光伏逆变器拓扑研究简介(1) [兼容模式]

光伏逆变器拓扑分析详解

变压器拓扑电网连接的单相光伏逆变器 Iván Patrao?, Emilio Figueres, Fran González-Espín, Gabriel Garcerá Grupo de SistemasElectrónicosIndustriales del Departamento de Ingeniería Electrónica, Universidad Politécnica de Valencia, Camino de Vera s/n, 46022 Valencia, Spain 文章信息 文章历史:收到于2011年1月12日 接受于2011年3月21日 关键词:多电平逆变、无变压器逆变器、光伏逆变器、可再生能源 摘要 为了提高效率,降低光伏系统的成本,使用的变压器光伏逆变器是一种越来越大的替代趋势。然而,这种拓扑结构需要进一步研究,因为它提出了一些问题,有关电网和光伏发电机(如效率退化和安全问题)之间的电连接。 在本文中,着重介绍单相光伏风力发电并网逆变器,它基于已经推行的无变压拓扑结构。一方面,它是替代经典拓扑结构的基础上提出的。另一方面,研究显示,基于多层逆变器拓扑结构和经典的拓扑结构相比,没有漏电流产生。 2011爱思唯尔出版社有限公司版权所有 目录 1.前言 (3423) 2.共模电压问题 (3424) 3.桥拓扑功率变换器 (3425) 3.1.全H桥 (3425) 3.2.半H桥 (3425) 3.3.高效可靠的逆变器的概念(HERIC) (3426) 3.4.H5的拓扑 (3426) 3.5.带发电控制电路的半H桥(GCC) (3426) 4.基于多级拓扑的逆变器 (3427) 4.1.级联H桥(CHB) (3427) 4.2.中点钳位(NPC)半桥 (3427) 4.3.飞电容(FC) (3428) 4.4.电容分压器NPC半桥 (3428) 4.5.ConergyNPC (3428) 4.6.有源NPC(ANPC) (3429) 5. 无变压光伏逆变器基本特性 (3429) 6. 结论 (3429) 鸣谢 (3430) 参考文献 (3430)

集中式与组串式逆变器的优缺点比较

集中式逆变器:光伏组件,直流电缆,汇流箱,直流电缆,直流汇流配电,直流电缆,逆变器,隔离变压器,交流配电,电网。 组串式逆变器:组件,直流电缆,逆变器,交流配电,电网。 主要优缺点和适应场合 1、集中式逆变器一般用于日照均匀的大型厂房,荒漠电站,地面电站等大型发电系统中,系统总功率大,一般是兆瓦级以上。 主要优势 (1)便于维护管理; (2)逆变器集成度高,功率密度大,成本低; (3)逆变器各种保护功能齐全,电站安全性高; (4)有功率因素调节功能和低电压穿越功能,电网调节性好。 主要缺点 (1)直流汇流箱故障率较高,影响整个系统。 (2)集中式逆变器MPPT电压范围窄,一般为450-820V,组件配置不灵活。在阴雨天,雾气多的部区,发电时间短。 (3)逆变器机房安装部署困难、需要专用的机房和设备。 (4)逆变器自身耗电以及机房通风散热耗电,系统维护相对复杂。

(5)集中式并网逆变系统中,组件方阵经过两次汇流到达逆变器,逆变器最大功率跟踪功能(MPPT)不能监控到每一路组件的运行情况,因此不可能使每一路组件都处于最佳工作点,当有一块组件发生故障或者被阴影遮挡,会影响整个系统的发电效率。 (6)集中式并网逆变系统中无冗余能力,如有发生故障停机,整个系统将停止发电。 2、组串式逆变器适用于中小型屋顶光伏发电系统,中型地面光伏电站。 主要优势 (1)组串式逆变器采用模块化设计,每个光伏串对应一个逆变器,直流端具有最大功率跟踪功能,交流端并联并网,其优点是不受组串间模块差异,和阴影遮挡的影响,同时减少光伏电池组件最佳工作点与逆变器不匹配的情况,最大程度增加了发电量。 (2)组串式逆变器MPPT电压范围宽,一般为250-800V,组件配置更为灵活。在阴雨天,雾气多的部区,发电时间长。 (3)组串式并网逆变器的体积小、重量轻,搬运和安装都非常方便,不需要专业工具和设备,也不需要专门的配电室,在各种应用中都能够简化施工、减少占地,直流线路连接也不需要直流汇流箱和直流配电柜等。组串式还具有自耗电低、故障影响小、更换维护方便等优势。 主要缺点 (1)电子元器件较多,功率器件和信号电路在同一块板上,设计和制造的难度大。(2)功率器件电气间隙小,不适合高海拔地区。户外型安装,风吹日晒很容易导致外壳和散热片老化。

