单相全波整流电路的设计(1)

单相全波整流电路的设计(1)
单相全波整流电路的设计(1)

《电力电子技术》课程设计之

单相全波整流电路的设计

姓名

学号

年级

专业

系(院)

指导教师

2012/8/21

目录

第一章设计任务书

1.1 设计目的 (2)

1.2 设计要求 (2)

1.3 设计内容 (2)

1.4设计题目 (2)

第二章设计内容

2.1 方案的论证与选择 (3)

2.1.1主电路的方案论证 (3)

2.2 主电路的设计 (5)

2.2.1 带阻感负载的单相桥式全控整流电路 (5)

2.2.2 原理图分析 (6)

2.3 电路方案说明 (7)

第三章触发电路

3.1 同步触发电路 (7)

3. 2 晶闸管的触发条件 (7)

3.3 晶闸管的分类 (13)

3.4 同步环节 (13)

3.5 脉冲形成环节 (14)

3.6双窄脉冲形成环节 (14)

3.7 同步变压器 (15)

第四章保护电路的设计

4.1 过电流保护 (16)

4.2 过电压保护 (17)

第五章元器件的选用 (20)

第六章参数的计算 (26)

第七章心得体会 (27)

第八章参考文献 (28)

第一章设计任务书

1.1 设计目的:

《电力电子技术》课程设计是配合交流电路理论教学,为自动化和电气工程及自动化专业开设的专业基础技术技能设计,是自动化和电气工程及自动化专业学生在整个学习过程中一项综合性实践环节,是走向工作岗位、从事专业技术之前的一项综合性技能训练,对学生的职业能力培养和实践技能训练具有相当重要的意义。主要目的在于: 1:进一步掌握晶闸管相控整流电路的组成、结构、工作原理;

2:重点理解移相电路的功能、结构、工作原理;

3:理解同步变压器的功能。

1.2 设计要求:

1:根据课题正确选择电路形式;

2:绘制完整电气原理图(包括主要电气控制部分);

3:详细介绍整体电路和各功能部件工作原理并计算各元、器件值;

4:编制使用说明书,介绍适用范围和使用注意事项;

说明:负载形式及参数可自行选择

1.3设计内容:

单相全波整流电路的设计。

1:主电路方案论证

2:电路方框图

3:整流电路方框图

4:电路方案说明

单相整流电路可分为单相半波、单相全波和单相桥式可控整流电路,它们所连接的负载性质不同就会有不同的特点。

单相桥式全控整流电路应用广泛,只用四只晶闸管,一个电阻,一个电感,投资比较少,在交流电源的正负半周都有整流输出电流流过负载,整流电压波形脉动次数多于半波整流电路。变压器而次绕组中,正负两个半周电流方向相反且波形对称,直流分量为零,不存在变压器直流磁化问题,变压器绕组的利用率高。

单相桥式全控桥整流电路与半波整流电路相比较:

(1)a的移相范围相等,均为0~180。

(2)输出电压平均值Ud是半波整流电路的2倍。

(3)相同的负载功率下,流过晶闸管的平均电流减小一半。

(4)功率因数提高了1.414倍。

单相桥式全控整流电路与单相全波整流电路相比较:

1.4设计题目:

单相全波整流电路

1.41单相单相全波整流电路的设计 1.42、设计参数:

(1)单相桥式全控整流电路接电阻性负载; (2)要求输出电压在0~100V 连续可调; (3)输出电流在20A 以上; (4)采用220V 变压器降压供电; 1.43、设计要求:

(1)根据课题正确选择电路形式;

(2)绘制完整电气原理图(包括主要电气控制部分);

(3)详细介绍整体电路和各功能部件工作原理并计算各元、器件值; (4)编制使用说明书,介绍适用范围和使用注意事项;

说明:负载形式及参数可自行选择(例如:输入的为市电,即相电压为220V ,输出电

压在0—200V 可调,负载R L =5Ω)

第二章 设计内容

2、1方案的论证与选择

2.1.1主电路的方案论证:

我们知道,单相整流器的电路形式是各种各样的,整流的结构也是比较多的。因此在做设计之前我们主要考虑了以下几种方案: 方案一:单相桥式半控整流电路 电路简图如下:

对每个导电回路进行控制,相对于全控桥而言少了一个控制器件,用二极管代替,有利于降低损耗!如果不加续流二极管,当α突然增大至180°或出发脉冲丢失时,由于电感储能不经变压器二次绕组释放,只是消耗在负载电阻上,会发生一个晶闸管导通而两个二极管轮流导通的情况,这使成为正弦半波,即半周期为正弦,另外半周期为零,其平均值保持稳定,相当于单相半波不可控整流电路时的波形,即为失控。所以

d U

必须加续流二极管,以免发生失控现象。

方案二:单相桥式全控整流电路

电路简图如下:

此电路对每个导电回路进行控制,无须用续流二极管,也不会失控现象,负载形式多样,整流效果好,波形平稳,应用广泛。变压器二次绕组中,正负两个半周电流方向相反且波形对称,平均值为零,即直流分量为零,不存在变压器直流磁化问题,变压器的利用率也高。

方案三:单相半波可控整流电路:

电路简图如下:

此电路只需要一个可控器件,电路比较简单,VT的a 移相范围为180 。但输出脉动大,变压器二次侧电流中含直流分量,造成变压器铁芯直流磁化。为使变压器铁心不饱和,需增大铁心截面积,增大了设备的容量。实际上很少应用此种电路。方案四:单相全波可控整流电路:

电路简图如下:

此电路变压器是带中心抽头的,结构比较复杂,只要用2个可控器件,单相全波只

用2个晶闸管,比单相全控桥少2个,因此少了一个管压降,相应地,门极驱动电路也少2个,但是晶闸管承受的最大电压是单相全控桥的2倍。不存在直流磁化的问题,适用于输出低压的场合作用。但是绕组及铁心对铜、铁等材料的消耗比单相全控桥多,在当今世界上有色金属有限的情况下,这是很不利的,所以我们也放弃了这个方案。

单相半控整流电路的优点是:线路简单、调整方便。弱点是:输出电压脉冲大,负载电流脉冲大(电阻性负载时),且整流变压器二次绕组中存在直流分量,使铁心磁化,变压器不能充分利用。而单相全控式整流电路具有输出电流脉动小,功率因数高,变压器二次电流为两个等大反向的半波,没有直流磁化问题,变压器利用率高的优点。单相全控式整流电路其输出平均电压是半波整流电路2倍,在相同的负载下流过晶闸管的平均电流减小一半;且功率因数提高了一半。

综上所述,针对他们的优缺点,我们采用方案二,即单相桥式全控整流电路(负载为阻感性负载)。

2、2主电路的设计

2.2.1 带阻感负载的单相桥式全控整流电路

图 2.1 单相全控桥式整流电路电感性负载及其波形

(a)电路; (b) 电源电压; (c) 触发脉冲; (d) 输出电压; (e) 输出电流; (f) 晶闸管V -1 , V -4上的电流; (g) 晶闸管V -2 , V -3上的电流;(h) 变压器副边电流; (i) 晶闸管V -1 , V -4上的电压

R

(a)

(b)

(c)

(d)

(e)

(f)

L

(g)

(h)

(i)

电路如图2 a) 所示。为便于讨论,假设电路已工作于稳态。 (1)工作原理:

在u2正半周期,触发角 α 处给晶闸管VT1和VT4加触发脉冲使其开通,ud = u2

负载中有电感存在使负载电流不能突变,电感对负载电流起平波作用,假设负载电感很大,负载电流 id 连续且波形近似为一水平线,其波形如图 2 e) 所示。u2 过零变负时,由于电感的作用晶闸管VT1和VT4 中仍流过电流 id 并不关断。至ωt =π+α 时刻,给 VT2 和 VT3 加触发脉冲,因VT2和VT3本已承受正电压,故两管导通。VT2和VT3导通后,u2通过 VT2 和 VT3 分别向 VT1 和 VT4 施加反压使VT1 和VT4 关断,流过 VT1 和 VT4 的电流迅速转移到 VT2 和 VT3 上,此过程称为换相,亦称换流。至下一周期重复上述过程,如此循环下去。

(2) u d 波形如 图2(d)所示,其平均值为:

当α= 0时,Ud0= 0.9 U2。α= 90o 时,Ud = 0。α角的移相范围为90o 。 单相桥式全控整流电路带阻感负载时,晶闸管VT1、VT4两端的电压波形如图2 i)所示,晶闸管承受的最大正反向电压均为 。

晶闸管导通角θ与α无关,均为180o ,其电流波形如图2 b)所示,平均值和有效值分别为: 和

变压器二次电流 i 2的波形为正负各180o 的矩形波,其相位由α角决定,有效值I 2= I d 。

2.2.2原理图分析:

