混凝土 强度 水灰比

混凝土 强度 水灰比
混凝土 强度 水灰比

摘要:在水工程建设中,混凝土质量的好坏直接影响工程结构安全,主要对混凝土强度、水灰比等影响混凝土的质量因素进行科学分析,在施工过程中控制好水灰比、水泥强度,切实加强混凝土质量管理,确保水工程质量安全。

关键词:混凝土强度水灰比

“百年大计,质量为本”,在水工程建筑施工中,混凝土质量的好坏直接影响工程结构安全,同时也事关下游百万人民生命财产安全。因此,必须加强混凝土施工质量管理,对水泥强度和水灰比等进行严格、科学管理。确保水工程质量安全。

一、影响混凝土施工质量的因素。

1、混凝土强度

混凝土质量的主要指标之一是抗压强度,从混凝土强度表达式不难看出,混凝土抗压强度与混凝土用水水泥的强度成正比,按公式计算,当水灰比相等时,高标号水泥比低标号水泥配制出的混凝土抗压强度高许多。所以混凝土施工时切勿用错了水泥标号。另外,水灰比也与混凝土强度成正比,水灰比大,混凝土强度高,水灰比小,混凝土强度低。因此,当水灰比不变时,企图用增加水泥用量来提高温凝土强度是错误的,此时只能增大混凝土和易性,增大混凝土的收缩和变形。

因此,影响混凝土抗压强度的主要因素是水泥强度和水灰比,要控制好混凝土质量,最重要的是控制好水泥和混凝土的水灰比两个主要环节。此外,影响混凝土强度还有其它不可忽视的因素。

粗骨料对混凝土强度也有一定影响,当石质强度相等时,碎石表面比卵石表面粗糙,它与水泥砂浆的粘结性比卵石强,当水灰比相等或配合比相同时,两种材料配制的混凝土,碎石的混凝土强度比卵石强。因此我们一般对混凝土的粗骨料控制在3.2cm左右,细骨料品种对混凝土强度影响程度比粗骨料小,所以混凝土公式内没有反映砂种柔效,但砂的质量对混凝土质量也有一定的影响。因此,砂石质量必须符合混凝土各标号用砂石质量标准的要求。由于施工现场砂石质量变化相对较大,因此现场施工人员必须保证砂石的质量要求,并根据现场砂含水率及时调整水灰比,以保证混凝土配合比,不能把实验配比与施工配比混为一谈。混凝土强度只有在温度、湿度条件下才能保证正常发展,应按施工规范的规定予在养护、气温高低对混凝土强度发展有一定的影响。冬季要保温防冻害,夏季要防暴晒脱水。现冬季施工一般采取综合蓄热法及蒸养法。

2、混凝土标号与混凝土平均强度及其标准差的关系。

混凝土标号是根据混凝土标准强度总体分布的平均值减1.645倍标准值确定的。这样可以保证混凝土强度均有95%的保证率,低于该标准值的概率不大于5%,充分保证了水工建筑物的安全,从此推定,抽样检查的几组试件的混凝土平均强度一定大于等于混凝土设计标号,其值大小取决于施工质量水平,施工人员不但要使混凝土平均强度大于混凝土标号,更重要的是千方百计的减少混凝土强度的变异性。这样,既保证了工程质量,也降低了工程造价。

3、混凝土质量控制的关键环节

混凝土质量控制包含两个基本内容:(1)使混凝土达到设计要求的质量标准。

(2)在满足设计要求的质量指标前提下尽量降低成本,这两条要求实际上是尽量降低泥凝土的标准差。混凝土的强度有一定离散性,这是客观的,但通过科学管理可以控制其达到最小值,因此混凝土标准差能反映施工单位的实际管理水平,管理水平越高,标准差越小。可以说,混凝土质量控制实质上是标准差的控制。实际上控制标准差应从以下几个方面人手。

①设计合理的混凝土配合比。合理的混凝土配合比由实验室通过实验确定,除满足确定、耐久性要求和节约原材料外,应该具有施工要求的和易性。因此要实验室设计合理的配比,必须提供合格的水泥、砂、石。水泥控制强度,砂控制细度、含水率、含泥量等,石控制含水率及含泥量等。只有材料达到合格要求,才能做出合理的混凝土配合比,才能使施工得以正常合理的进行,达到设计和验收标准。

②正确按设计配合比施工按施工配合比施工,首先要及时测定砂、石含水率,将设计配合比换算为施工配合比。其次,要用重量比,不要用体积比,最后,要及时检查原材料是否与设计用原材料相符,这要求供方提供两份同样材料,一份提供给实验室,一份给工地,工地收料人员应按样本收料,如来料与样本不符,应马上向上级汇报,及时更改配合比。

③加强原材料管理,混凝土材料的变异将影响混凝土强度。因此收料人员应严把质量关,不允许不合格品进场,另外与原材料不符及时汇报,采取相应措施,以保证混凝土质量。

④进行混凝土强度的测定,以28天强度为准,为施工简便和质量保证,我们一般做7天试块等,以对混凝土强度尽量根据其龄期测定其发展,以明确其质量。

二、提高混凝土质量的措施。

1、选择合适水泥。一般采用425R普通水泥。

2、掺外加剂,控制水灰比。根据设计要求,混凝土中掺加水泥用量4%的复合液,它具有防水剂、膨胀剂、减水剂、缓凝剂4种外加剂的功能。溶液中的糖钙能提高混凝土的和易性。

3、优选混凝土施工配合比。根据设计强度及泵送混凝土坍落度的要求,经试配优选,确定混凝土配合比如下:采用425R水泥时,为水:水泥:砂:碎石:复合液=0.25:1:1.82:2.51:0.04;采用525R水泥时,为水:水泥:砂:碎石:复合液:0.50:1:2:2.77:0.04,坍落度150J18cm。

4、严格控制混凝土入模温度。施工过程中应对碎石洒水降温,保证水泥库通风良好,自来水预先放入80m3的地下蓄水池中降温。

5、加强技术管理。加强原材料的检验、试验工作。施工中严格按照方案及交底的要求指导施工,明确分工,责任到人。加强计量监测工作,定时检查并做好详细记录,认真对待浇筑过程中可能出现的冷缝,并采取措施加以杜绝。

6、合理组织劳动力及机械设备。(1)施工人员分两大班作业。每班交接班工作提前半小时完成,人不到岗不准换班,并明确接班注意事项,以免交接班过程带来质量隐患。砂、石采用自动配料机配料,途中运输通畅,防止混凝土出现冷缝。

7、采用切实可行的施工措施。采用“分段定点,一个坡度,薄层浇筑,循序推进”的方法。这种自然流淌形成斜坡混凝土的方法,避免混凝土输送管道经常拆除、冲洗和接长,简化混凝土的泌水处理,保证上下层混凝土浇筑间隔不超过初凝时间。根据混凝土泵送时自然形成一个坡度的实际情况,在每个浇筑带的前后布置两道振动器,第一道布置在混凝土出料口,主要解决上部混凝土的振实;由于底层钢筋间距较密,第二道布置在混凝土坡脚处,以确保下部混凝土密实。随着浇筑的推进,振动器也相应跟上,以确保整个高度上混凝土的质量。浇筑结束后须在初凝前用铁滚筒碾压数遍,打磨压实,以闭合混凝土的收水裂缝。

8、加强混凝土的养护及测温工作。

(1)采用蓄水法保温养护,蓄水深度19cm以上。在混凝土施工期问通入冷却循环水,以便加快承台内部热量的散发。为保证冷却水温度控制可靠、流量调节

方便并节约用水,将循环水管的一端接至用于地坑降水的Ф150总排水管,另一端接至承台面,使冷却水与养护循环往复,有效地控制内外温差。

(2)为及时掌握混凝土内部温升与表面温度的变化值,在承台内埋设若干个测温点,采用L形布置,每个测温点埋设温管2根,第一根管底埋置于承台混凝土的中心位置,测量混凝土中心的最高温升,另一根管底距承台上表面100 mm,测量混凝土的表面温度,测温管均露出混凝土表面。

9、采用内散外蓄综合养护措施,可有效降低混凝土的温升值,且可大大缩短养护周期,对于超厚大体积混凝土施工尤其适用.

