(学案)三角函数的概念

(学案)三角函数的概念
(学案)三角函数的概念

三角函数的概念

【第1课时】

【学习目标】

(1)借助单位圆理解任意角的三角函数定义.

(2)掌握三角函数在各象限的符号.

(3)掌握诱导公式一并会应用.

(4)会用三角函数线表示角的正弦、余弦和正切.

【学习重难点】

三角函数的概念。

【学习过程】

一、自主学习

状元随笔三角函数的定义

(1)三角函数是一个函数,符合函数的定义,是由角的集合(弧度数)到一个比值的集合的函数.

(2)三角函数值实质是一个比值,因此分母不能为零,所以正切函数的定义域就是使分母不为零的角的集合.

知识点二:正弦、余弦、正切函数在弧度制下的定义域

知识点三:三角函数线

状元随笔(1)三角函数线的方向.

正弦线由垂足指向角α的终边与单位圆的交点,余弦线由原点指向垂足,正切线由切点指向切线与角α的终边或其反向延长线的交点.

(2)三角函数线的正负:三条有向线段凡与x轴或y轴同向的,为正值,与x轴或y轴反向的,为负值.

知识点四:三角函数值在各象限的符号

状元随笔对三角函数值符号的理解

三角函数值的符号是根据三角函数定义和各象限内坐标符号导出的.从原点到角的终边上任意一点的距离r总是正值.根据三角函数定义知:

(1)正弦值符号取决于纵坐标y的符号;

(2)余弦值的符号取决于横坐标x的符号;

(3)正切值的符号是由x,y符号共同决定的,即x,y同号为正,异号为负.

知识点五:诱导公式一

(1)语言表示:终边相同的角的同名三角函数的值相等.

(2)式子表示???

sin

α+k ·2π=sin α,cos

α+k ·2π=cos α,tan

α+k ·2π=tan α,

其中k ∈Z .

状元随笔诱导公式一

(1)实质:是说终边相同的角的三角函数值相等.即角α的终边每绕原点旋转一周,函数值将重复出现一次.

(2)结构特征:左、右为同一三角函数;公式左边的角为α+k·2π,右边的角为α. (3)作用:把求任意角的三角函数值转化为求0~2π(或0°~360°)角的三角函数值.体现了“大化小”“负化正”的数学思想.

教材解难: 正确认识三角函数线

(1)正弦线、余弦线、正切线分别是正弦、余弦、正切函数的几何表示,三角函数线的长度等于三角函数值的绝对值,方向表示三角函数值的正负,凡与x 轴或y 轴同向的为正值,反向的为负值.

(2)三角函数线的画法

定义中不仅定义了什么是正弦线、余弦线、正切线,同时也给出了角a 的三角函数线的画法,即先找到P ,M ,T 点,再画出MP ,OM ,AT .

(3)三角函数线的作用

三角函数线的主要作用是解三角不等式及比较同角异名三角函数值的大小,同时它也是以后学习三角函数的图象与性质的基础.

基础自测:

1.如图所示,在单位圆中角α的正弦线、正切线完全正确的是( )

A .正弦线PM ,正切线A ′T ′

B .正弦线MP ,正切线A ′T ′

C .正弦线MP ,正切线AT

D .正弦线PM ,正切线AT

解析:α为第三象限角,故正弦线为MP ,正切线为AT ,所以C 正确. 答案:C

2.sin780°的值为( )

A .-3

2

B .32

C .-12

D .12

解析:sin780°=sin (2×360°+60°)=sin60°=3

2,故选B . 答案:B

3.已知角α的终边与单位圆交于点? ????

-32

,-12,则sin α的值为( )

A .-3

2

B .-12

C .32

D .12

解析:根据任意角的正弦定义,可得sin α=y =-1

2. 答案:B

4.若α是第三象限角,则点P (sin α,cos α)在第________象限. 解析:∵α为第三象限角, ∴sin α<0,cos α<0,

∴P (sin α,cos α)位于第三象限. 答案:三 二、素养提升

题型一:三角函数的定义及应用[教材P 178例1]

例1:求5π

3的正弦、余弦和正切值. 解析:在直线坐标系中,

作∠AOB =5π

3(如图).

易知∠AOB 的终边与单位圆的交点坐标为? ????12

,-32.

所以sin 5π3=-3

2, cos 5π3=12, tan 5π

3=- 3.

1.在直角坐标系中作角. 2.画出单位圆求交点. 3.利用三角函数的定义求值. 教材反思:

已知α终边上任意一点的坐标求三角函数值的方法:

(1)先利用直线与单位圆相交,求出交点坐标,然后再利用正、余弦函数的定义求出相应三角函数值.

(2)在α的终边上任选一点P (x ,y ),P 到原点的距离为r (r >0).则sin α=y

r ,cos α=x

r .已知α的终边求α的三角函数值时,用这几个公式更方便.

(3)当角α的终边上点的坐标以参数形式给出时,要根据问题的实际情况对参数进行分类讨论.

跟踪训练1:(1)若角α的终边经过点P (5,-12),则sin α=________,cos α=________,tan α=________.

(2)已知角α的终边落在直线3x +y =0上,求sin α,cos α,tan α的值. 解析:(1)∵x =5,y =-12,∴r =52+-12

2

=13,则sin α=y r =-1213,cos α=x

r =

513,tan α=y x =-125.

(2)直线3x+y=0,即y=-3x,经过第二、四象限,在第二象限取直线上的点(-

1,3),则r=-12+32=2,所以sinα=

3

2,cosα=-

1

2,tanα=-3;

在第四象限取直线上的点(1,-3),则r=12+-32=2,所以sinα=-

3

2,cosα

=1

2,tanα=-3.

答案:(1)-

12

13;

5

13;-

12

5

(2)见解析

状元随笔(1)若已知角α终边上一点P(x,y)(x≠0)不是单位圆上的点,则先求r=

x2+y2(r表示点P到原点的距离),sinα=y

r,cosα=

x

r,tanα=

y

x.

