伺服驱动器常见故障解析

伺服驱动器常见故障解析
伺服驱动器常见故障解析

1、伺服电机高速旋转时出现电机偏差计数器溢出错误,如何处理?

①高速旋转时发生电机偏差计数器溢出错误;

对策:

检查电机动力电缆和编码器电缆的配线是否正确,电缆是否有破损。

②输入较长指令脉冲时发生电机偏差计数器溢出错误;

对策:

a.增益设置太大,重新手动调整增益或使用自动调整增益功能;

b.延长加减速时间;

c.负载过重,需要重新选定更大容量的电机或减轻负载,加装减速机等传动机构提高负荷能力。

③运行过程中发生电机偏差计数器溢出错误。

对策:

a.增大偏差计数器溢出水平设定值;

b.减慢旋转速度;

c.延长加减速时间;

d.负载过重,需要重新选定更大容量的电机或减轻负载,加装减速机等传动机构提高负载能力。

2、伺服电机在有脉冲输出时不运转,如何处理?

①监视控制器的脉冲输出当前值以及脉冲输出灯是否闪烁,确认指令脉冲已经执行并已经正常输出脉冲;

②检查控制器到驱动器的控制电缆,动力电缆,编码器电缆是否配线错误,破损或者接触不良;

③检查带制动器的伺服电机其制动器是否已经打开;

④监视伺服驱动器的面板确认脉冲指令是否输入;

⑤Run运行指令正常;

⑥控制模式务必选择位置控制模式;

⑦伺服驱动器设置的输入脉冲类型和指令脉冲的设置是否一致;

⑧确保正转侧驱动禁止,反转侧驱动禁止信号以及偏差计数器复位信号没有被输入,脱开负载并且空载运行正常,检查机械系统。

3、伺服电机没有带负载报过载,如何处理?

①如果是伺服Run(运行)信号一接入并且没有发脉冲的情况下发生:

a.检查伺服电机动力电缆配线,检查是否有接触不良或电缆破损;

b.如果是带制动器的伺服电机则务必将制动器打开;

c.速度回路增益是否设置过大;

d.速度回路的积分时间常数是否设置过小。

②如果伺服只是在运行过程中发生:

a.位置回路增益是否设置过大;

b.定位完成幅值是否设置过小;

c.检查伺服电机轴上没有堵转,并重新调整机械。

4、伺服电机运行时出现异常声音或抖动现象,如何处理?

①伺服配线:

a.使用标准动力电缆,编码器电缆,控制电缆,电缆有无破损;

b.检查控制线附近是否存在干扰源,是否与附近的大电流动力电缆互相平行或相隔太近;

c.检查接地端子电位是否有发生变动,切实保证接地良好。

②伺服参数:

a.伺服增益设置太大,建议用手动或自动方式重新调整伺服参数;

b.确认速度反馈滤波器时间常数的设置,初始值为0,可尝试增大设置值;

c.电子齿轮比设置太大,建议恢复到出厂设置;

d.伺服系统和机械系统的共振,尝试调整陷波滤波器频率以及幅值。

③机械系统:

a.连接电机轴和设备系统的联轴器发生偏移,安装螺钉未拧紧;

b.滑轮或齿轮的咬合不良也会导致负载转矩变动,尝试空载运行,如果空载运行时正常则检查机械系统的结合部分是否有异常;

c.确认负载惯量,力矩以及转速是否过大,尝试空载运行,如果空载运行正常,则减轻负载或更换更大容量的驱动器和电机。

5、伺服电机做位置控制定位不准,如何处理?

①首先确认控制器实际发出的脉冲当前值是否和预想的一致,如不一致则检查并修正程序;

②监视伺服驱动器接收到的脉冲指令个数是否和控制器发出的一致,如不一致则检查控制线电缆;

③检查伺服指令脉冲模式的设置是否和控制器设置得一致,如CW/CCW还是脉冲+方向;

④伺服增益设置太大,尝试重新用手动或自动方式调整伺服增益;

⑤伺服电机在进行往复运动时易产生累积误差,建议在工艺允许的条件下设置一个机械原点信号,在误差超出允许范围之前进行原点搜索操作;

⑥机械系统本身精度不高或传动机构有异常(如伺服电机和设备系统间的联轴器部发生偏移等)。

6、伺服电机做位置控制运行报超速故障,如何处理?

①伺服Run信号一接入就发生;

检查伺服电机动力电缆和编码器电缆的配线是否正确,有无破损。

②输入脉冲指令后在高速运行时发生:

a.控制器输出的脉冲频率过大,修改程序调整脉冲输出的频率;

b.电子齿轮比设置过大;

c.伺服增益设置太大,尝试重新用手动或自动方式调整伺服增益。

THANKS !!!

致力为企业和个人提供合同协议,策划案计划书,学习课件等等

打造全网一站式需求

欢迎您的下载,资料仅供参考

三洋伺服驱动器常见故障

伺服驱动器常见故障:无显示、缺相、过流、过压、欠压、过热、过载、接地、参数错误、有显示无输出、模块损坏、报错等; AL 21 RL 21 电源故障,电流过大,驱动器的U、V、W相和驱动器电机之间的连线短路或者U、V、W 相接地 AL 22 RL 22 电源检测异常伺服驱动器和电机不匹配 AL 23 RL 23 电源检测异常伺服驱动器内部电路故障 AL 24 RL 24 电源检测异常 AL 41 RL 41 过载伺服驱动器控制板或电源模块有问题,伺服电机编码器电路故障,驱动器与电机不匹配,伺服电机抱闸没有松开,驱动器和电机UVW相接线不正确,驱动器和电机UVW相接线中一相或全部断开 AL 42 RL 42 过载伺服驱动器控制板或电源模块有问题,伺服电机编码器电路故障,驱动器与电机不匹配,伺服电机抱闸没有松开,驱动器和电机UVW相接线不正确,驱动器和电机UVW相接线中一相或全部断开 AL 43 RL 43 再生故障超过内置再生电阻允许的再生功率,负载惯量过大或导电时间太短,再生电阻断线,外置再生电阻阻抗值太大,驱动器的控制电路故障 AL 51 RL 51 驱动器过热驱动器的温度异常,驱动器内部电路故障 AL 52 RL 52 突入防止电阻过热冲入防止电阻过热,伺服驱动器内部故障,周围温度过高 AL 53 RL 53 DB电阻器过热驱动器内电路故障 AL 54 RL 54 内部过热驱动器内部电路故障 AL 55 RL 55 外部过热伺服驱动器控制板故障 AL 61 RL 61 超电压伺服驱动器控制板故障, AL 62 RL 62 主回路电压过低伺服驱动器内部不良 AL 63 RL 63 主电源缺相3相输入R S T中,1相没有输入 AL 71 RL 71 控制电源的电压下降 AL 72 RL 72 +12V电源下降 AL 81 RL 81 编码器A相B相的脉冲信号异常