在单相桥式全控整流电路中,晶闸管VT1和VT4

组成一对桥臂,

VT2和VT3组成另一对桥臂。在U2正半周,若4个晶闸管均不导通,负载电流Id 为零,也为零,VT1和VT4串联承受电压U2。若在触发角α处给VT1和VT4加触发脉冲,VT1和VT4即导通,电流从电源a 端经VT1、R 、VT4流回电源b 端。当u2过零时,流经晶闸管的电流也降到零,VT1和VT4关断。

在u2负半周,仍在触发角α

处触发VT2和VT3,VT2和VT3导通,电流从电源

b 端流出,经VT3、R 、VT2流回电源a 端。到u2过零时,电流又降为零,VT2和VT3关断。此后又是VT1和VT4导通,如此循环的工作下去,

22U d U α

απ

ωωπα

πα

cos 9.0cos 2

2)(sin 21

222U U t td U U d ==

=

?+

晶闸管承受的最大正向电压和反向电压分别为和。

由于在交流电源的正负半周都有整流输出电流流过负载,故该电路为全波整流。在一个周期内,整流电压波形脉动2次,脉动次数多于半波整流电路,该电路属于双脉波整流电路。变压器二次绕组中,正负两个半周电流方向相反且波形对称,平均值为零,即直流分量为零,如图2.2所示,不存在变压器直流磁化问题,变压器绕组的利用率也高。

整流电压平均值为: U 2sin ωtd(ωt)=

2 U 2 α=0时,。α=时,。可见,α角的移相范围为。 向负载输出的直流电流平均值为:

=

=0.9 U 2

晶闸管VT1、VT4和VT2、VT3轮流导电,流过晶闸管的电流平均值只有输出直流电流平均值的一半,即

为选择晶闸管、变压器容量、导线截面积等定额,需考虑发热问题,为此需计算电流有效值。流过晶闸管的电流有效值为

== 变压器二次电流有效值与输出直流电流有效值I 相等,为

由上面的公式可知 不考虑变压器的损耗时,要求变压器的容量为

2.3 电路方案说明

单相整流电路可分为单相半波、单相全波和单相桥式可控整流电路,它们所连接的负载性质不同就会有不同的特点。

单相桥式全控整流电路应用广泛,只用四只晶闸管,一个电阻,一个电感,投资比较少,在交流电源的正负半周都有整流输出电流流过负载,整流电压波形脉动次数多于半波整流电路。变压器而次绕组中,正负两个半周电流方向相反且波形对称,直流

22

2U 22U 2U ?=

π

α

π

21

Uo U π

2

29.02cos 1=+

α2cos 1 α

+209.0U U U d d ==01800=d U 0180d I 2

cos 1222α

π+=

R U R U d 2cos 11α+R 2

cos 145.021

2α+==

R U I I d dVT VT I ????

? ??π

αωωπ)(sin U 2212

2t d R t πππa a R U -+2sin 21222I παππωωπ

α-+=???? ??==?a R U t d R t U I I 2sin 21)(sin 2π122

22I I VT 2

1

=22I U S =

分量为零,不存在变压器直流磁化问题,变压器绕组的利用率高。

单相桥式全控桥整流电路与半波整流电路相比较:

(1)a的移相范围相等,均为0~180。

(2)输出电压平均值Ud是半波整流电路的2倍。

(3)相同的负载功率下,流过晶闸管的平均电流减小一半。

(4)功率因数提高了1.414倍。

单相桥式全控整流电路与单相全波整流电路相比较:

(1)单相全控式整流电路其输出平均电压是半波整流电路2倍。

(2)在相同的负载下流过晶闸管的平均电流减小一半。

(3)且功率因数提高了一半。

第三章触发电路

3.1同步触发电路

1、单结晶体管触发电路

利用单结晶体管(又称双基级二极管)的负阻特性和RC的充放电特性,可组成频率可调的自激振荡电路,如图3-1 所示。

图中V6 为单结晶体管,其常用的型号有BT33 和BT35 两种,由等效电阻V5 和C1 组成组成RC 充电回路,由C1-V6-脉冲变压器组成电容放电回路,调节RP1 即可改变V5 的等效电阻。

3-1 单结晶体管触发电路原理图

工作原理简述如下:

由同步变压器副边输出60V 的交流同步电压,经VD1 半波整流,再由稳压管V1、V2 进行削波,从而得到梯形波电压,其过零点与电源电压的过零点同步,梯形波通过R7 及等效可变电阻向电容C1 充电,当充电电压达到单结晶体管的峰值电压UP 时,单结晶体管V6 导通,电容通过脉冲变压器原边放电,脉冲变压器副边输出脉冲。同时由于放电时间常数很小,C1 两端的电压很快下降到单结晶体管的谷点电压Uv,使V6 关断,C1 再次充电,周而复始,在电容C1 两端呈现锯齿波形,在脉冲变压器副边输出尖脉冲。在一个梯形波周期内,V6 可能导通、关断多次,但对晶闸管的触发只有第一个输出脉冲起作用。电容C1 的充电时间常数由等效电阻等决定,调节RP1 可实现脉冲的移相控制。单结晶体管触发电路的各点波形如图3-2 所示

图3-2 单结晶体管触发电路各点的电压波形

2、正弦波同步移相触发电路

正弦波同步移相触发电路由同步移相、脉冲放大等环节组成,其原理如图3-3 所示。

3-3 正弦波同步移相触发电路原理图

同步信号由同步变压器副边提供。三极管V1 左边部分为同步移相环节,在V1 的基极综合了同步信号电压UT、偏移电压Ub 及控制电压Uct(RP1 电位器调节Uct ,RP2 调节Ub)。调节RP1 及RP2 均可改变V1 三极管的翻转时刻,从而控制触发角的位置。脉冲形成整形环节是一分立元件的集基耦合单稳态脉冲电路,V2 的集电极耦合到V3 的基极,V3 的集电极通过C4、RP3 耦合到V2 的基极。

当V1 未导通时,R6 供给V2 足够的基极电流使之饱和导通,V3 截止。电源电压通过R9、T1、VD6、V2 对C4 充电至15V 左右,极性为左负右正。

当V1 导通的时候,V1 的集电极从高电位翻转为低电位,V2 截止,V3 导通,脉冲变压器输出脉冲。由于设置了C4、RP3 阻容正反馈电路,使V3 加速导通,提高输出脉冲的前沿陡度。同时V3 导通经正反馈耦合,V2 的基极保持低电压,V2 维持截止状态,电容通过RP3、V3 放电到零,再反向充电,当V2 的基极升到0.7V 后,V2 从截止变为导通,V3 从导通变为截止。V2 的基极电位上升0.7V 的时间由其充放电时间常数所决定,改变RP3 的阻值就改变了其时间常数,也就改变了输出脉冲的宽度。

正弦波同步移相触发电路的各点电压波形如图3-4 所示。

电位器RP1、RP2、RP3 均已安装在面板上,同步变压器副边已在内部接好,所有的测试信号都在面板上引出。

图3-4 正弦波同步移相触发电路的各点电压波形

3.单结晶体管的工作原理和特性曲线

单结晶体管的发射极电流与EB间电压的关系曲线称为单结晶体管伏安特性曲线,特性曲线的测试电路如图3.5所示,方框内为单结晶体管的等效电路。

图3.5单结晶体管特性曲线的测试

单结晶体管的伏安特性曲线,如图3.5所示,可分成3个区域:

(1)截止区:当电压 UEB1

(2)负阻区:当增加到PN结开始导通的峰点电压 U

P

时,即

二极管D导通。此时,空穴浓度很高的P区向电子浓度很低的N型基区注入大量空穴

载流子,使 R

B1减小,由式(3.2)可知,U

A

下降,i

E

增大。而U

A

的降低,又使PN结正

偏增加,i

E 的增大使R

B1

进一步减小直至V点,形成正反馈,即出现了如PV段所示特性。

由于动态电阻为负值,故PV段称为负阻区。V点电压U

V 称谷点电压,电流I

V

称为谷点

电流。

(3)饱和区:达到V点以后,当i

E

增加时,UEB1也有所增加。这是由于P区扩散

到N区的空穴浓度已达到饱和程度,R

B1

不会继续减小,恢复正阻特性。所以把V点以后的区域称为饱和区。

3.2、单结晶体管振荡电路

1、如下图所示,它能产生一系列脉冲,用来触发晶闸管。

(a)电路图 (b)波形图

(3.6)单结管振荡电路及波形

2.当合上开关S后,电源通过R1、R2加到单结管的两个基极上,同时又通过R、RP 向电容器C充电,u C按指数规律上升。在u C(u C=u E )

