模态分析试验报告-

模态分析试验报告-
模态分析试验报告-

《建筑结构的模态分析试验》

实验报告

专业土木工程

班级

学号

姓名

教师

建工实验中心

2010年3月

振动测试与模态分析实验报告

一、实验人员

3组:

二、试验目的

1.培养学生采用实验与理论相结合的方法来处理工程中的振动问题。

2.通过实验使学生掌握振动测试系统的基本组成、了解振动测试的常用测量方法以及模态分析技术。模态分析技术已发展成为解决工程振动问题的重要手段。

3.了解模态分析软件的使用方法。

三、试验内容

1、学习模态分析原理;

2、学习模态测试及分析方法。

通过对框架模型的模态试验分析,测定出基础模型的模态参数:固有频率、阻尼比、振型图,并通过实验观察了解框架结构的动力参数,从而掌握模态分析的基本原理及分析方法。

四、试验的基本要求

(1)掌握振动测试系统的构成及操作。

(2)了解振动测试的常用测量方法。激振、锤击

(3)了解数据采集系统的操作步骤。

(4)了解对已采集到的数据进行模态分析的方法与步骤。

五、试验仪器(表1)

单轴加速度传感器、力锤、动态信号分析仪LMS和计算机等力锤用于激励实验对象。

力传感器用于拾取激励信号并转换成为电荷信号。

加速度计用于拾取响应信号并转换成为电荷信号。

AZ804-A四通道电荷电压放大信号调理仪,用于将电荷信号放大成为适合测量的电压信号。

AZ208数据采集箱信号采集分析系统包括抗混滤波器、A/D变换器、结构动态分析软件、计算机、打印机。

用安装有力传感器的力锤敲击实验对象上的若干个点。力传感器拾取激励力的信号,安装在实验对象的某测点上的加速度计拾取响应信号.经电荷放大器放大后输入信号采集系统。实验仪器框图如图1所示。

力信号接入信号采集器的第1通道,响应信号依次接入信号采集器的其他通道。

表1 试验仪器的硬件及软件

六、试验步骤

6.1模态试验基本过程

二十年来,由于计算机技术、FFT分析仪、高速数据采集系统以及振动传感器激励器等技术的发展,试验模态分析得到了很快的发展,受到了机械、电力、建筑、水利、航空、航天等许多产业部门的高度重视。已有多种档次、各种原理的模态分析硬件与软件问世。在各种各样的模态分析方法中,大致均可分为四个基本过程:

1.动态数据的采集及频响函数或脉冲响应函数分析。

(1) 激励方法:试验模态分析是在试验室内人为地对结构物施加一定动态激励,采集各点的振动响应信号及激振力信号,根据力及响应信号用各种参数识别方法获取模态参数。激励方法不同,相应识别方法也不同。目前主要由单输入单输出(SISO)、单输入多输出(SIMO)、多输入多输出(MIMO)三种方法。以输入力的信号特征还可分为正弦慢扫描、正弦快扫描、稳态随机(包括白噪声、宽带噪声或伪随机)、瞬态激励(包括随机脉冲激励)等。

(2) 数据采集:SISO方法要求同时高速采集输入与输出两个点的信号,用不断移动激励点位置或响应点位置的办法取得振型数据。SIMO及MIMO的方法则要求大量通道数据的高速并行采集,因此要求大量的振动测量传感器或激振器,试验成本极高。

(3) 时域或频域信号处理。例如谱分析、传递函数估计、脉冲响应测量以及滤波、相关分析等。

2.建立结构数学模型。根据已知条件,建立一种描述结构状态及特性的模型,作为计算及识别参数的依据,目前一般假定系统为线性的。由于采用的识别方法不同,也分为频域建模和时域建模。根据阻尼特性及频率耦合程度分为实模态或复模态模型等。

3.参数识别。按识别域的不同可分为频域法、时域法和混合域法,后者是指在时域识别复特征值,再回到频域中识别振型。激励方式不同(SISO、SIMO、MIMO)相应的参数识别方法也不尽相同。并非越复杂的方法识别的结果越可靠。对于目前能够进行的大多数不是十

分复杂的结构,只要取得了可靠的频响数据,即使用较简单的识别方法也可能获得良好的模态参数;反之,即使用最复杂的数学模型、最高级的拟合方法,如果频响测量数据不可靠,则识别的结果一定不会理想。

4.振形动画。参数识别的结果得到了结构的模态参数模型,即一组固有频率、模态阻尼以及相应各阶模态的振形。由于结构复杂,由许多自由度组成的振形的数组难以引起对振动直观的想象。必须采用活动振动的方法,将放大了的振形叠加到原始的几何形状上。

以上四个步骤是模态试验及分析的主要过程,而支持这个过程的除了激振装置、双通道FFT分析仪、桌面式或便携式计算机等硬件外还要有一个完善的模态分析软件包。通用的模态分析软件包必须适合各种结构物的几何特征,设置多种坐标系、划分为多个子结构,具有多种拟合方法并能将结构的模态振动在屏幕上三维实时动画。

3.2 随机信号与振动分析系统CRAS V6.2工作流程及功能

MACRAS流程图

七.软件操作

7.1 硬件安装

(1)AZ系统采集箱安装方法

·在断电情况下,将专用通讯电缆一端与AZ系列采集箱连接,另一端与PC机(台式或笔记本式)的并行口(打印机口)连接。

·先开PC机进入Windows后再打开AZ系列采集箱的电源。(2)试运行

为了判断硬件连接及软件安装是否成功,请用户正式使用前先作一个测试。利用AZ208仪器提供的测试信号(200Hz,2000mV)或

用一个发生器输出连接到采集卡或采集箱的第1通道。打开数据采集与处理软件AdCras,选择1通道作业,给定适当采样频率(例如5120Hz),在“示波”菜单下观察到一个规则的正弦波则表明硬件软件已经正确安装成功。建议在每一次重大试验之前也这么测试一下,以避免传感器、导线等故障。

(3)运行程序

在PC桌面上或CRAS文件夹中点击CRAS后进入程序引导总界面。

用鼠标点击需要运行的软件包或选件程序即可进入该程序的运行。

如果用户希望将所配置的某个软件程序放置在自己选定某个文件夹内运行,还必须注意将CRAS文件夹中有关库文件一起复制进来。

如果在运行采集或示波时,发生计算机死锁的情况,退出应用程序的办法是:

同时按Ctrl + Alt + Del一次或多次。极个别情况,需关闭电源。

7.2 半圆环模型的模态试验

(1)建立新作业或继续老作业

·采集新的数据

建立作业:送入作业名(含路径)及选择通道,如送入的作业在指定路径内已存在,应特别注意存盘时会将老数据覆盖。

如在指定路径内找不到此作业则有系统提醒:“指定目录数据文件找不到,新作业”。

·观察老数据

选择作业:送入需要观察分析的作业名和路径。

(2)几何模型生成

选择几何模型菜单中自动生成简单几何图形的圆柱面,设置如下:

(3)模态测量

在模态测量菜单下选择测量参数设置,相关选项设置如下:

1、平均次数

2、时间窗处理函数

3、分析频率

4、触发参数

自由运行:由键盘回车或菜单点击后立即开始采集。

正触发、负触发:由采集的信号本身控制开始采集。

触发电平:开始采集的电平阀值,由电压范围的百分数决定。如量程5V,触发电平10%,则信号到达0.5V时开始采集。

触发延迟:数字量,正值表示等待,负值表示提前。数字单位为采集时间间隔的倍数。例如:-20是指到达触发电平之前20个点开始记录数据,超前时间等于20×△t。△t等于采样频率f S的倒数。

触发通道:根据作业设置的通道数内任意1个通道均可作为触发通道,其它通道信号阈值不影响触发动作

5、电压范围

在AD系统采集卡中,内置程序控制放大器,放大倍数为1,2,4,8。

在QL系统采集箱中,内置程控放大倍数为1,4,8,16。

不同的程控放大倍数对应不同的满量程电压(电压范围)。例如程控放大倍数等于8,则电压范围为0.625V。

电压范围对多通道采集的每1个通道而言是相同的。

6、校正因子

每1个工程单位对应的mV数称为校正因子,相当于各种传感器的灵敏度。当传感器灵敏改变后,可以通过校正因子对测量结果进行修正,这个过程即所谓“标定”。

设定校正因子后,CRAS程序读出数的单位即是所选的工程单位。

不同通道允许不同的工程单位。在同1种工程单位情况下,也允许不同灵敏度的传感器。因此,每1个通道需要设定相应的校正因子。选用缺省工程单位mV则校正因子必须等于1,读出数单位为mV。

设定校正因子用编辑控件,浮点量。

7、工程单位EU

未经工程单位设置,读出的数据单位为电压的单位mV。

不同的物理量通过各自的传感器变换器改变为电压量后均可由CRAS进行采集记录。在CRAS中已经设置的工程单位为:mV,v,m,m/s,m/s2,mm,mm/s,mm/s2,μm,N,KN,mN,G,mG,με,Pa,Mpa,℃,deg,vad,W,KW,MW,L,mA,A,N-M,KN-M。缺省为mV。允许不同的通道选用不同的工程单位。例如,1通道为N,2通道为m/s2。在“工程单位”书签页中,每1个通道有1个组合框选件,拉出来找到需要的工程单位点击。

(4)测量方向选择

(5)导纳测量表

将1,17,18,34,35,51,52,68,69,85的第一坐标设为不测量(双击那一行,在弹出的节点测量信息对话框中设置),如下所示,为导纳测量表的一部分。

(6)约束方程表

(7)采集有效控制

八、试验数据及分析

(1)自振特性试验结果

表2是基础结构自振频率的测试结果。图1是其相应的部分振型图。图2是测试得到的部分传递函数及其相干曲线。从相干曲线上看相干系数非常高,基本上接近于1.0,说明测试数据的信噪比很高,结果可靠。

一阶振型图

模态试验及分析的基本步骤

模态试验及分析的基本步骤 1.动态数据的采集及响应函数分析 首先应选取适当的激励方式。激励方式可以是正弦、随机或瞬态中的任何一种。激励方式不同,相应的模态参数识别方法也不同。目前主要有单输入单输出、单输入多输出和多输入多输出三种方法。然后进行数据采集。对于单输入单输出方法要求同时高速采集输入与输出两个点的信号,用不断移动激励点位置或响应点位置的办法取得振型数据;单输入多输出及多输入多输出的方法要求大量通道数据的高速采集,因此要求大量的振动测量传感器或激振器,试验成本极高。在采集信号数据以后,还要在时域或频域对信号进行处理,例如谱分析、传递函数估计、脉冲响应测量以及滤波、相关分析等。 2.建立结构数学模型 根据己知条件,建立一种描述结构状态及特性的模型,作为计算及参数识别的依据,目前一般假定系统为线性的。由于采用的识别方法不同,数学建模可分为频域建模和时域建模。根据阻尼特性及频率藕合程度又可分为实模态和复模态等。 3.参数识别 按识别域的不同可分为频域法、时域法和混合域法。激励方式不同,相应的识别参数方法也不尽相同。并非越复杂的方法识别的结果越可靠。对于目前能够进行的大多数不是十分复杂的结构,只要取得了可靠的频响数据,用简单的识别方法也可能获得良好的模态参数;反之,即使用最复杂的数学模型、最高级的拟合方法,如果频响测量数据不可靠,识别的结果也不会理想。 4.振型动画 参数识别的结果得到了结构的模态参数模型,即一组固有频率、模态阻尼以及相应各阶模态的振型。但是由于结构复杂,由许多自由度组成的振型的数组难以引起对振动直观的想象,所以必须采用振型动画的办法,将放大的振型叠加到原始的几何形状上。

模态分析实验报告

篇一:模态分析实验报告 模态分析实验报告 姓名:学号:任课教师:实验时间:指导老师:实验地点: 实验1传递函数的测量 一、实验内容 用锤击激振法测量传递函数。 二、实验目的 1) 掌握锤击激振法测量传递函数的方法; 2) 测量激励力和加速度响应的时间记录曲线、力的自功率谱和传递函数; 3) 分析传递函数的各种显示形式(实部、虚部、幅值、对数、相位)及相干函 数; 4) 比较原点传递函数和跨点传递函数的特征; 5) 考察激励点和响应点互换对传递函数的影响; 6) 比较不同材料的力锤锤帽对激励信号的影响; 三、实验仪器和测试系统 1、实验仪器 主要用到的实验仪器有:冲击力锤、加速度传感器,lms lms-scadas ⅲ测试系统,具体型号和参数见表1-1。 仪器名称 型号 序列号 3164 灵敏度 2.25 mv/n 100 mv/g 备注比利时 丹麦 b&k 数据采集和分析系统 lms-scadas ⅲ 2302-10 力锤 加速度传感器 表1-1 实验仪器 2 、测试系统 利用试验测量的激励信号(力锤激励信号)和响应的时间历程信号,运用数字 信号处理技术获得频率响应函数(frequency response function, frf),得到系统的非参数模型。然后利用参数识别方法得到系统的模态参数。测试系统主要完成力锤激励信号及各点响应信号时间历程的同步采集,完成数字信号的处理和参数的识别。 测量分析系统的框图如图1-1所示。测量系统由振动加速度传感器、力锤和比利时lms公司scadas采集前端及modal impact测量分析软件组成。力锤及加速度传感器通过信号线与scadas采集前端相连,振动传感器及力锤为icp型传感器,需要scadas采集前端对其供电。scadas采集相应的信号和进行信号处理(如抗混滤波,a/d转换等),所测信号通过电缆与电脑完成数据通讯。图1-1 测试分析系统框图 四、实验数据采集 1、振动测试实验台架 实验测量的是一段轴,在轴上安装了3个加速度传感器,如图1-2所示,轴由四根弹簧悬挂起来,使得整个测试统的频率很低,基本上不会影响到最终的测试结果。整个测试系统如下图所示:a1 a 测点2测点3测点4 图1-2 测试系统图