(2)在α的终边上任取一点,再利用三角函数的定义求解.题型二:三角函数线[经典例题]

例2:做出3π

4的正弦线、余弦线和正切线.

解析:角3π

4的终边(如图)与单位圆的交点为P.作PM垂直于x轴,垂足为M,过A(1,0)

作单位圆的切线AT,与3π

4的终边的反向延长线交于点T,则

4的正弦线为MP,余弦线为OM,

正切线为AT.

先作单位圆再作角,最后作出三角函数线.

方法归纳:

三角函数线的画法:

(1)作正弦线、余弦线时,首先找到角的终边与单位圆的交点,然后过此交点作x轴的垂线,得到垂足,从而得正弦线和余弦线.

(2)作正切线时,应从A(1,0)点引单位圆的切线,交角的终边或终边的反向延长线于一点T,即可得到正切线AT.

跟踪训练2:作出-5π

8的正弦线、余弦线和正切线.

解析:如图:sin ? ??

??

-5π8=MP ,

cos ? ????

-5π8=OM , tan ? ????

-5π8=AT . 作单位圆、作角、画出三角函数线.

题型三:三角函数在各象限的符号[经典例题]

例3:若sin αtan α<0,且cos α

tan α<0,则角α是( ) A .第一象限角 B .第二象限角 C .第三象限角 D .第四象限角

解析:由sin αtan α<0可知sin α,tan α异号,从而α是第二或第三象限角. 由cos α

tan α<0可知cos α,tan α异号,从而α是第三或第四象限角.综上可知,α是第三象限角.

答案:C

分别由sin αtan α<0和cos α

tan α<确定角α是第几象限角→二者的公共部分即所求 方法归纳:

判断三角函数值正负的两个步骤: (1)定象限:确定角α所在的象限.

(2)定符号:利用三角函数值的符号规律,即“一全正,二正弦,三正切,四余弦”来判断.

注意:若sin α>0,则α的终边不一定落在第一象限或第二象限内,有可能终边落在y 轴的非负半轴上.

跟踪训练3:判断下列各式的符号: (1)sin145°cos (-210°);

(2)sin3·cos4·tan5.

解析:(1)∵145°角是第二象限角,∴sin145°>0. ∵-210°=-360°+150°,∴-210°角是第二象限角, ∴cos (-210°)<0,∴sin145°cos (-210°)<0.

(2)∵π2<3<π<4<3π

2<5<2π,∴sin3>0,cos4<0, tan5<0,∴sin3·cos4·tan5>0.

确定角的终边所在的象限→分别判断三角函数值符号→得出式子的符号 题型四:诱导公式一的应用[经典例题] 例4:计算下列各式的值:

(1)sin (-1395°)cos1110°+cos (-1020°)sin750°;

(2)sin ? ??

??

-11π6+cos 12π5·tan4π.

解析:(1)原式=sin (-4×360°+45°)cos (3×360°+30°)+cos (-3×360°+60°)sin (2×360°+30°)

=sin45°cos30°+cos60°sin30° =22×32+12×12=64+14=1+6

4.

(2)原式=sin ? ????-2π+π6+cos ? ?

?

??2π+2π5·tan (4π+0)

=sin π6+cos 2π5×0=12.

状元随笔(1)含有三角函数值的代数式的化简,要先利用诱导公式一把角的范围转化到0~2π范围内,求出相应的三角函数值.

(2)准确记忆特殊角的三角函数值是三角函数化简求值的基础,此类问题易出现的错误就是对特殊角的三角函数值记忆不准确导致计算错误.

方法归纳:

利用诱导公式一求值应注意:利用诱导公式一可把负角的三角函数转化为0~2π内的角的三角函数,也可把大于2π的角的三角函数转化为0~2π内的角的三角函数,即实现了“负化正,大化小”,要注意记忆特殊角的三角函数值.

跟踪训练4:求下列各式的值:

(1)sin 25π3+tan ? ??

??

-15π4;

(2)sin810°+cos360°-tan1125°.

解析:(1)sin 25π3+tan ? ??

??

-15π4

=sin ? ????8π+π3+tan ? ?

???-4π+π4

=sin π3+tan π4

=3

2+1.

(2)sin810°+cos360°-tan1125°

=sin (2×360°+90°)+cos (360°+0°)-tan (3×360°+45°) =sin90°+cos0°-tan45° =1+1-1 =1.

应用诱导公式一时,先将角转化到0~2π范围内的角,再求值.对于特殊角的三角函数值一定要熟记. 三、学业达标

(一)选择题

1.已知角α的顶点在原点,始边与x 轴的非负半轴重合,终边过点? ????

-35,45,则tan α的

值为( )

A .-43

B .-34

C .-45

D .-35

解析:由正切函数的定义可得,tan α=

45-35

=-43.

答案:A

2.sin (-140°)cos740°的值( ) A .大于0 B .小于0 C .等于0

D .不确定

解析:因为-140°为第三象限角,故sin (-140°)<0. 因为740°=2×360°+20°,所以740°为第一象限角, 故cos740°>0,

所以sin (-140°)cos740°<0.故选B. 答案:B

3.若sin θcos θ<0,则角θ是( ) A .第一或第二象限角 B .第二或第三象限角 C .第三或第四象限角 D .第二或第四象限角

解析:设角θ终边上一点的坐标为(x ,y ),该点到原点的距离为r (r >0),则sin θcos θ=y r ·x

r <0,即xy <0,所以角θ终边上点的横、纵坐标异号,故角θ是第二或第四象限角.

答案:D

4.使sin x ≤cos x 成立的x 的一个区间是( )

A .??????-3π4,π4

B .??????-π2,π2

C .??????-π4,3π4

D .[]0,π

解析:如图所示,画出三角函数线sin x =MP ,cos x =OM ,由于sin ? ????-3π4=cos ? ??

??-3π4,sin π4

=cos π4,为使sin x ≤cos x 成立,由图可得在[-π,π)范围内,-3π4≤x ≤π4.

