模态分析

模态分析
模态分析

1. 什么是模态分析?

模态分析是研究结构动力特性一种近代方法,是系统辨别方法在工程振动领域中的应用。模态是机械结构的固有振动特性,每一个模态具有特定的固有频率、阻尼比和模态振型。这些模态参数可以由计算或试验分析取得,这样一个计算或试验分析过程称为模态分析。这个分析过程如果是由有限元计算的方法取得的,则称为计算模态分析;如果通过试验将采集的系统输入与输出信号经过参数识别获得模态参数,称为试验模态分析。通常,模态分析都是指试验模态分析。振动模态是弹性结构的固有的、整体的特性。如果通过模态分析方法搞清楚了结构物在某一易受影响的频率范围内各阶主要模态的特性,就可能预言结构在此频段内在外部或内部各种振源作用下实际振动响应。因此,模态分析是结构动态设计及设备的故障诊断的重要方法。

模态分析最终目标在是识别出系统的模态参数,为结构系统的振动特性分析、振动故障诊断和预报以及结构动力特性的优化设计提供依据。

2. 模态分析有什么用处?

模态分析所的最终目标在是识别出系统的模态参数,为结构系统的振动特性分析、振动故障诊断和预报以及结构动力特性的优化设计提供依据。模态分析技术的应用可归结为以下几个方面:

1. 评价现有结构系统的动态特性;

通过结构的模态分析可以求得各阶模态参数(模态频率、模态振型以及模态阻尼),从而评价结构的动态特性是否符合要求,并校验理论计算结构的准确性。

2. 在新产品设计中进行结构动态特性的预估和优化设计;

3. 诊断及预报结构系统的故障;

近年来,结构故障技术发展迅速,而模态分析已成为故障诊断的一个重要方法。利用结构模态参数的改变来诊断故障是一种有效方法。例如,根据模态频率的变化可以判断裂纹的出现;根据振型的分析可以确定断裂的位置;根据转子支承系统阻尼的改变,可以诊断与预报转子系统的失稳等。

4. 控制结构的辐射噪声;

结构噪声是由于结构振动所引起的。结构振动时,各阶模态对噪声的“贡献”并不相同,对噪声贡献较大的几阶模态称为“优势模态”。抑制或者调整优势模态,便可降低噪声。而优势模态的确定,必须建立在模态分析基础之上。

5.识别结构系统的载荷。

某些结构在工作时所承受的载荷很难测量,这时,可通过实测响应和由模态分析所得的模态参数加以识别。此方法在航空,航天及核工程中应用广泛。

3. 模态分析的应用领域

1. 航空航天飞行器、船舶、汽车工业等

2. 土木领域:大桥、大坝、高层建筑、海洋平台、闸门、桩基检测

3. 各种机械设备:如机床、发电设备、压缩机、气轮机

4. 军工领域

4. 模态分析的步骤是什么?

机器、建筑物、航天航空飞行器、船舶、汽车等的实际振动千姿百态、瞬息变化。模态分析提供了研究各种实际结构振动的一条有效途径。首先,将结构物在静止状态下进行人为激振,通过测量激振力与振动动响应并进行双通道快速傅里叶变换(FFT)分析,得到任意两点之间的机械导纳函数(传递函数)。用模态分析理论通过对试验导纳函数的曲线拟合,识别出结构物的模态参数,从而建立起结构物的模态模型。根据模态叠加原理,在已知各种载荷时间历程的情况下,就可以预言结构物的实际振动的响应历程或响应谱。

近十多年来,由于计算机技术、FFT分析仪、高速数据采集系统以及振动传感器、激励器等技术的发展,试验模态分析得到了很快的发展,受到了机械、电力、建筑、水利、航空、航天等许多产业部门的高

度重视。已有多种档次、各种原理的模态分析硬件与软件问世。在各种各样的模态分析方法中,大致均可分为四个基本过程:

1. 动态数据的采集及频响函数或脉冲响应函数分析

(1) 激励方法。试验模态分析是人为地对结构物施加一定动态激励,采集各点的振动响应信号及激振力信号,根据力及响应信号,用各种参数识别方法获取模态参数。激励方法不同,相应识别方法也不同。目前主要由单输入单输出(SISO)、单输入多输出(SIMO)多输入多输出(MIMO)三种方法。以输入力的信号特征还可分为正弦慢扫描、正弦快扫描、稳态随机(包括白噪声、宽带噪声或伪随机)、瞬态激励(包括随机脉冲激励)等。

(2)数据采集。SISO方法要求同时高速采集输入与输出两个点的信号,用不断移动激励点位置或响应点位置的办法取得振形数据。SIMO及MIMO的方法则要求大量通道数据的高速并行采集,因此要求大量的振动测量传感器或激振器,试验成本较高。

(3)时域或频域信号处理。例如谱分析、传递函数估计、脉冲响应测量以及滤波、相关分析等。

2. 结构数学模型

根据已知条件,建立一种描述结构状态及特性的模型,作为计算及识别参数依据。目前一般假定系统为线性的。由于采用的识别方法不同,也分为频域建模和时域建模。根据阻尼特性及频率耦合程度分为实模态或复模态模型等。

3. 参数识别

按识别域的不同可分为频域法、时域法和混合域法,后者是指在时域识别复特征值,再回到频域中识别振型,激励方式不同(SISO、SIMO、MIMO),相应的参数识别方法也不尽相同。并非越复杂的方法识别的结果越可靠。对于目前能够进行的大多数不是十分复杂的结构,只要取得了可靠的频响数据,即使用较简单的识别方法也可能获得良好的模态参数;反之,即使用最复杂的数学模型、最高级的拟合方法,如果频响测量数据不可靠,则识别的结果一定不会理想。

4. 振形动画

参数识别的结果得到了结构的模态参数模型,即一组固有频率、模态阻尼以及相应各阶模态的振形。由于结构复杂,由许多自由度组成的振形也相当复杂,必须采用动画的方法,将放大了的振形叠加到原始的几何形状上。

以上四个步骤是模态试验及分析的主要过程。而支持这个过程的除了激振拾振装置、双通道FFT 分析仪、台式或便携式计算机等硬件外,还要有一个完善的模态分析软件包。通用的模态分析软件包必须适合各种结构物的几何物征,设置多种坐标系,划分多个子结构,具有多种拟合方法,并能将结构的模态振动在屏幕上三维实时动画显示。

5. 模态参数有那些?

模态参数有:模态频率、模态质量、模态向量、模态刚度和模态阻尼等。

6. 实验模态分析的模型验证

模态模型验证是实验模态分析的第四步。模型验证的目的是对模态参数估计得到结果的正确性进行检验。为了对估计得到的模态模型的质量予以评估,或者从各种不同的参数估计得出的模态数据中够造出尽可能好的模态模型,我们需要许多手段。模态模型验证可以按照三种级别进行。他们分别如下:

1. 第一级验证。第一级验证相当直观,不涉及任何数学工具。对振型进行视觉检查,或者把实测得

到的频响函数与从模态参数识别过程中计算得出的频响函数进行比较,这些都是这一级模态模型验证的典型方法。

2. 第二级验证。第二级验证是利用某些数学工具来检验故基出来的模型的质量。比如模态判定准则

(MAC),模态参预(MP),互易性,模态超复杂性,模态相位共现行,平均相位偏移,模态置信因子(MCF)等等。

3. 第三级验证。第三级验证是一种隐含式验证:当模型用于灵敏度分析,结构变化效果预测,有限

元模型修正等进一步分析时,这些分析的成功很大程度上决定于模态模型估计的正确性。

当然,实验模态分析过程还包括其他一些方面的验证:首先是测量设置,如试件固定,校准,传感器信号等的正确性必须验证,其次是测量得到的频响函数必须通过相干函数加以验证。