输出电压近似为0。当u C达到峰点电压U P时,单结管的E、B1极之间突然导通,电阻R B1急剧减小,电容上的电压通过RB1、R1放电,由于RB1、R1都很小,放电很快,放电电流在R1上形成一个脉冲电压u o。当u C下降到谷点电压U V时,E、B1极之间恢复阻断状态,单结管从导通跳变到截止,输出电压u o下降到零,完成一次振荡。

3.当E、B1极之间截止后,电源又对C充电,并重复上述过程,结果在R1上得到一个周期性尖脉冲输出电压,如图所示。

上述电路的工作过程是利用了单结管负阻特性和RC充放电特性,如果改变RP,便可改变电容充放电的快慢,使输出的脉冲前移或后移,从而改变控制角α,控制了晶闸管触发导通的时刻。显然,充放电时间常数τ=RC大时,触发脉冲后移,α大,晶闸管推迟导通;τ小时,触发脉冲前移,α小,晶闸管提前导通。

需要特别说明的是:实用中必须解决触发电路与主电路同步的问题,否则会产生失控现象。用单结管振荡电路提供触发电压时,解决同步问题的具体办法可用稳压管对全波整流输出限幅后作为基极电源,如图所示。图中TS称同步变压器,初级接主电源。

3.3、晶闸管的分类

晶闸管是晶体闸流管(Thyristor)的简称,谷称可控硅,它是一种大功率开关型半导体器件,在电路中用文字符号为“V”、“VT”表示(旧标准中用字母“SCR”表示)。

晶闸管具有硅整流器件的特性,能在高电压、大电流条件下工作,且其工作过程可以控制、被广泛应用于可控整流、交流调压、无触点电子开关、逆变及变频等电子电路中。

晶闸管有多种分类方法。

(1)按关断、导通及控制方式分类

晶闸管按其关断、导通及控制方式可分为普通晶闸管、双向晶闸管、逆导晶闸管、门极关断晶闸管(GTO)、BTG晶闸管、温控晶闸管和光控晶闸管等多种。

(2)按引脚和极性分类

晶闸管按其引脚和极性可分为二极晶闸管、三极晶闸管和四极晶闸管。

(3)按封装形式分类

晶闸管按其封装形式可分为金属封装晶闸管、塑封晶闸管和陶瓷封装晶闸管三种类型。其中,金属封装晶闸管又分为螺栓形、平板形、圆壳形等多种;塑封晶闸管又分为带散热片型和不带散热片型两种。

(4)按电流容量分类

晶闸管按电流容量可分为大功率晶闸管、中功率晶闸管和小功率晶闸管三种。

通常,大功率晶闸管多采用金属壳封装,而中、小功率晶闸管则多采用塑封或陶瓷封装。

(5)按关断速度分类

晶闸管按其关断速度可分为普通晶闸管和高频(快速)晶闸管。

3.4、同步环节

同步就是要求触发脉冲的频率与主电路电源的频率相同且相位关系确定。锯齿波是由开关管T2来控制的。T2由导通变截止期间产生锯齿波,T2截止状态持续的时间就是锯齿波的宽度,T2开关的频率就是锯齿波的频率。同步环节是由同步变压器TB 和作同步开关用的晶体管T2组成。同步变压器和整流变压器接在同一电源上,用同步变压器的二次电压来控制它的通、断作用,这就保证了触发脉冲与主电路电源同步。其接线图如下图所示:

同步变压器TB 二次电压经二极管D1间接加在T2的基极上。当二次电压波形在负半周的下降段时,D1导通,电容C1被迅速充电。因O 点接地为零电位,R 点为负电位,Q 点电位与R 点相近,故在这一阶段T2基极为反向偏置而截止。在负半周的上升段,+15V 电源通过R1给电容C1反向充电,为电容反向充电波形,其上升速度比u TB 波形慢,故D1截止。当Q 点电位达1.4V 时,T2导通,Q 点电位被钳位在1.4V 。直到TB 二次电压的下一个负半周到来时,D1重新导通,C1迅速放电后又被充电,T2截止,如此周而复始。在一个正弦波周期内,T2包括截止与导通两个状态,对应锯齿波波形恰好是一个周期,与主电路电源频率和相位完全同步,达到同步的目的。

3.5、脉冲形成环节

T4、T5组成脉冲形成环节,T7、T8组成脉冲放大电路。控制电压加在T4基极上。=0时,T4截止,T5饱和导通,T7、T8处于截止状态,脉冲变压器TP 二次侧无脉冲输出。电容C3充电,充满后电容两端电压接近2UC 。当≈0.7V 时,T4导通,A 点电位由+15V 下降到1.0V 左右,由于C3两端的电压不能突变,T5基极电位迅速降至-30V ,T5立即截止。T5集电极电压由-15V 上升到钳们电压+2.1V (D6、T7、T8 三个PN 结正向压降之和),T7、T8导通,脉冲变压器TP 二次侧输出触发脉冲。与此同时,电容C3经+15V 、R11、D4、T4放电和反向充电,使T%基极电位上升,直到ub5>-Uc,T5又重新导通,使T7、T8截止,输出脉冲终止。输出、脉冲前沿由T4导通时刻确定,脉冲宽度与反向充电回路时间常数R11C3有关。

3.6、双窄脉冲形成环节

产生双脉冲的方法有两种,一种是每个触发电路有每个周期内只产生一个脉冲,脉冲输出电路同时触发两个桥臂的晶闸管,这称为外双脉冲触发。另一种方案是每个触发电路在一个周期内连续出现个相隔60°的窄脉冲,脉冲输出电路只触发一个晶闸管,

bt U q U 0c U 0c U 0c

U

这称为内双脉冲触发。内双脉冲是目前应用最多的一种触发方式。

T5、T6构成或门。当T5、T6都导通时,T7、T8截止,没有脉冲输出。只要T5、T6有一个截止,都会使T7、T8导通,有脉冲输出。所以只要用适当的信号来控制T5或T6的截止,就可以主生符合要求的脉冲。其中,第一个脉冲由本相触发单元的对应的控制角a所产生,使T4由截止变为导通,T5瞬时截止,于是T8输出脉冲。相隔60°的第二个脉冲是由滞后60°相位的后一相触发单元主生,使T6瞬时截止,于是本相触发单元的T8管又导通,第二次输出一个脉冲,因现时得到间隔60°的双脉冲。其中D4和R17和作用主要是防止双脉冲信号互相干扰。其连接框图如图所示。

在三相桥式全控整流电路中,器件的导通次序为T1→T2→T3→T4→T5→T6,彼此间隔60°。本相触发电路输出脉冲时X 端发出信号给相邻前相触发电路Y 端,使前相触发电路补发一个脉冲。

3.7、同步变压器

0c U

在晶闸管装置中,送到主电路各晶闸管的触发脉冲与其阳极电压之间必须保持正确的相位关系,才能保证装置正常工作。触发脉冲只有在晶闸管阳极电压为正的区间内出现,晶闸管才能被触发导通。锯齿波同步触发电路产生触发脉冲的时刻,必须根据被触发的晶闸管阳极电压相位,以使触发电路在晶闸管需要触发脉冲的时刻输出脉冲。所以,通过使用同步变压器,使主电路的电压相位与触发电路的输出电压信号保持了正确的相位关系,从而控制晶闸管的开通时刻,得到可控制的输出电压。根据主电路,同步变压器的接线图如图所示。

第四章 保护电路的设计

4.1过电流保护:

当电力电子变流装置内部某些器件被击穿或短路;驱动、触发电路或控制电路发生故障;外部出现负载过载;直流侧短路;可逆传动系统产生逆变失败;以及交流电源电压过高或过低;均能引起装置或其他元件的电流超过正常工作电流,即出现过电流。因此,必须对电力电子装置进行适当的过电流保护。

采用快速熔断器作过电流保护,其接线图(见图4.1)。熔断器是最简单的过电流保护元件,但最普通的熔断器由于熔断特性不合适,很可能在晶闸管烧坏后熔断器还没有熔断,快速熔断器有较好的快速熔断特性,一旦发生过电流可及时熔断起到保护作用。最好的办法是晶闸管元件上直接串快熔,因流过快熔电流和晶闸管的电流相同,所以对元件的保护作用最好,这里就应用这一方法快熔抑制过电流电路图如下图所示:

d U

图4.1 快速熔断器的接入方法

A 型熔断器

特点:是熔断器与每一个元件串连,能可靠的保护每一个元件。 B 型熔断器

特点:能在交流、直流和元件短路时起保护作用,其可靠性稍有降低 C 型熔断器

特点:直流负载侧有故障时动作,元件内部短路时不能起保护作用

对于第二类过流,即整流桥负载外电路发生短路而引起的过电流,则应当采用电子电路进行保护。常见的电子保护原理图如4.2所示

图4.2过流保护原理图

当熔和晶闸管串联使用时,快熔的额定电压应大于线路正常工作电压的有效值,快熔的额定电流是用有效值来表示的,一般可按下式选取: 1.57I T α≥≥

式中, ——晶闸管的实际工作电流有效值;

kx I kx I k I k

I

I T α——晶闸管的额定电流。 因为晶闸管的额定电流 I T α =2A

所以 1.57I T α=1.57×2A=3.14A 所以所选熔断器为: RS1—3 六个。 4.2过电压保护:

设备在运行过程中,会受到由交流供电电网进入的操作过电压和雷击过电压的侵袭。同时,设备自身运行中以及非正常运行中也有过电压出现。

过电压保护的第一种方法是并接R-C 阻容吸收回路,以及用压敏电阻或硒堆等非线性元件加以抑制。见图4.3和图4.4

图4.3阻容三角抑制过电压 图4.4压敏电阻过压 过电压保护的第二种方法是采用电子电路进行保护。常见的电子保护原图如图4.5所示:

图4.5过电压保护电路

根据资料书上的资料,我们采用阻容保护(图 4.3),在变压器副边电路两端并联电阻R 和电容C ,利用电容两端的电压不能够突变的特性,可以有效的抑制变压器绕组中的过电压,串联电阻能够消耗部分过电压能量。同时抑制LC 回路的振荡。 单相阻容保护的计算公式如下:

22

2.3

U R S

≥0

20

2

6S

C i

U

单相桥式全控整流电路Matlab仿真

单相桥式全控整流电路 M a t l a b仿真 Document serial number【UU89WT-UU98YT-UU8CB-UUUT-UUT108】

目录( ( (3 4 6 8 单相桥式全控整流电路仿真建模分析 一、实验目的 1、不同负载时,单相全控桥整流电路的结构、工作原理、波形分析。 2、在仿真软件Matlab中进行单相可控整流电路的建模与仿真,并分析其波形。 二.实验内容

(一)单相桥式全控整流电路(纯电阻负载) 1.电路的结构与工作原理 电路结构 单相桥式全控整流电路(纯电阻负载)的电路原理图(截图) 工作原理 用四个晶闸管,两只晶闸管接成共阴极,两只晶闸管接成共阳极,每一只晶闸管是一个桥臂。 (1)在u2正半波的(0~α)区间: 晶闸管VT1、VT4承受正压,但无触发脉冲。四个晶闸管都不通。假设四个晶闸管的漏电阻相等,则==1/2 u2。 (2)在u2正半波的ωt=α时刻: 触发晶闸管VT1、VT4使其导通。电流沿a→VT1→R→VT4→b→Tr的二次绕组→a流通,负载上有电压(u d=u2)和电流输出,两者波形相位相同且=0。此时电源电压反向施加到晶闸管VT2、VT3上,使其承受反压而处于关断状态,则=1/2 u2。晶闸管VT1、VT4—直导通到ωt=π为止,此时因电源电压过零,晶闸管阳极电流下降为零而关断。 (3)在u2负半波的(π~π+α)区间: 晶闸管VT2、VT3承受正压,因无触发脉冲,VT2、VT3处于关断状态。此时,==1/2 u2。 (4)在u2负半波的ωt=π+α时刻: 触发晶闸管VT2、VT3,元件导通,电流沿b→VT3→R→VT2→a→Tr的二次绕组→b流通,电源电压沿正半周期的方向施加到负载电阻上,负载上有输出电

单相桥式晶闸管全控整流电路课程设计

学号:2011551917 湘潭大学 课程设计 题目单相全控桥式晶闸管整流电路设计 学院信息工程学院 专业自动化专业 班级自动化4班 姓名严梦宇 指导教师兰志勇 2014 年 5 月19 日

课程设计任务书 学生姓名:严梦宇专业班级:自动化4班 指导教师:兰志勇工作单位:湘潭大学 题目: 初始条件:单相全控桥式晶闸管整流电路的设计(阻感负载) 1、电源电压:交流100V、50Hz 2、输出功率:500w 3、移相范围0°~90° 摘要 本次课程设计只要是对单相全控桥式晶闸管整流电路的研究。首先对几种典型的整流电路的介绍,从而对比出桥式全控整流的优点,然后对单相全控桥式晶闸管整流电路的整体设计,包括主电路,触发电路,保护电路。主电路中包括电路参数的计算,器件的选型;触发电路中包括器件选择,参数设计;保护电路包括过电压保护,过电流保护,电压上升率抑制,电流上升率抑制。之后就对整体 电路进行Matlab仿真,最后对仿真结果进行分析与总结。 关键词:单相全控桥、晶闸管、整流 单相桥式全控整流电路 电路简图如图: 单相桥式全控整流电路 此电路对每个导电回路进行控制,无须用续流二极管,也不会失控现象,负

载形式多样,整流效果好,波形平稳,应用广泛。变压器二次绕组中,正负两个半周电流方向相反且波形对称,平均值为零,即直流分量为零,不存在变压器直流磁化问题,变压器的利用率也高。 而单相全控式整流电路具有输出电流脉动小,功率因数高,变压器二次电流为两个等大反向的半波,没有直流磁化问题,变压器利用率高的优点。相同的负载下流过晶闸管的平单相全控式整流电路其输出平均电压是半波整流电路2倍,在均电流减小一半;且功率因数提高了一半。 系统流程框图 根据方案选择与设计任务要求,画出系统电路的流程框图如图1-5所示。整流电路主要由驱动电路、保护电路和整流主电路组成。根据设计任务,在此设计中采用单相桥式全控整流电路带阻感性负载。 系统流程框图 主电路的设计 主电路原理图如图1-6所示 主电路原理图 输入 过电流保护 整流主电路 过电压保护 驱动触发电路 输出

单相桥式全控整流电路Matlab仿真(完美)资料-共18页

目录 完美篇 单相桥式全控整流电路仿真建模分析 (1) (一)单相桥式全控整流电路(纯电阻负载) (2) 1.电路的结构与工作原理 (2) 2.建模 (3) 3仿真结果与分析 (4) 4小结 (6) (二)单相桥式全控整流电路(阻-感性负载) (7) 1.电路的结构与工作原理 (7) 2.建模 (8) 3仿真结果与分析 (10) 4.小结 (12) (三)单相桥式全控整流电路(反电动势负载) (13) 1.电路的结构与工作原理 (13) 2.建模 (14) 3仿真结果与分析 (16) 4小结 (18) 单相桥式全控整流电路仿真建模分析 一、实验目的 1、不同负载时,单相全控桥整流电路的结构、工作原理、波形分析。 2、在仿真软件Matlab中进行单相可控整流电路的建模与仿真,并分析其波形。 二.实验内容

(一)单相桥式全控整流电路(纯电阻负载) 1.电路的结构与工作原理 1.1电路结构 U1U2Ud Id + - T VT3 VT1 VT2VT4 a b R 单相桥式全控整流电路(纯电阻负载)的电路原理图(截图) 1.2工作原理 用四个晶闸管,两只晶闸管接成共阴极,两只晶闸管接成共阳极,每一只晶闸管是一个桥臂。 (1)在u2正半波的(0~α)区间: 晶闸管VT1、VT4承受正压,但无触发脉冲。四个晶闸管都不通。假设四个晶闸管的漏电阻相等,则u T1.4= u T2.3=1/2 u2。 (2)在u2正半波的ωt=α时刻: 触发晶闸管VT1、VT4使其导通。电流沿a→VT1→R→VT4→b→Tr的二次绕组→a流通,负载上有电压(u d=u2)和电流输出,两者波形相位相同且u T1.4=0。此时电源电压反向施加到晶闸管VT2、VT3上,使其承受反压而处于关断状态,则u T2.3=1/2 u2。晶闸管VT1、VT4—直导通到ωt=π为止,此时因电源电压过零,晶闸管阳极电流下降为零而关断。 (3)在u2负半波的(π~π+α)区间: 晶闸管VT2、VT3承受正压,因无触发脉冲,VT2、VT3处于关断状态。此时,u T2.3=u T1.4=1/2 u2。 (4)在u2负半波的ωt=π+α时刻: 触发晶闸管VT2、VT3,元件导通,电流沿b→VT3→R→VT2→a→Tr的二次绕组→b流通,电源电压沿正半周期的方向施加到负载电阻上,负载上有输出电压(u d=-u2)和电流,且波形相位相同。此时电源电压反向加到晶闸管VT1、VT4上,使其承受反压而处于关断状态。晶闸管VT2、VT3一直要导通到ωt=2π为止,此时电源电压再次过零,晶闸管阳极电流也下降为零而关断。晶闸管VT1、