ASD伺服常见问题处理方式

ASD伺服常见问题处理方式 1,伺服驱动器输出到电机的UVW三相是否可以互换? 不可以,伺服驱动器到电机UVW的接法是唯一的。普通异步电机输入电源UVW两相互换时电机会反转,事实上伺服电机UVW任意两相互换电机也会反转,但是伺服电机是有反馈装置的,这样就出现正反馈会导致电机飞车。伺服驱动器会检测并防止飞车,因此在UVW接错线后我们看到的现象是电机以很快的速度转过一个角度然后报警过负载ALE06。 2,伺服电机为何要Servo on之后才可以动作? 伺服驱动器并不是在通电后就会输出电流到电机,因此电机是处于放松的状态(手可以转动电机轴)。伺服驱动器接收到Servo on信号后会输出电流到电机,让电机处于一种电气保持的状态,此时才可以接收指令去动作,没有收到指令时是不会动作的即使有外力介入(手转不动电机轴),这样伺服电机才能实现精确定位。 3,伺服驱动器报警ALE01如何处理? 检查UVW线是否有短路。如果把UVW线与驱动器断开再通电仍然出现ALE01则是驱动器硬件故障。 4,ALE02过电压/ALE03低电压报警发生时如何处理? 首先使用万用表测量输入电压是否在允许范围内;再次是通过驱动器或伺服软件示波器监视“主回路电压”,这是直流母线电压,电压伏数应该是输入交流电压的1.414倍,正常来讲应该不会有太大的偏差。如果偏差很大需返厂重新校准。ALE02/ALE03报警是以“主回路电压”来判断的。 5,在高速运行时机台在中途有很明显的一钝,观察发现是中途有ALE03报警产生,但是一闪就消失了,如何解决这个问题? 在高速运行时会消耗很大能量,母线电压会下降,如果输入电压偏低此时就会出现ALE03报警。报警发生时伺服马上停止,母线电压恢复正常,报警自动消失,伺服会继续运行,因此看起来就是明显的一钝。这种情况多发生在使用单相电源供电时,建议主回路使用三相电源供电。参数P2-65 bit12置ON可使ALE03报警发生时,母线电压恢复后报警不会自动消失。 6,伺服驱动器报警ALE04如何处理? AB系列伺服驱动器配ECMA马达时功率不匹配上电会报警ALE04,除这种情况外刚一上电就报警ALE04就是电机编码器故障。如果在使用过程中出现ALE04报警是因为编码器信号被干扰,请查看编码器线是否是屏蔽双绞、驱动器与电机间地线是否连接,或者在编码器线上套磁环。通过ALE04.EXE软件可以监测每次Z脉冲位置AB脉冲计数是否变化,有变化则会报

安川伺服驱动器的常用故障代码

安川伺服驱动器的常用故障代码 A.00 绝对值数据错绝对值错误或没收到 A.02 参数中断用户参数检测不到 A.04 参数设置错误用户参数设置超出允许值 A.10 过流电源变压器过流 A.30 再生电路检查错误再生电路检查错误 A.31 位置错误脉冲溢出位置错误,脉冲超出参数Cn-1E设定值 A.40 主电路电压错误主电路电压出错 A.51 过速电机转速过快 A.71 过载(大负载) 电机几秒至几十秒过载运行 A.72 过载(小负载) 电机过载下连续运行 A.80 绝对值编码器差错绝对值编码器每转脉冲数出错ssszxx f A.81 绝对值编码器失效绝对值编码器电源不正常 A.82 绝对值编码器检测错误绝对值编码器检测不正常 A.83 绝对值编码器电池错误绝对值编码器电池电压不正常 A.84 绝对值编码器数据不对绝对值编码器数据接受不正常 A.85 绝对值编码器转速过高电机转速超过400转/分后编码器打开 A.A1 过热驱动器过热 A.B1 给定输入错误伺服驱动器CPU检测给定信号错误 A.C1 伺服过运行伺服电机(编码器)失控 A.C2 编码器输出相位错误编码器输出A、B、C相位出错 A.C3 编码器A相B相断路编码器A相B相没接 A.C4 编码器C相断路编码器C相没接 A.F1 电源缺相主电源一相没接 A.F3 电源失电电源被切断 CPF00 手持传输错误1 通电5秒后,手持与连接仍不对 CPF01 手持传输错误2 传输发生5次以上错误 A.99 无错误操作状态不正常 安川伺服报警代码 报警代码报警名称主要内容 A.00 绝对值数据错误不能接受绝对值数据或接受的绝对值数据异常A.02 参数破坏用户常数的“和数校验”结果异常 A.04 用户常数设定错误设定的“用户常数”超过设定范围 A.10 电流过大功率晶体管电流过大 A.30 测出再生异常再生处理回路异常 A.31 位置偏差脉冲溢出位置偏差脉冲超出了用户常数“溢出(Cn-1E)”的值

伺服驱动器常见故障的原因及对策

伺服驱动器常见故障的原因及对策 伺服驱动器由于长时间的使用,难免会出现故障,最重要的是及时查找出原因,对应解决故障,及早恢复正常使用。小编在这整理伺服驱动器常见的故障原因及对策供大家参考。 1、伺服电机在有脉冲输出时不运转,如何处理 ①监视控制器的脉冲输出当前值以及脉冲输出灯是否闪烁,确认指令脉冲已经执行并已经正常输出脉冲; ②检查控制器到驱动器的控制电缆,动力电缆,编码器电缆是否配线错误,破损或者接触不良; ③检查带制动器的伺服电机其制动器是否已经打开; ④监视伺服驱动器的面板确认脉冲指令是否输入; ⑤ Run运行指令正常; ⑥控制模式务必选择位置控制模式; ⑦伺服驱动器设置的输入脉冲类型和指令脉冲的设置是否一致; ⑧确保正转侧驱动禁止,反转侧驱动禁止信号以及偏差计数器复位信号没有被输入,脱开负载并且空载运行正常,检查机械系统。 2、伺服电机高速旋转时出现电机偏差计数器溢出错误,如何处理 ①高速旋转时发生电机偏差计数器溢出错误; 对策: 检查电机动力电缆和编码器电缆的配线是否正确,电缆是否有破损。 ②输入较长指令脉冲时发生电机偏差计数器溢出错误; 对策: a.增益设置太大,重新手动调整增益或使用自动调整增益功能; b.延长加减速时间; c.负载过重,需要重新选定更大容量的电机或减轻负载,加装减速机等传动机构提高负荷能力。 ③运行过程中发生电机偏差计数器溢出错误。 对策: a.增大偏差计数器溢出水平设定值; b.减慢旋转速度; c.延长加减速时间; d.负载过重,需要重新选定更大容量的电机或减轻负载,加装减速机等传动机构提高负载能力。 3、伺服电机做位置控制定位不准,如何处理 ①首先确认控制器实际发出的脉冲当前值是否和预想的一致,如不一致则检查并修正程序; ②监视伺服驱动器接收到的脉冲指令个数是否和控制器发出的一致,如不一致则检查控制线电缆; ③检查伺服指令脉冲模式的设置是否和控制器设置得一致,如CW/CCW还是脉冲+方向; ④伺服增益设置太大,尝试重新用手动或自动方式调整伺服增益; ⑤伺服电机在进行往复运动时易产生累积误差,建议在工艺允许的条件下设置一个机械原点信号,在误差超出允许范围之前进行原点搜索操作; ⑥机械系统本身精度不高或传动机构有异常(如伺服电机和设备系统间的联轴器部发生偏移等)。 4、伺服电机做位置控制运行报超速故障,如何处理