7. 常见模态参数识别方法总结

注:LSCE:最小二乘复指数法;ERA:特征系统最小实现算法;TDPI:时域直接参数识别;LSFD:最小二乘频域法;ISSPA:结构系统参数识别;FDPI:频域参数直接识别;SFD:同时频域;CMIF:复指数指示函数。

8. 模态分析中自由度的概念

一个刚体质量的自由度数是确定它在空间的位置所需的最少坐标数目。一个空间刚体共有六个自由度:三个平动自由度(x,y,z)确定质量中心的位置,三个转动自由度(α,β,γ)确定刚体的方位。因为任何连续结

构都可以认为是无限多个微元刚体质量的组合,所以这样的结构都有无穷多个自由度。但是这些结构又可以近似的看作是有限个小刚体质量的组合,因此他们又可以认为是具有有限个自由度数N,该自由度数决定了解析质量矩阵,刚度矩阵和阻尼矩阵的维数,也决定了理论上存在的固有频率数和模态振型结束。然而,十几种能测得的自由度数还要收到某些实际条件的限制,如转动自由度的测量极其困难,有限的频率范围也限制了可监测的模态数目。因此,若解析模型有N个自由度,而实验只能提供Ni个输入自由度,No个输出自由度以及Nm个可以检测到的振型信息。

9. 模态分析理论的几个假设

模态分析理论的几个基本假设是:

1. 线性假设:结构的动态特性是线性的,就是说任何输入组合引起的输出等于各自输出的组合。其

动力特性可以用一组线性二阶微分方程来描述。每次进行模态分析实验时,应当首先检查结构的线性动态特性。

2. 时不变性假设:结构的动态特性不随时间变化,因此微分方程的系数和和时间无关的常数。由于

不得不安装在结构上的运动传感器的附加质量,则有可能会出现典型的时不变性问题。

3. 客观性假设:这意味着用以确定我们所关心的系统动态特性所需要的全部数据都是可以测量的。

为了避免出现可观测性问题,合理选择响应自由度是非常重要的。

此外,还常常假设结构遵从Maxwell互易性原理,记在q点输入引起的p点的响应,等于p点的相同输入在q点引起的响应。次假设使得质量矩阵,刚度矩阵,组逆矩阵和频响函数矩阵都成了对称矩阵。多输入实验允许对所测得的频响函数做互易性检查。

10. 质量,阻尼和刚度变化对频响函数的影响

刚度的增加会导致共振频率的提高,并且降低频响函数在低频段的赋值。因为频响函数低频段刚度的影响具有支配性,因此把这段区域叫做刚独显,或者柔度线。

增加阻尼会使得共振频率略有减少,但是它的主要作用是减小频响函数在共振点的复制,同时使得相位的改变较为平缓。如果阻尼为零,在共振点振动幅度将趋向无穷大,相位会突变180度,而且系统的极点将成为纯虚数,其大小等于无阻尼固有频率。

增大质量会降低共振频率,同时也降低频响函数在高频段的幅值。由于质量对高频段曲线起支配作用,所以单自由度系统的频响函数的高频段叫做质量线。

11. 稳态图的原理

稳态图的原理和误差图类似,是一种直观的判断识别出的模态参数可靠性的方法。稳态图的横坐标表示频率,纵坐标标识认定的系统的模态阶次。假定极点数持续增加,即系统模态阶次持续增加,每次增加,稳态图都指明在频率轴上的什么位置发现几点。非现实的极点并不会在稳态图上显示出来。而真是的物理极点总是作为“稳定极点”出现,几乎和假定的模态数无关。也就是说,这些极点不随极点假定数的增加而改变。相反,力图将数据中的噪声也模型化的计算模态,会随着模态假定数的增加而变化。改变关于频率,阻尼和模态参预因子的稳态标准,可以给出更多关于估计过程的信息。因此稳态图不但给出所存在的模态数的强烈指示,而且是确定物理极点的“最佳”估计的有力工具。

12. 模态分析中常见的阻尼模型

模态分析中,常见的阻尼模型有以下三种:

1. 无阻尼模型在这种模型下,系统的模态质量,刚度,和阻尼矩阵都是对称的。有限元计算中一般

都采用这种模型。

2. 比例阻尼模型这种模型认为阻尼矩阵可以由刚度矩阵和质量矩阵线性组合得到,这样的模型下,

系统的模态质量,刚度,和阻尼矩阵也都是对称的。

3. 粘性阻尼模型较为一般的阻尼模型。在这种模型下,共振频率,模态向量和频率响应都是复值

的。

13.随机子空间方法简介

随机子空间方法是近年来发展起来的一种有效地模态分析方法。它的理论是基于NExT技术和ERA方法。适用于工作状态下的模态分析,即在不知道激励力或是激励力无法测量的情况下,仅根据测量得到的结构响应进行模态参数识别。经过许多工程实例的验证,该方法对固有频率,阻尼比和模态振型都有较好的识别效果。

14. 模态实验中常用的激励方式

传统模态实验中可以采取的激励方法主要有两种:

1. 电动激振器与试件相连;

2. 锤击激励;

锤击法的优点在于设备简单,不会影响试件的动态特性(例如不会受附加质量的影响)。主要缺点在于,其能量集中在很短的时间内,容易引起过载和非线性问题,而且对与大试件需要进行多次的敲击。

激励器的有点在于可以采用多种多样的激励信,并且激励信号已知,主要缺点在于设备麻烦,并且存在附加质量影响问题,对于轻型试件,这个影响尤为明显。

此外,近年来也发展起来了噪声激励法,即通过扬声器发出白噪声信号对试件进行激励,这种方法兼有前面两种方法的优点。对于一些大型的结构,如桥梁,大楼等,一般无法施加合适的激励,一般仅根据环境激励下测得的响应信号进行模态分析。

15. 建立常用模态实验的大致规则

建立常用的模态分析实验的大致规则是:

1. 试件应该尽可能的接近实际工作边界条件。如果使用柔软悬挂形式模拟自由-自由条件,那么结果

悬挂点应当是节点。

2. 激励应当尽量靠近重要模态的反节点。多点激励测量数据量大,一致性好,因此有很多优点。

3. 响应测点应均匀分布在试件上,特别重要的区域上可以多分布一些点。

4. 所选传感器应满足频率范围和灵敏度要求。

5. 试验程序总是对时间,成本,精度,可靠性等因素的综合考虑的结果。

16. 模态参数的应用

一旦知道了模态参数(共振频率,阻尼系数,模态向量,模态参预因子),并给予了验证,我们便可以利用这些参数对系统的动态特性进行更透彻的研究。可以把这些参数用于重设计过程,优化系统的动态特性,或者研究把该结构连接到其他结构上时所产生的影响。也可以利用识别的参数建立传递模型,从而可以进行强迫响应分析。

其中,灵敏度分析是一种很有效的方法。通过这种方法不仅可以知道对结构的修改将如何影响到系统的模态参数,而且也可以知道如果需要改变模态参数,比如移动固有频率时,从哪些点上进行修正会最有利。而灵敏度分析也被广泛运用于有限元建模,结构动力学修改和结构即成或结构的再设计。