单相桥式全控整流电路

单相桥式全控整流电路 一、原理 图1.1为单相桥式全控整流带电阻电感性负载,图中DJK03是装置上的晶闸管触发装置。假设电路已工作于稳态。 在u2正半周期,触发角α处给晶闸管VT1和VT4加触发脉冲使其开通,ud=u2。负载中有电感存在时负载电流不能突变,电感对负载电流起平波作用,假设负载电感很大,负载电流id连续且波形近似为一水平线,u2过零变负时,由于电感的作用晶闸管VT1和VT4中仍流过电流id,并不关断。至ωt=π+α时刻,给VT3和VT2加触发脉冲,因VT3和VT2本已承受正电压,故两管导通。VT3和VT2导通后,u2通过VT3和VT2分别向VT1和VT4施加反压使VT1和VT4关断,流过VT1和VT4的电流迅速转移到VT3和VT2上,此过程成为换相,亦称换流。至下一周期重复上述过程,如此循环下去,其平均值为Ud=0.9U2。 图1.2为单相桥式有源逆变电路实验原理图,三相电源经三相不控整流,得到一个上负下正的直流电源,供逆变桥路使用,逆变桥路逆变出的交流电压经升压变压器反馈回电网。图中的电阻Rp、电抗Ld和触发电路与单相桥式整流电路相同。 产生有源逆变的条件如下: (1)要有直流电动势,其极性需和晶闸管的导通方向一致,其值应大于变流电路直流侧的平均电压。 (2)要求晶闸管的控制角α>π/2.,使Ud为负值。 两者必须同时具备才能实现有源逆变。 二、实验内容 (1)单相桥式全控整流电路带电阻性负载。 (2)单相桥式有源逆变电路带电阻电感性负载。 (3)有源逆变电路逆变颠覆现象的观察。 (4)单相桥式整流、单相桥式有源逆变电路带电阻电感性负载时MATLAB的仿真。 三、实验仿真 1.带电阻电感性负载的仿真 启动MATLAB,进入SIMULINK后新建文档,绘制单相桥式全控整流电路模型,如图1.3所示。双击各模块,在出现的对话框内设置相应的参数。

单相半波整流电路的设计

单相半波整流电路的设计 摘要 本文主要进行了单相半波整流电路的设计。单相半波整流电流电路的特点是简单,但输出脉动大,变压器二次电流中含有直流分量,造成变压器铁芯直流磁化。为使变压器铁心不饱和,需增大铁心面积,增大了设备的容量。实际上很少应用此种电路。分析该电路的主要目的在于利用其简单易学的特点,建立起整流电路的基本概念。晶闸管不同于整流二极管,它的导通是可控的。可控整流电路的作用就是把交流电变换为电压值可以调节的直流电。在充分理解单相半波整流电路工作原理的基础上,本文设计出了单相半波整流电路带电阻负载、电感负载、阻感负载时的电路原理图,并对其中的相关参数进行了计算,仿真波形对比发现结果正确。 关键词:晶闸管,整流,触发

目录 摘要 .................................................................... 1课题背景............................................... 错误!未指定书签。 1.1选题背景 (1) 1.2参数选择 (1) 2单相半波整流电路的设计................................. 错误!未指定书签。 2.1单相半波整流电路(电阻负载) ..................... 错误!未指定书签。 2.1.1工作原理和电路特点(电阻负载).............. 错误!未指定书签。 2.1.2电路原理图(电阻负载)...................... 错误!未指定书签。 2.1.3参数计算(电阻负载)........................ 错误!未指定书签。 2.1.4仿真波形(电阻负载)........................ 错误!未指定书签。 2.1.5结论(电阻负载)............................ 错误!未指定书签。 2.2单相半波整流电路(电感负载) ..................... 错误!未指定书签。 2.2.1工作原理(电感负载)........................ 错误!未指定书签。 2.2.3仿真波形(电感负载)........................ 错误!未指定书签。 2.3单相半波整流电路(阻感负载) ..................... 错误!未指定书签。 2.3.1工作原理(阻感负载)........................ 错误!未指定书签。 2.3.2电路原理图(阻感负载)...................... 错误!未指定书签。 2.3.3参数计算(阻感负载)........................ 错误!未指定书签。 2.3.4仿真波形(阻感负载)........................ 错误!未指定书签。致谢 .................................................... 错误!未指定书签。参考文献 ................................................ 错误!未指定书签。

单相桥式全控整流电路课程设计

目录一设计目的 1 二设计任务 1 三设计内容与要求 1 四设计资料及有关规定 五设计成果要求 5.2课程设计方案的选择 5.2.1整流电路 5.3主电路的设计 5.3.1系统总设计框图 5.3.4晶闸管基本参数 5.3.4.1 动态特性 5.3.4.2晶闸管的主要参数说明 5.3.4.3晶闸管的选型 5.3.5变压器的选取 5.3.6 性能指标分析 5.4触发电路和保护电路的设计 5.4.1触发电路 5.4.2保护电路的设计 5.4.2.1 主电路的过电压保护电路设计 5.4.2.2主电路的过电流保护电路设计 5.4.2.3电流上升率、电压上升率的抑制保护5.6设计总结

单相全控晶闸管整流电路课程设计 一 设计目的 (1)培养综合应用所学知识,并设计出具有电压可调功能的直流电源系统的能力; (2)较全面地巩固和应用本课程中所学的基本理论和基本方法,并初步掌整流电路设计的基本方法。 (3)培养独立思考、独立收集资料、独立设计的能力; (4)培养分析、总结及撰写技术报告的能力。 二 设计任务 (1)进行设计方案的比较,并选定设计方案; (2)课程设计的主要内容是主电路的确定,主电路的分析说明 主电路元器件的计算和选型,以及控制电路的设计; (3)完成主电路的原理分析,各主要元器件的选择; (4)完成驱动电路的设计,保护电路的设计; 三 设计内容与要求 负载为电阻电感性负载:L=700mH,R=500欧姆 技术要求:电网供电电压为单相220V,50赫兹,输出电压为100V, 输出功率为1000W 设计技术要求: (1)电源电压:交流100V/50Hz (2)输出功率:500W; (3)移相范围:0~90度。 。

单相桥式全控整流电路(阻感性负载)

1. 单相桥式全控整流电路(阻-感性负载) 1.1单相桥式全控整流电路电路结构(阻-感性负载) 单相桥式全控整流电路用四个晶闸管,两只晶闸管接成共阴极,两只晶闸管接成共阳极,每一只晶闸管是一个桥臂。单相桥式全控整流电路(阻-感性负载)电路图如图1所示 图1. 单相桥式全控整流电路(阻-感性负载) 1.2单相桥式全控整流电路工作原理(阻-感性负载) 1)在u2正半波的(0~α)区间: 晶闸管VT1、VT4承受正压,但无触发脉冲,处于关断状态。假设电路已工作在稳定状态,则在0~α区间由于电感释放能量,晶闸管VT2、VT3维持导通。2)在u2正半波的ωt=α时刻及以后: 在ωt=α处触发晶闸管VT1、VT4使其导通,电流沿a→VT1→L→R→VT4→b→Tr的二次绕组→a流通,此时负载上有输出电压(ud=u2)和电流。电源电压反向加到晶闸管VT2、VT3上,使其承受反压而处于关断状态。 3)在u2负半波的(π~π+α)区间: 当ωt=π时,电源电压自然过零,感应电势使晶闸管VT1、VT4继续导通。

在电压负半波,晶闸管VT2、VT3承受正压,因无触发脉冲,VT2、VT3处于关断状态。 4)在u2负半波的ωt=π+α时刻及以后: 在ωt=π+α处触发晶闸管VT2、VT3使其导通,电流沿b→VT3→L→R→VT2→a→Tr的二次绕组→b流通,电源电压沿正半周期的方向施加到负载上,负载上有输出电压(ud=-u2)和电流。此时电源电压反向加到VT1、VT4上,使其承受反压而变为关断状态。晶闸管VT2、VT3一直要导通到下一周期ωt=2π+α处再次触发晶闸管VT1、VT4为止。 1.3单相桥式全控整流电路仿真模型(阻-感性负载) 单相桥式全控整流电路(阻-感性负载)仿真电路图如图2所示: 图2 单相双半波可控整流电路仿真模型(阻-感性负载)

单相全波整流电路的设计电力电子

单相全波整流电路的设计 摘要 随着科学技术的日益发展,人们对电路的要求也越来越高,由于在生产实际中需要大小可调的直流电源,而相控整流电路结构简单、控制方便、性能稳定,利用它可以方便地得到大中、小各种容量的直流电能,是目前获得直流电能的主要方法,得到了广泛应用。但是晶杂管相控整流电路中随着触发角α的增大,电流中谐波分量相应增大,因此功率因素很低。把逆变电路中的SPWM控制技术用于整流电路,就构成了PWM整流电路。通过对PWM整流电路的适当控制,可以使其输入电流非常接近正弦波,且和输入电压同相位,功率因素近似为1。这种整流电路称为高功率因素整流器,它具有广泛的应用前景。 电力电子器件是电力电子技术发展的基础。正是大功率晶闸管的发明,使得半导体变流技术从电子学中分离出来,发展成为电力电子技术这一专门的学科。而二十世纪九十年代各种全控型大功率半导体器件的发明,进一步拓展了电力电子技术应用和覆盖的领域和范围。电力电子技术的应用领域已经深入到国民经济的各个部门,包括钢铁、冶金、化工、电力、石油、汽车、运输以及人们的日常生活。功率范围大到几千兆瓦的高压直流输电,小到一瓦的手机充电器,电力电子技术随处可见。 关键词:电力电子,整流电路