伺服电机常见故障

三相交流伺服应用广泛,但通过长期运行后,会发生各种故障,及时判断故障原因,进行相应处理,是防止故障扩大,保证设备正常运行的一项重要的工作。 一、通电后伺服电动机不能转动,但无异响,也无异味和冒烟。 1.故障原因 ① 未通(至少两相未通); ② 熔丝熔断(至少两相熔断); ③ 过流继电器调得过小; ④ 控制设备接线错误。 2.故障排除 ① 检查电源回路开关,熔丝、接线盒处是否有断点,修复; ② 检查熔丝型号、熔断原因,换新熔丝; ③ 调节继电器整定值与电动机配合; ④ 改正接线。 二、通电后伺服电动机不转有嗡嗡声 1.故障原因

① 转子绕组有断路(一相断线)或电源一相失电; ② 绕组引出线始末端接错或绕组内部接反; ③ 电源回路接点松动,接触电阻大; ④ 电动机负载过大或转子卡住; ⑤ 电源电压过低; ⑥ 小型电动机装配太紧或内油脂过硬; ⑦轴承卡住。 2. 故障排除 ① 查明断点予以修复; ② 检查绕组极性;判断绕组末端是否正确; ③ 紧固松动的接线螺丝,用判断各接头是否假接,予以修复; ④ 减载或查出并消除机械故障, ⑤ 检查是否把规定的面接法误接;是否由于电源导线过细使压降过大,予以纠正, ⑥ 重新装配使之灵活;更换合格油脂; ⑦ 修复轴承。 三、伺服电动机起动困难,额定负载时,电动机转速低于额定转速较多 1.故障原因 ① 电源电压过低; ② 面接法电机误接; ③ 转子开焊或断裂;

④ 转子局部线圈错接、接反; ⑤ 修复电机绕组时增加匝数过多; ⑥ 电机过载。 2.故障排除 ① 测量电源电压,设法改善; ② 纠正接法; ③ 检查开焊和断点并修复; ④ 查出误接处予以改正; ⑤ 恢复正确匝数; ⑥ 减载。 四、伺服电动机空载电流不平衡,三相相差大 1.故障原因 ① 绕组首尾端接错; ② 电源电压不平衡; ③ 绕组存在匝间短路、线圈反接等故障。 2.故障排除 ① 检查并纠正; ② 测量电源电压,设法消除不平衡; ③ 消除绕组故障。 五、伺服电动机运行时响声不正常有异响

rexroth伺服驱动器故障代码

C204:(伺服电机编码器接头接触不好) C601: C602:回零故障。 (将S-0-0288显示出来的数值写到S-0-0289上即可解决) E257:直流限制功能发生作用。说明驱动器超载。 (青岛二厂新两鼓成型机径向后压辊电机通电后出现自激吱吱声,一会驱动器便出现报警参数E257,随后又出现F219。最后查原因是电机三相相序接错了) E410:不能随动或扫描0# 地址。 F219:电机过热关断。 F220: 负载势能超出伺服驱动器吸收能力。 (青岛二厂老厂18V两鼓成型机在进行第十一步侧压辊反包滚压动作时,主鼓在侧压辊反包滚压动作结束、旋转停止时,主轴伺服驱动器报警F220。而在其它正、反转动作时则没有问题。将S-0-0100参数由原来的4﹒5改变为10;将S-0-0101参数由7改变为5后将问题解决。小魏说:如果再不能解决问题,也可用将各个驱动器上顶部的L1和L2两个端子点分别串联在一起的方法加以解决) F228:过分偏差。 (青岛二厂新两鼓成型机调试时主机鼓伺服曾经出现过这个报警,查其原因是连接编码器的齿型带过于松弛,信号跳动变化太大所致。主机机械制动闸脱离不干净或机械旋转系统捌劲,也会出现这个报警。用加大S-0-0159的值加以解决) F237:设定的位置或速度值超出系统(伺服驱动器)允许的最大值。 (青岛黄海橡胶集团公司新厂19V两鼓成型机试车时在后压辊径向伺服驱动器上曾经出现过这个报警信号,表现为后压辊径向运转速度非常的慢。就象是齿数比给定的不对一样。但将伺服参数再次拷贝(F5)一遍就好了) (在调试上海载重轮胎厂工业胎成型机时,当从DriveTop看完主机驱动参数将其关闭后,成型鼓正转有且正常,而反转没有,一起动便出现F237报警.经查看是S_393<控制值方式为模数格式>的最后一位由0变为1所致.复原为0便好了) F434: 紧急停止.伺服驱动器紧急停止功能起动. F822:伺服电机编码器信号没有或太小。 F878:速度环出错。 (青岛二厂新两鼓成型机调试时主机鼓伺服曾经出现过这个报警,查其原因是连接主鼓电机和主鼓轴的齿型带太松弛,转动时齿型带跳动,跳齿时电机有时过载所致。 排除机械问题外,用增加点C-0018参数值或减少点C-0017参数值解决。 当旋转轴力矩不够时,如电机慢速动作正常,转换快速旋转时却转动不起开,伺服驱动器显示出F878。用适当增加S100值,减少S101值来解决问题) F2820 = F220: 制动电阻过载. (上海载重如皋轮胎厂23V大两鼓工程胎试车时突然出现报警,主鼓驱动器出现F2820 按复位钮后报警解除.可以点动主鼓正反转.但过了一会后报警会再次出现,即使不转动主鼓.后查得是外接电阻器<正常阻值5Ω>连接线断路所致. 如果是在刚刚开使试车出现此报警则应先加大速度循环时间[如P04速度环滤波时间<滤波周期>]常数和降低轴最高转速S91试一试)