模态分析与振动测试技术

模态分析与振动测试技术 固体力学 S0902015 李鹏飞

模态分析与振动测试技术 模态分析的理论基础是在机械阻抗与导纳的概念上发展起来的。近二十多年来,模态分析理论吸取了振动理论、信号分析、数据处理数理统计以及自动控制理论中的有关“营养”,结合自身内容的发展,形成了一套独特的理论,为模态分析及参数识别技术的发展奠定了理论基础。 一、单自由度模态分析 单自由度系统是最基本的振动系统。虽然实际结构均为多自由度系统,但单自由度系统的分析能揭示振动系统很多基本的特性。由于他简单,因此常常作为振动分析的基础。从单自由度系统的分析出发分析系统的频响函数,将使我们便于分析和深刻理解他的基本特性。对于线性的多自由度系统常常可以看成为许多单自由度系统特性的线性叠加。 二、多自由度系统模态分析 对于多自由度系统频响函数数学表达式有很多种,一般可以根据一个实际系统来讨论,给出一种形式;也可根据问题的要求来讨论,给出其他不同的形式。为了课程的紧凑,直接联系本课程的模态分析问题,我们就直接讨论多自由度系统通过频响函数表达形式的模态参数和模态分析。即多自由度系统模态参数与模态分析。 多自由度系统模态分析将主要用矩阵分析方法来进行。 我们以N个自由度的比例阻尼系统作为讨论的对象。然后将所分析的结果推广到其他阻尼形式的系统。 设所研究的系统为N个自由度的定常系统。其运动微分方程为: (2—1) ++= M X CX KX F ?)阶式中M,C,K分别为系统的质量、阻尼及刚度矩阵。均为(N N 矩阵。并且M及K矩阵为实系数对称矩阵,而其中质量矩阵M是正定矩阵,刚度矩阵K对于无刚体运动的约束系统是正定的;对于有刚体运动的自由系统则是半正定的。当阻尼为比例阻尼时,阻尼矩阵C为对称矩阵(上述是解耦条件)。 N?阶矩阵。即 X及F分别为系统的位移响应向量及激励力向量,均为1

模态分析中的几个基本概念模态分析中的几个基本概念分析

模态分析中的几个基本概念 物体按照某一阶固有频率振动时,物体上各个点偏离平衡位置的位移是满足一定的比例关系的,可以用一个向量表示,这个就称之为模态。模态这个概念一般是在振动领域所用,你可以初步的理解为振动状态,我们都知道每个物体都具有自己的固有频率,在外力的激励作用下,物体会表现出不同的振动特性。一阶模态是外力的激励频率与物体固有频率相等的时候出现的,此时物体的振动形态叫做一阶振型或主振型;二阶模态是外力的激励频率是物体固有频率的两倍时候出现,此时的振动外形叫做二阶振型,以依次类推。一般来讲,外界激励的频率非常复杂,物体在这种复杂的外界激励下的振动反应是各阶振型的复合。模态是结构的固有振动特性,每一个模态具有特定的固有频率、阻尼比和模态振型。这些模态参数可以由计算或试验分析取得,这样一个计算或试验分析过程称为模态分析。有限元中模态分析的本质是求矩阵的特征值问题,所以“阶数”就是指特征值的个数。将特征值从小到大排列就是阶次。实际的分析对象是无限维的,所以其模态具有无穷阶。但是对于运动起主导作用的只是前面的几阶模态,所以计算时根据需要计算前几阶的。一个物体有很多个固有振动频率(理论上无穷多个),按照从小到大顺序,第一个就叫第一阶固有频率,依次类推。所以模态的阶数就是对应的固有频率的阶数。振型是指体系的一种固有的特性。它与固有频率相对应,即为对应固有频率体系自身振动的形态。每一阶固有频率都对应一种振型。振型与体系实际的振动形态不一定相同。振型对应于频率而言,一个固有频率对应于一个振型。按照频率从低到高的排列,来说第一振型,第二振型等等。此处的振型就是指在该固有频率下结构的振动形态,频率越高则振动周期越小。在实验中,我们就是通过用一定的频率对结构进行激振,观测相应点的位移状况,当观测点的位移达到最大时,此时频率即为固有频率。实际结构的振动形态并不是一个规则的形状,而是各阶振型相叠加的结果。 固有频率也称为自然频率( natural frequency)。物体做自由振动时,其位移随时间按正弦或余弦规律变化,振动的频率与初始条件无关,而仅与系统的固有特性有关(如质量、形状、材质等),称为固有频率,其对应周期称为固有周期。 物体做自由振动时,其位移随时间按正弦规律变化,又称为简谐振动。简谐振动的振幅及初相位与振动的初始条件有关,振动的周期或频率与初始条件无关,而与系统的固有特性有关,称为固有频率或者固有周期。 物体的频率与它的硬度、质量、外形尺寸有关,当其发生形变时,弹力使其恢复。弹力主要与尺寸和硬度有关,质量影响其加速度。同样外形时,硬度高的频率高,质量大的频率低。一个系统的质量分布,内部的弹性以及其他的力学性质决定 模态扩展是为了是结果在后处理器中观察而设置的,原因如下: 求解器的输出内容主要是固有频率,固有频率被写到输出文件Jobname.OUT 及振型文件Jobnmae.MODE 中,输出内容中也可以包含缩减的振型和参与因子表,这取决于对分析选项和输出控制的设置,由于振型现在还没有被写到数据库或结果文件中,因此不能对结果进行后处理,要进行后处理,必须对模态进行扩展。在模态分析中,我们用“扩展”这个词指将振型写入结果文件。也就是说,扩展模态不仅适用于Reduced 模态提取方法得到的缩减振型,而且也适用与其他模态提取方法得到的完整振型。因此,如果想在后处理器中观察振型,必须先扩展模态。谱分析中的模态合并是因为激励谱是其实是由一系列的激励组合成的一个谱,里面的频率不会是只有一个,而不同的激励频率对于结构产生的结果是不一样的,对于结果的贡献也是不一样的,所以要选择模态组合法对模态进行组合,得到最终的响应结果。