目录 1设计任务 (4) 1.1设计目的 (4) 1.2设计内容 (4) 1.3 设计要求 (4) 2 设计内容 (5) 2.1 基本原理介绍 (5) 2.2电路设计的经济性论证 (6) 2.3主电路设计 (6) 2.3.1 触发电路 (6) 2.3.2 形成与脉冲放大环节 (8) 2.3.2 锯齿波形成与脉冲移相环节 (8) 2.3.3驱动电路 (9) 2.3.4保护电路 (9) 3参数设定 (12) 3.1180°调压 (12) 3.2 移相调压 (14) 4 参数计算 .............................................. 错误!未定义书签。 4.1 计算公式 (16) 4.2 参数选择: (16) 4.3计算:T=1/f=1/50=0.02s (17) 5仿真 (18) 5.1触发角为30度 (18) 5.2触发角为90度 (19) 5.3触发角为120度 (20) 6波形分析 (21) 心得体会 (22) 参考文献 (23)

单相桥式全控整流电路设计说明

电子技术课程设计说明书 单相桥式全控整流电路设计 学生姓名:学号: 学院:计算机与控制工程学院---- 专业:电气工程及其自动化------ 指导教师:李静李郁峰--------- 2016年 1 月

目录 1引言 (1) 1.1整流电路 (1) 1.2整流电路的发展与应用 (1) 2 课程设计目的与要求 (1) 2.1课程设计目的 (1) 2.2课程设计的预备知识 (2) 2.3 课程设计要求 (2) 3元器件的选择 (2) 3.1晶闸管 (2) 3.1.1晶闸管的结构 (2) 3.1.2晶闸管的工作原理图 (2) 3.1.3晶闸管的门极触发条件 (3) 3.1.4晶闸管的主要参数说明 (3) 3.2 可关断晶闸管 (4) 4电路的结构与工作原理 (5) 4.1电路结构 (5) 4.2 工作原理 (5) 4.3基本数量关系 (5) 5 MATLAB仿真 (6) 5.1 MATLAB软件介绍 (6) 5.2 系统建模与参数设置 (6) 5.2.1 仿真图形 (6) 5.2.2模型参数设置 (7) 5.3 仿真结果与分析 (8) 6 结论 (9) 参考文献 (9) 致谢 (9)

1引言 1.1整流电路 整流电路是电力电子中出现最早的一种,它的作用是将交流电能变为直流电能供给直流用电设备。大多数整流电路由变压器.整流主电路和滤波器等组成。它在直流电动机的调速,发电机的励磁调节,电解,电镀等领域得到广泛应用。20世纪70年代以后,主电路多用硅整流二极管和晶闸管组成。滤波器接在主电路与负载之间,用于滤除脉动直流电压中交流成分。变压器设置与否是具体情况而定。变压器的作用是实现交流输入电压与直流输出电压间的匹配以及交流电网与整流电路之间的电隔离。可以从各种角度对整流电路进行分类,主要的分类方法有:按组成的期间可分为不可控,半控,全控三种;按电路的结构可分为桥式电路和零式电路;按交流输入详述分为单相电路和多相电路;按变压器二次侧的方向是单向还是双向,又可分为单拍电路和双拍电路。 1.2整流电路的发展与应用 电力电子器件的发展对电力电子的发展起着决定性的作用。1947年美国贝尔实验室发明了晶体管,引发了电子技术的一场革命;70年代后期,以门极可关断晶闸管(GTO).电力双极型晶体管(BJT)和电力场效应晶体管(power-MOSFET)为代表的全控型器件发展迅速,把电力电子技术推上一个全新的阶段;80年代后期,以绝缘极双极型晶体管(IGBT)为代表的复合型器件异军突起,成为了现代电力电子技术的主导器件。另外,采用全控型器件的电路的主要控制方式为PWM脉宽调制式,后来,又把驱动,控制,保护电路和功率器件集成在一起,构成功率集成电路(PIC),随着全控型电力电子器件的发展,电力电子电路的工作频率也不断提高。同时,电力电子器件的开关损耗也随之增大,为了减小开关损耗,软开关技术应运而生,零电压开关(ZVS)和零电流开关(ZCS)把电力电子技术和整流电路的发展推向了新的高潮。 2 课程设计目的与要求 2.1课程设计目的 “电力电子技术”课程设计是在教学及实验基础上,对课程所学理论知识的深化和提高。因此,通过电力电子计术的课程设计达到以下几个目的: (1)培养综合应用所学知识,并设计出具有电压可调功能的直流电源系统的

单相全波整流电路的设计(1)

《电力电子技术》课程设计之 单相全波整流电路的设计 姓名 学号 年级 专业 系(院) 指导教师 2012/8/21

目录 第一章设计任务书 1.1 设计目的 (2) 1.2 设计要求 (2) 1.3 设计内容 (2) 1.4设计题目 (2) 第二章设计内容 2.1 方案的论证与选择 (3) 2.1.1主电路的方案论证 (3) 2.2 主电路的设计 (5) 2.2.1 带阻感负载的单相桥式全控整流电路 (5) 2.2.2 原理图分析 (6) 2.3 电路方案说明 (7) 第三章触发电路 3.1 同步触发电路 (7) 3. 2 晶闸管的触发条件 (7) 3.3 晶闸管的分类 (13) 3.4 同步环节 (13) 3.5 脉冲形成环节 (14) 3.6双窄脉冲形成环节 (14) 3.7 同步变压器 (15) 第四章保护电路的设计 4.1 过电流保护 (16) 4.2 过电压保护 (17) 第五章元器件的选用 (20) 第六章参数的计算 (26) 第七章心得体会 (27)

第八章参考文献 (28) 第一章设计任务书 1.1 设计目的: 《电力电子技术》课程设计是配合交流电路理论教学,为自动化和电气工程及自动化专业开设的专业基础技术技能设计,是自动化和电气工程及自动化专业学生在整个学习过程中一项综合性实践环节,是走向工作岗位、从事专业技术之前的一项综合性技能训练,对学生的职业能力培养和实践技能训练具有相当重要的意义。主要目的在于: 1:进一步掌握晶闸管相控整流电路的组成、结构、工作原理; 2:重点理解移相电路的功能、结构、工作原理; 3:理解同步变压器的功能。 1.2 设计要求: 1:根据课题正确选择电路形式; 2:绘制完整电气原理图(包括主要电气控制部分); 3:详细介绍整体电路和各功能部件工作原理并计算各元、器件值; 4:编制使用说明书,介绍适用范围和使用注意事项; 说明:负载形式及参数可自行选择 1.3设计内容: 单相全波整流电路的设计。 1:主电路方案论证 2:电路方框图 3:整流电路方框图 4:电路方案说明 单相整流电路可分为单相半波、单相全波和单相桥式可控整流电路,它们所连接的负载性质不同就会有不同的特点。 单相桥式全控整流电路应用广泛,只用四只晶闸管,一个电阻,一个电感,投资比较少,在交流电源的正负半周都有整流输出电流流过负载,整流电压波形脉动次数多于半波整流电路。变压器而次绕组中,正负两个半周电流方向相反且波形对称,直流分量为零,不存在变压器直流磁化问题,变压器绕组的利用率高。 单相桥式全控桥整流电路与半波整流电路相比较: (1)a的移相范围相等,均为0~180。 (2)输出电压平均值Ud是半波整流电路的2倍。 (3)相同的负载功率下,流过晶闸管的平均电流减小一半。 (4)功率因数提高了1.414倍。

单相全控桥式晶闸管整流电路的设计

电力电子技术课程设计报告题目:单相全控桥式晶闸管整流电路的设计

目录 第1章绪论 (3) 1.1 电力电子技术的发展 (3) 1.2 电力电子技术的应用 (3) 1.3 电力电子技术课程中的整流电路 (4) 第2章系统方案及主电路设计 (5) 2.1 方案的选择 (5) 2.2 系统流程框图 (6) 2.3 主电路的设计 (7) 2.4 整流电路参数计算 (9) 2.5 晶闸管元件的选择 (10) 第3章驱动电路设计 (12) 3.1 触发电路简介 (12) 3.2 触发电路设计要求 (12) 3.3 集成触发电路TCA785 (13) 3.3.1 TCA785芯片介绍 (13) 3.3.2 TCA785锯齿波移相触发电路 (17) 第4章保护电路设计 (18) 4.1 过电压保护 (18) 4.2 过电流保护 (19) 4.3 电流上升率di/dt的抑制 (19) 4.4 电压上升率du/dt的抑制 (20) 第5章系统仿真 (21) 5.1 MATLAB主电路仿真 (21) 5.1.1 系统建模与参数设置 (21) 5.1.2 系统仿真结果及分析 (22) 5.2 proteus 触发电路仿真 (26) 设计体会 (28) 参考文献 (29) 附录A 实物图 (30) 附录B 元器件清单 (31)