FANUC伺服驱动系统故障分析诊断

FANUC交流伺服驱动系统故障维修举例 例244~245.加工过程中出现过热报警的故障维修 例244.故障现象:某配套FANUC 0T MATE系统的数控车床,在加工过程中,经常出现伺服电动机过热报警。 分析与处理过程:本机床伺服驱动器采用的是FANUC S系列伺服驱动器,当报警时,触摸伺服电动机温度在正常的围,实际电动机无过熟现象。所以引起故障的原因应是伺服驱动器的温度检测电路故障或是过热检测热敏电阻的不良。 通过短接伺服电动机的过热检测热敏电阻触点,再次开机进行加工试验,经长时间运行,故障消失,证明电动机过热是由于过热检测热敏电阻不良引起的,在无替换元件的条件下,可以暂时将其触点短接,使其系统正常工作。 例245.故障现象:某配套FANUC 0T MATE系统的数控车床,在加工过程中,经常出现X轴伺服电动机过热报警。 分析与处理过程:故障分析过程同上例,经检查X轴伺服电动机外表温度过高,事实上存在过热现象。 测量伺服电动机空载工作电流,发现其值超过了正常的围。测量各电枢绕组的电阻,发现A相对地局部短路;拆开电动机检查发现,由于电动机的防护不当,在加工时冷却液进入了电动机,使电动机绕阻对地短路。修理电动机后,机床恢复正常。 例246.驱动器出现OVC报警的故障维修 故障现象:某配套FANUC 0T-C系统、采用FANUC S系列伺服驱动的数控车床,手动运动X轴时,伺服电动机不转,系统显示ALM414报警。 分析与处理过程:FANUC 0T-C出现ALM 414报警的含义是“X轴数字伺服报警”,通过检查系统诊断参数DGN720~723,发现其中DGN720 bit5=l,故可以确定本机床故障原因是X轴OVC(过电流)报警。 分析造成故障的原因很多,但维修时最常见的是伺服电动机的制动器未松开。 在本机床上,由于采用斜床身布局,所以X轴伺服电动机上带有制动器,以防止停电时的下滑。经检查,本机床故障的原因确是制动器未松开:根据原理图和系统信号的状态诊断分析,故障是由于中间继电器的触点不良造成的,更换继电器后机床恢复正常。 例247~例248.参数设定错误引起的故障维修 例247.故障现象:某配套FANUC 0TD系统的二手数控车床,配套FANUC子α系列数字伺服,开机后,系统显示ALM417、427报警。 分析与处理过程:FANUC 0TD出现ALM 417、427报警的含义是“数字伺服参数设定错误”。 由于机床为二手设备,调试时发现系统的电池已经遗失,因此,系统的参数都在不同程度上存在错误。进一步检查系统主板,发现主板上的报警指示灯L1、L2亮,驱动器显示“-”,表明驱动器未准备好。 根据系统报警ALM417、427可以确定,引起报警可能的原因有: 1)电动机型号参数8*20设定错误。 2)电动机的转向参数8*22设定错误。 3)速度反馈脉冲参数8*23设定错误。 4)位置反馈脉冲参数8*24设定错误。

伺服电机常见故障分析

伺服电机常见故障分析总结 1、电机为什么会产生轴电流? 电机的轴---轴承座---底座回路中的电流称为轴电流 轴电流产生的原因: (1)磁场不对称; (2)供电电流中有谐波; (3)制造、安装不好,由于转子偏心造成气隙不匀; (4)可拆式定子铁心两个半圆间有缝隙; (5)有扇形叠成的定子铁心的拼片数目选择不合适。 轴电流危害: 使电机轴承表面或滚珠受到侵蚀,形程点状微孔,使轴承运转性能恶化,摩擦损耗和发热增加,最终造成轴承烧毁。 预防轴电流: (1)消除脉动磁通和电源谐波(如在变频器输出侧加装交流电抗器); (2)电机设计时,将滑动轴承的轴承座和底座绝缘,滚动轴承的外圈和端盖绝缘。 2、为什么一般电机不能用于高原地区? 海拔高度对电机温升,电机电晕(高压电机)及直流电机的换向均有不利影响。 应注意以下三方面: (1)海拔高,电机温升越大,输出功率越小。但当气温随海拔的升高而降低足以补偿海拔对温升的影响时,电机的额定输出功率可以不变; (2)高压电机在高原使用时要采取防电晕措施; (3)海拔高度对直流电机换向不利,要注意碳刷材料的选用。 3、电机为什么不宜轻载运行? 电机轻载运行时,会造成: (1)电机功率因数低; (2)电机效率低。 会造成设备浪费,运行不经济。 4、电机过热的原因有哪些? (1)负载过大; (2)缺相; (3)风道堵塞; (4)低速运行时间过长; (5)电源谐波过大。 5、久置不用的电机投入前需要做哪些工作? (1)测量定子、绕组各相间及绕组对地绝缘电阻。 绝缘电阻R应满足下式: R>Un/(1000+P/1000)(MΩ)

Un:电机绕组额定电压(V) P:电机功率(KW) 对于Un=380V的电机,R>0.38MΩ。 如绝缘电阻低,可: a:电机空载运行2~3h烘干; b:用10%额定电压的低压交流电通入绕组或将三相绕组串联后用直流电烘,保持电流在50%的额定电流; c:用风机送入热空气或加热元件加热。 (2)清理电机。 (3)更换轴承润滑脂。 6、为什么不能任意起动寒冷环境中的电机? 电机在低温环境中过长,会: (1)电机绝缘开裂; (2)轴承润滑脂冻结; (3)导线接头焊锡粉化。 因此,电机在寒冷环境中应加热保存,在运转前应对绕组和轴承进行检查。 7、电机三相电流不平衡的原因有哪些? (1)三相电压不平衡; (2)电机内部某相支路焊接不良或接触不好; (3)电机绕组匝间短路或对地、相间短路; (4)接线错误。 8、为什么60Hz的电机不能用接于50Hz的电源? 电机设计时一般使硅钢片工作在磁化曲线的饱合区,当电源电压一定时,降低频率会使磁通增加,励磁电流增加,导致电机电流增加,铜耗增加,最终导致电机温升增高,严重时还可能因线圈过热而烧毁电机。 9、电机缺相的原因有哪些? 电源方面: (1)开关接触不良; (2)变压器或线路断线; (3)保险熔断。 电机方面: (1)电机接线盒螺丝松动接触不良; (2)内部接线焊接不良; (3)电机绕组断线。 10、造成电机异常振动和声音的原因有哪些? 机械方面: (1)轴承润滑不良,轴承磨损; (2)紧固螺钉松动; (3)电机内有杂物。