答案:A (二)填空题

5.sin (-1380°)=________.

解析:sin (-1380°)=sin[60°+(-4)×360°]=sin60°=3

2.

答案:3

2

6.当α为第二象限角时,|sin α|sin α-cos α

|cos α|的值是________. 解析:∵α为第二象限角,∴sin α>0,cos α<0. ∴|sin α|sin α-cos α|cos α|=sin αsin α-cos α-cos α=2.

答案:2

7.用三角函数线比较sin1与cos1的大小,结果是________. 解析:如图,sin1=MP ,cos1=OM . 显然MP >OM ,即sin1>cos1. 答案:sin1>cos1 (三)解答题

8.已知角α的终边为射线y =-3

4x (x ≥0),求角α的正弦、余弦和正切值. 解析:由?????

y =-34x ,

x 2+y 2=1,

得x 2+916x 2=1,即25x 2=16,即x =45或x =-4

5.

∵x ≥0,∴x =45,从而y =-3

5.

∴角α的终边与单位圆的交点坐标为(45,-3

5). ∴sin α=y =-35,cos α=x =45,tan α=y x =-34. 9.判断下列各式的符号: (1)sin105°·cos230°;

(2)cos3·tan ? ??

??

-2π3.

解析:(1)因为105°,230°分别为第二、第三象限角,所以sin105°>0,cos230°<0.于是sin105°·cos230°<0. (2)因为π2<3<π,所以3是第二象限角,所以cos3<0,又因为-2π

3是第三象限角,所以

tan ? ????-2π3>0,所以cos3·tan ? ??

??

-2π3<0. 尖子生题库:

10.利用三角函数线,求满足下列条件的角α的集合:

(1)tan α=-1;(2)sin α≤-2

2.

解析:(1)如图①所示,过点(1,-1)和原点作直线交单位圆于点P 和P ′,则OP 和OP ′

就是角α的终边,所以∠xOP =3π4=π-π4,∠xOP ′=-π

4,

所以满足条件的所有角α

的集合是?

?????

???

?α???

α=-π

4+k π,k ∈Z

(2)如图②所示,过?

????

0,-22作与x 轴的平行线,交单位圆于点P 和P ′,则sin ∠xOP

=sin ∠xOP ′=-2

2,

∴∠xOP =54π,∠xOP ′=7

4π,

∴满足条件所有角α的集合为 ????

??x |54π+2k π≤α≤7

4π+2k π,k ∈Z .

【第2课时】 【学习目标】

理解同角三角函数的基本关系式:sin 2x +cos 2x =1,sin x

cos x =tan x .

【学习重难点】

三角函数的基本公式.

【学习过程】

一、自主学习

知识点:同角三角函数的基本关系式

状元随笔(1)利用sin 2α+cos 2α=1可实现α的正弦、余弦的互化,利用sin α

cos α=tan α可以实现角α的弦切互化.

(2)关系式的逆用及变形用:1=sin 2α+cos 2α,sin 2α=1-cos 2α,cos 2α=1-sin 2α. 教材解难:

同角三角函数的基本关系

(1)同角三角函数的基本关系式揭示了“同角不同名”的三角函数的运算规律,这里,“同角”有两层含义:一是“角相同”,二是对“任意”一个角(在使函数有意义的前提下),关系式都成立,与角的表达形式无关,如:sin 23α+cos 23a =1.

(2)sin 2α是(sin α)2的简写,不能写成sin α2.

(3)在使用同角三角函数关系式时要注意使式子有意义,如:式子tan90°=sin 90°

cos 90°不成立.再如:sin 2α+cos 2β=1就不一定恒成立.

基础自测:

1.若α为第二象限角,且sin α=2

3,则cos α=( ) A .-5

3

B .13

C .53

D .-13

解析:∵α是第二象限角,∴cos α=-1-sin 2α=-5

3. 答案:A

2.已知tan α=12,且α∈? ?

?

??π,3π2,则sin α的值是( )

A .-5

5

B .55

C .255

D .-255

解析:∵α∈(π,3π2),∴sin α<0.由tan α=sin αcos α=1

2,

sin 2α+cos 2α=1,得sin α=-5

5. 答案:A

3.化简:(1+tan 2α)·cos 2α等于( ) A .-1 B .0 C .1 D .2

解析:原式=? ?

???1+sin 2αcos 2α·cos 2α=cos 2α+sin 2α=1.

答案:C

4.已知tan α=-12,则2sin αcos α

sin 2α-cos 2α

的值是________.

解析:2sin αcos αsin 2α-cos 2α=2tan α

tan 2α-1=2×? ????-12? ??

??-122

-1=43.

答案:43 二、素养提升

题型一:利用同角基本关系式求值[经典例题]

例1:(1)已知sin α=1

5,求cos α,tan α; (2)已知tan α=3,求3sin 2α-cos 2α2sin 2α-6cos 2α

解析:(1)因为sin α=1

5>0,且sin α≠1,所以α是第一或第二象限角. ①当α为第一象限角时,cos α=1-sin 2α=

1-125=2 65,tan α=sin αcos α=6

12;

②当α为第二象限角时,cos α=-1-sin 2α=-2 65,tan α=-6

12. (2)分子、分母同除以cos 2

α,得3sin 2α-cos 2α2sin 2α-6cos 2α=3tan 2α-1

2tan 2α-6

又tan α=3,所以3sin 2α-cos 2α2sin 2α-6cos 2α=3×32-12×32-6=13

6

状元随笔(1)已知角的正弦值或余弦值,求其他三角函数值,应先判断三角函数值的符号,然后根据平方关系求出该角的余弦值或正弦值,再利用商数关系求解该角的正切值即可.

(2)利用同角基本关系式,分子、分母同除以cos 2α,把正弦、余弦化成正切. 方法归纳:

求同角三角函数值的一般步骤:

(1)根据已知三角函数值的符号,确定角所在的象限.