第1章绪论 1.1 电力电子技术的发展 晶闸管出现前的时期可称为电力电子技术的史前期或黎明时期。晶闸管由于其优越的电气性能和控制性能,使之很快就取代了水银整流器和旋转变流机组。并且,其应用范围也迅速扩大。电力电子技术的概念和基础就是由于晶闸管及晶闸管变流技术的发展而确立的。晶闸管是通过对门极的控制能够使其导通而不能使其关断的器件,属于半控型器件。对晶闸管电路的控制方式主要是相位控制式,简称相控方式。晶闸管的关断通常依靠电网电压等外部条件来实现。这就使得晶闸管的应用受到了很大的局限。70年代后期,以门极可关断晶闸管(GTO)、电力双极型晶体管(BJT)和电力场效应晶体管(Power-MOSFET)为代表的全控型器件迅速发展。全控型器件的特点是,通过对门极(基极、栅极)的控制既可使其开通又可使其关断。在80年代后期,以绝缘栅极双极型晶体管(IGBT)为表的复合型器件异军突起。它是MOSFET和BJT的复合,综合了两者的优点。与此相对,MOS控制晶闸管(MCT)和集成门极换流晶闸管(IGCT)复合了MOSFET和GTO。 1.2 电力电子技术的应用 电力电子技术是一门新兴技术,它是由电力学、电子学和控制理论三个学科交叉而成的,在电气自动化专业中已成为一门专业基础性强且与生产紧密联系的不可缺少的专业基础课。本课程体现了弱电对强电的控制,又具有很强的实践性。能够理论联系实际,在培养自动化专业人才中占有重要地位。它包括了晶闸管的结构和分类、晶闸管的过电压和过电流保护方法、可控整流电路、晶闸管有源逆变电路、晶闸管无源逆变电路、PWM控制技术、交流调压、直流斩波以及变频电路的工作原理。 在电力电子技术中,可控整流电路是非常重要的内容,整流电路是将交流电变为直流电的电路,其应用非常广泛。工业中大量应用的各种直流电动机的调速均采用电力电子装置;电气化铁道(电气机车、磁悬浮列车等)、电动汽车、

单相半波整流电路教案 - 1

单相半波整流电路教案 教材分析 在小功率整流电路中,单相半波整流电路凭借其电路结构简单的特点广泛应用于电工电子技术中。学好本节的内容将为后续课程内容单相全波整流电路、单相桥式整流电路、 教学重点和难点 单相半波整流电路的工作原理分析,输出电压极性和波形分析及负载直流电压电流的计算。 (一):师生互动环节(教师展示手机充电器对锂电池充电过程) 师:同学们我们现在使用的手机锂电池的低压直流电能是从哪里得来的呢? 生:是手机充电器供给的(学生异口同声的回答) 师:是的。充电器直接引入的是市电220V,50H Z的交流电能,而手机锂电池需要存储的是低压直流电能,那么请同学们思考下充电器是如何给锂电池充电的呢? 生:先降压后变换(少数学生能回答) 换成脉动的低压直流电能--------单相半波整流电路(板书) (一):单相半波整流电路的结构与工作原理(板书)(约43分钟) 教师提示:“单相”一词是指输入整流电路的交流电是单相交流电。而“半波”一词同学们可在下面讲授的半波整流原理中自己总结,到时老师请同学们回答。(任务驱动法教学可集中学生的听课注意力) 1:电路结构组成(板书) 2:工作原理(板书) 教师引导:输入整流电路的交流电压来自于电源变压器的二次绕组输出端,在分析整流原理时应将交流电压分成正、负半周两种情况来考虑。另外为了分析方便,变压器T应假设为无损耗的理想元件,整流二极管V应为理想二极管,负载为纯电阻性负载。 教师提问:①:上面分析了半波整流电路的工作原理,由此可以回答什么是半波整流。 (请学生回答) ②:若在上面图中把整流二极管V极性对调后整理电路的原理又怎样分析

单相桥式全控整流电路Matlab仿真

目录 单相桥式全控整流电路仿真建模分析 0 (一)单相桥式全控整流电路(纯电阻负载) (1) 1.电路的结构与工作原理 (1) 2.建模 (2) 3仿真结果与分析 (4) 4小结 (6) (二)单相桥式全控整流电路(阻-感性负载) (7) 1.电路的结构与工作原理 (7) 2.建模 (8) 3仿真结果与分析 (10) 4.小结 (11) (三)单相桥式全控整流电路(反电动势负载) (13) 1.电路的结构与工作原理 (12) 2.建模 (14) 3仿真结果与分析 (16) 4小结 (18) 单相桥式全控整流电路仿真建模分析 一、实验目的 1、不同负载时,单相全控桥整流电路的结构、工作原理、波形分析。 2、在仿真软件Matlab中进行单相可控整流电路的建模与仿真,并分析其波形。 二.实验内容

(一)单相桥式全控整流电路(纯电阻负载) 1.电路的结构与工作原理 1.1电路结构 R 单相桥式全控整流电路(纯电阻负载)的电路原理图(截图) 1.2工作原理 用四个晶闸管,两只晶闸管接成共阴极,两只晶闸管接成共阳极,每一只晶闸管是一个桥臂。 (1)在u2正半波的(0~α)区间: 晶闸管VT1、VT4承受正压,但无触发脉冲。四个晶闸管都不通。假设四个晶闸管的漏电阻相等,则u T1.4= u T2.3=1/2 u2。 (2)在u2正半波的ωt=α时刻: 触发晶闸管VT1、VT4使其导通。电流沿a→VT1→R→VT4→b→Tr的二次绕组→a流通,负载上有电压(u d=u2)和电流输出,两者波形相位相同且u T1.4=0。此时电源电压反向施加到晶闸管VT2、VT3上,使其承受反压而处于关断状态,则u T2.3=1/2 u2。晶闸管VT1、VT4—直导通到ωt=π为止,此时因电源电压过零,晶闸管阳极电流下降为零而关断。 (3)在u2负半波的(π~π+α)区间: 晶闸管VT2、VT3承受正压,因无触发脉冲,VT2、VT3处于关断状态。此时,u T2.3=u T1.4=1/2 u2。 (4)在u2负半波的ωt=π+α时刻: 触发晶闸管VT2、VT3,元件导通,电流沿b→VT3→R→VT2→a→Tr的二次绕组→b流通,电源电压沿正半周期的方向施加到负载电阻上,负载上有输出电压(u d=-u2)和电流,且波形相位相同。此时电源电压反向加到晶闸管VT1、VT4上,使其承受反压而处于关断状态。晶闸管VT2、VT3一直要导通到ωt=2π为止,此时电源电压再次过零,晶闸管阳极电流也下降为零而关断。晶闸管VT1、

单相桥式全控整流电路 (1)

电力电子技术实验报告 实验名称:单相桥式全控整流电路_______班级:自动化_________________ 组别:第组___________________分工: 金华职业技术学院信息工程学院 年月日 目录

一.单项全控整流电路电阻负载工作分 析..................................................- 1 - 1.电路的结构与工作原 理............................................................ ...............- 1 - 2.建 模…………….................................................. ...........................................- 3 - 3.仿真结果与分 析............................................................ ...........................- 5 - 4.小 结…………….................................................. ...........................................- 5 - 二.单项全控整流电路组感负载工作分 析..................................................- 6 - 1.电路的结构与工作原 理............................................................ ...............- 6 - 2.建 模…………….................................................. ............................................- 8 - 3.仿真结果与分 析............................................................ ..........................- 10- 4.小 结…………….................................................. ...........................................- 10 - 三.单项全控整流电路带反电动势阻感负载工作分 析...............................- 11 - 1.电路的结构与工作原 理............................................................ ...............- 11 - 2.建 模…………….................................................. ............................................- 13 - 3.仿真结果与分 析............................................................ ............................- 15 - 4.小 结…………….................................................. ............................................- 15 -

单相全波和桥式整流电路

单相全波整流电路中,若要求输出直流电压为18v,则整流电压器二次侧的输出电压时多少 1》要求整流输出直流电压为18v而没有电容器滤波时,变压器二次侧的输出电压:U交=U直/0.9=18/0.9=20(V) 2》整流输出直流设置了电容器滤波后电压为18v时,变压器二次侧的输出电压:U交=U直/0.9/1.41=18/0.9/1.41≈14(V)