17. 预实验分析

准备一个模态分析实验时,试验工程师应当考虑有关实验结构的一切可用知识。其中包括实验目的,所要求的数据(频响函数或模态参数),测量结果的必须精度等信息。进一步的知识可从经验,以前做过的类似结构的实验,或从被试结构的有限元模型获得。

从实践的角度讲,一个好的试验设计应符合下面的一些准则:

1. 对应性:测量出的模态应与实际存在的模态相对应。

2. 激励:试验设计应该包括一套激励装置,以保证能激出所有有关模态。

3. 识别:设测数据应包括识别有关参数的所必须得信息。

4. 观察:实践上,工程师要会观察这些模态振型,并通过视觉判断模态的精度,并将直观

结果和数学计算的结果进行相应的比较。

5. 鲁棒性:即设计的实验应该是稳健的,也就是对模型的误差不能太敏感。

6. 可达性:所选响应及激励自由度应当易于触及操作。

18. 模态分析中时域方法和频域方法的比较

在得到测量数据,进行分析时选用时域方法或者频域方法,有以下几点可供参考:

1. 数值考虑。时域方法较之频域的对应方法在数值上更容易改善,因此时域估计方法一般

更适合于处理较大噪声的数据。

2. 频率范围:在进行宽带分析的时候,时域方法会更好点。在带外模态的影响比较重要的

场合,频域法较好些。尤其是估计振型时,频域发能逼近这些影响。

3. 阻尼:在估计大阻尼系统的极点时,频域法较好。小阻尼系统用时域法识别较好。一般

以阻尼比=3%进行区分。

4. 测量数据的特性:一般实验数据可以测得频响函数,采用时域方法时候,需要将其逆变

换到时间域上。如果本身频响函数精度不高,这样带来最终的识别误差会加大。

19. 力和运动传感器

结构在激振器或者力锤的激励下产生振动时,输入到机械系统的信号和从该系统输出的信号都必须进行测量。系统的输入一般是力,用力传感器测量;系统的输出一般是结构上一些感兴趣点的位移,速度,加速度,这些输出量都是用运动传感器测量。

模态分析试验中常用的传感器是压电晶体式的。

目前,常用的力传感器都是压电力传感器,他的主要特性指标是:最大力,最低频率和最高频率以及灵敏度。

运动传感器根据测量量的不同有位移,速度和加速度传感器。一般,位移传感器适合于测量低频响应,而加速度传感器适合于测量高频响应。位移和加速度传感器的质量一般较大,而位移传感器需要尽量做得质量较小,这样它对结构的影响就越小,从而测量也就更准确。而加速度计也是在模态分析试验中应用最为广泛的运动传感器。

加速度计按照机理可以分为电压型压电加速度计和电荷型压电加速度计。在安装加速度计的时候,螺接的方式最好。加速度计在安装的时候,必须安装在待测振动点的待测方向上。对于加速度计来说,质量越大,它的灵敏度就越高,但是带来的负面影响是给待测结构带来了较大的附加载荷。

目前,还有一种非接触式运动传感器。它的原理是根据近程感应原理或者激光测振。

上述传感器在进行测量之间都需要先进行校准。

20. FRF测量和设置验证

模态实验的实验设置和实验程序确定后,即可进行模态实验。一般在测得第一组数据后,先要检查试验设置和程序是否正确。

对力的自功率谱,远点频响函数,跨点频响函数,相干函数的检验,将有助于判断测量设置的正确性。

输入力的自功率谱可以检验输入力的性质,如力锤激励如果双击,它的自功率谱将会有剧烈的波动。

原点频响函数和跨点频响函数被用来检验通道的互易性。

如果结构是线性的,那么频响函数应该和激励力的量级无关。

测量得到几组频响函数后,可以根据他们的相干函数来判断频响函数各次平均的一致性程度,相干函数越接近于1,则每次平均越接近相同。

21. 激励信号速查表

在进行模态实验时,选择合适的激励信号很重要。有以下初步的结论:

1. 适当选择激励信号会使得线性结构的测量结果得以改善;

2. 结构存在非线性时,选择适当信号既可以把非线性平均掉,也可以对它们予以描述和鉴别;

3. 对于平均模态分析实验,用得最多的激励信号是猝发随机和锤击,特殊场合也可以使用别的激励

信号,如步进正弦。

下表位激励信号速查表:

模态分析和频率响应分析的目的

有限元分析类型 一、nastran中的分析种类 (1)静力分析 静力分析是工程结构设计人员使用最为频繁的分析手段,主要用来求解结构在与时间无关或时间作用效果可忽略的静力载荷(如集中载荷、分布载荷、温度载荷、强制位移、惯性载荷等)作用下的响应、得出所需的节点位移、节点力、约束反力、单元内力、单元应力、应变能等。该分析同时还提供结构的重量和重心数据。 (2)屈曲分析 屈曲分析主要用于研究结构在特定载荷下的稳定性以及确定结构失稳的临界载荷,NX Nastran中的屈曲分析包括两类:线性屈曲分析和非线性屈曲分析。 (3)动力学分析 NX Nastran在结构动力学分析中有非常多的技术特点,具有其他有限元分析软件所无法比拟的强大分析功能。结构动力分析不同于静力分析,常用来确定时变载荷对整个结构或部件的影响,同时还要考虑阻尼及惯性效应的作用。 NX Nastran的主要动力学分析功能:如特征模态分析、直接复特征值分析、直接瞬态响应分析、模态瞬态响应分析、响应谱分析、模态复特征值分析、直接频率响应分析、模态频率响应分析、非线性瞬态分析、模态综合、动力灵敏度分析等可简述如下: ?正则模态分析 正则模态分析用于求解结构的固有频率和相应的振动模态,计算广义质量,正则化模态节点位移,约束力和正则化的单元力及应力,并可同时考虑刚体模态。 ?复特征值分析 复特征值分析主要用于求解具有阻尼效应的结构特征值和振型,分析过程与实特征值分析类似。此外

Nastran的复特征值计算还可考虑阻尼、质量及刚度矩阵的非对称性。 ?瞬态响应分析(时间-历程分析) 瞬态响应分析在时域内计算结构在随时间变化的载荷作用下的动力响应,分为直接瞬态响应分析和模态瞬态响应分析。两种方法均可考虑刚体位移作用。 直接瞬态响应分析 该分析给出一个结构随时间变化的载荷的响应。结构可以同时具有粘性阻尼和结构阻尼。该分析在节点自由度上直接形成耦合的微分方程并对这些方程进行数值积分,直接瞬态响应分析求出随时间变化的位移、速度、加速度和约束力以及单元应力。 模态瞬态响应分析 在此分析中,直接瞬态响应问题用上面所述的模态分析进行相同的变换,对问题的规模进行压缩,再对压缩了的方程进行数值积分,从而得出与用直接瞬态响应分析类型相同的输出结果。 ?随机振动分析 该分析考虑结构在某种统计规律分布的载荷作用下的随机响应。例如地震波,海洋波,飞机超过建筑物的气压波动,以及火箭和喷气发动机的噪音激励,通常人们只能得到按概率分布的函数,如功率谱密度(PSD)函数,激励的大小在任何时刻都不能明确给出,在这种载荷作用下结构的响应就需要用随机振动分析来计算结构的响应。NX Nastran中的PSD可输入自身或交叉谱密度,分别表示单个或多个时间历程的交叉作用的频谱特性。计算出响应功率谱密度、自相关函数及响应的RMS值等。计算过程中,NX Nastran不仅可以像其他有限元分析那样利用已知谱,而且还可自行生成用户所需的谱。 ?响应谱分析 响应谱分析(有时称为冲击谱分析)提供了一个有别于瞬态响应的分析功能,在分析中结构的激励用各个小的分量来表示,结构对于这些分量的响应则是这个结构每个模态的最大响应的组合。 ?频率响应分析 频率响应分析主要用于计算结构在周期振荡载荷作用下对每一个计算频率的动响应。计算结果分实部和虚部两部分。实部代表响应的幅度,虚部代表响应的相角。 直接频率响应分析 直接频率响应通过求解整个模型的阻尼耦合方程,得出各频率对于外载荷的响应。该类分析在频域中主要求解两类问题。第一类是求结构在一个稳定的周期性正弦外力谱的作用下的响应。结构可以具有粘性阻尼和结构阻尼,分析得到复位移、速度、加速度、约束力、单元力和单元应力。这些量可以进行正则化以获得传递函数。 第二类是求解结构在一个稳态随机载荷作用下的响应。此载荷由它的互功率谱密度定义。而结构载荷由上面所提到的传递函数来表征。分析得出位移、加速度、约束力或单元应力的自相关系数。该分析也对自功率谱进行积分而获得响应的均方根值。 模态频率响应 模态频率响应分析和随机响应分析在频域中解决的两类问题与直接频率响应分析解决相同的问题。