(2)根据(1)中角所在象限确定是否对角所在的象限进行分类讨论. (3)利用两个基本公式求出其余三角函数值. 跟踪训练1:(1)本例(2)条件变为

sin α+cos αsin α-cos α=2,求3sin α-cos α

2sin α+3cos α

的值.

(2)本例(2)条件不变,求4sin 2α-3sin α·cos α-5cos 2α的值. 解析:(1)法一:由

sin α+cos α

sin α-cos α

=2,化简得sin α=3cos α,

原式=3×3cos α-cos α2×3cos α+3cos α=8cos α9cos α=8

9.

法二:由sin α+cos α

sin α-cos α=2得tan α=3,

原式=3tan α-12tan α+3=3×3-12×3+3=89

(2)原式=4sin 2α-3sin α·cos α-5cos 2α

sin 2α+cos 2α

=4tan 2α-3tan α-5tan 2α+1=4×9-3×3-59+1

=115.

形如(2)式的求解,应灵活利用“1”的代换,将整式变为分式,即利用分式的性质将式子变为关于tan α的代数式,从而代入求值.

题型二:化简三角函数式[经典例题] 例2:化简:

(1)sin α

1+sin α-

sin α

1-sin α;

(2)1+2sin 10°cos 10°

cos 10°+1-cos210°

解析:(1)

sin α

1+sin α-

sin α

1-sin α=

sin α1-sin α-sin α1+sin α

1+sin α1-sin α=-2sin2α

1-sin2α=

-2sin2α

cos2α=-2tan

2α.

(2)1+2sin 10°cos 10°

cos 10°+1-cos210°=

cos 10°+sin 10°2

cos 10°+sin 10°=

|cos 10°+sin 10°|

cos 10°+sin 10°=1.

(1)利用同角基本关系化简.

(2)注意1的活用.例如:

1+2sin10°cos10°=sin210°+cos210°+2sin210°cos10°=(cos10°+sin10°)2

方法归纳:

三角函数式的化简技巧:

(1)化切为弦,即把正切函数都化为正、余弦函数,从而减少函数名称,达到化繁为简的目的.

(2)对于含有根号的,常把根号里面的部分化成完全平方式,然后去根号达到化简的目的.

(3)对于化简含高次的三角函数式,往往借助于因式分解,或构造sin2α+cos2α=1,以降低次数,达到化简的目的.

跟踪训练2:(1)化简:

1-2sin 130°cos 130°sin 130°+1-sin2130°

(2)化简:sin2αtanα+2sinαcosα+cos2αtan α.

解析:(1)原式=sin2130°-2sin 130°cos 130°+cos2130°

sin 130°+cos2130°

|sin 130°-cos 130°| sin 130°+|cos 130°|=sin 130°-cos 130°

sin 130°-cos 130°=1.

(2)原式=sin2α·sin α

cos α+2sinαcosα+cos

2α·

cos α

sin α=

sin4α+2sin2αcos2α+cos4α

sin αcos α=

sin2α+cos2α2 sin αcos α=

1

sin αcos α.

(1)1-sin2130°=cos2130°,

1-2sin130°cos130°=(sin130°-cos130°)2.

(2)式子中的tanα应化为sinα

cosα,如果出现分式,一般应通分.

题型三:利用同角三角函数关系证明[教材P183例7]

例3:求证

cos x

1-sin x=

1+sin x

cos x.

证明:证明1:由cos x≠0,知sin x≠-1,所以1+sin x≠0,于是

左边=

cos x1+sin x

1-sin x1+sin x

=cos x1+sin x

1-sin2x

=cos x1+sin x

cos2x

=1+sin x

cos x=右边.

所以,原式成立.

证明2:因为(1-sin x)(1+sin x)=1-sin2x=cos2x

=cos x cos x,

且1-sin x≠0,cos x≠0,

所以cos x

1-sin x=1+sin x cos x.

教材反思:

证明简单三角恒等式的思路

(1)从一边开始,证明它等于另一边,遵循由繁到简的原则.(2)证明左右两边等于同一个式子.

(3)证明左边减去右边等于零或左、右两边之比等于1.

(4)证明与原式等价的另一个式子成立,从而推出原式成立.跟踪训练3:求证:

1-2sin 2x cos 2x cos22x-sin22x=1-tan 2x 1+tan 2x.

解析:证明:因为左边

=cos22x+sin22x-2sin 2x cos 2x

cos22x-sin22x

cos 2x-sin 2x2

cos 2x-sin 2x cos 2x+sin 2x

=cos 2x-sin 2x

cos 2x+sin 2x=

1-tan 2x

1+tan 2x=右边,

所以等式成立.

左边是含正、余弦的式子,右边是含有正切的式子,因此需要弦化切,左边的分子可以用平方关系,分母可以用平方差公式实现变形.

题型四:sinα±cosα型求值[经典例题]

sinα+cosα=1

3两边平方→求出2sinαcosα的值→求sinα-cosα的值

例4:已知sinα+cosα=1

3,其中0<α<π,求sinα-cosα的值.

解析:因为sinα+cosα=1

3,所以(sinα+cosα)

2=

1

9,可得:sinα·cosα=-

4

9.

因为0<α<π,且sinα·cosα<0,所以sinα>0,cosα<0.所以sinα-cosα>0,

又(sinα-cosα)2=1-2sinαcosα=17

9,所以sinα-cosα=

17

3.

方法归纳:

已知sinα±cosα的求值问题的方法

对于已知sinα±cosα的求值问题,一般利用整体代入的方法来解决,其具体的解法为:(1)用sinα表示cosα(或用cosα表示sinα),代入sin2α+cos2α=1,根据角α的终边所在的象限解二次方程得sinα的值(或cosα的值),再求其他,如tanα(体现方程思想).(2)利用sinα±cosα的平方及sin2α+cos2α=1,先求出sinαcosα的值,然后求出sinα?cosα的值(要注意结合角的范围确定符号)从而求解sinα,cosα的值,再求其他.