机械结构实验模态分析实验报告书

《机械结构实验模态分析》实验报告 开课实验室:汽车结构实验室 2019年月日 学院 姓名 成绩 课程 名称 机械结构实验模态分析 实验项目 名 称 机械结构实验模态分析 指导教师 教师评语 教师签名: 年 月 日 机械结构实验模态分析实验报告 一、实验目的和意义 模态分析技术是近年来在国内外得到迅速发展的一门新兴科学技术,广泛应用于航空、航天、机械制造、建筑、汽车等许多领域,在识别系统的动力学参数、动态优化设计、设备故障诊断等许多方面发挥了日益重要的作用。 本实验采用CCDS-1模态分析微机系统,对图1所示的框架结构进行分析。通过该实验达到如下目的: 212019 1817 16 1514 13121110 987 6 5 4 3 222120 20 202090 9090 90 90909090113 113 113 113 113 113 115 115 115 115 图1 框架结构图 详细了解CCDAS-1模态分析微机系统,并熟练掌握使用本系统的全过程,包括 了解测量点和激振点的选择。 了解模态分析实验采用的仪器,实验的连接、安装和调整。 1、 激励振时各测点力信号和响应信号的测量及利用这些测量信号求取传递函数,并分析影响传递 函数精度的因素。 2、 SSDAS-1系统由各测点识别出系统的模态参数的步骤。 3、 动画显示。 4、 灵敏度分析及含义。 通过CCDAS-1模态分析的全部过程及有关学习,能祥述实验模态的一般步骤。 通过实验和分析,大大提高综合分析能力和动手能力。

CCDAS-1系统模态分析的优缺点讨论并提出改进实验的意见。 二、测试及数据处理框图 加速度传感器 力传感器 脉冲锤 四个点由橡胶绳悬挂 1724 打印机 IBM PC 微型计算机 含AD板 CCMAS-1模态分析软件 双通道低 通滤波器 电荷放大器 电荷放大器 图2 测量及数据处理系统框图 三、实验模态分析的基本原理 对于一个机构系统,其动态特性可用系统的固有频率、阻尼和振型来描述,与模态质量和模态刚度一起通称为机械系统的模态参数。模态参数既可以用有限元的方法对结构进行简化得到,也可以通过激振实验对采集的振动数据进行处理识别得到。通过实验数据求取模态参数的方法就是实验模态分析。只要保证测试仪器的精度、实验条件和数据分析处理的精度就能获得高质量的模态参数。 一个线性系统,若在某一点j 施加激振力j F ,系统各点的振动响应为i X 1,2,...,i n =,系统任意两点的传递函数ij h 之间的关系可用矩阵表示如下: 11112122122212()... 0()...()...()...0n n j n n n nn x h h h x h h h F x h h h ωωωω?????? ???????????? =??? ??????????????? ??????M M M O M (1-1) 可记为:{}{}[]X H F = []H 称为传递函数矩阵。其中的任意元素ij h 可以通过激振实验得到 () () i ij j X h F ωω= ()i X ω,()j F ω分别表示响应i X 与激振力j F 的傅立叶变换。 测量方法是给系统施加一有限带宽频率的激振力(冲击也是一有限带宽激振力),同时测量系统的响应,将力和响应信号进行滤波,A/D 转换并离散采样,进行双通道FFT 变换,计算出激振力j F 与响应i X 之间的传递函数ij h 。 对测量的传递函数进行曲线拟和得到模态参数,一个多自由度系统曲线拟和传递函数的解析式为:* * 1 ()[]n ijk ijk ij k k k r r h S S P S P == - --∑ (1-3)

试验模态分析的两种方法

试验模态分析的两种方法 模态分析是研究结构动力特性一种近代方法,是系统辨别方法在工程振动领域中的应用。模态是机械结构的固有振动特性,每一个模态具有特定的固有频率、阻尼比和模态振型。这些模态参数可以由计算或试验分析取得,这样一个计算或试验分析过程称为模态分析。通过试验将采集的系统输入与输出信号经过参数识别获得模态参数,称为试验模态分析。通常,模态分析都是指试验模态分析。振动模态是弹性结构的固有的、整体的特性。如果通过模态分析方法搞清楚了结构物在某一易受影响的频率范围内各阶主要模态的特性,就可能预言结构在此频段内在外部或内部各种振源作用下实际振动响应。因此,模态分析是结构动态设计及设备的故障诊断的重要方法。模态分析最终目标在是识别出系统的模态参数,为结构系统的振动特性分析、振动故障诊断和预报以及结构动力特性的优化设计提供依据。 试验模态分析主要有以下两种方法,OROS模态分析软件MODEL 2 完全具备了这两种常用的模态方 法。 锤击法模态测试 用于满足锤击法结构模态试验,以简明、直观的方法测量和处理输入力和响应数据,并显示结果。提供两种锤击方法:固定敲击点移动响应点和固定响应点移动敲击点。用力锤来激励结构,同时进行加速度和力信号的采集和处理,实时得到结构的传递函数矩阵。能够方便地设置测量参数,如触发量级、测量带宽和加窗类型,同时对最优的设置提供建议指导。 激振器法模态测试 主要是通过分析仪输出信号源来控制激振器,激励被测试件,输出信号有先进扫频正弦,随机噪声,正弦,调频脉冲等信号。支持单点激励(SIMO)与多点同时激励法(MIMO)。 1)几何建模 结构线架模型生成,节点数和部件数没有限制,测量点DOF自动加到通道标示;建立几何模型,以3维方式显示测量和分析结果。结构模型可以作为单个部件的装配,及采用不同的坐标系(直角、圆柱、球体坐标系),要求除点的定义外,还可定义线和面,真实的显示试验结构。结构线架模型生成,节点数和部件数没有限制,测量点自由度自动加到通道标示。

学习模态分析要掌握的的知识

模态分析中的几个基本概念 一、模态定义:物体按照某一阶固有频率振动时,物体上各个点偏离平衡位置的位移是满足一定的比例关系的,可以用一个向量表示。 模态分析一般是在振动领域应用,每个物体都具有自己的固有频率,在外力的激励作用下,物体会表现出不同的振动特性: 一阶模态是外力的激励频率与物体固有频率相等的时候出现的,此时物体的振动形态叫做一阶振型或主振型; 二阶模态是外力的激励频率是物体固有频率的两倍时候出现,此时的振动外形叫做二阶振型,以依次类推。 一般来讲,外界激励的频率非常复杂,物体在这种复杂的外界激励下的振动反应是各阶振型的复合。 二、模态分析:模态是结构的固有振动特性,每一个模态具有特定的固有频率、阻尼比和模态振型。这些模态参数可以由计算或试验分析取得,这样一个计算或试验分析过程称为模态分析。 有限元中模态分析的本质是求矩阵的特征值问题,所以“阶数”就是指特征值的个数。将特征值从小到大排列就是阶次。 实际的分析对象是无限维的,所以其模态具有无穷阶。但是对于运动起主导作用的只是前面的几阶模态,所以计算时根据需要计算前几阶的。 一个物体有很多个固有振动频率(理论上无穷多个),按照从小到大顺序,第一个就叫第一阶固有频率,依次类推。所以模态的阶数就是对应的固有频率的阶数。 三、振型是指体系的一种固有的特性。它与固有频率相对应,即为对应固有频率体系自身振动的形态。每一阶固有频率都对应一种振型。振型与体系实际的振动形态不一定相同。振型对应于频率而言,一个固有频率对应于一个振型。按照频率从低到高的排列,来说第一振型,第二振型等等。此处的振型就是指在该固有频率下结构的振动形态,频率越高则振动周期越小。在实验中,我们就是通过用一定的频率对结构进行激振,观测相应点的位移状况,当观测点的位移达到最大时,此时频率即为固有频率。实际结构的振动形态并不是一个规则的形状,而是各阶振型相叠加的结果。 四、模态扩展是为了是结果在后处理器中观察而设置的,原因如下: 求解器的输出内容主要是固有频率,固有频率被写到输出文件Jobname.OUT及振型文件Jobnmae.MODE中,输出内容中也可以包含缩减