光伏并网逆变器分类

光伏并网逆变器分类 并网逆变器是太阳能光伏系统中的关键部件,它将太阳能电池产生的直流电通过电力电子变换技术转换为能够直接并入电网、负载的交流能量。其性能,效率直接影响整个太阳能光伏系统的效率和性能。下面将从并网逆变器的分类来进行了解。 1、按照隔离方式分类 包括隔离式和非隔离式两类,其中隔离式并网逆变器又分为工频变压器隔离方式和高频变压器隔离方式。光伏并网逆变器发展之初多采用工频变压器隔离的方式,但由于其体积、重量、成本方面的明显缺陷。近年来高频变压器隔离方式的并网逆变器发展较快,非隔离式并网逆变器以其高效率、控制简单等优势也逐渐获得认可,目前已经在欧洲开始推广应用,但需要解决可靠性、共模电流等关键问题。 2、按照输出相数分类 可以分为单相和三相并网逆变器两类,中小功率场合一般多采用单相方式,大功率场合多采用三相并网逆变器。按照功率等级进行分类,可分为功率小于1kVA的小功率并网逆变器,功率等级1kVA~50kVA的中等功率并网逆变器和50kVA以上的大功率并网逆变器。 3、按照功率流向进行分类 分为单方向功率流和双方向功率流并网逆变器两类,单向功率流并网逆变器仅用作并网发电,双向功率流并网逆变器除可用作并网发电外,还能用作整流器,改善电网电压质量和负载功率因素。近几年双向功率流并网逆变器开始获得关注,是未来的发展方向之一。 4、按照拓扑结构分类 目前采用的拓扑结构包括:全桥逆变拓扑、半桥逆变拓扑、多电平逆变拓扑、推挽逆变拓扑、正激逆变拓扑、反激逆变拓扑等,其中高压大功率光伏并网逆变器可采用多电平逆变拓扑,中等功率光伏并网逆变器多采用全桥、半桥逆变拓扑,小功率光伏并网逆变器采用正激、反激逆变拓扑。 从技术层面讲,大功率并网逆变器和小功率并网逆变器是未来的两个主要发展方向,其中小功率光伏并网逆变器——微逆变器是最具发展潜力和市场应用前景的发展方向,高频化、高效率、高功率密度、高可靠性和高度智能化是未来的发展方向。

组串式逆变器与集中式逆变器优缺点PK

组串式逆变器与集中式逆变器优缺点PK 方案对比 集中式逆变器:设备功率在50KW到630KW之间,功率器件采用大电流IGBT,系统拓扑结构采用DC-AC一级电力电子器件变换全桥逆变,工频隔离变压器的方式,防护等级一般为IP20。体积较大,室内立式安装。 组串式逆变器:功率小于30KW,功率开关管采用小电流的MOSFET,拓扑结构采用DC-DC-BOOST升压和DC-AC全桥逆变两级电力电子器件变换,防护等级一般为IP65。体积较小,可室外臂挂式安装。 系统主要器件对比 集中式逆变器:光伏组件,直流电缆,汇流箱,直流电缆,直流汇流配电,直流电缆,逆变器,隔离变压器,交流配电,电网。 组串式逆变器:组件,直流电缆,逆变器,交流配电,电网。 主要优缺点和适应场合 1、集中式逆变器一般用于日照均匀的大型厂房,荒漠电站,地面电站等大型发电系统中,系统总功率大,一般是兆瓦级以上。 主要优势

(1)便于维护管理; (2)逆变器集成度高,功率密度大,成本低; (3)逆变器各种保护功能齐全,电站安全性高; (4)有功率因素调节功能和低电压穿越功能,电网调节性好。 主要缺点 (1)直流汇流箱故障率较高,影响整个系统。 (2)集中式逆变器MPPT电压范围窄,一般为450-820V,组件配置不灵活。在阴雨天,雾气多的部区,发电时间短。 (3)逆变器机房安装部署困难、需要专用的机房和设备。 (4)逆变器自身耗电以及机房通风散热耗电,系统维护相对复杂。 (5)集中式并网逆变系统中,组件方阵经过两次汇流到达逆变器,逆变器最大功率跟踪功能(MPPT)不能监控到每一路组件的运行情况,因此不可能使每一路组件都处于最佳工作点,当有一块组件发生故障或者被阴影遮挡,会影响整个系统的发电效率。 (6)集中式并网逆变系统中无冗余能力,如有发生故障停机,整个系统将停止发电。

解读光伏发电系统中逆变器的原理与应用

解读光伏发电系统中逆变器的原理与应用 目前我国光伏发电系统主要是直流系统,即将太阳电池发出的电能给蓄电池充电,而蓄电池直接给负载供电,如我国西北地区使用较多的太阳能户用照明系统以及远离电网的微波站供电系统均为直流系统。此类系统结构简单,成本低廉,但由于负载直流电压的不同(如12V、24V、48V等),很难实现系统的标准化和兼容性,特别是民用电力,由于大多为交流负载,以直流电力供电的光伏电源很难作为商品进入市常另外,光伏发电最终将实现并网运行,这就必须采用成熟的市场模式,今后交流光伏发电系统必将成为光伏发电的主流。 在应用中对逆变器的要求: 1.要求具有较高的效率。由于目前太阳电池的价格偏高,为了最大限度地利用太阳电池,提高系统效率,必须设法提高逆变器的效率。 2.要求具有较高的可靠性。目前光伏发电系统主要用于边远地区,许多电站无人值守和维护,这就要求逆变器具有合理的电路结构,严格的元器件筛选,并要求逆变器具备各种保护功能,如输入直流极性接反保护,交流输出短路保护,过热、过载保护等。 3.要求直流输入电压有较宽的适应范围,由于太阳电池的端电压随负载和日照强度而变化,蓄电池虽然对太阳电池的电压具有重要作用,但由于蓄电池的电压随蓄电池剩余容量和内阻的变化而波动,特别是当蓄电池老化时其端电压的变化范围很大,如12V蓄电池,其端电压可在10V~16V之间变化,这就要求逆变器必须在较大的直流输入电压范围内保证正常工作,并保证交流输出电压的稳定。 4.在中、大容量的光伏发电系统中,逆变电源的输出应为失真度较小的正弦波。这是由于在中、大容量系统中,若采用方波供电,则输出将含有较多的谐波分量,高次谐波将产生附加损耗,许多光伏发电系统的负载为通信或仪表设备,这些设备对电网品质有较高的要求,当中、大容量的光伏发电系统并网运行时,为避免与公共电网的电力污染,也要求逆变器输出正弦波电流。 逆变器将直流电转化为交流电,若直流电压较低,则通过交流变压器升压,即得到标准交