伺服驱动器常见故障解析

1、伺服电机高速旋转时出现电机偏差计数器溢出错误,如何处理? ①高速旋转时发生电机偏差计数器溢出错误; 对策: 检查电机动力电缆和编码器电缆的配线是否正确,电缆是否有破损。 ②输入较长指令脉冲时发生电机偏差计数器溢出错误; 对策: a.增益设置太大,重新手动调整增益或使用自动调整增益功能; b.延长加减速时间; c.负载过重,需要重新选定更大容量的电机或减轻负载,加装减速机等传动机构提高负荷能力。 ③运行过程中发生电机偏差计数器溢出错误。 对策: a.增大偏差计数器溢出水平设定值; b.减慢旋转速度; c.延长加减速时间; d.负载过重,需要重新选定更大容量的电机或减轻负载,加装减速机等传动机构提高负载能力。 2、伺服电机在有脉冲输出时不运转,如何处理?

①监视控制器的脉冲输出当前值以及脉冲输出灯是否闪烁,确认指令脉冲已经执行并已经正常输出脉冲; ②检查控制器到驱动器的控制电缆,动力电缆,编码器电缆是否配线错误,破损或者接触不良; ③检查带制动器的伺服电机其制动器是否已经打开; ④监视伺服驱动器的面板确认脉冲指令是否输入; ⑤Run运行指令正常; ⑥控制模式务必选择位置控制模式; ⑦伺服驱动器设置的输入脉冲类型和指令脉冲的设置是否一致; ⑧确保正转侧驱动禁止,反转侧驱动禁止信号以及偏差计数器复位信号没有被输入,脱开负载并且空载运行正常,检查机械系统。 3、伺服电机没有带负载报过载,如何处理? ①如果是伺服Run(运行)信号一接入并且没有发脉冲的情况下发生: a.检查伺服电机动力电缆配线,检查是否有接触不良或电缆破损; b.如果是带制动器的伺服电机则务必将制动器打开; c.速度回路增益是否设置过大; d.速度回路的积分时间常数是否设置过小。 ②如果伺服只是在运行过程中发生: a.位置回路增益是否设置过大;

伺服电机常见故障

伺服电机常见故障 伺服电机常见故障: 1、电机为什么产生轴电流? 电机的轴—轴承座—底座回路中电流称为轴电流轴电流的产生原因:1) 磁场不对称2) 供电电流中有偕波3) 制造、安装不好,由于转子偏心造成气隙不匀4) 可拆式定子铁心两个半圆有缝隙5) 有扇形叠成式的定子铁心的拼片数目选择不合适危害:使电机轴承表面或滚珠受到侵蚀,形成点状微孔,使轴承运转性能恶化,摩擦损耗和发热增加,最终造成轴承烧毁预防:1)消除脉动磁通和电源偕波(如在变频器输出侧加装交流电抗器)2)电机设计时,将滑动轴承的轴承座和底座绝缘,滚动轴承的外端和端盖绝缘 2、为什么一般电机不能用于高原地区? 海拔高度对电机温升,电机容量(高压电机)及直流电机的换向均有不利影响应注意以下三方面:1)海拔高,电机温升越大,输出功率越小,但当气温随海拔的升高而降低足以补偿海拔对温升的影响时,电机的额定输出功率可以不变2)高压电机在高原时使用时要采取防电晕措施海拔高度对直流电机换向不利,要注意碳刷材料的选用 3、电机为什么不宜轻载运行 电机轻载运行时会造成:1)电机因数功率低2)电机效率低,会造成设备浪费,运行不经济 4、电机过热的原因有哪些? 1)负载过大2)缺项3)风道阻塞4)低速运行时间过长5)电源偕波过大 5、久置不用的电机投入前需要做哪些工作? 1)测量定子,绕阻各项及绕阻对地绝缘电阻绝缘电阴R应满足下式:R>UN/(1000+P/1000) (MΩ) UN:电机绕阻额定电压(V)P:电机功率(KW)对下UN=380V 的电机R>0.38 MΩ 如绝缘电阻低,可: 电机空载运行2—3h烘干 用30%额定电压的低压交流电通入绕阻或将三相绕阻串联后用直流电烘,保持电流在50% 的额定电流 用风机送入热空气或加热元件加热2)清理风机3)更换轴承润滑脂 6、为什么不能任意启动寒冷环境中的电机? 电机在低温环境中过长会:1)电机绝缘开裂2)轴承润滑脂冻结3)导红接头焊锡粉代因此电机在寒冷环境中应加热保存,在运转应对绕阻和轴承进行检票 7、电机三相电流不平衡的原因有哪些? 1)三相电压不平衡2)电机内部某相支路焊接不良或接触不好3)电机绕阻匝间短路或对地相间短路4)接线错误8、为什么60HZ的电机不能用接于50HZ的电源? 电机设计时般使用硅钢片工作时在磁化区线的饱合区,当电源电压一定时,降低频率会使磁通增加,励磁电流增加,导致电机电流增加,铜耕增加,最终导致电机温升增高,严重时还能因线圈过热而烧毁电机 9、电机缺相的原因有哪些? 电源方面:1)开关接触不良2) 变压器或线路断线3)保险熔断电机方面:1)电机接线盒螺丝松动接触不良2)内部接线焊接不良3)电机绕阻断线 10、造成电机异常振动和声音的原因有哪些? 机械方面:1)轴承润滑不良,轴承磨损2) 紧固螺钉松动3)电机内有杂物电磁方面:1)电机过载运行2)三相电流不平衡

安川伺服驱动器常用故障代码

安川伺服驱动器常用故障代码 A.00 绝对值数据错 绝对值错误或没收到 A.02 参数中断 用户参数检测不到 A.04 参数设置错误 用户参数设置超出允许值 A.10 过流 电源变压器过流 A.30 再生电路检查错误 再生电路检查错误 A.31 位置错误脉冲溢出 位置错误,脉冲超出参数Cn-1E设定值 A.40 主电路电压错误 主电路电压出错 A.51 过速 电机转速过快 A.71 过载(大负载) 电机几秒至几十秒过载运行A.72 过载(小负载) 电机过载下连续运行 A.80 绝对值编码器差错 绝对值编码器每转脉冲数出错ssszxx f A.81 绝对值编码器失效 绝对值编码器电源不正常 A.82 绝对值编码器检测错误 绝对值编码器检测不正常 A.83 绝对值编码器电池错误 绝对值编码器电池电压不正常 A.84 绝对值编码器数据不对 绝对值编码器数据接受不正常 A.85 绝对值编码器转速过高 电机转速超过400转/分后编码器打开 A.A1 过热 驱动器过热 A.B1 给定输入错误