模态分析实验报告

模态分析实验报告 姓名: 学号: 任课教师: 实验时间: 指导老师: 实验地点:

实验1 传递函数的测量 一、实验内容 用锤击激振法测量传递函数。 二、实验目的 1)掌握锤击激振法测量传递函数的方法; 2)测量激励力和加速度响应的时间记录曲线、力的自功率谱和传递函数; 3)分析传递函数的各种显示形式(实部、虚部、幅值、对数、相位)及相干函 数; 4)比较原点传递函数和跨点传递函数的特征; 5)考察激励点和响应点互换对传递函数的影响; 6)比较不同材料的力锤锤帽对激励信号的影响; 三、实验仪器和测试系统 1、实验仪器 主要用到的实验仪器有:冲击力锤、加速度传感器,LMS LMS-SCADAS Ⅲ测试系统,具体型号和参数见表1-1。 仪器名称型号序列号灵敏度备注 数据采集和分析系统LMS-SCADAS Ⅲ比利时力锤2302-10 3164 2.25 mV/N 加速度传感器100 mV/g 丹麦B&K 表1-1 实验仪器 2 、测试系统 利用试验测量的激励信号(力锤激励信号)和响应的时间历程信号,运用数字信号处理技术获得频率响应函数(Frequency Response Function, FRF),得到系统的非参数模型。然后利用参数识别方法得到系统的模态参数。测试系统主要完成力锤激励信号及各点响应信号时间历程的同步采集,完成数字信号的处理和参数的识别。 测量分析系统的框图如图1-1所示。测量系统由振动加速度传感器、力锤和比利时LMS公司SCADAS采集前端及Modal Impact测量分析软件组成。力锤及加速度传感器通过信号线与SCADAS采集前端相连,振动传感器及力锤为ICP

随机振动试验报告

随机振动试验报告 高等桥梁结构试验报告 讲课老师: 张启伟(教授) 姓名: 史先飞 学号: 1232627 试验报告 1 试验目的 1.过试验进一步加深对结构模态分析理论知识的理解; 2.熟悉随机振动试验常用仪器的性能与操作方法; 3.复习和巩固随机振动数据测量和分析中有关基本概念; 4.掌握通过多点激振、单点拾振的方法,利用DASP2005软件进行模态分析的基本操作步骤。

2 试验仪器和设备 1. ZJY-601振动与控制教学实验仪系统(ZJY-601A型振动教学实验仪、激励锤、YJ9-A型压电型加速度传感器等)。 2. DASP 16通道接口箱。 3. 装有“DASP2005智能数据采集和信号分析系统”软件的PC机。 4. 有关设备之间的联接电缆。 3 试验原理 3.1模态叠加原理 N自由度线性振动系统的运动微分方程是一组耦合的方程组: 引入模态矩阵Φ和模态坐标(广义坐标或主坐标)q,使X= Φq。 如果阻尼矩阵能对角化,方程组即可解耦: 解耦后的第i个方程为: 可见,采用固有振型描述振动的模态坐标后,N自由度线性振动系统的振动响应可以表示为N阶模态响应的叠加。 3.2实模态理论 实模态理论建立在无阻尼的假设基础上。在实模态理论中,模态频率就是系统的无阻 ,尼模态固有频率错误~未找到引用源。;而固有振型矩阵中的各元素都是实数,它们之间i 的相位差是0?或180?。 系统在P点激励,l点测量的频响函数为:

K,,式中,称为频率比,,为模态固有频率。当,则: ,,,,,/,,,iiiiiMi 取频响函数矩阵的一列或一行,如第P列,就可确定振动系统的全部动力特性(模态参数)。 3.3伪实模态理论 某些有阻尼振动系统有时会出现与实模态一样的实数振型,而非复数振型,但其模态 2,,,,,1固有频率为,具有这种性质的振动系统的模态称为伪实模态。伪实模态理diii 论仅适应于阻尼矩阵可解耦,即可采用固有振型矩阵正交化模态称为伪实模态。在伪实模态下,各测点的相位差都是0?或180?。 伪实模态理论仅适应于阻尼矩阵可解耦,即可采用固有振型矩阵正交化的情况。一般情况下,阻尼矩阵对角化的充要条件为: 上式也是有阻尼振动系统方程解耦的充要条件。 总之,H(ω)建立了模态参数与频响函数的关系。因此,利用实验测出的H(ω) 值,即可计算出系统的模态参数。根据频响函数的互易定理及模态理论,只需 H(ω)矩阵的一列(或一行)即可求出全部模态参数。