大功率光伏逆变器介绍

大功率光伏逆变器 (100kwp~500kwp) 一、光伏逆变器简介 逆变器又称电源调整器,根据逆变器在光伏发电系统中的用途可分为独立型电源用和并网用二种。根据波形调制方式又可分为方波逆变器、阶梯波逆变器、正 弦波逆变器和组合式三相逆变器。对于用于并网系统的逆变器,根据有无变压器 又可分为变压器型逆变器和无变压器型逆变器。 (1)并网光伏发电系统并网式光伏发电系统由光伏组件、并网逆变器、计量装置及配电系统组成。光伏组件将太阳光能转换为直流电能,再由逆变器将直流电能转换为高品质的正弦波电流,直接馈入电网或者做为本地用电设备的电力来源。(2)离网光伏发电系统离网式光伏发电系统由光伏组件、控制器、蓄电池、离网逆变器及配电系统组成,与并网式光伏发电系统的工作原理十分相似,唯一不同的是离网系统输出的电力被直接消耗使用而不输送到电网中。离网式系统中配备有蓄电池,用于储存电能,可以满足阳光不足状态下的发电需求。通过控制器可以实现对蓄电池的控制。对于无法接入公共电网的偏远地区,离网式光伏发电系统是解决用电需求最完。 二、产品型号 ESI——————————光伏逆变器 5———————————额定输入电压 1.24vdc 2.48vdc 3.450vdc 3———————————输出电压 2.220vac 3.380vac B———————————变压器功能B可并联N不可并联 100——————————额定输出功率100kw、250kw、500kw X———————————厂商代码X希望电子有限公司T—— —————————T有隔离变压器N无隔离变压器 三、执行标准 .GB/T19939 光伏系统并网技术要求 .GB/T20046 光伏(PV)系统电网接口特性 .GB/T20513 光伏系统性能监测测量、数据交换和分析导则 .GB/Z19964 光伏发电站接入电力系统的技术规定 .GB/T3859.1 半导体变流器基本要求的规定 .GB/T3859.2 半导体变流器应用导则

逆变器的基本知识

浅谈光伏发电系统用逆变器的基本知识 逆变器的概念 通常,把将交流电能变换成直流电能的过程称为整流,把完成整流功能的电路称为整流电路,把实现整流过程的装置称为整流设备或整流器。与之相对应,把将直流电能变换成交流电能的过程称为逆变,把完成逆变功能的电路称为逆变电路,把实现逆变过程的装置称为逆变设备或逆变器。 现代逆变技术是研究逆变电路理论和应用的一门科学技术。它是建立在工业电子技术、半导体器件技术、现代控制技术、现代电力电子技术、半导体变流技术、脉宽调制(PWM)技术等学科基础之上的一门实用技术。它主要包括半导体功率集成器件及其应用、逆变电路和逆变控制技术3大部分。 逆变器的分类 逆变器的种类很多,可按照不同的方法进行分类。 1.按逆变器输出交流电能的频率分,可分为工频逆变器、中频逆器和高频逆变器。工频逆变器的频率为50~60Hz的逆变器;中频逆变器的频率一般为400Hz到十几kHz;高频逆变器的频率一般为十几kHz到MHz。 2.按逆变器输出的相数分,可分为单相逆变器、三相逆变器和多相逆变器。3.按照逆变器输出电能的去向分,可分为有源逆变器和无源逆变器。凡将逆变器输出的电能向工业电网输送的逆变器,称为有源逆变器;凡将逆变器输出的电能输向某种用电负载的逆变器称为无源逆变器。 4.按逆变器主电路的形式分,可分为单端式逆变器,推挽式逆变器、半桥式逆变器和全桥式逆变器。 5.按逆变器主开关器件的类型分,可分为晶闸管逆变器、晶体管逆变器、场效应逆变器和绝缘栅双极晶体管(IGBT)逆变器等。又可将其归纳为“半控型”逆

变器和“全控制”逆变器两大类。前者,不具备自关断能力,元器件在导通后即失去控制作用,故称之为“半控型”普通晶闸管即属于这一类;后者,则具有自关断能力,即无器件的导通和关断均可由控制极加以控制,故称之为“全控型”,电力场效应晶体管和绝缘栅双权晶体管(IGBT)等均属于这一类。 6.按直流电源分,可分为电压源型逆变器(VSI)和电流源型逆变器(CSI)。前者,直流电压近于恒定,输出电压为交变方波;后者,直流电流近于恒定,输也电流为交变方波。 7.按逆变器输出电压或电流的波形分,可分为正弦波输出逆变器和非正弦波输出逆变器。 8.按逆变器控制方式分,可分为调频式(PFM)逆变器和调脉宽式(PWM)逆变器。 9.按逆变器开关电路工作方式分,可分为谐振式逆变器,定频硬开关式逆变器和定频软开关式逆变器。 10.按逆变器换流方式分,可分为负载换流式逆变器和自换流式逆变器。 逆变器的基本结构 逆变器的直接功能是将直流电能变换成为交流电能 逆变装置的核心,是逆变开关电路,简称为逆变电路。 该电路通过电力电子开关的导通与关断,来完成逆变的功能。电力电子开关器件的通断,需要一定的驱动脉冲,这些脉冲可能通过改变一个电压信号来调节。产生和调节脉冲的电路。通常称为控制电路或控制回路。逆变装置的基本结构,除上述的逆变电路和控制电路外,还有保护电路、输出电路、输入电路、输出电路等,如图2所示。 逆变器的工作原理。