伺服驱动器CPU检测给定信号错误 A.C1 伺服过运行 伺服电机(编码器)失控 A.C2 编码器输出相位错误 编码器输出A、B、C相位出错 A.C3 编码器A相B相断路 编码器A相B相没接 A.C4 编码器C相断路 编码器C相没接 A.F1 电源缺相 主电源一相没接 A.F3 电源失电 电源被切断 CPF00 手持传输错误1 通电5秒后,手持与连接仍不对 CPF01 手持传输错误2 传输发生5次以上错误 A.99 无错误 操作状态不正常 常见故障编码器的大多是连接线或插头,过载大多是电机或丝杠轴承损坏或润滑不到位,首先判断是机械还是电器部分的,从连轴器部分断开如果还有故障显示,则为电器故障,反之则为机械故障。

伺服电机常见故障分析汇总

在工业生产中,机械设备会因不同的工作环境和生产因素影响,伺服电机会出现常见故障,维修处理技巧分析如下: 1、窜动现象 在进给时出现窜动现象,测速信号不稳定,如编码器有裂纹;接线端子接触不良,如螺钉松动等;当窜动发生在由正方向运动与反方向运动的换向瞬间时,一般是由于进给传动链的反向问隙或伺服驱动增益过大所致。 2、爬行现象 大多发生在起动加速段或低速进给时,一般是由于进给传动链的润滑状态不良,伺服系统增益低及外加负载过大等因素所致。尤其要注意的是,伺服电动机和滚珠丝杠联接用的联轴器,由于连接松动或联轴器本身的缺陷,如裂纹等,造成滚珠丝杠与伺服电动机的转动不同步,从而使进给运动忽快忽慢。 3、振动现象 机床高速运行时,可能产生振动,这时就会产生过流报警。机床振动问题一般属于速度问题,所以应寻找速度环问题。 4、转矩降低现象 伺服电机从额定堵转转矩到高速运转时,发现转矩会突然降低,这时因为电动机绕组的散热损坏和机械部分发热引起的。高速时,电动机温升变大,因此,正确使用伺服电机前一定要对电机的负载进行验算。 5、位置误差现象

当伺服轴运动超过位置允差范围时( EA100出厂标准设置 PA17:400,位置超差检测范围),伺服驱动器就会出现“4”号位置超差报警。主要原因有:系统设定的允差范围小;伺服系统增益设置不当;位置检测装置有污染;进给传动链累计误差过大等。 6、不转现象 数控系统到伺服驱动器除了联结脉冲+方向信号外,还有使能控制信号,一般为DC+24 V继电器线圈电压。伺服电动机不转,常用诊断方法有:检查数控系统是否有脉冲信号输出;检查使能信号是否接通;通过液晶屏观测系统输入/出状态是否满足进给轴的起动条件;对带电磁制动器的伺服电动机确认制动已经打开;驱动器有故障;伺服电动机有故障;伺服电动机和滚珠丝杠联结联轴节失效或键脱开等。

fanuc伺服驱动器的常见故障(1)

FANUC交流速度控制单元有多种规格,早期的交流伺服为模拟式,目前一般都使用数字式伺服,在数控机床中,常用的规格型号有以下几种: 1)与FANUC交流伺服电动机AC0、5、10、20M、20、30、30R等配套的模拟式交流速度控制单元。它是FANUC最早的AC伺服产品,速度控制单元采用正弦波PWM控制,大功率晶体管驱动。在结构形式上,可以分单轴独立型、双轴一体型、三轴一体型三种基本结构。单轴独立型速度控制单元,常用的型号有 A06B-6050-H102/H103/H104/H113等;双轴一体型速度控制单元,常用的型号有A06B-6050-H201/H202/H203等;三轴一体型速度控制单元,常用的型号有A06B-6050-H401/H402/H403/H404等,多与FANUC 11、0A、0B等系统配套使用。 2)与FANUC交流S (L、T)系列伺服电动机配套的S (L、C)系列数字式交流伺服驱动器,它是FANUC中期的AC伺服产品,驱动器采用全数字正弦波PWM控制,IGBT驱动。其中,S系列用量最广,规格最全;L 系列只有单轴型结构,常用的型号有A06B-6058-H001-H007/H102/H103等;C系列有单轴型、双轴型两种结构,常用的单轴型有A06B-6066-H002-H006等规格,常用的双轴型有A06B-6066-H222~H224/H233、H234、H244等规格。 作为常用规格,S系列有单轴型、双轴型、三轴型三种结构,常用的单轴型有 A06B-6058-H001~H007/H023/H025等;常用的双轴型有A06B-6058-H221~H231/H251-H253等规格;常用的三轴型有A06B-6058-H331-H334等规格;多与FANUC 0C、11、15系统配套使用。 3)与FANUC α/αC/αM/αL系列伺服电动机配套的FANUC α系列数字式交流伺服驱动器,它是FANUC 当前常用的AC伺服产品,驱动器带有IPM智能电源模块,采用全数字正弦波PWM控制,IGBT驱动。FANUC α系列数字式交流速度控制单元有如下两种基本结构形式: ①各驱动公用电源模块(PSM)、伺服驱动单元(SVM)为模块化安装的结构形式,驱动器可以是单轴型、双轴型与三轴型三种结构。常用的单轴型有A06B-6079-H101~H106等,常用的双轴型有 A06B-6079-H201~H208等规格,常用的三轴型有A06B-6079/6080-H301~H307等规格,多与FANUC 0C、15A/B、16A/B、18A、20、21系统配套使用。 ②电源与驱动器一体化(SVU型)的结构形式,各驱动器单元可以独立安装,有单轴型、双轴型两种结构,常用的单轴型有A06B-6089-H10l~H106等规格,常用的双轴型有A06B-6089-H201~H210等规格,多与FANUC 0C、0D、15A/B、16A/B、18A、20、21系统配套使用。 4)与FANUC β系列伺服电动机配套的FANUC β系列数字式交流伺服驱动器,它亦是FANUC当前常用的AC伺服产品,采用电源与驱动器一体化(SVU型)的结构,驱动器带有IPM智能电源模块,采用全数字正弦波PWM控制,IGBT驱动。可以使用PWM接口、I/OLink接口,亦可以采用光缆接口。型号为 A06B-6093-H101~H104/H151~H154//H111-H114,多与FANUC 0TD、PM01等经济型数控系统配套使用。 5)与FANUC αi系列伺服电动机配套的FANUCα i系列伺服驱动器是FANUC公司的最新产品,它在FANUC α系列的基础上作了性能改进。产品通过特殊的磁路设计与精密的电流控制以及精密的编码器速度反馈,使转矩波动极小,加速性能优异,可靠性极高。电动机内装有脉冲/转极高精度的编码器,作为速度、位置检测器件,使系统的速度、位置控制达到了极高的精度。 α i系列驱动器由电源模块(PSM)、伺服驱动器(SVM)、主轴驱动器(SPM)等组成,伺服驱动与主轴驱动共用电源模块,组成伺服/主轴一体化的结构。伺服驱动模块有单轴型、双轴型、三轴型三种基本规格。标准型(FANUC αi系列)为200VAC输入,常用的单轴型有A06B-6114-H103~H109等,双轴型有 A06B-6114-H201-H211等,三轴型有A06B-6114-H301~H304等。高电压输入型(FANUC α i(HV)系列)为400VAC 输入,常用的单轴型有A06B--6124-H102~H109等,双轴型有A06B-6124-H201-H211等,目前尚无三轴型结构。FANUC αi系列交流数字伺服配套的数控系统主要有FANUC 0i、FANUC 15i/150i、 FANUC16i/18i/l60i/180i/20i/21i等。