模态分析实验报告

研究生学院 机械工程专业硕士结课作业 课程题目:机械结构模态分析实验 指导老师: 姓名: 学号: 2015年08月23日

一、概述 模态分析是研究结构动力特性一种近代方法,是系统辨别方法在工程振动领域中的应用。模态是机械结构的固有振动特性,每一个模态具有特定的固有频率、阻尼比和模态振型。这些模态参数可以由计算或试验分析取得,这样一个计算或试验分析过程称为模态分析。这个分析过程如果是由有限元计算的方法取得的,则称为计算模态分析;如果通过试验将采集的系统输入与输出信号经过参数识别获得模态参数,称为试验模态分析。通常,模态分析都是指试验模态分析。 振动模态是弹性结构固有的、整体的特性。通过模态分析方法搞清楚了结构物在某一易受影响的频率范围内的各阶主要模态的特性,就可以预言结构在此频段内在外部或内部各种振源作用下产生的实际振动响应。因此,模态分析是结构动态设计及设备故障诊断的重要方法。 机器、建筑物、航天航空飞行器、船舶、汽车等的实际振动模态各不相同。模态分析提供了研究各类振动特性的一条有效途径。首先,将结构物在静止状态下进行人为激振,通过测量激振力与响应并进行双通道快速傅里叶变换(FFT)分析,得到任意两点之间的机械导纳函数(传递函数)。用模态分析理论通过对试验导纳函数的曲线拟合,识别出结构物的模态参数,从而建立起结构物的模态模型。根据模态叠加原理,在已知各种载荷时间历程的情况下,就可以预言结构物的实际振动的响应历程或响应谱。 模态分析的经典定义:将线性定常系统振动微分方程组中的物理坐标变换为模态坐标,使方程组解耦,成为一组以模态坐标及模态参数描述的独立方程,以便求出系统的模态参数。坐标变换的变换矩阵为模态矩阵,其每列为模态振型。模态分析的最终目标是识别出系统的模态参数,为结构系统的振动特性分析、振动故障诊断和预报以及结构动力特性的优化设计提供依据。 模态分析技术的应用可归结为以下几个方面: 1) 评价现有结构系统的动态特性; 2) 在新产品设计中进行结构动态特性的预估和优化设计; 3) 诊断及预报结构系统的故障; 4) 控制结构的辐射噪声; 5) 识别结构系统的载荷 二、实验的基本过程 1、动态数据的采集及频响函数或脉冲响应函数分析 (1)激励方法。试验模态分析是人为地对结构物施加一定动态激励,采集各点的振动响应信号及激振力信号,根据力及响应信号,用各种参数识别方法获取模态参数。激励方法不同,相应识别方法也不同。目前主要由单输入单输出(SISO)、单输入多输出(SIMO)多输入多输出(MIMO)三种方法。以输入力的信号特征还可分为正弦慢扫描、正弦快扫描、稳态随机(包括白噪声、宽带噪声或伪随机)、瞬态激励(包括随机脉冲激励)等。 (2)数据采集。SISO方法要求同时高速采集输入与输出两个点的信号,用不断移动激励点位置或响应点位置的办法取得振形数据。SIMO及MIMO的方法则要求大量通道数据的高速并行采集,因此要求大量的振动测量传感器或激振器,试验成本较高。 (3)时域或频域信号处理。例如谱分析、传递函数估计、脉冲响应测量以及滤波、相关分析等。

模态分析与谐响应分析区别联系(优.选)

模态分析是分析结构的动力特性,与结构受什么样的荷载没有关系,只要给定了质量、弹性模量、泊松比等材料参数,并施加了边界约束就可以得到此状态下的各阶自振频率和振型(也称为模态)。 谐响应分析是分析结构在不同频率的简谐荷载作用下的动力响应,是与结构所受荷载相关的,只是结构所受荷载的都是简谐荷载,而且荷载频率的变化范围在谐响应分析时要给出来。 比如,在ANSYS谐响应分析中要给出这样的语句 FK,3,FX,7071,7071 !指定点荷载的实部和虚部(或者幅值和相位角) HARFRQ,0,2.5, !指定荷载频率的变化范围,也就是说只分析结构所受频率从0到2.5HZ之间的荷载NSUBST,100, !指定频率从0到2.5之间分100步进行计算 这样,结构所受的这个点荷载的表达式实际上是 F=(7071+i*7071)*exp(i*omiga*t) !式中omiga从0到2.5*2*3.1415926变化 分析得到结果是各点物理量随频率变化的,但物理量的值一般为复数,包括实部的虚部,这可以从后处理LIST结点值看出来。 个人认为进行谐响应分析并不一定要先进行模态分析(也叫振型分析、振型分解等),而直接进行谐响应分析后查看结构的物理量随频率变化曲线时也会看到在结构的自振频率处响应会放大(共振)。如果已经进行过模态分析的话,会发现谐响应分析时的共振频率和模态分析提到的自振频率是一致的。但有些时候模态分析中得到的有些频率在谐响应分析的频响曲线里可能很不明显。因此,只能说在谐响应分析前进行一下模态分析可以对结构的自振特性有个了解,以便验证谐响应分析结果是否合理。 另外,谐响应分析应该是频域分析方法的一个部分。对于相地震那样的时间过程线,直接进行时域分析(ANSYS里用暂态分析)可得到结构随时间的响应。而如果进行频域分析,就应该通过傅立叶变换把时域地震曲线变为由多个简谐荷载的叠加,然后再以此简谐荷载做为谐响应分析时的荷载进行谐响应分析,最后再对谐响应分析得到的结果进行傅立叶逆变换得到时域的结果。不知道这种理解是否正确,我也没有用ANSYS这样做过。如果正确的话,时域分析和频域分析的结果应该是一致的。 模态分析的应用及它的试验模态分析 模态分析是研究结构动力特性一种近代方法,是系统辨别方法在工程振动领域中的应用。模态是机械结构的固有振动特性,每一个模态具有特定的固有频率、阻尼比和模态振型。这些模态参数可以由计算或试验分析取得,这样一个计算或试验分析过程称为模态分析。这个分析过程如果是由有限元计算的方法取得的,则称为计算模记分析;如果通过试验将采集的系统输入与输出信号经过参数识别获得模态参数,称为试验模态分析。通常,模态分析都是指试验模态分析。振动模态是弹性结构的固有的、整体的特性。如果通过模态分析方法搞清楚了结构物在某一易受影响的频率范围内各阶主要模态的特性,就可能预言结构在此频段内在外部或内部各种振源作用下实际振动响应。因此,模态分析是结构动态设计及设备的故障诊断的重要方法。 模态分析最终目标在是识别出系统的模态参数,为结构系统的振动特性分析、振动故障诊断和预报以及结构动力特性的优化设计提供依据。 模态分析技术的应用可归结为一下几个方面: 1) 评价现有结构系统的动态特性; 2) 在新产品设计中进行结构动态特性的预估和优化设计; 3) 诊断及预报结构系统的故障; 4) 控制结构的辐射噪声; 5) 识别结构系统的载荷。 机器、建筑物、航天航空飞行器、船舶、汽车等的实际振动千姿百态、瞬息变化。模态分析提供了研究各种实际结构振动的一条有效途径。首先,将结构物在静止状态下进行人为激振,通过测量激振力与胯动响应并进行双通道快速傅里叶变换(FFT)分析,得到任意两点之间的机械导纳函数(传递函数)。用模态分析理论通过对试验导纳函数的曲线拟合,识别出结构物的模态参数,从而建立起结构物的模态模型。根据模态叠加原理,在已知各种载荷时间历程的情况下,就可以预言结构物的实际振动的响应历程或响应