模态分析实验报告

篇一:模态分析实验报告 模态分析实验报告 姓名:学号:任课教师:实验时间:指导老师:实验地点: 实验1传递函数的测量 一、实验内容 用锤击激振法测量传递函数。 二、实验目的 1) 掌握锤击激振法测量传递函数的方法; 2) 测量激励力和加速度响应的时间记录曲线、力的自功率谱和传递函数; 3) 分析传递函数的各种显示形式(实部、虚部、幅值、对数、相位)及相干函 数; 4) 比较原点传递函数和跨点传递函数的特征; 5) 考察激励点和响应点互换对传递函数的影响; 6) 比较不同材料的力锤锤帽对激励信号的影响; 三、实验仪器和测试系统 1、实验仪器 主要用到的实验仪器有:冲击力锤、加速度传感器,lms lms-scadas ⅲ测试系统,具体型号和参数见表1-1。 仪器名称 型号 序列号 3164 灵敏度 2.25 mv/n 100 mv/g 备注比利时 丹麦 b&k 数据采集和分析系统 lms-scadas ⅲ 2302-10 力锤 加速度传感器 表1-1 实验仪器 2 、测试系统 利用试验测量的激励信号(力锤激励信号)和响应的时间历程信号,运用数字 信号处理技术获得频率响应函数(frequency response function, frf),得到系统的非参数模型。然后利用参数识别方法得到系统的模态参数。测试系统主要完成力锤激励信号及各点响应信号时间历程的同步采集,完成数字信号的处理和参数的识别。 测量分析系统的框图如图1-1所示。测量系统由振动加速度传感器、力锤和比利时lms公司scadas采集前端及modal impact测量分析软件组成。力锤及加速度传感器通过信号线与scadas采集前端相连,振动传感器及力锤为icp型传感器,需要scadas采集前端对其供电。scadas采集相应的信号和进行信号处理(如抗混滤波,a/d转换等),所测信号通过电缆与电脑完成数据通讯。图1-1 测试分析系统框图 四、实验数据采集 1、振动测试实验台架 实验测量的是一段轴,在轴上安装了3个加速度传感器,如图1-2所示,轴由四根弹簧悬挂起来,使得整个测试统的频率很低,基本上不会影响到最终的测试结果。整个测试系统如下图所示:a1 a 测点2测点3测点4 图1-2 测试系统图

曲轴强度模态分析报告

柴油机曲轴ANSYS计算报告 蔡川东:20114541

目录 1摘要3 2workbench高级应用基础3 2.1接触设置 (3) 2.2多点约束MPC (4) 3模型介绍5 3.1模型简化 (5) 3.1.1轴瓦建立 (6) 3.1.2质量块建立 (6) 3.2材料性能和参数 (7) 3.3有限元模型构建 (7) 4强度分析9 4.1理论简介 (9) 4.2载荷工况 (9) 4.3计算分析 (11) 5模态分析12 5.1理论简介 (12) 5.2约束条件 (12) 5.3计算分析 (12) 6结果与讨论13

1摘要 曲轴是柴油机中最重要的部件之一,也是受力情况最复杂的部件,他的参数尺寸以及设计方法在很大程度上影响着柴油机的性能和可靠性。随着柴油机技术的不断完善和改进,曲轴的工作条件也越来越复杂。曲轴设计是否可靠,对柴油机使用寿命有很大影响,因此在研制过程中需要给予高度重视。因此,对曲轴的结构进行强度分析在柴油机的设计和改进过程中占有极为重要的地位。此外,在周期性变化的载荷作用下,曲轴系统可能在柴油机转速范围内发生共振,产生附加的动应力,使曲轴过早的出现弯曲疲劳破坏和扭转疲劳破坏,因此有必要对曲轴进行动态特性分析以获取其固有频率避免共振带来不良影响。本文以六缸柴油机的曲轴为对象,计算分析了曲轴在一种载荷工况下的强度分析,找出其最大应力所在位置,以及讨论起是否在参考安全范围内,为曲轴设计中的强度计算提供一种可行性方案。同时对曲轴进行模态分析,找出其各阶固有频率,并观察其各阶模态形状,为柴油机避免共振提供数据参考。 实验采用有限元法对曲轴进行分析,有限元法是根据变分原理求解数学物理问题的一种数值计算方法,是分析各种结构问题的强有力的工具,使用有限元法可方便地进行分析并为设计提供理论依据。本文利用曲轴的三维模型IGES文件,导入Workbench中进行工况设计。比较准确地得到应力、变形的大小及分布和曲轴的固有频率及振型。 2workbench高级应用基础 2.1接触设置 (1)接触问题属于不定边界问题,即使是弹性接触问题也具有表面非线性,其中既有由接触面 积变化而产生的非线性及由接触压力分布变化而产生的非线性,也有由摩擦作用产生的非线性。由于这种表面非线性和边界不定性,所以,一般来说,接触问题的求解是一个反复迭代过程。 当接触内力只和受力状态有关而和加载路径无关时,即使载荷和接触压力之间的关系是非线性的,仍然属于简单加载过程或可逆加载过程。通常无摩擦的接触属于可逆加载。当存在摩擦时,在一定条件下可能出现不可逆加载过程或称复杂加载过程,这时一般要用载荷增量方法求解。 (2)接触面的连接条件。在接触问题中,除了各相互接触物体内部变形的协调性以外,必须保 证各接触物体之间在接触边界上变形的协调性,不可相互侵入。同时还包括摩擦条件—称为接触面的连接条件。采用有限元法分析接触问题时,需要分别对接触物体进行有限元网格剖分,并规定在初始接触面上,两个物体对应节点的坐标位置相同,形成接触对。 (3)workbench中有5中接触类型分别是: ?Bonded无相对位移。就像共用节点一样。 ?No seperation法向不分离,切向可以有小位移。 ?Frictionless法向可分离,但不渗透,切向自由滑动 ?Rough法向可分离,不渗透,切向不滑动