跟踪训练4:已知x是第三象限角,且cos x-sin x=

5 5.

(1)求cos x+sin x的值;

(2)求2sin2x-sin x cos x+cos2x的值.

解析:(1)(cos x-sin x)2=1-2sin x cos x=1 5,

所以2sin x cos x =4

5,

所以(cos x +sin x )2=1+2sin x cos x =9

5,

因为x 是第三象限角,所以cos x +sin x <0,所以cos x +sin x =-35

5. (2)由???

??

cos x +sin x =-35

5,

cos x -sin x =5

5,

解得cos x =-

55,sin x =-25

5

, 所以2sin 2x -sin x cos x +cos 2x =2×45-25+15=7

5.

1.把cos x -sin x =5

5平方

2.注意x 的范围 3.分别求出sin x 、cos x 三、学业达标

(一)选择题

1.已知α是第二象限角,且cos α=-12

13,则tan α的值是( ) A .1213 B .-1213 C .512 D .-512

解析:∵α为第二象限角,∴sin α=1-cos 2α=1-? ??

??

-12132=513,∴tan α=sin αcos α=513-1213

=-512.

答案:D

2.已知cos α-sin α=-1

2,则sin αcos α的值为( )

A .38

B .±38

C .-34

D .±34

解析:由已知得(cos α-sin α)2

=sin 2α+cos 2α-2sin αcos α=1-2sin αcos α=14,所以sin αcos α=38.

答案:A

3.化简? ????1

sin α+1tan α(1-cos α)的结果是( )

A .sin α

B .cos α

C .1+sin α

D .1+cos α

解析:? ????1sin α+1tan α(1-cos α)=? ????1

sin α+cos αsin α(1-cos α)=1-cos 2αsin α=sin 2αsin α=sin α.

答案:A

4.已知|sin θ|=15,且9π

2

<θ<5π,则tan θ的值是( )

A .612

B .-26

C .-6

12 D .26

解析:因为9π2<θ<5π,所以θ为第二象限角,所以sin θ=15,所以cos θ=-26

5,所以tan θ=-612.

答案:C (二)填空题

5.若sin θ=-4

5,tan θ>0,则cos θ=________. 解析:由已知得θ是第三象限角, 所以cos θ=-1-sin 2θ=-

1-? ??

??

-452=-35.

锐角三角函数的定义

锐角三角函数的定义 锐角的本质是任意角的集合与一个比值的集合的变量之间的映射。通常的三角函数是在平面直角坐标系中定义的,其定义域为整个实数域。另一种定义是在直角三角形中,但并不完全。下面是小编为大家整理的关于锐角三角函数的定义,希望对您有所帮助。欢迎大家阅读参考学习! 锐角三角函数的定义 锐角角A的正弦(sin),余弦(cos)和正切(tan),余切(cot)以及正割(sec),(余割csc)都叫做角A的锐角三角函数。 正弦等于对边比斜边 余弦等于邻边比斜边 正切等于对边比邻边 余切等于邻边比对边 正割等于斜边比邻边 余割等于斜边比对边 正切与余切互为倒数 它的本质是任意角的集合与一个比值的集合的变量之间的映射。通常的三角函数是在平面直角坐标系中定义的,其定义域为整个实数域。另一种定义是在直角三角形中,但并不完全。现代数学把它们描述成无穷数列的极限和微分方程的解,将其定义扩展到复数系。 由于三角函数的周期性,它并不具有单值函数意义上的反函数。

它有六种基本函数(初等基本表示): 函数名正弦余弦正切余切正割余割 在平面直角坐标系xOy中,从点O引出一条射线OP,设旋转角为,设OP=r,P点的坐标为(x,y)有 正弦函数sin=y/r 余弦函数cos=x/r 正切函数tan=y/x 余切函数cot=x/y 正割函数sec=r/x 余割函数csc=r/y (斜边为r,对边为y,邻边为x。) 以及两个不常用,已趋于被淘汰的函数: 正矢函数versin=1-cos 余矢函数covers=1-sin 同角三角函数间的关系: 平方关系: sin^2()+cos^2()=1 tan^2()+1=sec^2() cot^2()+1=csc^2() 积的关系: sin=tancos cos=cotsin

三角函数的定义导学案

5,则 b的值。 3的终边上,且|OP|=2,则点P的坐标? 2 ,-3),,则定义:叫做角α的余弦,记作cosα,即cosα=; α=- 5 2,则sin α,tanα的值分别为(另外,角α的正割:secα= 1 cosαx 角α的余割:cscα= 1 sinαy 角α的余切:cotα= 1 2C- 3 A 1 高一数学学案 必修四第一章第3节三角函数的定义(1) 制作人:适用范围:高一使用日期:4.17 【教学目标】 1、三角函数定义; 2、利用定义求角的六个三角函数; 3、特殊角的三角函数值。 4、通过角定义的学习,进一步体会数形结合的思想方法 【教学重难点】 1、用定义求三角函数值; 2、特殊角三角函数值。 【教学内容】 1.任意角三角函数的定义 任意角三角函数的定义 如图所示,以任意角α的顶点O为坐标原点,以角α的始边的方向作为x轴的正方向,建立直 角坐标系.设P(x,y)是任意角α终边上不同于坐标原点的任意一点. 变式训练2:若角α的终边经过点P(-b,4)且cosα=- 3 例2、求下列各角的六个三角函数值: (1)0;(2)π;(3) 3π 2 变式训练3:若点P在角 π 【课堂练习】 1、(1)已知角α终边经过点p( 1 cosα=______,sinα=______,tanα=______, cotα=______,secα=______,cscα=______。 其中,r=OP=x2+y2>0. x x r r y y r叫做角α的正弦,记作sinα,即sinα=r; 2、设π A、-1;不存在 B、1;不存在 C、-1;0 D、1;0 )。 y y x叫做角α的正切,记作tanα,即tanα=x. r =; r =; x tanα=y. 例1、已知角α终边过点P(2,-3),求角α的六个三角函数值。 3、如果角α的终边过点(2sin30°,-2cos30°),则sinα的值等于() 13 2 B- 2 D 2 4、若角α的终边经过点M(0,m)(m≠0),则下列式子无意义的是() A、sinα B、cosα C、tanα D、cotα 15.已知角 α的终边上一点的坐标为( 3 ,- 1 ),则角α的最小正值为( 22)变式训练1:设角α的终边经过点P(3x,-4x)(x<0),则sinα-cosα的值?