光伏逆变器分类

逆变器作为光伏发电的重要组成部分,主要的作用是将光伏组件发出的直流电转变成交流电。目前,市面上常见的逆变器主要分为集中式逆变器与组串式逆变器,还有新潮的集散式逆变器。今天就针对三种逆变器来谈一谈各自的特点。 一、集中式逆变器 集中式逆变器顾名思义是将光伏组件产生的直流电汇总转变为交流电后进行升压、并网。因此,逆变器的功率都相对较大。光伏电站中一般采用500kW 以上的集中式逆变器。 (一)集中式逆变器的优点如下: 1.功率大,数量少,便于管理;元器件少,稳定性好,便于维护; 2.谐波含量少,电能质量高;保护功能齐全,安全性高; 3.有功率因素调节功能和低电压穿越功能,电网调节性好。 (二)集中式逆变器存在如下问题: 1.集中式逆变器MPPT电压范围较窄,不能监控到每一路组件的运行情况,因此不可能使每一路组件都处于最佳工作点,组件配置不灵活; 2.集中式逆变器占地面积大,需要专用的机房,安装不灵活; 3.自身耗电以及机房通风散热耗电量大。 二、组串式逆变器 组串式逆变器顾名思义是将光伏组件产生的直流电直接转变为交流电汇总后升压、并网。因此,逆变器的功率都相对较小。光伏电站中一般采用50kW以下的组串式逆变器。 (一)组串式逆变器优点: 1.不受组串间模块差异,和阴影遮挡的影响,同时减少光伏电池组件最佳工作点与逆变器不匹配的情况,最大程度增加了发电量; 2.MPPT电压范围宽,组件配置更加灵活;在阴雨天,雾气多的部区,发电时间长; 3.体积较小,占地面积小,无需专用机房,安装灵活; 4.自耗电低、故障影响小。

(二)组串式逆变器存在问题: 1.功率器件电气间隙小,不适合高海拔地区;元器件较多,集成在一起, 稳定性稍差; 2.户外型安装,风吹日晒很容易导致外壳和散热片老化; 3.逆变器数量多,总故障率会升高,系统监控难度大; 4.不带隔离变压器设计,电气安全性稍差,不适合薄膜组件负极接地系统。 三、集散式逆变器 集散式逆变器是近两年来新提出的一种逆变器形式,其主要特点是“集中 逆变”和“分散MPPT跟踪”。集散式逆变器是聚集了集中式逆变器和组串式逆变器两种逆变器优点的产物,达到了“集中式逆变器的低成本,组串式逆变器 的高发电量”。 (一)集散式逆变器优点: 1.与集中式对比,“分散MPPT跟踪”减小了失配的几率,提升了发电量; 2.与集中式及组串式对比,集散式逆变器具有升压功能,降低了线损; 3.与组串式对比,“集中逆变”在建设成本方面更具优势。 (二)集散式逆变器问题; 1.工程经验少。较前两类而言,尚属新形式,在工程项目方面的应用相对 较少; 2.安全性、稳定性以及高发电量等特性还需要经历工程项目的检验; 3.因为采用“集中逆变”,因此,占地面积大,需专用机房的缺点也存在 于集散式逆变器中。

光伏逆变器概述(完整版)

光伏逆变器概述 工作原理及特点 工作原理: 逆变装置的核心,是逆变开关电路,简称为逆变电路。该电路通过电力电子开关的导通与关断,来完成逆变的功能。 特点: (1)要求具有较高的效率。 由于目前太阳能电池的价格偏高,为了最大限度的利用太阳能电池,提高系统效率,必须设法提高逆变器的效率。 (2)要求具有较高的可靠性。 目前光伏电站系统主要用于边远地区,许多电站无人值守和维护,这就要求逆变器有合理的电路结构,严格的元器件筛选,并要求逆变器具备各种保护功能,如:输入直流极性接反保护、交流输出短路保护、过热、过载保护等。 (3)要求输入电压有较宽的适应范围。 由于太阳能电池的端电压随负载和日照强度变化而变化。特别是当蓄电池老化时其端电压的变化范围很大,如12V的蓄电池,其端电压可能在10V~16V之间变化,这就要求逆变器在较大的直流输入电压范围内保证正常工作。 光伏逆变器分类 有关逆变器分类的方法很多,例如:根据逆变器输出交流电压的相数,可分为单相逆变器和三相逆变器;根据逆变器使用的半导体器件类型不同,又可分为晶体管逆变器、晶闸管逆变器及可关断晶闸管逆变器等。根据逆变器线路原理的不同,还可分为自激振荡型逆变器、阶梯波叠加型逆变器和脉宽调制型逆变器等。根据应用在并网系统还是离网系统中又可以分为并网逆变器和离网逆变器。为了便于光电用户选用逆变器,这里仅以逆变器适用场合的不同进行分类。