10、混凝土分层浇筑,下层混凝土的表面设置了棋盘式高低块,形成上下连接的键块,并将抗缩钢筋网支撑钢筋伸出浇筑面20cm以上。在混凝土终凝前用钢丝刷拉毛表面水泥膜层处理水平施工缝,再溜扫冲洗干净,这样可加强上下层混凝土的连接,提高抗剪能力。

11、大体积混凝土采用泵送工艺,泵送过程中,常会发生输送管堵塞故障,故提高混凝土的可泵性十分重要。须合理选择泵送压力,泵管直径,输送管线布置应合理。泵管上须遮盖湿麻袋,并经常淋水散热。混凝上中的砂石要有良好的级配,碎石最大粒径与输送管径之比宜名1:3,砂率宜在40%—45%间,水灰比宜在0.5—0.55间,坍落度宜在15—18cm间。由于大体积混凝土连续浇筑,在浇筑现场须设防雨棚,并在基坑四周,设置盲沟和集水井。

因此,提高水工程建筑中混凝土质量,要抓住混凝土施工这个重要环节。切实加强骨料、原材料管理,控制好水泥强度和混凝土的水灰比,并严格按照水利工程规范施工,才能有效地提高混凝土的质量。

混凝土水灰比和坍落度的关系

混凝土水灰比和坍落度的关系 水灰比是混凝土中水与水泥的比例,是计算所得,水灰比的大小只与混凝土试配强度和水泥强度有关,与塌落度的大小没有关系。水灰比是保证混凝土强度的先决条件,这个比例在施工中自始至终不得改变。而塌落度则是混凝土的干稀程度,即适宜混凝土施工的工作度,这就是我开头所讲水灰比与塌落度有本质的区分。塌落度大并非水灰比一定大,例如商品砼,塌落度很大,一般都在120mm 及以上,可它的水灰比不大,只是用水量大而按水灰比增大了水泥的用量,故商品砼的水泥用量比一般自拌砼要大。因此水灰比和塌落度都是在配合比中规定了的,是不能任意改变的。如果任意增大塌落度,则水灰比相应增大,这就是塌落度和水灰比的牵连关系。所以我们平时经常讲到要控制塌落度保证水灰比,道理就在此。因此,在混凝土捣拌时要经常做塌落度试验。有时在混凝土浇灌中,确实会碰到特殊情况,如局部构件特别细小、配筋特别密集、浇灌有困难,这时可适当增大塌落度,但必须按水灰比相应增加水泥用量,例如水灰比为0.5,用水量比原配比每一拌增加了5公斤水,则5÷0.5=10,就是说每拌应增加10公斤水泥,这样就仍然保持原来的水灰比。在施工现场,民工们往往为了工作上省力,而任意增大用水量,则增大了水灰比,用他们自己的话讲,我们只多加了一点水,水泥按配比没有少放,对混凝土强度不会有影响。当真对强度没有影响吗?非也,这就是我们经常讲的要控制塌落度的原因,而且原因很简单,因为混凝土随着硬化过程,水分逐渐蒸发,在混凝土内部形成空隙,水分越多,空隙当然越多,从而降低了混凝土的密实度,则降低了混凝土的强度。若为操作省力,增大塌落度,必须影响混凝土强度,此时只能按水灰比增加水泥用量,才能保证规定的水灰比,从而保证强度,但这无疑造成了水泥的浪费。因此,控制塌落度,不造成水泥的浪费,也有其一定的经济意义。任意增大塌落度的危害性并非只影响混凝土强度

混凝土配合比参数:水胶比

混凝土配合比参数:水胶比 水胶比是指混凝土用水量与胶凝材料用量的比值,水胶比是混凝土配合比的重要参数,混凝土的很多性能都与水胶比有直接的关系,如工作性、强度、耐久性等。 (1)水胶比与强度的关系 在胶凝材料品种、质量和掺量确定不变的条件下,水胶比的大小直接决定混凝土强度。混凝土强度随着水胶比的减小而变大,强度随着水胶比的增大而降低。水胶比的变动与强度的变化不是显简单的线性关系,在不同的水胶比范围内水胶比变化0.01对强度产生的影响有很大区别,水胶比越小,同样的变化对强度影响越大。过去只使用水泥一种胶凝材料,水泥的品种和质量一旦确定,水灰比的大小直接影响混凝土强度。如今,胶凝材料不在是单一的水泥,还包括矿物掺合料,水胶比与强度的关系变得相对复杂,相同的水胶比,强度不一定相同,有时甚至有很大的差别。例如,水泥和粉煤灰品种和质量不变,相同的水胶比0.5,粉煤灰掺量30%与粉煤灰掺量50%配制的混凝土28d强度显然具有很大的差别;再如,相同的水胶比0.5,粉煤灰掺量30%与矿粉掺量30%配制的混凝土28d强度也是不同的;再如,相同的水胶比0.5,掺量同为30%的I级粉煤灰II级粉煤灰配制的混凝土28d 强度也不相同。等等……都说明现在混凝土水胶比与强度的影响不在是单一的影响,两者关系十分复杂,受矿物掺合料品种、质量、细度(比表面积)、活性、掺量等多种因素制约,甚至同种矿物掺合料,同样的质量等级都会有很大的差别,但原材料和掺量一旦确定后,仍然符合水胶比与强度反比关系,只是更加不是线性关系。 (2)水胶比对工作性的影响 水胶比的大小对混凝土浆体稠度有直接的影响,水胶比越大,浆体稠度越低,浆体的抑制骨料下沉的浮力越小,混凝土就越容易分层,反之浆体稠度越大,混凝土抗离析能力越强。水胶比较大的低强度等级混凝土,浆体浓度低,混凝土粘聚性差,保水性不足,混凝土容易泌水、离析,宜使用低外加剂掺量并适当提高砂率,改善保水性。而在低水胶比的高强混凝土中,浆体的浓度大,混凝土粘聚性较好,保水性好,但粘度大,工作性差,再不增加用水量的情况下,应使用较高的外加剂掺量提高混凝土工作性。 (3)水胶比与矿物掺合料掺量 在水胶比不变的情况下,由于矿物掺合料的活性低于水泥的活性,随着矿物掺合料掺量的增加,混凝土早期强度降低。为了获得满意的早期强度,在增加矿物掺合料掺量的同时,适当降低水胶比,提高混凝土早期强度,使其满足施工的需要。矿物掺合料增加所需降低的水胶比的量与混凝土水胶比有很大的关系,例如,当混凝土水胶比0.6左右时,粉