13个伺服电机常见小故障

1、电机为什么会产生轴电流? 电机的轴---轴承座---底座回路中的电流称为轴电流 轴电流产生的原因: (1)磁场不对称; (2)供电电流中有谐波; (3)制造、安装不好,由于转子偏心造成气隙不匀; (4)可拆式定子铁心两个半圆间有缝隙; (5)有扇形叠成的定子铁心的拼片数目选择不合适。 轴电流危害: 使电机轴承表面或滚珠受到侵蚀,形程点状微孔,使轴承运转性能恶化,摩擦损耗和发热增加,最终造成轴承烧毁。 预防轴电流: (1)消除脉动磁通和电源谐波(如在变频器输出侧加装交流电抗器); (2)电机设计时,将滑动轴承的轴承座和底座绝缘,滚动轴承的外圈和端盖绝缘。 2、为什么一般电机不能用于高原地区? 海拔高度对电机温升,电机电晕(高压电机)及直流电机的换向均有不利影响。 应注意以下三方面: (1)海拔高,电机温升越大,输出功率越小。但当气温随海拔的升高而降低足以补偿海拔对温升的影响时,电机的额定输出功率可以不变; (2)高压电机在高原使用时要采取防电晕措施; (3)海拔高度对直流电机换向不利,要注意碳刷材料的选用。 3、电机为什么不宜轻载运行? 电机轻载运行时,会造成: (1)电机功率因数低; (2)电机效率低。 会造成设备浪费,运行不经济。 4、电机过热的原因有哪些? (1)负载过大; (2)缺相; (3)风道堵塞; (4)低速运行时间过长; (5)电源谐波过大。 5、久置不用的电机投入前需要做哪些工作? (1)测量定子、绕组各相间及绕组对地绝缘电阻。 绝缘电阻R应满足下式: R>Un/(1000+P/1000)(MΩ) Un:电机绕组额定电压(V) P:电机功率(KW) 对于Un=380V的电机,R>0.38MΩ。

伺服电机常见故障

三相交流伺服电动机应用广泛,但通过长期运行后,会发生各种故障,及时判断伺服电机故障原因,进行相应处理,是防止故障扩大,保证设备正常运行的一项重要的工作。 一、通电后伺服电动机不能转动,但无异响,也无异味和冒烟。 1.故障原因 ① 电源未通(至少两相未通); ② 熔丝熔断(至少两相熔断); ③ 过流继电器调得过小; ④ 控制设备接线错误。 2.故障排除 ① 检查电源回路开关,熔丝、接线盒处是否有断点,修复; ② 检查熔丝型号、熔断原因,换新熔丝; ③ 调节继电器整定值与电动机配合; ④ 改正接线。 二、通电后伺服电动机不转有嗡嗡声 1.故障原因 ① 转子绕组有断路(一相断线)或电源一相失电; ② 绕组引出线始末端接错或绕组内部接反; ③ 电源回路接点松动,接触电阻大; ④ 电动机负载过大或转子卡住; ⑤ 电源电压过低; ⑥ 小型电动机装配太紧或轴承内油脂过硬; ⑦轴承卡住。 2. 故障排除 ① 查明断点予以修复; ② 检查绕组极性;判断绕组末端是否正确; ③ 紧固松动的接线螺丝,用万用表判断各接头是否假接,予以修复; ④ 减载或查出并消除机械故障, ⑤ 检查是否把规定的面接法误接;是否由于电源导线过细使压降过大,予以纠正, ⑥ 重新装配使之灵活;更换合格油脂; ⑦ 修复轴承。

三、伺服电动机起动困难,额定负载时,电动机转速低于额定转速较多 1.故障原因 ① 电源电压过低; ② 面接法电机误接; ③ 转子开焊或断裂; ④ 转子局部线圈错接、接反; ⑤ 修复电机绕组时增加匝数过多; ⑥ 电机过载。 2.故障排除 ① 测量电源电压,设法改善; ② 纠正接法; ③ 检查开焊和断点并修复; ④ 查出误接处予以改正; ⑤ 恢复正确匝数; ⑥ 减载。 四、伺服电动机空载电流不平衡,三相相差大 1.故障原因 ① 绕组首尾端接错; ② 电源电压不平衡; ③ 绕组存在匝间短路、线圈反接等故障。 2.故障排除 ① 检查并纠正; ② 测量电源电压,设法消除不平衡; ③ 消除绕组故障。 五、伺服电动机运行时响声不正常有异响 1.故障原因 ① 轴承磨损或油内有砂粒等异物; ② 转子铁芯松动; ③ 轴承缺油; ④ 电源电压过高或不平衡。 2.故障排除 ① 更换轴承或清洗轴承; ② 检修转子铁芯; ③ 加油; ④ 检查并调整电源电压。 六、运行中伺服电动机振动较大 1.故障原因