初中数学锐角三角函数定义大全

初中数学:锐角三角函数定义大全 锐角角A的正弦(sin),余弦(cos)和正切(tan),余切(cot)以及正割(sec),余割(csc)都叫做角A的锐角三角函数。 正弦(sin)等于对边比斜边;sinA=a/c 余弦(cos)等于邻边比斜边;cosA=b/c 正切(tan)等于对边比邻边;tanA=a/b 余切(cot)等于邻边比对边;cotA=b/a 正割(sec)等于斜边比邻边;secA=c/b 余割(csc)等于斜边比对边。cscA=c/a 互余角的三角函数间的关系 sin(90°-α)=cosα,cos(90°-α)=sinα, tan(90°-α)=cotα,cot(90°-α)=tanα. 平方关系:

sin^2(α)+cos^2(α)=1 tan^2(α)+1=sec^2(α) cot^2(α)+1=csc^2(α) 积的关系: sinα=tanα·cosα cosα=cotα·sinα tanα=sinα·secα cotα=cosα·cscα secα=tanα·cscα cscα=secα·cotα 倒数关系: tanα·cotα=1

sinα·cscα=1 cosα·secα=1 特殊的三角函数值 0°30°45°60°90° 01/2√2/2√3/21←sinA 1√3/2√2/21/20←cosA 0√3/31√3None←tanA None√31√3/30←cotA 诱导公式 sin(-α)=-sinαcos(-α)=cosα tan(-α)=-tanαcot(-α)=-cotα

sin(π/2-α)=cosαcos(π/2-α)=sinαtan(π/2-α)=cotαcot(π/2-α)=tanαsin(π/2+α)=cosαcos(π/2+α)=-sinαtan(π/2+α)=-cotαcot(π/2+α)=-tanαsin(π-α)=sinαcos(π-α)=-cosαtan(π-α)=-tanαcot(π-α)=-cotα

三角函数的定义学案

学习目标:理解任意角的三角函数的定义,了解终边相同的角的同一三角函数值相等,掌握三角函数(正弦、余弦、正切)的定义域,会运用任意角三角函数的定义求相关角的三角函数值。 课前预习 阅读课本P14—P17,填充下列空格 1.三角函数的定义(如图所示) 设α是一个任意大小的角,α的终边上任意一点P 的坐标是()y x ,,它与原点的距离是r (=r ),如上图所示,那么 ①比值 叫做α的正弦,记作 ,即 ; ②比值 叫做α的余弦,记作 ,即 ; ③比值 叫做α的正切,记作 ,即 ; ④比值 叫做α的余切,记作 ,即 ; ⑤比值 叫做α的正割,记作 ,即 ; ⑥比值 叫做α的余割,记作 ,即 。 2.三角函数的定义域 3.三角函数在各象限的符号 合作探究展示 角的终边 x y 0 αsin x y 0 αcos x y α tan

探究一 .已知角α的终边经过点P(4,-3),求sin α、cos α、tan α的值; 变式一 已知角α的终边经过点P(4a,-3a)(a ≠0),求2sin α+cos α的值; 探究二 求下列各角的六个三角函数值:⑴0; ⑵π; ⑶2 3π。 求 43π和56 π角的正弦、余弦和正切值. 引申 填表:

探究三 确定下 列各三角函数值的符号: ⑴516cos π; ⑵?? ? ??-34sin π; ⑶21556tan ' 已知点p (tan tan ,cos αα )在第四象限,则角α 在第 象限 当堂练习 (一)选择题 1、已知角α的终边过点P (-1,2),cos α的值为 ( ) A .- 55 B .- 5 C .552 D .2 5 2、α是第二象限角,P (x , 5 ) 为其终边上一点,且cos α= 4 2 x ,则sin α的值为 ( ) A . 410 B .46 C .4 2 D .-410 3.若0sin <α且0tan >α,则α是( ) A.第一象限的角 B.第二象限的角 C.第三象限的角 D.第四象限的角 4.设角θ终边上一点()()06,8<-a a a P ,则ααcos sin 2+的值为( ) A. 52 B.52或52- C.52 - D.与a 无关 二.填空题

锐角三角函数的认识

星火教育一对一辅导教案 学生姓名性别年级9年级学科数学 授课教师李碧瑶上课时间年月日第()次课 共()次课 课时:课时 教学课题锐角三角函数的认识 教学目标1.掌握锐角三角函数(sin A,cos A,tan A)的定义; 2.记牢30°、45°、60°角的三角函数值; 3.能够运用三角函数表示直角三角形中两边的比 4. 运用三角函数的关系化简或求值。 教学重点与难点1.理解正切、正弦和余弦的意义,并用它来表示两边的比. 2.添加辅助线解直角三角形 课后作业详见教案 提交时间 2014 年 12 月 12 日学科组长检查签名:

( 注意咯,下面可是黄金部分!) 知识点1 正切 定义:在Rt △ABC 中,锐角∠A 的对边与邻边的比叫做∠A 的正切.. ,记作tan A ,即的邻边 的对边 A A A ∠∠=tan . ①tan A 是一个完整的符号,它表示∠A 的正切,记号里习惯省去角的符号“∠”; ②tan A 没有单位,它表示一个比值,其大小只与锐角A 的大小有关,与所在直角三角形的大小无关; ③tan A 不表示“tan ”乘以“A ”; ④任意锐角A ,都有tanA>0,且锐角的正切值随着角的度数的增大而增大; ⑤tan A 的值越大,梯子越陡,∠A 越大; ∠A 越大,梯子越陡,tan A 的值越大. 【例1】在Rt △ABC 中,∠C=90o,AC=5,AB=13,求tanA 和tanB. 【变式】在Rt △ABC 中,∠C=90o,BC=3,tanA=12 5 ,求AC. ★坡度(或坡比) 定义:通常把坡面的垂直高度h 和水平宽度l 的比叫做坡度(或坡比),用字母i 表示,即i =l h 坡度即为坡角α的正切值tan α,即i =tan α= l h (1)坡角与坡度是两个不同的概念,坡角是坡面与水平面的夹角,是个角度,单位是度. (2)坡度描述的是坡面的陡峭程度,当tan α的值越大时,坡度越大,坡面也就越陡. (3)坡度一般写成1:m 的形式(比例的前项为1),后项可以是小数. 锐角三角函数的认识 典例

任意角的三角函数教学设计

《任意角的三角函数》第一课时教学设计 会宁县第二中学数学教研组曹蕊 一、教学内容分析 本节课是三角函数这一章里最重要的一节课,它是本章的基础,主要是从通过问题引导学生自主探究任意角的三角函数的生成过程,从而很好理解任意角的三角函数的定义。在《课程标准》中:三角函数是基本初等函数,它是描述周期现象的重要数学模型,在数学和其他领域中具有重要的作用。《课程标准》还要求我们借助单位圆去理解任意角的三角函数(正弦、余弦、正切)的定义。二、学生情况分析 本课时研究的是任意角的三角函数,学生在初中阶段曾经研究过锐角三角函数,其研究范围是锐角;其研究方法是几何的,没有坐标系的参与;其研究目的是为解直角三角形服务。以上三点都是与本课时不同的,因此在教学过程中要发展学生的已有认知经验,发挥其正迁移。 三、教学目标 知识与技能目标:借助单位圆理解任意角的三角函数(正弦、余弦、正切)的定义;能根据任意角的三角函数的定义求出具体的角的各三角函数值;能根据定义探究出三角函数值在各个象限的符号。 方法与过程目标:在定义的学习及概念同化和精致的过程中培养学生类比、分析以及研究问题的能力。 情感态度与价值观: 在定义的学习过程中渗透数形结合的思想。 四、教学重、难点分析: 重点:理解任意角三角函数(正弦、余弦、正切)的定义。 难点:引导学生将任意角的三角函数的定义同化,帮助学生真正理解定义。 五、教学方法与策略: 教学中注意用新课程理念处理教材,采用学生自主探索、动手实践、合作交流、阅读自学,师生互动,教师发挥组织者、引导者、合作者的作用,引导学生主体参与、揭示本质、经历过程. 根据本节课内容、高一学生认知特点,本节课采用“启发探索、讲练结合”的方法组织教学. 六、教具、教学媒体准备: 为了加强学生对三角函数定义的理解,帮助学生克服在理解定义过程中可能遇到的障碍,本节课准备在计算机的支持下,利用几何画板动态地研究任意角与其终边和单位圆交点坐标的关系,构建有利于学生建立概念的“多元联系表示”的教学情境,使学生能够更好地数形结合地进行思维. 七、教学过程 (一)教学情景 1.复习锐角三角函数的定义 问题1:在初中,我们已经学过锐角三角函数.如图1(课件中)在直角△POM中,∠M是直角,那么根据锐角三角函数的定义,∠O的正弦、余弦和正切分别是什么?

5.1锐角三角函数的概念(2016年)

A B C D 图3 1. (2016 福建省龙岩市) 】.如图,若点A 的坐标为,则sin ∠1= . 答案: 】.考点锐角三角函数的定义;坐标与图形性质. 分析根据勾股定理,可得OA 的长,根据正弦是对边比斜边,可得答案. 解答解:如图,, 由勾股定理,得 OA= =2. sin ∠1= =, 故答案为: . 20160927091226406001 5.1 锐角三角函数的概念 填空题 基础知识 2016/9/27 2. (2016 四川省乐山市) 】.如图3,在Rt ABC ?中,90BAC ∠=,AD BC ⊥于点D ,则下列结论不正确... 的是 ()A sin AD B AB = ()B sin AC B BC = ()C sin AD B AC = ()D sin CD B AC =

答案:】.答案:C 考点:考查正弦函数的概念。 解析:由正弦函数的定义,知:A、B正确,又∠CAD=∠B, 所以,sin sin CD B CAD AC =∠=,D也正确,故不正确的是C。20160925143801781255 5.1 锐角三角函数的概念选择题双基简单应用2016/9/25 3. (2016 湖北省襄阳市) 】.如图,△ABC的顶点是正方形网格的格点,则sinA的值为() A. B. C. D. 答案:】. 考点勾股定理;锐角三角函数的定义. 分析直接根据题意构造直角三角形,进而利用勾股定理得出DC,AC的长,再利用锐角三角函数关系求出答案. 解答解:如图所示:连接DC, 由网格可得出∠CDA=90°, 则DC=,AC=, 故sinA===. 故选:B. 点评此题主要考查了勾股定理以及锐角三角函数关系,正确构造直角三角形是解题关键.