谈谈混凝土水灰比和塌落度的相互关系

谈谈混凝土水灰比和塌落度的相互关系 混凝土的水灰比和塌落度过是建筑工程在施工中经常要碰到的问题,对于两者的相互关系,大部分民工乃至部分施工技术人员和我们部分监理人员,不是很清楚,以为水灰比大就是塌落度大,塌落度大就是水灰比大,认为两者是一码事,其实不然。这两者之间有本质的区分,但两者之间又有相互牵连的关系。要说明这个问题,得从混凝土的配合比设计说起,现以重量比为例,配合比的计算顺序如下: 1、计算水灰比,计算公式如下:Rh=0.46Rc(C/W-0.52)式中:Rh为混凝土的试配强度,Rc为水泥强度,C/W为灰水比,即水灰比W/C的倒数,其中C代表水泥,W代表水,从式中可以看出,混凝土强度同水泥强度成正比,同灰水比成正比,即同水灰比成反比,(水灰比为灰水比的倒数,1÷灰水比即为水灰比,1÷水灰比即为灰水比),因此灰水比越大则水灰比越小,混凝土强度越大则水灰比越小。由此可见,在确定水灰比大小的计算中,水灰比只与混凝土强度和水泥强度两个因素有关,与塌落度的大小是没有关系的。故水灰比是根据混凝土配比强度和水泥强度计算所得,是既定的,是不能任意改变的。 2、确定塌落度,塌落度是根据混凝土浇灌部位、构件体积、钢筋密集等情况确定的,如基础工程塌落度可小一点,一般为10-30mm,柱梁工程一般为30-50mm,构件细小或者配筋密集,混凝土较难浇灌,则塌落度应适当大一点,一般可在50-90mm。 3、确定用水量,每立方混凝土的用水量是根据塌落度的大小决定的,此外,与石子粒径的大小和黄砂的粗细略有关系。粒径偏细的石子和细砂用水量略偏大,以中砂为例,石子最大粒径40mm,塌落度

30-50mm,每立方混凝土的用水量为180kg。关于用水量可在相关表中查得。 4、计算水泥用量,水泥用量根据每立方混凝土用水量和水灰比计算:即用水量Χ灰水比或者用水量÷水灰比,例如水灰比为0.5,用水量为180kg,则水泥用量为180÷0.5=360kg。 5、确定每立方混凝土的容重,一般混凝土每立方容重约2400kg,强度高的略重,强度低的略轻,但偏差不是很大。 6、计算砂石总用量,砂石总用量为砼容重—用水量—水泥用量,以上述为例,砂石总用量为砼容重2400—水180—水泥360=1860kg。 7、确定砂率并计算砂、石用量、砂率一般为35%,水灰比小的砂率略小,水灰比大的砂率略大,可根据试配混凝土的和易性调整砂率,以上述为例,中砂用量为1860Χ35%=651kg,石子用量为1860—651=1209kg。水、砂、石子用量分别除水泥用量,即成为以水泥为1的配合比,水泥1:水0.5:中砂1.81:石子3.36。 综合上所述,水灰比是混凝土中水与水泥的比例,是计算所得,水灰比的大小只与混凝土试配强度和水泥强度有关,与塌落度的大小没有关系。水灰比是保证混凝土强度的先决条件,这个比例在施工中自始至终不得改变。而塌落度则是混凝土的干稀程度,即适宜混凝土施工的工作度,这就是我开头所讲水灰比与塌落度有本质的区分。塌落度大并非水灰比一定大,例如商品砼,塌落度很大,一般都在120mm及以上,可它的水灰比不大,只是用水量大而按水灰比增大了水泥的用量,故商品砼的水泥用量比一般自拌砼要大。因此水灰比和塌落度都是在配合比中规定了的,是不能任意改变的。如果任意增大塌落度,则水灰比相应增大,这就是塌落度和水灰比的牵连关系。所以我们平时经常讲到要控制塌落度

混凝土强度等级对照表

混凝土强度等级对照表 混凝土的抗压强度是通过试验得出的,我国最新标准C60强度以下的采用边长为150mm的立方体试件作为混凝土抗压强度的标准尺寸试件。按照《普通混凝土力学性能试验方法标准》GB/T50081-2002,制作边长为150mm的立方体在标准养护(温度20±2℃、相对湿度在95%以上)条件下,养护至28d龄期,用标准试验方法测得的极限抗压强度,称为混凝土标准立方体抗压强度,以fcu表示。按照GB50010-2010《混凝土结构设计规范》规定,在立方体极限抗压强度总体分布中,具有95%强度保证率的立方体试件抗压强度,称为混凝土立方体抗压强度标准值(以MPa计),用fcu 表示。 依照标准实验方法测得的具有95%保证率的抗压强度作为混凝土强度等级。 按照GB50010-2010《混凝土结构设计规范》规定,普通混凝土划分为十四个等级,即:C15,C20,C25,C30,C35,C40,C45,C50,C55,C60,C65,C70,C75,C80。例如,强度等级为C30的混凝土是指30M Pa≤fcu<35MPa 影响混凝土强度等级的因素主要与水泥等级和水灰比、骨料、龄期、

养护温度和湿度等有关。 混凝土质量的主要指标之一是抗压强度,从混凝土强度表达式不难看出,混凝土抗压强度与混凝土用水泥的强度成正比,按公式计算,当水灰比相等时,高标号水泥比低标号水泥配制出的混凝土抗压强度高许多。一般来说,水灰比与混凝土强度成反比,水灰比不变时,用增加水泥用量来提高混凝土强度是错误的,此时只能增大混凝土和易性,增大混凝土的收缩和变形。 所以说,影响混凝土抗压强度的主要因素是水泥强度和水灰比,要控制好混凝土质量,最重要的是控制好水泥质量和混凝土的水灰比两个主要环节。此外,影响混凝土强度还有其它不可忽视的因素。 粗骨料对混凝土强度也有一定影响,所以,工程开工时,首先由技术负责人现场确定粗骨料,当石质强度相等时,碎石表面比卵石表面粗糙,它与水泥砂浆的粘结性比卵石强,当水灰比相等或配合比相同时,两种材料配制的混凝土,碎石的混凝土强度比卵石高。 因此我们一般对混凝土的粗骨料粒径控制与不同的工程部位相适应;细骨料品种对混凝土强度影响程度比粗骨料小,但砂的质量对混凝土质量也有一定的影响,施工中,严格控制砂的含泥量在3%以内,因此,砂石质量必须符合混凝土各标号用砂石质量标准的要求。

混凝土水灰比与水胶比的区别

混凝土水灰比与水胶比的区别 水灰比是指水与水泥之比 水胶比是指水与水泥和其他掺料(如粉煤灰)的和之比 一般混凝土的水灰比在什么围? 这要看水泥的标号和混凝土的强度来定,一般在0.4—0.6之间 知道混凝土的水灰比为0.45,知道坍落度为50~~70MM,能否知道它的用 水量?为什么? 只要知道用的石头骨料的最大直径,就可以知道用水量了。 比如要是采用的是碎石,最大直径是40mm,坍落度为50~~70MM,则混凝 土每立方米的用水量是185千克。 这不用计算,是专门有个表,叫混凝土用水量选用表,直接查表得出。 表现密度为2400kg/m3,水泥用量300kg/m3,水灰比0.6,砂率35%,计算混 凝土质量配合比 用水泥用量乘以0.6可得水的用量, 根据公式:水泥+水+沙+石子=2400, 沙子/(沙子+石子)=35% 解上面的方程组可以分别得到各个的用量。 混凝土塌落度为0mm时,其水灰比为多少呢? 配制干硬性混凝土时,要求塌落度为0—30mm,但是我们实际工作中要 求塌落度为零,我查了所有资料,并未有相关参考值。 我们采用32.5R水泥。 先查一些资料,锁定水灰比大致围,然后要多次试验,因为选用的材 料不同,不做试验是不行的。中国期刊网上会有几篇相关的文献. 水灰比对混凝土的影响 补充:在水泥用量,骨料用量不变的情况下,水灰比增大,水泥浆自身 . .