伺服电机专题之:13个伺服电机常见小故障

以下是工程师在维修过程中,归纳的电机常见故障,仅供参考。 1、电机为什么会产生轴电流? 电机的轴---轴承座---底座回路中的电流称为轴电流 轴电流产生的原因: (1)磁场不对称; (2)供电电流中有谐波; (3)制造、安装不好,由于转子偏心造成气隙不匀; (4)可拆式定子铁心两个半圆间有缝隙; (5)有扇形叠成的定子铁心的拼片数目选择不合适。 轴电流危害: 使电机轴承表面或滚珠受到侵蚀,形程点状微孔,使轴承运转性能恶化,摩擦损耗和发热增加,最终造成轴承烧毁。 预防轴电流: (1)消除脉动磁通和电源谐波(如在变频器输出侧加装交流电抗器); (2)电机设计时,将滑动轴承的轴承座和底座绝缘,滚动轴承的外圈和端盖绝缘。 2、为什么一般电机不能用于高原地区? 海拔高度对电机温升,电机电晕(高压电机)及直流电机的换向均有不利影响。 应注意以下三方面: (1)海拔高,电机温升越大,输出功率越小。但当气温随海拔的升高而降低足以补偿海拔对温升的影响时,电机的额定输出功率可以不变; (2)高压电机在高原使用时要采取防电晕措施; (3)海拔高度对直流电机换向不利,要注意碳刷材料的选用。 3、电机为什么不宜轻载运行? 电机轻载运行时,会造成: (1)电机功率因数低; (2)电机效率低。 会造成设备浪费,运行不经济。 4、电机过热的原因有哪些? (1)负载过大; (2)缺相; (3)风道堵塞; (4)低速运行时间过长; (5)电源谐波过大。 5、久置不用的电机投入前需要做哪些工作? (1)测量定子、绕组各相间及绕组对地绝缘电阻。

绝缘电阻R应满足下式: R>Un/(1000+P/1000)(MΩ) Un:电机绕组额定电压(V) P:电机功率(KW) 对于Un=380V的电机,R>0.38MΩ。 如绝缘电阻低,可: a:电机空载运行2~3h烘干; b:用10%额定电压的低压交流电通入绕组或将三相绕组串联后用直流电烘,保持电流在50%的额定电流; c:用风机送入热空气或加热元件加热。 (2)清理电机。 (3)更换轴承润滑脂。 6、为什么不能任意起动寒冷环境中的电机? 电机在低温环境中过长,会: (1)电机绝缘开裂; (2)轴承润滑脂冻结; (3)导线接头焊锡粉化。 因此,电机在寒冷环境中应加热保存,在运转前应对绕组和轴承进行检查。 7、电机三相电流不平衡的原因有哪些? (1)三相电压不平衡; (2)电机内部某相支路焊接不良或接触不好; (3)电机绕组匝间短路或对地、相间短路; (4)接线错误。 8、为什么60Hz的电机不能用接于50Hz的电源? 电机设计时一般使硅钢片工作在磁化曲线的饱合区,当电源电压一定时,降低频率会使磁通增加,励磁电流增加,导致电机电流增加,铜耗增加,最终导致电机温升增高,严重时还可能因线圈过热而烧毁电机。 9、电机缺相的原因有哪些? 电源方面: (1)开关接触不良; (2)变压器或线路断线; (3)保险熔断。 电机方面: (1)电机接线盒螺丝松动接触不良; (2)内部接线焊接不良; (3)电机绕组断线。 10、造成电机异常振动和声音的原因有哪些?

伺服驱动器报警解决方法..

保护功能 报警 代码 故障原因应对措施 控制电源 欠电压 11 控制电源逆变器上P、N 间电压低于规定值。1)交流电源电压太低。瞬时失电。 2)电源容量太小。 电源接通瞬间的冲击电流导致电压跌落。 3)驱动器(内部电路)有缺陷。 测量 L1C、L2C 和r、t 之间电压。 1)提高电源电压。更换电源。 2)增大电源容量。 3)请换用新的驱动器。 过电压 12 电源电压高过了允许输入电压的范围。 逆变器上 P、N 间电压超过了规定值。 电源电压太高。 存在容性负载或UPS(不间断电源),使得 线电压升高。 1)未接再生放电电阻。 2)外接的再生放电电阻不匹配,无法吸收再 生能量。 3)驱动器(内部电路)有缺陷。 测量 L1、L2 和L3 之间的相电压。 配备电压正确的电源。 排除容性负载。 1)用电表测量驱动器上P、B 间外接电阻阻值。如果读数是“∞”,说明电阻没有真正地接入。请换一个。 2)换用一个阻值和功率符合规定值的外接电阻。 3)请换用新的驱动器。 主电源 欠电压 13 当参数Pr65(主电源关断时欠电压报警触发 选择)设成1 时,L1、L3 相间电压发生瞬时 跌落,但至少是参数Pr6D(主电源关断检测 时间)所设定的时间;或者,在伺服使能(Servo-ON)状态下主电源逆变器P-N 间相 电压下降到规定值以下。

1)主电源电压太低。发生瞬时失电。 2)发生瞬时断电。 3)电源容量太小。 电源接通瞬间的冲击电流导致电压跌落。 4)缺相:应该输入3 相交流电的驱动器实际输入的是单相电。 5)驱动器(内部电路)有缺陷。 测量 L1、L2、L3 端子之间的相电压。 1)提高电源电压。 换用新的电源。 排除电磁继电器故障后再重新接通电源。 2)检查Pr6D 设定值,纠正各相接线。 3)请参照“附件清单”,增大电源容量。 4)正确连接电源的各相(L1、L2、L3)线路。单相电源请只接L1、L3 端子。 5)请换用新的驱动器。 过电流 和 接地错误 14 * 流入逆变器的电缆超过了规定值。 1)驱动器(内部电路、IGBT 或其他部件) 有缺陷。 2)电机电缆(U、V、W)短路了。 3)电机电缆(U、V、W)接地了。 4)电机烧坏了。 5)电机电缆接触不良。 6)频繁的伺服ON/OFF(SRV-ON)动作导 1)断开电机电缆,激活伺服ON 信号。如果马上出现此报警,请换用新驱动器。 2)检查电机电缆,确保U、V、W 没有短路。正确的连接电机电缆。 3)检查U、V、W 与“地线”各自的绝缘电阻。如果绝缘破坏,请换用新机器。 4)检查电机电缆U、V、W 之间的阻值。如果阻值不平衡,请换用新驱动器。 5)检查电机的U、V、W 端子是否有松动或未接,应保证可靠的电气接触。 6)请换用新驱动器。 Minas A4 系列驱动器技术资料选编- 61 - 保护功能 报警 代码 故障原因应对措施

相关文档
最新文档