模态分析的通俗解释

MODAL SPACE - IN OUR OWN LITTLE WORLD 模态空间–在我们自己的小世界中Pete Avitabile 著westrongmc译 Could you explain modal analysis for me? Well...it will take a little bit but here's one that anyone can understand. 你能为我解释模态分析吗? 嗯…说来有点话长,但下面的解释人人都可理解。 You're not the first one to ask me to explain modal analysis in simple terms so anyone can understand it. In a nutshell, we could say that modal

analysis is a process whereby we describe a structure in terms of its natural characteristics which are the frequency, damping and mode shapes - its dynamic properties. Well that's a mouthful so let's explain what that means. Without getting too technical, I often explain modal analysis in terms of the modes of vibration of a simple plate. This explanation is usually useful for engineers who are new to vibrations and modal analysis. 请我用简单的概念来解释模态分析,以便任何人都可以理解它,你不是第一个人。简言之,模态分析是一种方法,籍此,可以根据结构的频率、阻尼和振型等固有属性-其动态特性-来描述结构。这真够拗口的,那我们来解释这是什么意思。不钻技术牛角尖,我经常用一个简单平板的振动模态来解释模态分析。对于刚接触振动及模态分析的工程师们来讲,这种解释向来有益。 Let’s consider a freely supported flat plate. Let's apply a constant force to one corner of the plate. We usually think of a force in a static sense which would cause some static deformation in the plate. But here what I would like to do is to apply a force that varies in a sinusoidal fashion. Let's consider a fixed frequency of oscillation of the constant force. We will change the rate of oscillation of the frequency but the peak force will always be the same value - only the rate of oscillation of the force will change. We will also measure the response of the plate due to the excitation with an accelerometer attached to one corner of the plate. 考虑一个自由支撑平板,施加常力于平板一角。我们通常从静态的意义上来看待一个力,它在平板内引起某种静态变形。但这里我要做的是施加一个按正弦方式变化的力,振荡频率固定的常力。我们将改变振荡频率,但不改变力的峰值-仅是力的振荡频率改变。另在平板一角安装一加速度计来测量激励引起的平板响应。

有限元模态分析报告实例

ANSYS模态分析实例 5.2ANSYS建模 该课题研究的弹性联轴器造型如下图5.2: 在ANSYS中建立模型,先通过建立如5.2所式二分之一的剖面图,通过绕中轴线旋转建立模拟模型如下图5.3

5.3单元选择和网格划分 由于模型是三给实体模型,故考虑选择三维单元,模型中没有圆弧结构,用六面体单元划分网格不会产生不规则或者畸变的单元,使分析不能进行下去,所以采用六面体单元。经比较分析,决定采用六面体八结点单元SOLID185,用自由划分的方式划分模型实体。课题主要研究对象是联轴器中橡胶元件,在自由划分的时候,中间件2网格选择最小的网格,smart size设置为1,两端铁圈的smart size设置为6,网格划分后模型如图5.4。 5.4边界约束 建立柱坐标系R-θ-Z,如5-5所示,R为径间,Z为轴向

选择联轴器两个铁圈的端面,对其面上的节点进行坐标变换,变换到如图5.5所示的柱坐标系,约束节点R,Z方向的自由度,即节点只能绕Z轴线转 5.5联轴器模态分析 模态分析用于确定设计中的结构或者机器部件振动特性(固有频率和振型),也是瞬态变动力学分析和谐响应分析和谱分析的起点。 在模态分析中要注意:ANSYS模态分析是线性分析,任何非线性因素都会被忽略。因此在设置中间件2的材料属性时,选用elastic材料。 5.5.1联轴器材料的设置 材料参数设置如下表5-1: 表5.1材料参数设置 表5.1材料参数设置 铁圈1 中间件2 铁圈3 泊松比0.3 0.4997 0.3 弹性模量Mpa 2E5 1.274E3 2E5 密度kg/m 7900 1000 7900 5.5.2联轴器振动特性的有限元计算结果及说明 求解方法选择Damped方法,频率计算结果如表5-2,振型结果为图5.6: 表5.2固有频率 SET TEME/FREQ LOAO STEP SUBSTEP CUMULATIVE 1 40.199 1 1 1 1 73.63 2 1 2 2 3 132.42 1 3 3 4 197.34 1 4 4

结构模态分析方法

模态分析技术的发展现状综述 摘要:本文首先系统的介绍了模态分析的定义,并以模态分析技术的理论为基础,查阅了大量的文献和资料后,介绍了三种模态分析技术在各领域的应用,以及国内外对于结构模态分析技术研究的发展现状,分析并总结三种模态分析技术的特点与发展前景。 关键词:模态分析技术发展现状 Modality Analysis Technology Development Present Situation Summary Abstract:This article first systematic introduction the definition of modality analysis,and based on modal analysis theory,after has consulted the massive literature and the material.Introduced application about three kind of modality analysis technology in various domains. At home and abroad, the structural modal analysis technology research and development status quo.Analyzes and summarizes three kind of modality analysis technology characteristic and the prospects for development. Key words:Modality analysis Technology Development status 0 引言 模态分析是研究结构动力特性一种近代方法,是系统辨别方法在工程振动领域中的应用。模态是机械结构的固有振动特性,每一个模态具有特定的固有频率、阻尼比和模态振型。这些模态参数可以由计算或试验分析取得,这样一个计算或试验分析过程称为模态分析。模态分析的过程如果是由有限元计算的方法完成的,则称为计算模态分析;如果是通过试验将采集的系统输入与输出信号经过参数识别来获得模态参数的,称为试验模态分析。通常,模态分析都是指试验模态分析。振动模态是弹性结构的固有的、整体的特性。如果通过模态分析方法搞清楚了结构物在某一易受影响的频率范围内各阶主要模态的特性,就可能预言结构在此频段内在外部或内部各种振源作用下实际振动响应。因此,模态分析是结构动态设计及设备故障诊断的重要方法。 1 数值模态分析的发展现状 数值模态分析主要采用有限元法,它是将弹性结构离散化为有限数量的具体质量、弹性特性单元后,在计算机上作数学运算的理论计算方法。它的优点是可以在结构设计之初,根据有限元分析结果,便预知产品的动态性能,可以在产品试制出来之前预估振动、噪声的强度和其他动态问题,并可改变结构形状以消除或抑制这些问题。只要能够正确显示出包含边界条件在内的机械振动模型,就可以通过计算机改变机械尺寸的形状细节。有限元法的不足是计算繁杂,耗资费时。这种方法,除要求计算者有熟练的技巧与经验外,有些参数(如阻尼、结合面特征等)目前尚无法定值,并且利用有限元法计算得到的结果,只能是一个近似值。 正因如此,大多数数学模拟的结构,在试制阶段常应做全尺寸样机的动态试验,以验证计算的可靠程度并补充理论计算的不足,特别对一些重要的或涉及人身安全的结构,就更是如此。 70 年代以来,由于数字计算机的广泛应用、数字信号处理技术以及系统辨识方法的发展 , 使结构模态试验技术和模态参数辨识方法有了较大进展,所获得的数据将促进产品性能的改进、更新[1] 。在硬件上,国外许多厂家研制成功各种类型的以FFT和

ansys动力学分析之模态

ANSYS动力学分析指南(连载一>发表时间:2007-7-25 作者: 安世亚太关键字: ANSYS动力学分析安 世亚太模态分析 §1.4.2人工选择主自由度的准则 选择主自由度是缩减法分析中很重要的一步。缩减质量矩阵的精度<求解精确)将取决于主自由度的位置和数目。对于给定的问题,可以选择多种不同的主自由度集,在所多种情形下都可以得到能够接受的结果。 用命令M和MGEN来选择主自由度,也可用TOTAL命令让程序在求解过程中选择主自由度。建议两种方式兼用:自己选择少量主自由度,同时让ANSYS程序选择一些自由度。这样,程序将弥补那些可能被遗漏的模态。 下面是选择主自由度的基本准则: 1.主自由度的总数至少应是感兴趣的模态数的两倍。 2.把预计结构或部件要振动的方向选为主自由度。 例如对于平板问题,应至少在法向上选择几个主自由度<见图1a)。如果在一个方向上的运动会引起另一个方向上的大运动时,应在两个方向上都选择主自由度<见图1b)。 图1