流动性增加,故拌和物流动性增大,反之,则减小。但是,水灰比过大 ,会造成拌和物粘聚性和保水性不良,水灰比过小,会使拌合物流动性 过低,影响施工。 一般情况下,混凝土的强度主要取决于水灰比. 可以认为,在水泥标号相同的情况下,水灰比越小,水泥石的强度越高,与 骨料粘结力也越大,混凝土的强度就越高.但要说明如果太小,强度也将 下降. 正常情况下: “配合比”相同,水灰比越小,混凝土的强度越高。混凝土的流动性越 小,坍落度就赿小,和易性也越差。 “配合比”相同,水灰比越大,混凝土的强度越低。混凝土的流动性越 大,坍落度就赿大,和易性也越好。 混凝土在骨料和水灰比一定时,水泥浆可以填充骨料空隙和包裹骨料. 增加水泥浆量. 混凝土在骨料和水灰比一定时,水泥浆可以填充骨料空隙和完全包裹骨 料.增加水泥浆量.混凝土的粘聚性是上升还是下降,为什么呢?? 粘聚性能提高,水泥浆的主要作用之一就是有粘聚性。越多越好,但是 砼的坍落度下降,凝固时间增加,砼的整体抗压性能降低,配比是不能 随便配的 不同配合比中的坍落度 不同配合比他们的坍落度各是多少啊/(比如砂浆的是多少,普通的是多 少等 )。 混凝土是用坍落度表示,一般混凝土坍落度是根据施工现场条件配制的 . .

混凝土水灰比和塌落度关系

混凝土水灰比和塌落度关系 以为水灰比大就是塌落度大,塌落度大就是水灰比大,认为两者是一码事,其实不然。 这两者之间有本质的区分,但两者之间又有相互牵连的关系。要说明这个问题,得从混凝土的配合比设计说起,现以重量比为例,配合比的计算顺序如下: 1、计算水灰比,计算公式如下:Rh=0.46Rc(C/W-0.52)式中:Rh为混凝土的试配强度,Rc为水泥强度,C/W为灰水比,即水灰比W/C的倒数,其中C代表水泥,W代表水 从式中可以看出,混凝土强度同水泥强度成正比,同灰水比成正比,即同水灰比成反比,(水灰比为灰水比的倒数,1÷灰水比即为水灰比,1÷水灰比即为灰水比),因此灰水比越大则水灰比越小,混凝土强度越大则水灰比越小。 由此可见,在确定水灰比大小的计算中,水灰比只与混凝土强度和水泥强度两个因素有关,与塌落度的大小是没有关系的。 故水灰比是根据混凝土配比强度和水泥强度计算所得,是既定的,是不能任意改变的。 2、确定塌落度,塌落度是根据混凝土浇灌部位、构件体积、钢筋密集等情况确定的,如基础工程塌落度可小一点,一般为10-30mm,柱梁工程一般为30-50mm,构件细小或者配筋密集,混凝土较难浇灌,则塌落度应适当大一点,一般可在50-90mm。

3、确定用水量,每立方混凝土的用水量是根据塌落度的大小决定的,此外,与石子粒径的大小和黄砂的粗细略有关系。 粒径偏细的石子和细砂用水量略偏大,以中砂为例,石子最大粒径40mm,塌落度30-50mm,每立方混凝土的用水量为180kg。关于用水量可在相关表中查得。 4、计算水泥用量,水泥用量根据每立方混凝土用水量和水灰比计算:即用水量Χ灰水比或者用水量÷水灰比,例如水灰比为0.5,用水量为180kg,则水泥用量为180÷0.5=360kg。 5、确定每立方混凝土的容重,一般混凝土每立方容重约2400kg,强度高的略重,强度低的略轻,但偏差不是很大。 6、计算砂石总用量,砂石总用量为砼容重—用水量—水泥用量,以上述为例,砂石总用量为砼容重2400—水180—水泥360=1860kg。 7、确定砂率并计算砂、石用量、砂率一般为35%,水灰比小的砂率略小,水灰比大的砂率略大,可根据试配混凝土的和易性调整砂率,以上述为例,中砂用量为1860Χ35%=651kg,石子用量为1860—651=1209kg。水、砂、石子用量分别除水泥用量,即成为以水泥为1的配合比,水泥1:水0.5:中砂1.81:石子3.36。 综合上所述,水灰比是混凝土中水与水泥的比例,是计算所得,水灰比的大小只与混凝土试配强度和水泥强度有关,与塌落度的大小没有关系。水灰比是保证混凝土强度的先决条件,这个比例在施工中自始至终不得改变。

混凝土强度和用水量的关系_3458

下载之前请注意: 1:版权归原作者所有。如果有问题,请尽快和我联系 2:如果遇到文件中有些地方图片显示不出来的,可能是文档转换过程中出现的问题,请和我联系,我将图片发送给你,给你带来的不便表示抱歉!请邮箱联系:lcs012@https://www.360docs.net/doc/3715071140.html, 混凝土强度和用水量的关系 论文关键词:混凝土;质量;水灰比;用水量 论文摘要:在实际施工中很多因素都会影响混凝土的强度,其中用水量对混凝土强度的影响也较为明显,以及用水量对砼其他方面所产生的质量影响。 1 水在混凝土中存在方式和硬化机理 水在混凝土中有3 种存在方式:①化学结合水。以严格的定量参加水泥水化的水,它使水泥浆形成结晶固体。化学结合水是强结合的,不参与混凝土与外界湿度交换作用,不引起收缩与膨胀变形,成微小自生变形;②物理化学结合水。在混凝土中以并不严格的定量存在,表现为吸附薄膜结构,它在混凝土中起扩散及溶解水泥颗粒的作用,一部分水在材料周围构成碱性结合水膜,吸附水结合属中等结合,容易受到水分蒸发的破坏,所以它积极地参与混凝土与环境的湿度交换作用;③物理结合水。混凝土中各晶格间及粗、细毛孔中的自由水,亦称游离水,含量不稳定,结合强度低,极容易受水分蒸发影响而破坏结合,它是积极参与和外界进行湿度交换的水。适量的水是混凝土完成水化反应,实现预期强度的必需条件。化学结合水是保证水泥颗粒水化的必需条件;物理化学结合水是保证水泥颗粒充分扩散,逐步完成水化反应的必需条件;而物理结合水则为化学结合水、物理结合水充分发挥作用提供外部条件。 2 用水量的增加对混凝土强度的影响 (1)水灰比与水泥强度的关系。 在配合比相同的情况下,所用的水泥强度等级越高,制成的混凝土强度也越高。当用同一品种及相同强度等级水泥时,混凝土强度主要取决于水灰比。在水泥强度等级相同,水泥水化所需结合水充足的情况下,水灰比越小,水泥石强度越高,与骨料粘结力也越大,混凝土强度也就越高。确定水灰比应综合考虑各种因素,在满足设计要求的情况下,同样要满足施工的要求。 (2)用水量增加对混凝土强度的影响。 以混凝土配合比计算公式为基础,在配合比已确定的情况下,计算

