的工具分析蛋白质的氨基酸序列的基本性质 3掌握蛋白质的氨基酸序列进行三维结构的分析 4.熟悉对蛋白质的氨基酸序列所代表蛋白的修饰情况、所参与的 代谢途径、相互作用的蛋白,以及与疾病的相关性的分析。实验方法和流程: 一、同源性搜索 同源性从分子水平讲则是指两个核酸分子的核苷酸序列或两个蛋白质分子的氨基酸序列间的相似程度。BLAST工具能对生物不同蛋白质的氨基酸序列或不同的基因的DNA序列极性比对,并从相应数据库中找到相同或相似序列。对指定的蛋白质的氨基酸序列进行同源性搜索步骤如下: ↓ 登录网址https://www.360docs.net/doc/365260580.html,/blast/ ↓ 输入序列后,运行blast工具 ↓ 序列比对的图形结果显示

序列比对的图形结果:用相似性区段(Hit)覆盖输入序列的范围判断两个序列 的相似性。如果图形中包含低得分的颜色(主要是红色) 区段,表明两序列的并非完全匹配。 ↓ 匹配序列列表及得分

各序列得分 可选择不同的比对工具 备注: Clustal是一款用来对()的软件。可以用来发现特征序列,进行蛋白分类,证明序列间的同源性,帮助预测新序列二级结构与三级结构,确定PCR引物,以及 在分子进化分析方面均有很大帮助。Clustal包括Clustalx和Clustalw(前者是 图形化界面版本后者是命令界面),是生物信息学常用的多序列比对工具。 该序列的比对结果有100条,按得分降序排列,其中最大得分2373,最小得分 分为1195. ↓ 详细的比对序列的排列情况 第一个匹配 序列 第一个序列的匹配率为100% Score表示打分矩阵计算出来的值,由搜索算法决定的,值越大说明匹配程度

蛋白质结构与功能教学设计

《蛋白质的结构与功能》教学设计 平罗职教中心孙学琴 【教学目标】 1、知识与技能:说明氨基酸的结构特点,以及氨基酸形成蛋白质的过程,概述蛋白质的结 构和功能。 2、过程与方法:通过氨基酸结构通式的推导,培养学生分析归纳的能力;通过探讨氨基酸 的缩合过程,培养学生解决问题的能力;通过获取形象的图文信息,培养 学生分析处理资料的能力。 3、情感态度与价值观:使学生理解蛋白质是生命活动的主要承担者,形成结构决定功能的 生物学基本观点。 【教学重点】氨基酸的结构特点;蛋白质的结构与功能。 【教学难点】氨基酸的脱水缩合。 【教学方法】分组合作,问题引导。 【教学设计思路】

(一)、创设情境,导入新课 师:展示一组食物图片,请生说出这些食物在组成成分上的一个明显的共同点? 生:都富含蛋白质 师:展示三聚氰胺奶粉和假冒奶粉导致“大头婴儿”的图片引起兴趣,导入新课。 师:展示有关大头婴儿的多媒体课件 生:交流感受 师总结并导入新课:蛋白质在细胞内的含量只比水少,大约占细胞干重的50﹪以上,在有机化合物中,他含量最高,本节课我们一起来认识生命活动的主要承担者——蛋白质。 (二)、主动参与,探求新知 1、组成元素 师:蛋白质的构成元素主要有C 、H 、O 、N ,大多数蛋白质还含有S 。 2、氨基酸 师:蛋白质的相对分子质量一般都很大,例如血红蛋白(C30H4816O872N280S8Fe4),血红蛋白的相关介绍 从图示不难看出蛋白质的结构相当复杂,其实看似复杂的蛋白质是由许多结构相似的氨基酸连结起来的,因此我们先来认识蛋白质的基本单位——氨基酸。 自然界中已发现的氨基酸约有100多种,组成蛋白质的氨基酸约有20种。 师:展示几种氨基酸的分子结构,提出问题: (1) 这些氨基酸的结构有什么共同的特点? (2) “氨基酸”这一名词与其分子结构有对应关系吗?

蛋白质结构与功能的关系

蛋白质结构与功能的关系 专业:植物学 摘要:蛋白质特定的功能都是由其特定的构象所决定的,各种蛋白质特定的构象又与其一级结构密切相关。天然蛋白质的构象一旦发生变化,必然会影响到它的生物活性。由于蛋白质的构象的变化引起蛋白质功能变化,可能导致蛋白质构象紊乱症,当然也能引起生物体对环境的适应性增强。而分子模拟技术为蛋白质的研究提供了一种崭新的手段。在理论上解决了结构预测和功能分析以及蛋白质工程实施方面所面临的难题。它在蛋白质的结构预测和模建工作中占有举足轻重的地位,实现了生物技术与计算机技术的完美结合。 关键词:蛋白质的结构、功能;折叠/功能关系;蛋白质构象紊乱症;分子模拟技术;同源建模 RNase是由124个氨基酸残基组成的单肽链,分子中 8 个Cys的-SH构成4对二硫键,形成具有一定空间构象的蛋白质分子。在蛋白质变性剂和一些还原剂存在下,酶分子中的二硫键全部被还原,酶的空间结构破坏,肽链完全伸展,酶的催化活性完全丧失。当用透析的方法除去变性剂和巯基乙醇后,发现酶大部分活性恢复,所有的二硫键准确无误地恢复原来状态。若用其他的方法改变分子中二硫键的配对方式,酶完全丧失活性。这个实验表明,蛋白质的一级结构决定它的空间结构,而特定的空间结构是蛋白质具有生物活性的保证。前体与活性蛋白质一级结构的关系,由108个氨基酸残基构成的前胰岛素原,在合成的时候完全没有活性,当切去N-端的24个氨基酸信号肽,形成84个氨基酸的胰岛素原,胰岛素原也没活性,在包装分泌时,A、B链之间的33个氨基酸残基被切除,才形成具有活性的胰岛素。 功能不同的蛋白质总是有着不同的序列;种属来源不同而功能相同的蛋白质的一级结构,可能有某些差异,但与功能相关的结构也总是相同。若一级结构变化,蛋白质的功能可能发生很大的变化。蛋白质特定的功能都是由其特定的构象所决定的,各种蛋白质特定的构象又与其一级结构密切相关。天然蛋白质的构象一旦发生变化,必然会影响到它的生物活性。由于蛋白质的构象的变化引起蛋白质功能变化,可能导致蛋白质构象紊乱症,当然也能引起生物体对环境的适应性增强。 虽然蛋白质结构与生物功能的关系比序列与功能的关系更加紧密,但结构与功能的这种关联亦若隐若现,并不能排除折叠差别悬殊的蛋白质执行相似的功能,折叠相似的蛋白质执行差别悬殊功能的现象的存在。无奈,该领域仍不得不将100多年前Fisher提出的“锁一钥

相关文档
最新文档