图2应选择主自由度的位置:

模态分析意义

模态分析意义模态分析是研究结构动力特性一种近代方法,是系统辨别方法在工程振动领域中的应用。模态是机械结构的固有振动特性,每一个模态具有特定的固有频率、阻尼比和模态振型。这些模态参数可以由计算或试验分析取得,这样一个计算或试验分析过程称为模态分析。这个分析过程如果是由有限元计算的方法取得的,则称为计算模态分析;如果通过试验将采集的系统输入与输出信号经过参数识别获得模态参数,称为试验模态分析。通常,模态分析都是指试验模态分析。振动模态是弹性结构的固有的、整体的特性。如果通过模态分析方法搞清楚了结构物在某一易受影响的频率范围内各阶主要模态的特性,就可能预言结构在此频段内在外部或内部各种振源作用下实际振动响应。因此,模态分析是结构动态设计及设备的故障诊断的重要方法。机器、建筑物、航天航空飞行器、船舶、汽车等的实际振动千姿百态、瞬息变化。模态分析提供了研究各种实际结构振动的一条有效途径。首先,将结构物在静止状态下进行人为激振,通过测量激振力与胯动响应并进行双通道快速傅里叶变换(FFT)分析,得到任意两点之间的机械导纳函数(传递函数)。用模态分析理论通过对试验导纳函数的曲线拟合,识别出结构物的模态参数,从而建立起结构物的模态模型。根据模态叠加原理,在已知各种载荷时间历程的情况下,就可以预言结构物的实际振动的响应历程或响应谱。近十多年来,由于计算机技术、

FFT 分析仪、高速数据采集系统以及振动传感器、激励器等技术的发展,试验模态分析得到了很快的发展,受到了机械、电力、建筑、水利、航空、航天等许多产业部门的高度重视。已有多种档次、各种原理的模态分析硬件与软件问世。在各种各样的模态分析方法中,大致均可分为四个基本过程:(1)动态数据的采集及频响函数或脉冲响应函数分析1)激励方法。试验模态分析是人为地对结构物施加一定动态激励,采集各点的振动响应信号及激振力信号,根据力及响应信号,用各种参数识别方法获取模态参数。激励方法不同,相应识别方法也不同。目前主要由单输入单输出(SISO)、单输入多输出(SIMO)多输入多输出(MIMO)三种方法。以输入力的信号特征还可分为正弦慢扫描、正弦快扫描、稳态随机(包括白噪声、宽带噪声或伪随机)、瞬态激励(包括随机脉冲激励)等。2)数据采集。SISO 方法要求同时高速采集输入与输出两个点的信号,用不断移动激励点位置或响应点位置的办法取得振形数据。SIMO 及MIMO 的方法则要求大量通道数据的高速并行采集,因此要求大量的振动测量传感器或激振器,试验成本较高。3)时域或频域信号处理。例如谱分析、传递函数估计、脉冲响应测量以及滤波、相关分析等。(2)建立结构数学模型根据已知条件,建立一种描述结构状态及特性的模型,作为计算及识别参数依据。目前一般假定系统为线性的。由于采用的识别方法不同,也分为频域建模和时

学习模态分析要掌握的的知识

模态分析中的几个基本概念 一、模态定义:物体按照某一阶固有频率振动时,物体上各个点偏离平衡位置的位移是满足一定的比例关系的,可以用一个向量表示。 模态分析一般是在振动领域应用,每个物体都具有自己的固有频率,在外力的激励作用下,物体会表现出不同的振动特性: 一阶模态是外力的激励频率与物体固有频率相等的时候出现的,此时物体的振动形态叫做一阶振型或主振型; 二阶模态是外力的激励频率是物体固有频率的两倍时候出现,此时的振动外形叫做二阶振型,以依次类推。 一般来讲,外界激励的频率非常复杂,物体在这种复杂的外界激励下的振动反应是各阶振型的复合。 二、模态分析:模态是结构的固有振动特性,每一个模态具有特定的固有频率、阻尼比和模态振型。这些模态参数可以由计算或试验分析取得,这样一个计算或试验分析过程称为模态分析。 有限元中模态分析的本质是求矩阵的特征值问题,所以“阶数”就是指特征值的个数。将特征值从小到大排列就是阶次。 实际的分析对象是无限维的,所以其模态具有无穷阶。但是对于运动起主导作用的只是前面的几阶模态,所以计算时根据需要计算前几阶的。 一个物体有很多个固有振动频率(理论上无穷多个),按照从小到大顺序,第一个就叫第一阶固有频率,依次类推。所以模态的阶数就是对应的固有频率的阶数。 三、振型是指体系的一种固有的特性。它与固有频率相对应,即为对应固有频率体系自身振动的形态。每一阶固有频率都对应一种振型。振型与体系实际的振动形态不一定相同。振型对应于频率而言,一个固有频率对应于一个振型。按照频率从低到高的排列,来说第一振型,第二振型等等。此处的振型就是指在该固有频率下结构的振动形态,频率越高则振动周期越小。在实验中,我们就是通过用一定的频率对结构进行激振,观测相应点的位移状况,当观测点的位移达到最大时,此时频率即为固有频率。实际结构的振动形态并不是一个规则的形状,而是各阶振型相叠加的结果。 四、模态扩展是为了是结果在后处理器中观察而设置的,原因如下: 求解器的输出内容主要是固有频率,固有频率被写到输出文件Jobname.OUT及振型文件Jobnmae.MODE中,输出内容中也可以包含缩减

模态分析实验报告

模态分析实验报告 姓名: 学号: 任课教师: 实验时间: 指导老师: 实验地点:

实验1 传递函数的测量 一、实验内容 用锤击激振法测量传递函数。 二、实验目的 1)掌握锤击激振法测量传递函数的方法; 2)测量激励力和加速度响应的时间记录曲线、力的自功率谱和传递函数; 3)分析传递函数的各种显示形式(实部、虚部、幅值、对数、相位)及相干函 数; 4)比较原点传递函数和跨点传递函数的特征; 5)考察激励点和响应点互换对传递函数的影响; 6)比较不同材料的力锤锤帽对激励信号的影响; 三、实验仪器和测试系统 1、实验仪器 主要用到的实验仪器有:冲击力锤、加速度传感器,LMS LMS-SCADAS Ⅲ测试系统,具体型号和参数见表1-1。 仪器名称型号序列号灵敏度备注 数据采集和分析系统LMS-SCADAS Ⅲ比利时力锤2302-10 3164 2.25 mV/N 加速度传感器100 mV/g 丹麦B&K 表1-1 实验仪器 2 、测试系统 利用试验测量的激励信号(力锤激励信号)和响应的时间历程信号,运用数字信号处理技术获得频率响应函数(Frequency Response Function, FRF),得到系统的非参数模型。然后利用参数识别方法得到系统的模态参数。测试系统主要完成力锤激励信号及各点响应信号时间历程的同步采集,完成数字信号的处理和参数的识别。 测量分析系统的框图如图1-1所示。测量系统由振动加速度传感器、力锤和比利时LMS公司SCADAS采集前端及Modal Impact测量分析软件组成。力锤及加速度传感器通过信号线与SCADAS采集前端相连,振动传感器及力锤为ICP