混凝土强度等级对照表

混凝土强度等级对照表 标准 混凝土的抗压强度是通过试验得出的,我国最新标准C60强度以下的采用边长为150mm的立方体试件作为混凝土抗压强度的标准尺寸试件。按照《普通混凝土力学性能试验方法标准》GB/T50081-2002,制作边长为150mm的立方体在标准养护(温度20±2℃、相对湿度在95%以上)条件下,养护至28d龄期,用标准试验方法测得的极限抗压强度,称为混凝土标准立方体抗压强度,以fcu表示。[1]按照GB50010-2010《混凝土结构设计规范》规定,在立方体极限抗压强度总体分布中,具有95%强度保证率的立方体试件抗压强度,称为混凝土立方体抗压强度标准值(以MPa计),用fcu表示。[2] 依照标准实验方法测得的具有95%保证率的抗压强度作为混凝土强度等级。 按照GB50010-2010《混凝土结构设计规范》规定,普通混凝土划分为十四个等级,即:C15,C20,C25,C30,C35,C40,C45,C50,C55,C60,C65,C70,C75,C80。例如,强度等级为C30的混凝土是指30MPa≤fcu<35MPa[2] 影响混凝土强度等级的因素主要与水泥等级和水灰比、骨料、龄期、养护温度和湿度等有关。

影响因素 混凝土质量的主要指标之一是抗压强度,从混凝土强度表达式不难看出,混凝土抗压强度与混凝土用水泥的强度成正比,按公式计算,当水灰比相等时,高标号 水泥比低标号水泥配制出的混凝土抗压强度高许多。一般来说,水灰比与混凝土强度成反比,水灰比不变时,用增加水泥用量来提高混凝土强度是错误的,此时只能增大混凝土和易性,增大混凝土的收缩和变形。 所以说,影响混凝土抗压强度的主要因素是水泥强度和水灰比,要控制好混凝土质量,最重要的是控制好水泥质量和混凝土的水灰比两个主要环节。此外,影响混凝土强度还有其它不可忽视的因素。 粗骨料对混凝土强度也有一定影响,所以,工程开工时,首先由技术负责人现场确定粗骨料,当石质强度相等时,碎石表面比卵石表面粗糙,它与水泥砂浆的粘结性比卵石强,当水灰比相等或配合比相同时,两种材料配制的混凝土,碎石的混凝土强度比卵石高。 因此我们一般对混凝土的粗骨料粒径控制与不同的工程部位相适应;细骨料品种对混凝土强度影响程度比粗骨料小,但砂的质量对混凝土质量也有一定的影响,施工中,严格控制砂的含泥量在3%以内,因

混凝土 强度 水灰比

摘要:在水工程建设中,混凝土质量的好坏直接影响工程结构安全,主要对混凝土强度、水灰比等影响混凝土的质量因素进行科学分析,在施工过程中控制好水灰比、水泥强度,切实加强混凝土质量管理,确保水工程质量安全。 关键词:混凝土强度水灰比 “百年大计,质量为本”,在水工程建筑施工中,混凝土质量的好坏直接影响工程结构安全,同时也事关下游百万人民生命财产安全。因此,必须加强混凝土施工质量管理,对水泥强度和水灰比等进行严格、科学管理。确保水工程质量安全。 一、影响混凝土施工质量的因素。 1、混凝土强度 混凝土质量的主要指标之一是抗压强度,从混凝土强度表达式不难看出,混凝土抗压强度与混凝土用水水泥的强度成正比,按公式计算,当水灰比相等时,高标号水泥比低标号水泥配制出的混凝土抗压强度高许多。所以混凝土施工时切勿用错了水泥标号。另外,水灰比也与混凝土强度成正比,水灰比大,混凝土强度高,水灰比小,混凝土强度低。因此,当水灰比不变时,企图用增加水泥用量来提高温凝土强度是错误的,此时只能增大混凝土和易性,增大混凝土的收缩和变形。 因此,影响混凝土抗压强度的主要因素是水泥强度和水灰比,要控制好混凝土质量,最重要的是控制好水泥和混凝土的水灰比两个主要环节。此外,影响混凝土强度还有其它不可忽视的因素。 粗骨料对混凝土强度也有一定影响,当石质强度相等时,碎石表面比卵石表面粗糙,它与水泥砂浆的粘结性比卵石强,当水灰比相等或配合比相同时,两种材料配制的混凝土,碎石的混凝土强度比卵石强。因此我们一般对混凝土的粗骨料控制在3.2cm左右,细骨料品种对混凝土强度影响程度比粗骨料小,所以混凝土公式内没有反映砂种柔效,但砂的质量对混凝土质量也有一定的影响。因此,砂石质量必须符合混凝土各标号用砂石质量标准的要求。由于施工现场砂石质量变化相对较大,因此现场施工人员必须保证砂石的质量要求,并根据现场砂含水率及时调整水灰比,以保证混凝土配合比,不能把实验配比与施工配比混为一谈。混凝土强度只有在温度、湿度条件下才能保证正常发展,应按施工规范的规定予在养护、气温高低对混凝土强度发展有一定的影响。冬季要保温防冻害,夏季要防暴晒脱水。现冬季施工一般采取综合蓄热法及蒸养法。

混凝土强度等级

混凝土强度等级 编辑 混凝土的强度等级是指混凝土的抗压强度。混凝土的强度等级应以混凝土立方体抗压强度标准值划分。采用符号C与立方体抗压强度标准值(以N/mm^2; 或MPa计)表示。 目录 1简介 2影响因素 1简介 混凝土的抗压强度是通过试验得出的,我国最新标准C60强度以下的采用边长为100mm的立方体试件作为混凝土抗压强度的标准尺寸试件。按照《普通混凝土力学性能试验方法标注》GB/T50081-2002,制作边长为150mm的立方体在标准养护(温度20±2℃、相对湿度在95%以上)条 件下,养护至28d龄期,用标准试验方法测得的极限抗压强度,称为混凝土标准立方体抗压强度,以fcu表示。按照GB50010-2010《混凝土结构设计规范》规定,在立方体极限抗压强度总体分布中,具有95%强度保证率的立方体试件抗压强度,称为混凝土立方体抗压强度标准值(以MPa计),fcuk表示。 依照标准实验方法测得的具有95%保证率的抗压强度作为混凝土强度等级. 按照GB50010-2010《混凝土结构设计规范》规定,普通混凝土划分为十四个等级,即:C15,C20,C25,C30,C35,C40,C45,C50,C55,C60,C65,C70,C75,C80。例如,强度等级为C30的混凝土是指30MPa≤fcuk<35MPa