1、集中型逆变器 集中逆变技术是若干个并行的光伏组串被连到同一台集中逆变器的直流输入端,一般功率大的使用三相的IGB T功率模块,功率较小的使用场效应晶体管,同时使用DSP转换控制器来改善所产出电能的质量,使它非常接近于正弦波电流,一般用于大型光伏发电站(>10kW)的系统中。最大特点是系统的功率高,成本低,但由于不同光伏组串的输出电压、电流往往不完全匹配(特别是光伏组串因多云、树荫、污渍等原因被部分遮挡时),采用集中逆变的方式会导致逆变过程的效率降低和电户能的下降。同时整个光伏系统的发电可靠性受某一光伏单元组工作状态不良的影响。最新的研究方向是运用空间矢量的调制控制以及开发新的逆变器的拓扑连接,以获得部分负载情况下的高效率。 2、组串型逆变器 组串逆变器是基于模块化概念基础上的,每个光伏组串(1-5kw)通过一个逆变器,在直流端具有最大功率峰值跟踪,在交流端并联并网,已成为现在国际市场上最流行的逆变器。 许多大型光伏电厂使用组串逆变器。优点是不受组串间模块差异和遮影的影响,同时减少了光伏组件最佳工作点与逆变器不匹配的情况,从而增加了发电量。技术上的这些优势不仅降低了系统成本,也增加了系统的可靠性。同时,在组串间引人"主-从"的概念,使得系统在单串电能不能使单个逆变器工作的情况下,将几组光伏组串联系在一起,让其中一个或几个工作,从而产出更多的电能。 最新的概念为几个逆变器相互组成一个"团队"来代替"主-从"的概念,使得系统的可靠性又进了一步。目前,无变压器式组串逆变器已占了主导地位。 3、微型逆变器 在传统的PV系统中,每一路组串型逆变器的直流输入端,会由10块左右光伏电池板串联接入。当10块串联的电池板中,若有一块不能良好工作,则这一串都会受到影响。若逆变器多路输入使用同一个MPPT,那么各路输入也都会受到影响,大幅降低发电效率。在实际应用中,云彩,树木,烟囱,动物,灰尘,冰雪等各种遮挡因素都会引起上述因素,情况非常普遍。而在微型逆变器的PV系统中,每一块电池板分别接入一台微型逆变器,当电池板中有一块不能良好工作,则只有这一块都会受到影响。其他光伏板都将在最佳工作状态运行,使得系统总体效率更高,发电量更大。在实际应用中,若组串型逆变器出现故障,则会引起几千瓦的电池板不能发挥作用,而微型逆变器故障造成的影响相当之小。 4、功率优化器 太阳能发电系统加装功率优化器(Optimizer)可大幅提升转换效率,并将逆变器(Inverter)功能化繁为简降低成本。为实现智慧型太阳能发电系统,装置功率优化器可确实让每一个太阳能电池发挥最佳效能,并随时监控电池耗损状态。功率优化器是介于发电系统与逆变器之间的装置,主要任务是替代逆变器原本的最佳功率点追踪功能。功率优化器藉由将线路简化以及单一太阳能电池即对应一个功率优化器等方式,以类比式进行极为快速的最佳功率

集中式、组串和散式逆变器比较专题

集中式、组串式和集散式逆变器比 较 技术专题

目前适用于大型光伏电站的逆变器主流产品包括集中式、组串式和集散式逆变器,各有利弊和优缺点。为更好的为本项目选择合适的逆变器,做此逆变器比较专题报告。集中式、组串式和集散式逆变器的主要优缺点、适应场合和比选结论详述如下: 1集中式、组串式和集散式逆变器概述 集中式逆变器:国内主流设备功率一般不超过630kW,功率器件采用大电流IGBT,系统拓扑结构采用DC-AC一级电力电子器件变换全桥逆变,工频隔离变压器的方式,防护等级一般不低于IP20。体积较大,室内立式安装。系统方案为采用直流汇流箱进行一级汇流,采用集中式逆变器(带MPPT跟踪功能)进行二级汇流及逆变,最后输入升压箱变。 组串式逆变器:功率一般不大于60kW,功率开关管采用小电流的MOSFET,拓扑结构采用DC-DC-BOOST升压和DC-AC全桥逆变两级电力电子器件变换,防护等级一般为IP65。体积较小,可室外壁挂式安装。系统方案为采用组串式逆变器(带多路MPPT跟踪功能)进行一级汇流及逆变,采用交流汇流箱进行二次汇流,最后输入升压箱变。 集散式逆变器:分布式多MPPT,独立跟踪,精度高,发电效率高;分布式DC/DC升压,直流传输电压800V左右、交流并网电压500V左右,传输损耗降低;传输及并网电压高、电流小,逆变器、电缆和箱变的投资都有所下降。系统方案为采用直流汇流箱进行一级汇流(直流汇流箱带多路MPPT跟踪功能),再采用大容量逆变器(不带MPPT跟踪功能)进行二级汇流及逆变,最后输入升压箱变。 光伏场区使用主要器件对比: 集中式逆变方案:光伏组件,直流电缆,直流汇流箱,直流电缆,直流配电柜,直流电缆,集中式逆变器,交流电缆,双分裂箱变。 组串式逆变方案:光伏组件,直流电缆,组串式逆变器,交流电缆,交流汇流箱,交流电缆,双绕组箱变。 集散式逆变方案:光伏组件,直流电缆,智能型带MPPT直流汇流箱,直流电缆,直流配电柜,直流电缆,集散式逆变器,交流电缆,双绕组箱变。

光伏并网逆变器硬件设计以及拓扑结构

光伏并网逆变器及其拓扑结构的设计 对于传统电力电子装置的设计,我们通常是通过每千瓦多少钱来衡量其性价比的。但是对于光伏逆变器的设计而言,对最大功率的追求仅仅是处于第二位的,欧洲效率的最大化才是最重要的。因为对于光伏逆变器而言,不仅最大输出功率的增加可以转化为经济效益,欧洲效率的提高同样可以,而且更加明显。欧洲效率的定义不同于我们通常所说的平均效率或者最高效率。它充分考虑了太阳光强度的变化,更加准确地描述了光伏逆变器的性能。欧洲效率是由不同负载情况下的效率按照不同比重累加得到的,其中半载的效率占其最大组成部分。因此为了提高光伏逆变器的欧洲效率,仅仅降低额定负载时的损耗是不够的,必须同时提高不同负载情况下的效率(图1)。 图1: 欧洲效率计算比重 1、功率器件的选型 在通用逆变器的设计中,综合考虑性价比因素,IGBT是最多被使用的器件。因为IGBT 导通压降的非线性特性使得IGBT的导通压降并不会随着电流的增加而显著增加。从而保证了逆变器在最大负载情况下,仍然可以保持较低的损耗和较高的效率。但是对于光伏逆变器而言,IGBT的这个特性反而成为了缺点。因为欧洲效率主要和逆变器不同轻载情况下效率的有关。在轻载时,IGBT的导通压降并不会显著下降,这反而降低了逆变器的欧洲效率。相反,MOSFET的导通压降是线性的,在轻载情况下具有更低的导通压降,而且考虑到它非常卓越的动态特性和高频工作能力,MOSFET成为了光伏逆变器的首选。另外考虑到提高欧效后的巨大经济回报,最新的比较昂贵的器件,如SiC二极管,也正在越来越多的被应用在光伏逆变器的设计中,SiC肖特基二极管可以显著降低开关管的导通损耗,降低电磁干扰。 为了得到最大输入功率,电路必须具备根据不同太阳光条件自动调节输入电压的功能,最大功率点一般在开环电压的70%左右,当然这和具体使用的光伏电池的特性也有关。典型的电路是通过一个boost电路来实现。然后再通过逆变器把直流电逆变为可并网的正弦交流电。 2、单相无变压器式光伏逆变器拓扑结构的设计: 拓扑结构的选择和光伏逆变器额定输出功率有关。对于4kw以下的光伏逆变器,通常选用直流母线不超过500V,单相输出的拓扑结构,如图2所示:

华为光伏逆变器的分类

华为光伏逆变器的分类 ——深圳恒通源 有关逆变器分类的方法很多,例如:根据逆变器输出交流电压的相数,可分为单相逆变器和三相逆变器;根据逆变器使用的半导体器件类型不同,又可分为晶体管逆变器、晶闸管逆变器及可关断晶闸管逆变器等。根据逆变器线路原理的不同,还可分为自激振荡型逆变器、阶梯波叠加型逆变器和脉宽调制型逆变器等。根据应用在并网系统还是离网系统中又可以分为并网逆变器和离网逆变器。为了便于光电用户选用逆变器,这里仅以逆变器适用场合的不同进行分类。 1、集中式逆变器 集中逆变技术是若干个并行的光伏组串被连到同一台集中逆变器的直流输入端,一般功率大的使用三相的IGBT功率模块,功率较小的使用场效应晶体管,同时使用DSP转换控制器来改善所产出电能的质量,使它非常接近于正弦波电流,一般用于大型光伏发电站(>10kW)的系统中。最大特点是系统的功率高,成本低,但由于不同光伏组串的输出电压、电流往往不完全匹配(特别是光伏组串因多云、树荫、污渍等原因被部分遮挡时),采用集中逆变的方式会导致逆变过程的效率降低和电户能的下降。同时整个光伏系统的发电可靠性受某一光伏单元组工作状态不良的影响。最新的研究方向是运用空间矢量的调制控制以及开发新的逆变器的拓扑连接,以获得部分负载情况下的高效率。

2、组串式逆变器 组串逆变器是基于模块化概念基础上的,每个光伏组串(1-5kw)通过一个逆变器,在直流端具有最大功率峰值跟踪,在交流端并联并网,已成为现在国际市场上最流行的逆变器。 许多大型光伏电厂使用组串逆变器。优点是不受组串间模块差异和遮影的影响,同时减少了光伏组件最佳工作点与逆变器不匹配的情况,从而增加了发电量。技术上的这些优势不仅降低了系统成本,也增加了系统的可靠性。同时,在组串间引人"主-从"的概念,使得系统在单串电能不能使单个逆变器工作的情况下,将几组光伏组串联系在一起,让其中一个或几个工作,从而产出更多的电能。 最新的概念为几个逆变器相互组成一个"团队"来代替"主-从"的概念,使得系统的可靠性又进了一步。目前,无变压器式组串逆变器已占了主导地位。

光伏并网逆变器拓扑结构分析与性能比较

第21卷第1期苏州市职业大学学报V ol.21,No.1 2010年3月Journal of Suzhou V ocational University Mar., 2010 光伏并网逆变器拓扑结构分析与性能比较 余运江1,李武华2,邓?焰2,臧?曙1 (1.镇江船艇学院?工程系,江苏?镇江 212003;2.浙江大学?电力电子技术研究所,浙江?杭州 310027) 摘?要:太阳能并网发电技术日益成为研究热点,并网逆变器作为光伏阵列与电网的接口设备,其拓扑结构决定着整个光伏并网发电系统的效率和成本,是影响系统经济可靠运行的关键因素.在简要介绍光伏并网逆变器常用拓扑方案基础上,重点分析了其有代表性拓扑结构的特点、效率及适用场所,并给出了并网逆变器拓扑结构未来可能的发展趋势. 关键词:光伏;?并网逆变器;?拓扑结构 中图分类号:TM46 文献标志码:A 文章编号:1008-5475(2010)01-0013-06 Compare and Analysis on Topologies of Inverters for a Grid-connected Photovoltaic Power System YU Yun-jiang1,LI Wu-hua2,DENG Yan2,ZANG Shu1 (1.Department of Engineering, Zhenjiang Watercraft College, Zhenjiang 212003, China; 2.Power Electronics Research Institute, Zhejiang University, Hangzhou 310027, China) Abstract: Photovoltaic (PV) grid-connected power system is becoming a hot research area. As the interconnection of the PV arrays and the power grid, the topology structure of the grid-connected inverter is very important. Because it determines the system efficiency, cost and reliability. The art-of-the-state topologies for grid-connected power system was classified and introduced. Furthermore, the performance, the efficiency and the applications of the main grid-connected inverters were analyzed. At last, the future trend of the grid-connected inverters were given and summarized. Key words:photovoltaic; grid-connected inverter; topology structure 光伏并网发电作为太阳能利用的主要形式之一,倍受广大科研人员的关注[1].寻求高性能、低造价的光伏材料和器件减小光伏发电系统的自身损耗是其研究热点之一.在光伏并网发电系统中,逆变器作为光伏阵列与电网的接口设备,其拓扑结构决定着整个系统的效率和成本,是影响系统经济可靠运行的关键因素.由于光伏并网逆变器的结构拓扑种类众多、性能特点各异,其原理分析和性能比较,对于拓扑结构的合理选择、提高系统效率和降低生产成本有着极其重要的意义. 1 光伏并网逆变器常用拓扑方案 光伏并网逆变器的具体电路拓扑众多,一般可按照有无变压器分类,也可根据功率变换的级数来进 收稿日期:2009-05-15;修回日期:2009-06-25 作者简介:余运江(1972-),男,河南商丘人,讲师,硕士,主要从事光伏并网发电技术研究;?李武华(1979-),男,湖南郴州人,讲师,博士,主要从事新能源并网发电开发与应用技术研究;?邓?焰(1973-),男,四川宜宾人,副教授,博士,主要从事电力电子技术、开关功率变换相关理论、技术研究;?臧?曙(1961-),男,湖南长沙人,教授,主要从事电气工程研究.