模态分析实验报告

研究生学院 机械工程专业硕士结课作业 课程题目:机械结构模态分析实验 指导老师: 姓名: 学号: 2015年08月23日

一、概述 模态分析是研究结构动力特性一种近代方法,是系统辨别方法在工程振动领域中的应用。模态是机械结构的固有振动特性,每一个模态具有特定的固有频率、阻尼比和模态振型。这些模态参数可以由计算或试验分析取得,这样一个计算或试验分析过程称为模态分析。这个分析过程如果是由有限元计算的方法取得的,则称为计算模态分析;如果通过试验将采集的系统输入与输出信号经过参数识别获得模态参数,称为试验模态分析。通常,模态分析都是指试验模态分析。 振动模态是弹性结构固有的、整体的特性。通过模态分析方法搞清楚了结构物在某一易受影响的频率范围内的各阶主要模态的特性,就可以预言结构在此频段内在外部或内部各种振源作用下产生的实际振动响应。因此,模态分析是结构动态设计及设备故障诊断的重要方法。 机器、建筑物、航天航空飞行器、船舶、汽车等的实际振动模态各不相同。模态分析提供了研究各类振动特性的一条有效途径。首先,将结构物在静止状态下进行人为激振,通过测量激振力与响应并进行双通道快速傅里叶变换(FFT)分析,得到任意两点之间的机械导纳函数(传递函数)。用模态分析理论通过对试验导纳函数的曲线拟合,识别出结构物的模态参数,从而建立起结构物的模态模型。根据模态叠加原理,在已知各种载荷时间历程的情况下,就可以预言结构物的实际振动的响应历程或响应谱。 模态分析的经典定义:将线性定常系统振动微分方程组中的物理坐标变换为模态坐标,使方程组解耦,成为一组以模态坐标及模态参数描述的独立方程,以便求出系统的模态参数。坐标变换的变换矩阵为模态矩阵,其每列为模态振型。模态分析的最终目标是识别出系统的模态参数,为结构系统的振动特性分析、振动故障诊断和预报以及结构动力特性的优化设计提供依据。 模态分析技术的应用可归结为以下几个方面: 1) 评价现有结构系统的动态特性; 2) 在新产品设计中进行结构动态特性的预估和优化设计; 3) 诊断及预报结构系统的故障; 4) 控制结构的辐射噪声; 5) 识别结构系统的载荷 二、实验的基本过程 1、动态数据的采集及频响函数或脉冲响应函数分析 (1)激励方法。试验模态分析是人为地对结构物施加一定动态激励,采集各点的振动响应信号及激振力信号,根据力及响应信号,用各种参数识别方法获取模态参数。激励方法不同,相应识别方法也不同。目前主要由单输入单输出(SISO)、单输入多输出(SIMO)多输入多输出(MIMO)三种方法。以输入力的信号特征还可分为正弦慢扫描、正弦快扫描、稳态随机(包括白噪声、宽带噪声或伪随机)、瞬态激励(包括随机脉冲激励)等。 (2)数据采集。SISO方法要求同时高速采集输入与输出两个点的信号,用不断移动激励点位置或响应点位置的办法取得振形数据。SIMO及MIMO的方法则要求大量通道数据的高速并行采集,因此要求大量的振动测量传感器或激振器,试验成本较高。 (3)时域或频域信号处理。例如谱分析、传递函数估计、脉冲响应测量以及滤波、相关分析等。

ANSYS动力学分析报告

第5章动力学分析 结构动力学研究的是结构在随时间变化载荷下的响应问题,它与静力分析的主要区别是动力分析需要考虑惯性力以及运动阻力的影响。动力分析主要包括以下5个部分:模态分析:用于计算结构的固有频率和模态。 谐波分析(谐响应分析):用于确定结构在随时间正弦变化的载荷作用下的响应。 瞬态动力分析:用于计算结构在随时间任意变化的载荷作用下的响应,并且可涉及上述提到的静力分析中所有的非线性性质。 谱分析:是模态分析的应用拓广,用于计算由于响应谱或PSD输入(随机振动)引起的应力和应变。 显式动力分析:ANSYS/LS-DYNA可用于计算高度非线性动力学和复杂的接触问题。 本章重点介绍前三种。 【本章重点】 ?区分各种动力学问题; ?各种动力学问题ANSYS分析步骤与特点。 5.1 动力学分析的过程与步骤 模态分析与谐波分析两者密切相关,求解简谐力作用下的响应时要用到结构的模态和振

型。瞬态动力分析可以通过施加载荷步模拟各种何载,进而求解结构响应。三者具体分析过程与步骤有明显区别。 5.1.1 模态分析 1.模态分析应用 用模态分析可以确定一个结构的固有频率利振型,固有频率和振型是承受动态载荷结构设计中的重要参数。如果要进行模态叠加法谐响应分析或瞬态动力学分析,固有频率和振型也是必要的。可以对有预应力的结构进行模态分析,例如旋转的涡轮叶片。另一个有用的分析功能是循环对称结构模态分析,该功能允许通过仅对循环对称结构的一部分进行建模,而分析产生整个结构的振型。 ANSYS产品家族的模态分析是线性分析,任何非线性特性,如塑性和接触(间隙)单元,即使定义也将被忽略。可选的模态提取方法有6种,即Block Lanczos(默认)、Subspace、Power Dynamics、Reduced、Unsymmetric、Damped及QR Damped,后两种方法允许结构中包含阻尼。 2.模态分析的步骤 模态分析过程由4个主要步骤组成,即建模、加载和求解、扩展模态,以及查看结果和后处理。 (1)建模。指定项目名和分析标题,然后用前处理器PREP7定义单元类型、单元实常数、材料性质及几何模型。必须指定杨氏模量EX(或某种形式的刚度)和密度DENS(或某种形式的质量),材料性质可以是线性或非线性、各向同性或正交各向异性,以及恒定或与温