影响混凝土强度等级的因素主要有水泥等级和水灰比、集料、龄期、养护温度和湿度等有关。 2影响因素 混凝土质量的主要指标之一是抗压强度,从混凝土强度表达式不难看出,混凝土抗压强度与混凝土用水泥的强度成正比,按公式计算,当水灰比相等时,高标号水泥比低标号水泥配制出的混凝土抗压强度高许多。一般来说,水灰比与混凝土强度成反比,水灰比不变时,用增加水泥用量来提高混凝土强度是错误的,此时只能增大混凝土和易性,增大混凝土的收缩和变形。 所以说,影响混凝土抗压强度的主要因素是水泥强度和水灰比,要控制好混凝土质量,最重要的是控制好水泥和混凝土的水灰比两个主要环节。此外,影响混凝土强度还有其它不可忽视的因素。 粗骨料对混凝土强度也有一定影响,所以,工程开工时,首先由技术负责人现场确定粗骨料,当石质强度相等时,碎石表面比卵石表面粗糙,它与水泥砂浆的粘结性比卵石强,当水灰比相等或配合比相同时,两种材料配制的混凝土,碎石的混凝土强度比卵石强。 因此我们一般对混凝土的粗骨料粒径控制与不同的工程部位相适应;细骨料品种对混凝土强度影响程度比粗骨料小,但砂的质量对混凝土质量也有一定的影响,施工中,严格控制砂的含泥量在3%以内,因此,砂石质量必须符合混凝土各标号用砂石质量标准的要求。 由于施工现场砂石质量变化相对较大,因此现场施工人员必须保证砂石的质量要求,并根据现场砂石含水率及时调整水灰比,以保证混凝土配合比,不能把实验配比与施工配比混为一谈。 同时,混凝土质量又与外加剂的种类、掺入量、掺入方式有密切的关系,它也是影响混凝土强度的重要因素之一。混凝土强度只有在温度、湿度适合条件下才能保证正常发展,应按施工规范的规定予以养护。气温高低对混凝土强度发展有一定的影响。夏季要防暴晒,充分利用早、晚气温高低的时间浇筑混凝土;尽量缩短运输和浇筑时间,防止暴晒,并增大拌合物出罐时的塌落度;养护时不宜间断浇水,因为混凝土表面在干燥时温度升高,在浇水时冷却,这种冷热交替作用会使混凝土强度和抗裂性降低。冬季要保温防冻害,现冬季施工一般采取综合蓄热法及蒸养法。 一般土建工程如何划分类别 1、一般土建工程如何划分类别(一类、二类、三类、四类、五类)。就是怎么划分类别的。 2、12345类建筑综合费率是多少? (一) 一类建筑工程应符合下列条件:

不同水胶比下矿渣粉与粉煤灰对混凝土强度及抗氯离子渗透性能的影.

混凝土 Concrete何廷树1,苏富赟1,包先诚2,杨新社2,李少辉1,赵云中 (1.西安建筑科技大学西部建筑科技国豕重点试验培育基地,陕西西安710055; 2.浙江声威集团公司,陕西咸阳 713700)原材料及辅助物料 MATERIAL AND ADMINICLE不同水胶比下矿渣粉与粉煤灰对混凝土强度及抗氯离子渗透性 能的影响收稿日期:2009-09-05 2010年第1期(总第243期) Number 1in 2010(Total No.243) doi : 10.3969/j.issn.1002- 3550.2010.01.028 86 - M岬 iHLWI ■ 1J VUlD.■打.网寥 vCc■- >■ ■ ■ : Vtl fl ■ ■? i - i miwl ■:■■ ■ * unv B>? f l 吐*4 ?■IL 14"A? ■ *M? < U Lflfl ? *? f ?^WTBWSII* ilrf rUjH? 1A- *呻. r rtf" 11 >> D-S VI :2 r.fi fi ■彎巧角 Mr HiMI rM I MM ■■ ;?」t ?! ?M4 R>- ■『< ABd?djLH ?|I?|叫r「4i —■曹 ?-!■?二?■ "fti■古*:号 a i|—■ I- k.i M A C JMI!:?A iji4Bj?bLR:f I l?? LH |? ? irtftwi C ? tf! (iS^rji hi i F*s*iaK ? ■孕 ■?■ IfHiF! 1*1:?■M I 4 ?lt?

混凝土 Concrete魏应乐

混凝土强度和用水量的关系.

混凝土强度和用水量的关系 论文关键词:混凝土;质量;水灰比;用水量 论文摘要:在实际施工中很多因素都会影响混凝土的强度,其中用水量对混凝土强度的影响也较为明显,以及用水量对砼其他方面所产生的质量影 响。 1 水在混凝土中存在方式和硬化机理 水在混凝土中有3 种存在方式:①化学结合水。以严格的定量参加水泥水化的水,它使水泥浆形成结晶固体。化学结合水是强结合的,不参与混凝土与外界湿度交换作用,不引起收缩与膨胀变形,成微小自生变形;②物理化学结合水。在混凝土中以并不严格的定量存在,表现为吸附薄膜结构,它在混凝土中起扩散及溶解水泥颗粒的作用,一部分水在材料周围构成碱性结合水膜,吸附水结合属中等结合,容易受到水分蒸发的破坏,所以它积极地参与混凝土与环境的湿度交换作用;③物理结合水。混凝土中各晶格间及粗、细毛孔中的自由水,亦称游离水,含量不稳定,结合强度低,极容易受水分蒸发影响而破坏结合,它是积极参与和外界进行湿度交换的水。适量的水是混凝土完成水化反应,实现预期强度的必需条件。化学结合水是保证水泥颗粒水化的必需条件;物理化学结合水是保证水泥颗粒充分扩散,逐步完成水化反应的必需条件;而物理结合水则为化学结合水、物理结合水充分发挥作用提供外部条 件。 2 用水量的增加对混凝土强度的影响 (1)水灰比与水泥强度的关系。 在配合比相同的情况下,所用的水泥强度等级越高,制成的混凝土强度也越高。当用同一品种及相同强度等级水泥时,混凝土强度主要取决于水灰比。在水泥强度等级相同,水泥水化所需结合水充足的情况下,水灰比越小,水泥石强度越高,与骨料粘结力也越大,混凝土强度也就越高。确定水灰比应综合考虑各种因素,在满足设计要求的情况下,同样要满足施工的要求。 (2)用水量增加对混凝土强度的影响。 以混凝土配合比计算公式为基础,在配合比已确定的情况下,计算用水量增加后混凝土强度的降低值,以引起施工企业在混凝土生产过程中对用水量控制的重视。 用水量确定后,依据水灰比(WPC) 确定水泥用量。在实际施工过程中,水量控制不准的大多数表现为实际用水量超过配合比设计用水量。按该配合比施工的混凝土搅拌计量过程中,用水量增加5 、10 、15 、20 、25 、30kg 时,混凝土强度f cu ,0′变化情况不难看出,在保证混凝土配合比设计用水