最新模态试验及分析的基本步骤

模态试验及分析的基本步骤 1 1.动态数据的采集及响应函数分析 2 首先应选取适当的激励方式。激励方式可以是正弦、随机或瞬态中的任何一种。激3 励方式不同,相应的模态参数识别方法也不同。目前主要有单输入单输出、单输入多4 输出和多输入多输出三种方法。然后进行数据采集。对于单输入单输出方法要求同时5 高速采集输入与输出两个点的信号,用不断移动激励点位置或响应点位置的办法取得6 振型数据;单输入多输出及多输入多输出的方法要求大量通道数据的高速采集,因此要7 求大量的振动测量传感器或激振器,试验成本极高。在采集信号数据以后,还要在时8 域或频域对信号进行处理,例如谱分析、传递函数估计、脉冲响应测量以及滤波、相9 关分析等。 10 2.建立结构数学模型 11 根据己知条件,建立一种描述结构状态及特性的模型,作为计算及参数识别的依 12 据,目前一般假定系统为线性的。由于采用的识别方法不同,数学建模可分为频域建13 模和时域建模。根据阻尼特性及频率藕合程度又可分为实模态和复模态等。 14 3.参数识别 15 按识别域的不同可分为频域法、时域法和混合域法。激励方式不同,相应的识别参16 数方法也不尽相同。并非越复杂的方法识别的结果越可靠。对于目前能够进行的大多17 数不是十分复杂的结构,只要取得了可靠的频响数据,用简单的识别方法也可能获得18 良好的模态参数;反之,即使用最复杂的数学模型、最高级的拟合方法,如果频响测量19 数据不可靠,识别的结果也不会理想。 20 4.振型动画 21 参数识别的结果得到了结构的模态参数模型,即一组固有频率、模态阻尼以及相应22 各阶模态的振型。但是由于结构复杂,由许多自由度组成的振型的数组难以引起对振23

各种模态分析方法总结与比较

各种模态分析方法总结与比较 一、模态分析 模态分析是计算或试验分析固有频率、阻尼比和模态振型这些模态参数的过程。 模态分析的理论经典定义:将线性定常系统振动微分方程组中的物理坐标变换为模态坐标,使方程组解耦,成为一组以模态坐标及模态参数描述的独立方程,以便求出系统的模态参数。坐标变换的变换矩阵为模态矩阵,其每列为模态振型。 模态分析是研究结构动力特性一种近代方法,是系统辨别方法在工程振动领域中的应用。模态是机械结构的固有振动特性,每一个模态具有特定的固有频率、阻尼比和模态振型。这些模态参数可以由计算或试验分析取得,这样一个计算或试验分析过程称为模态分析。这个分析过程如果是由有限元计算的方法取得的,则称为计算模记分析;如果通过试验将采集的系统输入与输出信号经过参数识别获得模态参数,称为试验模态分析。通常,模态分析都是指试验模态分析。振动模态是弹性结构的固有的、整体的特性。如果通过模态分析方法搞清楚了结构物在某一易受影响的频率围各阶主要模态的特性,就可能预言结构在此频段在外部或部各种振源作用下实际振动响应。因此,模态分析是结构动态设计及设备的故障诊断的重要方法。 模态分析最终目标是在识别出系统的模态参数,为结构系统的振动特性分析、振动故障诊断和预报以及结构动力特性的优化设计提供依据。 二、各模态分析方法的总结

(一)单自由度法 一般来说,一个系统的动态响应是它的若干阶模态振型的叠加。但是如果假定在给定的频带只有一个模态是重要的,那么该模态的参数可以单独确定。以这个假定为根据的模态参数识别方法叫做单自由度(SDOF)法n1。在给定的频带围,结构的动态特性的时域表达表示近似为: ()[]}{}{T R R t r Q e t h r ψψλ= 2-1 而频域表示则近似为: ()[]}}{ {()[]2ωλωψψωLR UR j Q j h r t r r r -+-= 2-2 单自由度系统是一种很快速的方法,几乎不需要什么计算时间和计算机存。 这种单自由度的假定只有当系统的各阶模态能够很好解耦时才是正确的。然而实际情况通常并不是这样的,所以就需要用包含若干模态的模型对测得的数据进行近似,同时识别这些参数的模态,就是所谓的多自由度(MDOF)法。 单自由度算法运算速度很快,几乎不需要什么计算和计算机存,因此在当前小型二通道或四通道傅立叶分析仪中,都把这种方法做成置选项。然而随着计算机的发展,存不断扩大,计算速度越来越快,在大多数实际应用中,单自由度方法已经让位给更加复杂的多自由度方法。 1、峰值检测 峰值检测是一种单自由度方法,它是频域中的模态模型为根据对系统极点进行局部估计(固有频率和阻尼)。峰值检测方法基于这样的事实:在固有频率附近,频响函数通过自己的极值,此时其实部为零(同相部分最

机床实验模态分析综述

机床的模态分析方法综述 甄真 (北京信息科技大学机电工程学院,北京100192) 摘要:模态分析是研究机械结构动力特性的一种近代方法,是结构动态设计及设备的故障诊断的重要方法。机床在工作时,由于要承受各种变载荷而产生振动,其精度和寿命会受到影响。因此有必要对机床进行模态分析,了解其动态特性,以便进一步分析和改进。本文概述了模态分析的概念、研究意义及发展历史,介绍了机床模态分析的研究现状, 从理论方法与试验方法两方面指出了其关键技术以及研究发展方向。 关键词:模态分析;动态特性;机床;理论方法;实验方法 Summary of the model analysis method of machine tool ZHEN Zhen (Beijing Information Science & Technology University, Mechanical and Electrical Engineering College, Beijing, 100192) Abstract:Modal analysis is a modern method to study the dynamic characteristics of mechanical structure. It’s an important method in structure dynamic design and fault diagnosis of equipment.Its accuracy and lifetime will be affected due to withstand all kinds of variable load and vibration when the machine tool works.So it is necessary to make modal analysis and to understand the dynamic characteristics for machine tool in order to further analyze and improve. This paper summarizes the concept, significance and history of modal analysis and introduces the research status of model analysis of machine tool. It also points out the key technology and research direction in this field from two aspects of theoretical method and experimental method. Key words:model analysis; dynamic characteristics; machine tool; theoretical method; experimental method 0 引言 模态是指机械结构的固有振动特性,每一个模态具有特定的固有频率、阻尼比和模态振型。模态分析是一种研究机械结构动力的方法,是系统辨别方法在工程振动领域中的应用。振动模态是弹性结构的固有的、整体的特性。如果通过模态分析法搞清楚了结构物在某一个易受影响的频率范围内各阶主要模态的特性,就可预言结构在此频段内在外部或内部各种振源作用下实际响应。因此,模态分析是结构动态设计及设备的故障诊断的重要方法[1]。 模态分析将构件的复杂振动分解为许多简单而独立的振动,并用一系列模态参数来表征的过程。根据线性叠加原理,一个构件的复杂振动是由无数阶模态叠加的结果。在这些模态中。模态分析最终目标是识别出系统的模态参数,为结构系统的振动特性分析、振动故障诊断和预报以及结构动力特性的优化设计提供依据。模态分析主要分为3类方法:一是,基于计算机仿真的有限元分析法;二是,基于输入(激励)输出(响应)模态试验的试验模态分析法;三是,基于仅有输出(响应)模态试验的运行模态分析法。有限元分析属结构动力学正问题,但受无法准确描述复杂边界条件、结构物理参数和部件连接状态等不确定性因素的限制难以达到很高的精度。第二、三类方法属结构动力学反问题,基于真实结构的模态试验。因而能得到更准确