光伏并网逆变器选型细则

并网逆变器选型细则 并网逆变器是将太阳能直流电转换为可接入交流市电的设备,是太阳能光伏发电站不可缺少的重要组成部分。以下对光伏电站设计过程中并网逆变器及其选型做比较详细的介绍和分析。 1.并网逆变器在光伏电站中的作用 光伏发电系统根据其应用模式一般可分为独立发电系统、并网发电系统以及混合系统,而并网发电系统的基本特点就是太阳电池组件产生的直流电经过并网逆变器转换成符合市电电网要求的交流电之后直接接入公共电网。 并网光伏电站的基本结构 并网逆变器功作用和功能 并网逆变器是电力、电子、自动控制、计算机及半导体等多种技术相互渗透与有机结合的综合体现,它是光伏并网发电系统中不可缺少的关键部分。并网逆变器的主要功能是: ◆最大功率跟踪 ◆DC-AC转换 ◆频率、相位追踪 ◆相关保护 2.并网逆变器分类 并网逆变器按其电路拓扑结构可以分为变压器型和无变压器型逆变器,其中变压器型又分为高频变压器型和低频变压器型。变压器型和无变压器型逆变器的主要区别在于安全性和效率两个方面。以下对三种类型逆变器做简单介绍: ◆高频变压器型 采用DC-AC-DC-AC的电路结构,设计较为复杂,采用较多的功率开关器件,因此损耗较大。 ◆低频变压器型 采用DC-AC-AC的电路结构,电路简单,采用普通工频变压器,具有较好的电气安全性,但效率较低。

◆无变压器型 采用DC-AC的电路结构,无电气隔离,电压范围较窄,但是损耗小、效率高。 3.并网逆变器主要技术指标 a. 使用环境条件 逆变器正常使用条件:包括工作温度、工作湿度以及逆变器的冷却方式等相关指标。 b. 直流输入最大电流 c. 直流输入最大电压 d. 直流输入MPP电压范围 逆变器对太阳能电池部分进行最大功率追踪(MPPT)的电压范围,一般小于逆变器允许的最大直流输入电压,设计电池组件的输出电压应当在MPP电压范围之内。 e. 直流输入最大功率 大于逆变器的额定输出功率,即通常所说的“逆变器功率”。为了充分利用逆变器的容量,设计接入并网逆变器的电池组件的标称功率可以等于直流侧输入最大功率。 f. 最大输入路数 指逆变器直流侧可接入的直流回路数目。 g. 额定输出电压 在规定的输入条件下,逆变器应输出的电压值。电压波动范围一般应:单相220V±5%,三相380±5%。 h. 额定输出功率 在规定的输出频率和负载功率因数下,逆变器应输出的额定电流值。 i. 额定输出频率 在并网系统中,额定输出频率要对应所并入的电网频率,而且当电网的频率和相位有微小波动时,逆变器输出的交流电应自动追踪电网的频率和相位。当检测到电网频率波动过大,逆变器将自动切离电网。我国的市电频率为50Hz,并网逆变器频率波动范围一般在±3%以内。 j. 最大谐波含量

集中式、组串式、集散式逆变器的区别

集中式、组串式、集散式逆变器的区别 一、集中式逆变器 集中式逆变器顾名思义是将光伏组件产生的直流电汇总转变为交流电后进行升压、并网。因此,逆变器的功率都相对较大。光伏电站中一般采用500kW 以上的集中式逆变器。 (一)集中式逆变器的优点如下: 1.功率大,数量少,便于管理;元器件少,稳定性好,便于维护; 2.谐波含量少,电能质量高;保护功能齐全,安全性高; 3.有功率因素调节功能和低电压穿越功能,电网调节性好。 (二)集中式逆变器存在如下问题: 1.集中式逆变器MPPT电压范围较窄,不能监控到每一路组件的运行情况,因此不可能使每一路组件都处于最佳工作点,组件配置不灵活; 2.集中式逆变器占地面积大,需要专用的机房,安装不灵活; 3.自身耗电以及机房通风散热耗电量大。 二、组串式逆变器 组串式逆变器顾名思义是将光伏组件产生的直流电直接转变为交流电汇总后升压、并网。因此,逆变器的功率都相对较小。光伏电站中一般采用50kW以下的组串式逆变器。 (一)组串式逆变器优点: 1.不受组串间模块差异,和阴影遮挡的影响,同时减少光伏电池组件最佳工作点与逆变器不匹配的情况,最大程度增加了发电量; 2.MPPT电压范围宽,组件配置更加灵活;在阴雨天,雾气多的部区,发电时间长; 3.体积较小,占地面积小,无需专用机房,安装灵活; 4.自耗电低、故障影响小。 (二)组串式逆变器存在问题: 1.功率器件电气间隙小,不适合高海拔地区;元器件较多,集成在一起,稳