模态分析

1. 什么是模态分析? 模态分析是研究结构动力特性一种近代方法,是系统辨别方法在工程振动领域中的应用。模态是机械结构的固有振动特性,每一个模态具有特定的固有频率、阻尼比和模态振型。这些模态参数可以由计算或试验分析取得,这样一个计算或试验分析过程称为模态分析。这个分析过程如果是由有限元计算的方法取得的,则称为计算模态分析;如果通过试验将采集的系统输入与输出信号经过参数识别获得模态参数,称为试验模态分析。通常,模态分析都是指试验模态分析。振动模态是弹性结构的固有的、整体的特性。如果通过模态分析方法搞清楚了结构物在某一易受影响的频率范围内各阶主要模态的特性,就可能预言结构在此频段内在外部或内部各种振源作用下实际振动响应。因此,模态分析是结构动态设计及设备的故障诊断的重要方法。 模态分析最终目标在是识别出系统的模态参数,为结构系统的振动特性分析、振动故障诊断和预报以及结构动力特性的优化设计提供依据。 2. 模态分析有什么用处? 模态分析所的最终目标在是识别出系统的模态参数,为结构系统的振动特性分析、振动故障诊断和预报以及结构动力特性的优化设计提供依据。模态分析技术的应用可归结为以下几个方面: 1. 评价现有结构系统的动态特性; 通过结构的模态分析可以求得各阶模态参数(模态频率、模态振型以及模态阻尼),从而评价结构的动态特性是否符合要求,并校验理论计算结构的准确性。 2. 在新产品设计中进行结构动态特性的预估和优化设计; 3. 诊断及预报结构系统的故障; 近年来,结构故障技术发展迅速,而模态分析已成为故障诊断的一个重要方法。利用结构模态参数的改变来诊断故障是一种有效方法。例如,根据模态频率的变化可以判断裂纹的出现;根据振型的分析可以确定断裂的位置;根据转子支承系统阻尼的改变,可以诊断与预报转子系统的失稳等。 4. 控制结构的辐射噪声; 结构噪声是由于结构振动所引起的。结构振动时,各阶模态对噪声的“贡献”并不相同,对噪声贡献较大的几阶模态称为“优势模态”。抑制或者调整优势模态,便可降低噪声。而优势模态的确定,必须建立在模态分析基础之上。 5.识别结构系统的载荷。 某些结构在工作时所承受的载荷很难测量,这时,可通过实测响应和由模态分析所得的模态参数加以识别。此方法在航空,航天及核工程中应用广泛。 3. 模态分析的应用领域 1. 航空航天飞行器、船舶、汽车工业等 2. 土木领域:大桥、大坝、高层建筑、海洋平台、闸门、桩基检测 3. 各种机械设备:如机床、发电设备、压缩机、气轮机 4. 军工领域 4. 模态分析的步骤是什么? 机器、建筑物、航天航空飞行器、船舶、汽车等的实际振动千姿百态、瞬息变化。模态分析提供了研究各种实际结构振动的一条有效途径。首先,将结构物在静止状态下进行人为激振,通过测量激振力与振动动响应并进行双通道快速傅里叶变换(FFT)分析,得到任意两点之间的机械导纳函数(传递函数)。用模态分析理论通过对试验导纳函数的曲线拟合,识别出结构物的模态参数,从而建立起结构物的模态模型。根据模态叠加原理,在已知各种载荷时间历程的情况下,就可以预言结构物的实际振动的响应历程或响应谱。 近十多年来,由于计算机技术、FFT分析仪、高速数据采集系统以及振动传感器、激励器等技术的发展,试验模态分析得到了很快的发展,受到了机械、电力、建筑、水利、航空、航天等许多产业部门的高

模态分析的相关介绍

工程数据管理(EDM)是实现对晶钻仪器公司所有硬件的实时数据管理和处理的PC软件。它的结构清晰,界面友好,功能丰富,操作简单方便。 EDM模态分析一个完整的包括模态测试和分析的实验模态分析(Experimental Modal Analysis (EMA))流程。基于当代流行的模态分析理论和技术开发,操作流程直观且简单,它是实现模态分析实验得力的工具。支持用户实现数百个测量点和多个激励点的高度复杂的模态分析,无论模态测试是多么复杂,EDM模态软件都提供准确的工具来实现您的目标。 为了成功获得测试数据,实验之前需要在测试模型上规划出所有测点的自由度(DOFs)。几何编辑器提供多种坐标系统,使用组件功能,可以简单地把各个子组件合并对一个几何模型。在输入通道设置界面,设置所有通道对应的测点和它们的坐标方向。测试开始后,所有的测试测点都会被测量,并以包含激励和响应自由度的信号名称保存。 模态参数识别是模态分析的核心,EDM模态分析为其提供了多种拟合方法。最小二乘复指数法(The Least-Squares Complex Exponential (LSCE))用于获取单参考点频响函数(FRF)的极点(包括频率和阻尼)。而多参考点(多输入/多输出

或者MIMO)测试,则使用相应的多参考时域分析法(Poly-Reference Time Domain,PTD)。 动画模块是为了动态展示模态振型的模块,允许用户通过3D动画显示模态振型到几何模型。通过不同颜色标识动画的振动幅度。自由变形(FFT)提供增强模式的动画,比点动画更平滑更逼真。使用同一个几何模型,工作变形分析(ODS)可动画显示所选择的时域和频域响应数据到几何模态。 EDM模态支持的应用如下: ●几何模型的创建/编辑/导入/导出/动画 ●工作变形分析(ODS) ●锤击法模态实验 ●单个或多个模态激振器模态试验 ●单参考点模态分析 ●多参考点模态分析 ●导出测试报表到Word 几何模型编辑(Geometry) EDM模态几何模型编辑/ODS/动画三个模块是EDM模态分析软件的基础模块,包含在每个EDM模态系统。它们提供快速而有效地几何结构模型生成和模态测试及分析结果的全3D可视化。

DASP模态分析的步骤

在学习模态分析之前,了解一下一些基本知识: 1 模态分析:将线性定常系统振动微分方程组中的物理坐标变换为模态坐标,使方程组解耦,成为一组以模态坐标及模态参数描述的独立方程,以便求出系统的模态参数。坐标变换的变换矩阵为模态矩阵,其每列为模态振型。模态分析实质上是一种坐标变换,其目的在于把原物理坐标系统中描述的相应向量,转换到"模态坐标系统"中来描述,模态试验就是通过对结构或部件的试验数据的处理和分析,寻求其"模态参数"。 2 模态参数:模态参数有:模态频率、模态质量、模态向量、模态刚度和模态阻尼等。 3实模态和复模态:按照模态参数(主要指模态频率及模态向量)是实数还是复数,模态可以分为实模态和复模态。对于无阻尼或比例阻尼振动系统,其各点的振动相位差为零或180度,其模态系数是实数,此时为实模态;对于非比例阻尼振动系统,各点除了振幅不同外相位差也不一定为零或180度,这样模态系数就是复数,即形成复模态。 4最佳激励点的选取:视待测试的振型而定,若单阶,则应选择最大振幅点,若多阶,则激励点处各阶的振幅都不小于某一值。如果是需要许多能量才能激励的结构,可以考虑多选择几个激励点。 5模态分析目的:模态分析所的最终目标在是识别出系统的模态参数,为结构系统的振动特性分析、振动故障诊断和预报以及结构动力特性的优化设计提供依据。 6原点导纳位置的选择:当一点激励多点响应时(SIMO方法),激励点即原点导纳的位置;当用多点激励一点响应时(MISO方法),响应点即为原点导纳的位置。原点导纳应避开感兴趣模态的结点,以免丢失模态。 7测点的命名:响应点用数字来命名,激励点用一字母加数字来命名。应避免重名,重名会导致频响函数错误。 在掌握了了上述基本知识后,开始进行模态试验及分析,主要过程如下: <1>新建:新建一个模态文件,输入或修改试验名、试验号和数据路径,然后进行参数设置,包括传感器类型、总测点数和原点导纳的位置。需要注意的问题:(1)总测点数的选取:响应点总数(SIMO时),输入激励点总数(MISO时)(2)原点导纳的位置:对应激励点位置的频响函数测点号(SIMO时)对应响应点位置的频响函数测点号(MISO时) <2>采样: 得到模态分析各测点的数据。如果是用多次激励的方法(如敲击法),应选择变时基采样,其它激励应选择随机采样。变时基采样适用于锤击法,为模态分析的频响函数分析准备数据。采样前应首先设置采样参数,然后用示波命令检查各测点是否工作正常,放大器档位是否合适,放大器档位确定后,再返回采样参数设置设定采样频率、程控放大倍数,各通道测点号、标定值、工程单位等,在随机采样中可以边采边显,并且按‘F9’键,可以找极值或时域统计,在应用中有监测车速、开DDE和显示转速的特殊功能。需要注意的问题:(1)采样通道数乘以采样频率,不可超过A/D卡的最高采样率(2)采样的频率可通过分析频率设置或直接设置,采样频率为分析频率的2.56倍。

相关文档
最新文档