Abaqus模态分析实验报告

(一)创建部件 1:模块:部件 2:从菜单栏中选择部件→创建,弹出创建部件对话框 名称:LIAN_FuJian 模型空间:三维 类型:可变形 形状:实体 类型:拉伸 大约尺寸:2000,为部件最大尺寸的2倍 3:点击继续,进入草绘模式,为实体拉伸绘制截面草图。4:点击创建圆工具,绘制2个同心圆。大圆直径为1000,小圆直径为400。 5:点击创建构造:圆工具,绘制一个直径为700的构造圆。 6:点击创建构造工具,创建2条构造线,一并添加固定约束。 7:点击创建圆工具,以构造圆与竖直构造线的交点为圆心,绘制一个直径为100的圆。

8:点击环形阵列工具,点选刚才创建的圆为要阵列的实体,按下鼠标中键,弹出环形阵列对话框 个数:6 总角度:360 点击确定 阵列结果如下: 9:在绘图区按下鼠标中键,弹出编辑基本拉伸对话框 类型:指定深度 深度:200 点击确定,第一个部件绘制完成 10:创建第二个部件-轴:ZHOU。 (二)装配 1:模块:装配 2:点击创建实例工具,弹出创建实例对话框 创建实例:从部件 部件:按住Ctrl选取LIAN_FuJian与ZHOU这2个部件 实例类型:非独立(网格在部件上)

点击确定,装配体如下 2:点击平移实例工具,选择ZHOU为要平移的实例,点击完成。输入平移向量的起始点(0,0,0),回车;输入平移向量的终点(0,0,100),回车。再点击确定,平移后的装配体如下 3:点击合并/切割实例工具,弹出合并/切割实体对话框。部件名:ASM 运算:合并-几何 原始实体:禁用 相交边界:删除 点击继续,选择待合并的实例,框选整个模型,点击完成。4:在模型树下删除LIAN_FuJian-1和ZHOU-1 5:由于在接下来的分析中只需要用到ASM部件,故可以将LIAN_FuJian和ZHOU删除。 模块:部件 点击部件管理器工具,选中LIAN_FuJian和ZHOU,删除。

悬臂梁模态分析实验报告.doc

精品资料 悬臂梁各阶固有频率及主振形的测定试验 一、实验目的 1、用共振法确定悬臂梁横向振动时的前五阶固有频率; 2、熟悉和了解悬臂梁振动的规律和特点; 3、观察和测试悬臂梁振动的各阶主振型,分析各阶固有频率及其主振型的实测值与理论计算值的误差。 二、仪器和设备 悬臂梁固定支座;脉冲锤1个;圆形截面悬臂钢梁标准件一个;加速度传感器一个;LMS振动噪声测试系统。 三、实验基本原理 瞬态信号可以用三种方式产生,分述如下: 一是快速正弦扫频法.将正弦信号发生器产生的正弦信号,在幅值保持不变的条件下,由低频很快地连续变化到高频.从频谱上看,该情况下,信号的频谱已不具备单一正弦信号的特性,而是在一定的频率范围内接近随机信号. 二是脉冲激励.用脉冲锤敲击试件,产生近似于半正弦的脉冲信号.信号的有效频率取决于脉冲持续时间τ,τ越小则频率范围越大. 三是阶跃激励.在拟定的激振点处,用一根刚度大、重量轻的弦经过力传感器对待测结构施加张力,使其产生初始变形,然后突然切断张力弦,相当于给该结构施加一个负的阶跃激振力. 用脉冲锤进行脉冲激振是一种用得较多的瞬态激振方法,它所需要的设备较

少,信号发生器、功率放大器、激振器等都可以不要,并且可以在更接近于实际工作的条件下来测定试件的机械阻抗. 四、实验结果记录 前五阶固有频率表 阶数固有频率(Hz) 1 8.491 2 54.216 3 154.607 4 304.354 5 494.691 实验测得的前五阶振型图如下: 1阶振型图

2阶振型图 3阶振型图 4阶振型图

5阶振型图 五、理论计算悬臂梁固有频率 圆截面悬臂钢梁有关参数可取:Pa E 11101.2?=,7850=ρkg/3 m 。用直尺测 量悬臂梁的梁长L=1000mm 、梁直径D=12mm 。计算简支梁一、二、三、四阶固有频率和相应的振型,并将理论计算结果填入表。 悬臂梁的振动属于连续弹性体的振动,它具有无限多自由度及其相应的固有频率和主振型,其振动可表示为无穷多个主振型的叠加。对于梁体振动时,仅考虑弯曲引起的变形,而不计剪切引起的变形及其转动惯量的影响,这种力学分析 模型称为欧拉-伯努利梁。 运用分离变量法,结合悬臂梁一端固定一端自由的边界条件,通过分析可求得均质、等截面悬臂梁的频率方程 1 L Lch cos -=ββ (5-1) 式中:L ——悬臂梁的长度。 梁各阶固有频率为 4 2 2(Al EI l f i i ρπ β)= (5-2) 悬臂梁固有圆频率及主振型函数

模态试验分析方法简介

模态试验分析方法简介 1 试验模态分析的基本步骤 试验模态分析一般分为如下的四个步骤: 第一步:建立测试系统 所谓建立测试系统就是确定实验对象,选择激振方式,选择力传感器和响应传感器,并对整个测试系统进行校准。 第二步:测量被测系统的响应数据 这是试验模态的关键一步,所测量得到的数据的准确性和可靠性直接影响到模态试验的结果。在某一激振力的作用下被测系统一旦被激振起来,就可以通过测试仪器测量得到激振力或响应的时域信号,通过输血手段将其转化为频域信号,就可以得到系统频响函数的平均估计,在某些情况下不要求计算频响函数,只需要时间历程就可以了。 第三步:进行模态参数估计 即利用测量得到的频响函数或时间历程来估计模态参数,包括:固有频率,模态振型,模态阻尼,模态刚度和模态质量等。 第四步:模态模型验证 它是对第三步模态参数估计所得结果的正确性进行检验,它是对模态试验成果评定以及进一步对被测系统进行动力学分析的必要过程。 以上的每个步骤都是试验模态中必不可少的组成部分,其具体的介绍如下: 2、建立测试系统 建立测试系统是模态试验的前期准备过程,它主要包括:被测对象的理论分析和计算,测试方案的确定(包括激振方式的确定,传感器的选择,数据采集分析仪器的选择等),按照方案要求安装和调试,测试系统的校准等工作。 接下来对激振方式,传感器的选择和数据采集仪器的选择的具体介绍如下: 2.1激振方式的确定: 激振方式有很多种,主要分为天然振源激振和人工振源激振。天然振源包括地震,地脉动,风振,海浪等;其中地脉动常被使用于大型结构的激励,其特点是频带很宽,包含了各种频率的成分,但是随机性很大,采样时间要求较长,人工振源包括起振机,激振器,地震模拟台,车辆振动,爆破,张拉释放,机

相关文档
最新文档