定性稍差; 2.户外型安装,风吹日晒很容易导致外壳和散热片老化; 3.逆变器数量多,总故障率会升高,系统监控难度大; 4.不带隔离变压器设计,电气安全性稍差,不适合薄膜组件负极接地系统。 三、集散式逆变器 集散式逆变器是近两年来新提出的一种逆变器形式,其主要特点是“集中逆变”和“分散MPPT跟踪”。集散式逆变器是聚集了集中式逆变器和组串式逆变器两种逆变器优点的产物,达到了“集中式逆变器的低成本,组串式逆变器的高发电量”。 (一)集散式逆变器优点: 1.与集中式对比,“分散MPPT跟踪”减小了失配的几率,提升了发电量; 2.与集中式及组串式对比,集散式逆变器具有升压功能,降低了线损; 3.与组串式对比,“集中逆变”在建设成本方面更具优势。 (二)集散式逆变器问题; 1.工程经验少。较前两类而言,尚属新形式,在工程项目方面的应用相对较少; 2.安全性、稳定性以及高发电量等特性还需要经历工程项目的检验; 3.因为采用“集中逆变”,因此,占地面积大,需专用机房的缺点也存在于集散式逆变器中。

光伏逆变器拓扑结构及设计思路

光伏逆变器拓扑结构及设计思路 时间:2010-11-20 17:38:30 来源:作者: 1 引言 对于传统电力电子装置的设计,我们通常是通过每千瓦多少钱来衡量其性价比的。但是对于光伏逆变器的设计而言,对最大功率的追求仅仅是处于第二位的,欧洲效率的最大化才是最重要的。因为对于光伏逆变器而言,不仅最大输出功率的增加可以转化为经济效益,欧洲效率的提高同样可以,而且更加明显[1]。欧洲效率的定义不同于我们通常所说的平均效率或者最高效率。它充分考虑了太阳光强度的变化,更加准确地描述了光伏逆变器的性能。欧洲效率是由不同负载情况下的效率按照不同比重累加得到的,其中半载的效率占其最大组成部分(见图1)。 图1 欧洲效率计算比重 因此为了提高光伏逆变器的欧洲效率,仅仅降低额定负载时的损耗是不够的,必须同时提高不同负载情况下的效率。欧洲效率是一个新的参数,主要是针对光伏逆变器提出来的。由于太阳光在不同时间,强度是不一样的,所以光伏逆变器其实并不会一直工作在额定功率下,更多的是工作在轻负载的时候。所以衡量光伏逆变器的效率,不能完全以额定功率下的效率来衡量。所以欧洲人就想出来了一个新的参数–欧洲效率来衡量。欧洲效率的计算方法如表1。 欧洲效率的改善所带来的经济效益也很容易通过计算得到。例如以一个额定功率3kw的光伏逆变器为例,根据现在市场上的成本估算,光伏发电每千瓦安装成本大约需要4000欧元[2],那也就意味着光伏逆变器每提高欧效1%就可以节省120欧元(光伏发电现在的成本大概在每千瓦4000欧元,或者说每瓦4欧元,包括太阳能电池和光伏逆变器,对于一个3kw的发电装置,如果逆变器效率提高了1%,也就是说多发了30w,那么成本就可以

华为组串式逆变器

华为组串式逆变器 智能 ●最多8路高精度智能组串检测,减少故障定位时间80%; ●多机并联智能电网自适应,电能优质,更好地满足电网接入要求; ●华为专用无线通信技术,无需专用通讯线缆。高效 ●最高效率99%,中国效率98.49%; ●无N线,可节省20%交流线缆投资; ●最多4路MPPT,适应复杂的屋顶环境,发电量提升5%以上。 安全 ●安全的规避PID效应,主动防止触电并隔离; ●无熔丝设计,避免直流侧故障引起的火灾隐患; ●零电压穿越,满足电网接入要求。可靠 ●25年设计使用寿命; ●自然散热,IP65防护等级; ●内置交直流防雷模块,全方位雷击保护。

1、做工精细 华为SUN2000组串式光伏逆变器采用最优质的材料和最先进的工艺制造,通讯只需连接普通网线(RS485线)即可实现;操作简单,容易上手,三相接线简单,接上铜鼻子即可。 2、顶级配置 华为逆变器最多4路MPPT ,比很多其他品牌逆变器多1~2路,更好地解决了电池板的朝向及遮挡问题,提升发电量5%以上;最多配有2个直流开关,在检测或维修时保证绝对安全;最高效率99%,显著提升发电量。 3、屏显简洁 =[表示直流,]~表示交流,第三个图标表示485通讯,第四个图标表示工作状态;第一、二个指示灯绿时,表示逆变器工作正常,可以并网发电;第三个指示灯绿时,表示通讯正常。 4、自然散热 采用全密闭自然散热设计,利用热隔离、热屏蔽技术,将发热器件和热敏感器件分腔合理布局,确保整机无局部热点,提升散热可靠性,解决了因风扇失效散热能力降低导致的功率降低,发电量减少的问题。

5、安装方便 华为逆变器体积小、重量轻,每台逆变器尺寸约550*700*250mm ,重量<60kg ,两个人10分钟就可完成安装;且支持整机更换,故障设备返厂维修,现场无需专家;单台逆变器故障对光伏系统发电影响小。 6、蓝牙监控 华为独有的蓝牙模块可通过逆变器下端的USB 接口与移动设备连接,实现近端的发电数据采集与分析,以及逆变器操作系统的更新升级。移动端监控软件APP 可在华为应用商店下载: 恒通源公司作为华为智能光伏电站解决方案授权经销商,可为您提供华为智能光 伏逆变器等配套产品。咨询热线:400-609-6233 华为逆变器适用于小型屋顶项目(<100kw )、大中型屋顶项目(>100kW )、 地面电站项目(>1MW )。 1、小型屋顶项目(<100kW ) SUN2000组串式逆变器在小型屋顶项目场景中,应用如下图所示:

相关文档
最新文档