在三相桥式全控整流电路中,对共阴极组和共阳极组是同时进行控制的,控制角都是α。由于三相桥式整流电路是两组三相半波电路的串联,因此整流电压为三相半波时的两倍。很显然在输出电压相同的情况下,三相桥式晶闸管要求的最大反向电压,可比三相半波线路中的晶闸管低一半。 为了分析方便,使三相全控桥的六个晶闸管触发的顺序是1-2-3-4-5-6,晶闸管是这样编号的:晶闸管KP1和KP4接a相,晶闸管KP3和KP6接b相,晶管KP5和KP2接c相。 晶闸管KP1、KP3、KP5组成共阴极组,而晶闸管KP2、KP4、KP6组成共阳极组。 为了搞清楚α变化时各晶闸管的导通规律,分析输出波形的 变化规则,下面研究几个特殊控制角,先分析α=0的情况,也就 是在自然换相点触发换相时的情况。图1是电路接线图。 为了分析方便起见,把一个周期等分6段(见图2)。 在第(1)段期间,a相电压最高,而共阴极组的晶闸管KP1被 触发导通,b相电位最低,所以供阳极组的晶闸管KP6被触发导通。 这时电流由a相经KP1流向负载,再经KP6流入b相。变压器a、b 两相工作,共阴极组的a相电流为正,共阳极组的b相电流为负。 加在负载上的整流电压为 ud=ua-ub=uab 经过60°后进入第(2)段时期。这时a相电位仍然最高,晶闸管KPl继续导通,但是c相电位却变成最低,当经过自然换相点时触发c相晶闸管KP2,电流即从b相换到c相,KP6承受反向电压而关断。这时电流由a相流出经KPl、负载、KP2流回电源c相。变压器a、c两相工作。这时a相电流为正,c相电流为负。在负载上的电压为 ud=ua-uc=uac 再经过60°,进入第(3)段时期。这时b相电位最高,共阴极组在经过自然换相点时,触发导通晶闸管KP3,电流即从a相换到b相,c相晶闸管KP2因电位仍然最低而继续导通。此时变压器bc两相工作,在负载上的电压为 ud=ub-uc=ubc 余相依此类推。 由上述三相桥式全控整流电路的工作过程可以看出: 1.三相桥式全控整流电路在任何时刻都必须有两个晶闸管导通,而且这两个晶闸管一个是共阴极组,另一个是共阳极组的,只有它们能同时导通,才能形成导电回路。 2. 三相桥式全控整流电路就是两组三相半波整流电路的串联,所以与三相半波整流电路一样,对于共阴极组触发脉冲的要求是保证晶闸管KPl、KP3和KP5依次导通,因此它们的触发脉冲之间的相位差应为120°。对于共阳极组触发脉冲的要求是保证晶闸管KP2、KP4和KP6依次导通,因此它们的触发脉冲之间的相位差也是120°。 3.由于共阴极的晶闸管是在正半周触发,共阳极组是在负半周触发,因此接在同一相的两个晶闸管的触发脉冲的相位应该相差180°。 4. 三相桥式全控整流电路每隔60°有一个晶闸管要换流,由上一号晶闸管换流到下一号晶闸管触发,触发脉冲的顺序是:1→2→3→4→5→6→1,依次下去。相邻两脉冲的相位差是60°。 5.由于电流断续后,能够使晶闸管再次导通,必须对两组中应导通的一对晶闸管同时有触发脉冲。为了达到这个目的,可以采取两种办法;一种是使每个脉冲的宽度大于60°(必须小于120°),一般取80°~100°,称为宽脉冲触发。另一种是在触发某一号晶闸管时,同时给前一号晶闸管补发一个脉冲,使共阴极组和共阳极组的两个应导通的晶闸管上都有触发脉冲,相当于两个窄脉冲等效地代替大于60°的宽脉冲。这种方法称双脉冲触发。 6.整流输出的电压,也就是负载上的电压。整流输出的电压应该是两相电压相减后的波形,实际上都属于线电压,波头uab、uac、ubc、uba、uca、ucb均为线电压的一部分,是上述线电压的包络线。相电压的交点与线电压的交点在同一角度位置上,故线电压的交点同样是自然换相点,同时亦可看出,三相桥式全控的整流电压在一个周期内脉动六次,脉动频率为6 × 50=300赫,比三相半波时大一倍。 7.晶闸管所承受的电压。三相桥式整流电路在任何瞬间仅有二臂的元件导通,其余四臂的元件均承受变化着的反向电压。例如在第(1)段时期,KP1和KP6导通,此时KP3和KP4,承受反向线电压uba=ub-ua。KP2承受反向线电压

单相桥式全控整流电路仿真建模分析

单相桥式全控整流电路仿真建模分析 一、单相桥式全控整流电路(电阻性负载) 1电路的结构与工作原理 1.1电路结构 R id 图 1 单相桥式全控整流电路(纯电阻负载)的电路原理图 1.2 工作原理 在电源电压正半波,在wt <α时,晶闸管VT1,VT4承受正向电压,晶闸管VT2,VT3承受反向电压,此时4个晶闸管都不导通,且假设4个晶闸管的漏电阻相等,则ut1(4)=ut2(3)=1/2U2;在wt=α时,晶闸管VT1,VT4满足晶闸管导通的两条件,晶闸管VT1,VT4导通,负载上的电压等于变压器两端的电压U2;在wt= π时,因电源电压过零,通过晶闸管VT1,VT4的阳极电流小于维持晶闸管导通的条件下降为零,晶闸管关断;在电源负半波,在wt <α+π时,触发晶闸管VT2,VT3使其元件导通,电源电压沿正半周期的方向施加到负载电阻上,负载上有输出电压(Ud=-U2)和电流,且波形相位相同。此时电源电压反向施加到晶闸管VT1,VT4,使其承受反向电压而处于关断状态;在wt=2π时,因电源电压过零,通过晶闸管VT2,VT3的阳极电流小于维持晶闸管导通的条件下降为零,晶闸管关断。 2单相桥式全控整流电路建模 在MATLAB 新建一个Model ,同时模型建立如下图所示: 图2 单相桥式全控整流电路(电阻性负载)的MATLAB 仿真模型

2.1模型参数设置 在此电路中,输入电压的电压设置为220V,频率设置为50Hz,电阻阻值设置为1欧姆,电感设置为1e-3H,脉冲输入的电压设置为3V,周期设置为0.02(与输入电压一致周期),占空比设置为10%,触发角分别设置为20°,60°,90°,150°因为两个晶闸管在对应时刻不断地周期性交替导通,关断,所以脉冲出发周期应相差180°。 晶闸管参数 脉冲参数

单相半波可控整流电路实验报告

实验一、单相半波可控整流电路实验 王季诚(20101496) 一、实验目的 (1)掌握单结晶体管触发电路的调试步骤和方法。 (2)掌握单相半波可控整流电路在电阻负载及电阻电感性负载时的工作情况。 (3)了解续流二极管的作用。 二、实验所需挂件及附件

5 D42 三相可调电阻 6 双踪示波器自备 7 万用表自备 三、实验线路及原理 单结晶体管触发电路的工作原理及线路图已在1-3节中作过介绍。将DJK03-1挂件上的单结晶体管触发电路的输出端“G”和“K”接到DJK02挂件面板上的反桥中的任意一个晶闸管的门极和阴极,并将相应的触发脉冲的钮子开关关闭(防止误触发),图中的R负载用D42三相可调电阻,将两个900Ω接成并联形式。二极管VD1和开关S1均在DJK06挂件上,电感L d在DJK02面板上,有100mH、200mH、700mH 三档可供选择,本实验中选用700mH。直流电压表及直流电流表从DJK02挂件上得到。

图3-6单相半波可控整流电路 四、实验内容 (1)单结晶体管触发电路的调试。 (2)单结晶体管触发电路各点电压波形的观察并记录。 (3)单相半波整流电路带电阻性负载时U d/U2= f(α)特性的测定。 (4)单相半波整流电路带电阻电感性负载时续流二极管作用的观察。 五、预习要求 (1)阅读电力电子技术教材中有关单结晶体管的内容,弄清单结晶体管触发电路的工作原理。 (2)复习单相半波可控整流电路的有关内容,掌握单相半波可控整流电路接电阻性负载和电阻电感性负载时的工作波形。 (3)掌握单相半波可控整流电路接不同负载时U d、I d的计算方法。 六、实验方法 (1)单结晶体管触发电路的调试 将DJK01电源控制屏的电源选择开关打到“直流调速”侧,使输出线电压为200V,用两根导线将200V交流电压接到DJK03-1的“外接220V”端,按下“启动”按钮,打开DJK03-1电源开关,用双踪示波