提高混凝土强度的方法

影响混凝土强度的因素和提高措施 1混凝土原料构成及其作用 混凝土是一种由水泥、砂、石骨料、水及其它外加材料按一定比例均匀拌和,经一定时间硬化而形成的人造石材。在混凝土中,砂石起骨架作用称为骨料,水泥与水形成水泥浆,水泥浆包裹在骨料表面并填充其空隙。在硬化前,水泥浆起润滑作用,赋予拌和物一定的和易性,便于施工。水泥浆硬化后,则将骨料胶结成一个坚实的整体。 混凝土强度的高低,直接影响到建筑物结构安全,情况严重的将造成建筑物倒塌,严重危害到人们的生命安全。因此,在施工中对混凝上的强度应有足够的重视。 2混凝土强度等级与混凝土强度平均值及其标准差的关系 混凝土强度等级是根据混凝土强度分布的平均值减去1.645倍标准差确定的,保证混凝土强度标准值具有95%的保证率,低于该标准值的概率不大于5%,充分地保证结构的安全。从这个定义推定,抽样检验的N组件的混凝土强度平均值一定不小于混凝土设计强度等级,而强度平均值的大小取决于标准差的大小。因此施工人员必须明确,不但要使混凝土强度平均值大于混凝土强度的变异性,更要使混凝土强度标准差降低到最低值。这样既保证了工程质量又降低了工程造价,是行之有效的节约措施。 3影响混凝土强度的因素 普通混凝土受力破坏一般出现在骨料和水泥石的分界面上,是常见的粘结面破坏的形式。在普通混凝土中,骨料最先破坏的可能性小,因为骨料强度通常大大超过水泥石和粘结面的强度。所以混凝土的强度主要决定于水泥石强度及其与骨料表面的粘结强度。而水泥石强度及其与骨料的粘结强度又与水泥标号、水灰比、及骨料的性质有密切关系。当水泥石强度较底时,水泥石本身容易受到破坏。此外混凝土的强度还受施工质量、养护条件及龄期的影响。 3.1水灰比和水泥标号是决定混凝土强度的主要因素 水泥是混凝土中的活性成分,其强度的大小直接影响着混凝土强度的高低。从混凝土强度表达式:fcu.o=A?fce(C/W-B)可以看出,在配合比相同的条件下,所用的水泥标号越高,制成的混凝土强度越高。当水泥相同时,混凝土的强度取决于水灰比。当水泥水化时所需的结合水,一般只占水泥重量的23%左右。如果结合水较大(约占水泥重量的40~70%),混凝土硬化后,多余的水分残留在混凝土中形成气泡或蒸发后形成气孔,大大地减少了混凝土抵抗荷载的实际有效断面,可能在空隙周围产生应力集中。因此,在水泥标号相同的情况下,水灰比愈小,水泥石的强度愈高,与骨料粘结力愈大,混凝土的强度就愈高。如果加水太少,拌和物过于干硬,在一定的捣实成型条件下,无法保证浇灌质量,混凝土中将出现较多的蜂窝孔洞,混凝土强度也将下降。 3.2粗骨料的影响

混凝土等级与水灰比

6.4.1 混凝土的抗压强度与强度等级 混凝土的抗压强度是指其标准试件在压力作用下直到破坏的单位面积所能承受的最大应力。常作为评定混凝土质量的指标,并作为确定强度等级的依据。 一、立方体抗压强度(f cu) 按照标准的制作方法制成边长为150mm的正立方体试件,在标准养护条件(温度20±3℃,相对湿度90%以上)下,养护至28d龄期,按照标准的测定方法测定其抗压强度值,称为“混凝土立方体试件抗压强度”(简称“立方抗压强度”以f cu表示),以MPa计。 二、立方体抗压强度标准值( fcu,k ) 按照标准方法制作和养护的边长为150mm的立方体试件,在28d龄期,用标准试验测定的抗压强度总体分布中的一个值,强度低于该值的百分率不超过5%(即具有95%保证率的抗压强度),以N/mm2即MPa 计。 三、强度等级(Grading Strength) 混凝土强度等级是根据立方体抗压强度标准值来确定的。它的表示方法是用“C”和“立方体抗压强度标准值”两项内容表示,如:“C30”即表示混凝土立方体抗压强度标准值f cu,k =30MPa 。 我国现行规范(GBJ10—89)规定,普通混凝土按立方抗压强度标准值划分为:C7.5、C10、C15、C20、C25、C30、C35、C40、C45、C50、C55、C60、C65、C70、C75、C80等16个强度等级。 立方体强度>强度等级 四、砼强度等级的实用意义 C7.5~C15:用于垫层、基础、地坪及受力不大的结构; C15~C25:用于普通砼结构的梁、板、柱、楼梯及屋架; C25~C30:用于大跨度结构、耐久性要求较高的结构、预制构件等; C30以上:用于预应力钢筋混凝土结构、吊车梁及特种构件等。 五、砼的轴心抗压强度(fcp) 轴心抗压强度采用150mm×150mm×300mm的棱柱体作为标准试件,如有必要,也可采用非标准尺寸的棱柱体试件,但其高宽比(h/a)应在2~3的范围。在钢筋混凝土结构计算中,计算轴心受压构件时,都采用混凝土的轴心抗压强度fcp作为设计依据。f cp比同截面的f cu小,且h/a越大,f cp越小。在立

粉煤灰掺量与砂浆强度和水化参量的关系.

第22卷第3期2001年7月 华侨大学学报(自然科学版 Journal of Huaqiao U niver sity (N atural Science Vo l. 22N o. 3 Jul. 2001 文章编号1000-5013(2001 03-0278-06 粉煤灰掺量与砂浆强度和水化参量的关系 严捍东 (华侨大学土木工程系, 泉州362011 摘要对水胶比为0. 5, I 级粉煤灰掺量分别占胶凝材料总量(质量分数为0, 0. 20, 0. 30, 0. 45和0. 55的砂浆试样, 经标准养护(d 7, 28, 90, 180和365时的抗压强度、浆体非蒸发水量和CH 含量, 进行了系统测试. 试验数据经回归分析, 发现粉煤灰掺量与砂浆抗压强度、非蒸发水量和CH 含量之间, 分别存在很好的线性相关关系. 从中, 可以定量研究在不同的粉煤灰掺量和养护龄期时, 粉煤灰效应对大掺量粉煤灰水泥基材料的力学性能和水化进程的影响规律. 关键词粉煤灰掺量, 抗压强度, 非蒸发水量, CH 含量, 粉煤灰效应中图分类号T U 522. 3+50. 6 文献标识码 A 近年来, 粉煤灰等火山灰矿物掺合料的应用已被普遍接受. 它不仅因为节约水泥所带来的经济性和环保性, 而且若合理设计还能制得具有高耐久性的结构材料. 因此, 如何定量预测不同粉煤灰掺量、不同养护龄期下粉煤灰水泥基材料的强度和水化进程, 就变得非常重要. 为了定量预测粉煤灰混凝土的强度, 一些研究者试图在普通混凝土强度与水灰比关系的基础上, 〔1, 2〕

引入由Smith 首先提出的“胶凝效率因子k ”来修正. 其定义为在不改变水泥性能的情况下, 一份粉煤灰所能取代的水泥份数. 从而, 在“有效水灰比[w /(C +kf ]”时, 普通混凝土的强度和水灰比的关系也适合于粉煤灰混凝土. Hansen 也在Smith 和Bolo mey 的基础上, 提出了粉煤灰混凝土抗压强度与水泥、粉煤灰用量及粉煤灰活性因子间的关系为s =a (= W -0. 5. 大量研究表明, k 值随粉煤灰质量、掺量和养护龄期而变. 文献的研究结果表明, 如在粉煤灰掺量提高的同时降低砂率, 则不同养护龄期时混凝土的抗压强度与粉煤灰掺量的关系是二次抛物线. 普通水泥浆体的水化过程可以用诸如非蒸发水含量、CH 含量或化学减缩量等来定量表征. M arsh, Day 和Berry 等, 也都对粉煤灰水泥浆体的CH 和非蒸发水含量进行了测定. 但因粉煤灰水泥浆体的水化很复杂, 粉煤灰火山灰反应需消耗水泥水化产生的CH , 所以以都认为CH 含量和非蒸发水含量并不能很好表征粉煤灰水泥的水化过程. 本文系统测定了不同掺量粉煤灰砂浆, 在不同养护龄期时的抗压强度、非蒸发水及CH 含量. 在基础上, 对测定数据进行科学地分析, 以期揭示粉煤灰效应对大掺量粉煤灰水泥基材料力学和水化进程的影响规律. 收稿日期2000-12-02作者简介严捍东(1968- , 男, 讲师〔5, 6〕 〔7〕 〔8〕 〔4〕 〔3〕 第3期严捍东:粉煤灰掺量与砂浆强度和水化参量的关系279 1试验原材料和试验方法 1. 1试验原材料

【技术交流】“混凝土强度—粉煤灰掺量—水胶比”关系探究与应用文档

【技术交流】“混凝土强度—粉煤灰掺量—水胶比”关系探究与应用 2015-07-15耿加会 “混凝土强度—粉煤灰掺量—水胶比”关系探究与应用 耿加会1余春荣2 (1.舞阳县惠达公路工程有限公司,河南,舞阳,462400 2.建筑材料工业技术情报研究所,北京,朝阳,100024)【摘要】粉煤灰作为商品混凝土中最常用的矿物掺合料,其优点得到业界的广泛认可。对于“混凝土强度——粉煤灰掺量——水胶比”三者之间的关系,国内外专家学者对粉煤灰进行了深啊入的研究。本文通过大量的试验数据,探讨“混凝土强度——粉煤灰掺量——水胶比”三者之间的关系,并通过工程应用,为粉煤灰的使用提供一点借鉴。 【关键词】混凝土强度、粉煤灰掺量、胶凝材料、水胶比、水灰比、配合比设计 0概述 商品混凝土经过三十年的发展,截止2013年底产量己达21.96亿m3/年,比2012年﹙18.49亿m3/年﹚增长了18.77%,混凝土已经成为重要的大宗建筑材料。混凝土消耗的水泥量也在逐年增加,利用矿物掺合料部分取代水泥,具有良好的经济效益和社会效益。粉煤灰是我国目前排放量最大的燃煤副产品之一,

也是利用程度和利用水平最高的工业废渣之一[1];粉煤灰以其诸多优点成为混凝土的重要组成部分[2]。 经过几十年的发展,我国电厂设备的改进使粉煤灰的燃烧更加充分,粉煤灰的质量和稳定性有较大的提高。再加上高效减水剂(高性能减水剂)复合使用,可以大幅度降低水胶比,改善了粉煤灰的使用环境。工程实践及试验研究表明,粉煤灰作为混凝土的矿物掺合料,既可以降低水化热,利用二次水化增加混凝土后期强度,又能提高混凝土的和易性、泌水性、流动性、泵送性及耐久性等。 上世纪80年代我国杰出的粉煤灰学者沈旦申[3]提出了“粉煤灰效应”假说:形态效应、填充效应、火山灰效应。英国的Dunstan 研究发现:混凝土的水胶比减小,粉煤灰对不同龄期混凝土强度的贡献随之增大,粉煤灰对强度的贡献与水胶比的关系比水泥还敏感。粉煤灰掺入以后,“混凝土强度——水灰比”二元关系转变成“混凝土强度——粉煤灰掺量——水胶比”三元关系(如图

混凝土水灰比和塌落度的区别与联系

混凝土水灰比和塌落度的区别与联系 混凝土的水灰比和塌落度过是建筑工程在施工中经常要碰到的问题,对于两者的相互关系,大部分民工乃至部分施工技术人员和部分监理人员,不是很清楚。 以为水灰比大就是塌落度大,塌落度大就是水灰比大,认为两者是一码事,其实不然。 这两者之间有本质的区分,但两者之间又有相互牵连的关系。要说明这个问题,得从混凝 土的配合比设计说起,现以重量比为例,配合比的计算顺序如下: 1、计算水灰比,计算公式如下:Rh=0.46Rc(C/W-0.52)式中:Rh为混凝土的试配强度,Rc为水泥强度,C/W为灰水比,即水灰比W/C的倒数,其中C代表水泥,W代表水 从式中可以看出,混凝土强度同水泥强度成正比,同灰水比成正比,即同水灰比成反比,(水灰比为灰水比的倒数,1÷灰水比即为水灰比,1÷水灰比即为灰水比),因此灰水比越大则水灰比越小,混凝土强度越大则水灰比越小。 由此可见,在确定水灰比大小的计算中,水灰比只与混凝土强度和水泥强度两个因素有关,与塌落度的大小是没有关系的。 故水灰比是根据混凝土配比强度和水泥强度计算所得,是既定的,是不能任意改变的。 2、确定塌落度,塌落度是根据混凝土浇灌部位、构件体积、钢筋密集等情况确定的,如 基础工程塌落度可小一点,一般为10-30mm,柱梁工程一般为30-50mm,构件细小或者 配筋密集,混凝土较难浇灌,则塌落度应适当大一点,一般可在50-90mm。 3、确定用水量,每立方混凝土的用水量是根据塌落度的大小决定的,此外,与石子粒径 的大小和黄砂的粗细略有关系。 粒径偏细的石子和细砂用水量略偏大,以中砂为例,石子最大粒径40mm,塌落度30- 50mm,每立方混凝土的用水量为180kg。关于用水量可在相关表中查得。 4、计算水泥用量,水泥用量根据每立方混凝土用水量和水灰比计算:即用水量Χ灰水比 或者用水量÷水灰比,例如水灰比为0.5,用水量为180kg,则水泥用量为180÷0.5=360kg。 5、确定每立方混凝土的容重,一般混凝土每立方容重约2400kg,强度高的略重,强度低 的略轻,但偏差不是很大。 6、计算砂石总用量,砂石总用量为砼容重—用水量—水泥用量,以上述为例,砂石总用 量为砼容重2400—水180—水泥360=1860kg。 7、确定砂率并计算砂、石用量、砂率一般为35%,水灰比小的砂率略小,水灰比大的砂 率略大,可根据试配混凝土的和易性调整砂率,以上述为例,中砂用量为

水灰比的计算

水灰比的计算 水泥强度 42.5级,砂率37 %,水泥富余系数 1.1,混凝土强度标准差4.5 用水量为190Kg/m3;标准差σ取4.5MPa,细骨料含水率为3.1%;粗骨料含水率为0.6%)混凝土强度C35, 据题意已知条件计算C35混凝土理论配合比; 1、水灰比计算: 混凝土配制强度=35+1.645*标准差4.5=42.4 回归系数;a b根据石子品种查表得碎石a =0.46 ,b=0.07 水泥实际强度=42.5*1.1=46.75 W/C=0.46*46.75/(42.4+0.46*0.07*46.75)=0.49 2、计算每立方米混凝土水泥用量; 用水量/水灰比=190/0.49=388kg/m3 核验水泥用量是否符合耐久性允许最小水泥用量260kg/m3,计算得水泥用量388kg/m3大于规定符合 3、选用砂率=37 % 4、计算每立方米混凝土砂、石用量,按重量法计算; 已知每立方米混凝土用水量=190kg/m3,水泥用量=388kg/m3,砂率=37 %,假定混凝土拌合物2400kg/m3 388+G+S+190=2400 S/(G+S)=0.37 G+S=2400-388-190=1822kg/m3 S=(G+S)*0.37=1822*0.37=674kg/m3 G=(G+S)-S=1822-674=1148kg/m3 按重量法计算得到的理论配合比如下; 水泥388kg 水190kg 砂674kg 碎石1148kg 5、根据细骨料含水率为3.1%;粗骨料含水率为0.6% 调整施工配合比; 水泥388kg 水162kg 砂695kg 碎石1155kg 配合比;1:1.79:2.98:0.418 =c25+1.645*5

相关文档
最新文档