锐角三角函数教案

第一章 直角三角形的边角关系 1.1 锐角三角函数(2) 一、知识点 1. 认识锐角三角函数——正弦、余弦 2. 用sinA,cosA 表示直角三角形中直角边与斜边的比, 用正弦、余弦进行简单的计算. 二、教学目标 知识与技能 1. 能利用相似的直角三角形,探索并认识锐角三角函数——正弦、余弦,理解锐角的正弦与余弦和梯子倾斜程度的关系. 2. 能够用sinA,cosA 表示直角三角形中直角边与斜边的比,能够用正弦、余弦进行简单的计算. 过程与方法 1. 经历类比、猜想等过程.发展合情推理能力,能有条理地、清晰地阐述自己的观点. 2、体会解决问题的策略的多样性,发展实践能力和创新精神. 情感态度与价值观 1. 积极参与数学活动,对数学产生好奇心和求知欲,学有用的数学. 2、形成实事求是的态度以及交流分享的习惯. 三、重点与难点 重点:理解正弦、余弦的数学定义,感受数学与生活的联系. 难点:体会正弦、余弦的数学意义,并用它来解决生活中的实际问题. 四、复习引入 设计意图:以练代讲,让学生在练习中回顾正切的含义,避免死记硬背带来的负面作用(大脑负担重,而不会实际运用),测量旗杆高度的问题引发学生的疑问,激起学生的探究欲望. 五、探究新知 探究活动1(出示幻灯片4):如图,请思考: (1)Rt △AB 1C 1和Rt △AB 2C 2的关系是 ; (2) 的关系是和2 2 2111AB C B AB C B ; (3)如果改变B 2在斜边上的位置,则 的关系是和2 2 2111AB C B AB C B ; 思考:从上面的问题可以看出:当直角三角形的一个锐角的大小已确定时,它的对边与斜边的比值__________,根据是______________________________________. B 1 B 2 A C 1 C 2

三角函数的概念学案

三角函数的概念学案 本资料为woRD文档,请点击下载地址下载全文下载地址学案41 三角函数的概念、弧度制 一、课前准备: 【自主梳理】 .任意角 (1)角的概念的推广: (2)终边相同的角: 2.弧度制: , 弧度与角度的换算: , , . 3.弧长公式: , 扇形的面积公式: . 4.任意角的三角函数

(1)任意角的三角函数定义 , , , (2)三角函数在各象限内符号口诀是 . 5.三角函数线 【自我检测】 . 度. 2.是第 象限角. 3.在上与终边相同的角是 . 4.角的终边过点,则 . 5.已知扇形的周长是6,面积是2,则扇形的圆心角的弧度数是 . 6.若且则角是第 象限角. 二、课堂活动:

【例1】填空题: (1)若则为第 象限角. (2)已知是第三象限角,则是第 象限角. (3)角的终边与单位圆(圆心在原点,半径为的圆)交于第二象限的点,则 . (4)函数的值域为_____ _________. 【例2】(1)已知角的终边经过点且,求的值; (2)为第二象限角,为其终边上一点,且求的值. 【例3】已知一扇形的中心角是,所在圆的半径是. (1)若求扇形的弧长及该弧所在的弓形面积; (2)若扇形的周长是一定值,当为多少弧度时,该扇形有最大面积. 课堂小结 三、课后作业 .角是第四象限角,则是第 象限角. 2.若,则角的终边在第 象限.

3.已知角的终边上一点,则 . 4.已知圆的周长为,是圆上两点,弧长为,则 弧度. 5.若角的终边上有一点则的值为 . 6.已知点落在角的终边上,且,则的值为 . 7.有下列各式:①②③④,其中为负值的序号为 . 8.在平面直角坐标系中,以轴为始边作锐角,它们的终边分别与单位圆相交于两点,已知两点的横坐标分别为,则 . 9.若一扇形的周长为,则当扇形的圆心角等于多少弧度时,这个扇形的面积最大?最大值是多少? 的正弦、余弦和正切值. 四、纠错分析 错题卡 题号 错题原因分析 学案41

第1节 锐角三角函数的概念

第1节 锐角三角函数的概 念 ※知识要点 1.正切的概念 如图,在Rt △ABC 中,我们把锐角A 的 与 的 叫做角A 的正切, 记作: = = . 注意:(1)表示锐角三角函数时,用顶点字母表示角时,角的符号“∠”可以 ,其他情况,不可 ; (2)正切的实质是 , 大小, 单位; (3)正切的几何意义是反映斜边 的大小; (4)正切的大小只与 有关,相等的两个角的正切值 . 2.与坡有关的概念 (1)坡的构成: 、 、 ; (2)坡角: 与 所成的角; (3)坡度:又称 ,是斜坡上两点间 与水平距离的比,常用 表示, 即坡角的 值. 注:坡角越大,坡度 ,坡面 . 3.正弦与余弦的概念 (1)正弦:如上图,在Rt △ABC 中,我们把锐角A 的 与 的 叫做角A 的正弦,记作: = = . (2)余弦:如上图,在Rt △ABC 中,我们把锐角A 的 与 的 叫做角A 的余弦,记作: = = . 注:互余关系:若A +B =90°,则有下列关系成立: ※题型讲练 【例1】如图,在△ABC 中,∠C =90°,AB =13,AC =5, 求tanB 和tan ∠BCD 的值. 变式训练1: 1.如图,E 是BC 上一点,∠B =∠C =90°,连接AE 、DE 且 AE ⊥DE ,若tanA =3 4 . (1)求tanD ; (2)若BC =AE =10,求DC 的长. 【例2】如图,一段河坝的横断面为梯形ABCD ,根据图中的数据,回答下列问题(单位:m ): (1)求坡面AB 的坡度; (2)求出坝底宽AD . 变式训练2: 1.如图是拦水坝的横断面,坡AB 长65米,坡度为1∶2,另一侧堤坡DE 长8米. (1)求坡AB 的水平距离AC 的长; (2)求堤坡DE 的坡度. 【例3】如图,Rt △ABC 中,斜边BC 上的高AD =4,cosB =45 . (1)求sinB 和tanB 的值; (2)求AC 和BC 的长度. 变式训练3: 1.在△ABC 中,∠C =90°,若tanA =2,AC =4,求cosB 、 sinB 、sinA 、cosA 、tanB 的值并思考它们之间的关系. 【例4】如图,△ABC 中,AC =12cm ,AB =16cm ,sinA =1 3 . (1)求AB 边上的高CD ; (2)求△ABC 的面积S ; (3)求tanB . ※课后练习 1.△ABC 中,∠C =90°,若BC =4,AB =5,则tanB =( ) A .45 B .35 C .34 D .43 2.Rt △ABC 中,∠C =90°,若sinA =3 5 ,则cosB 的值是( ) A .45 B .35 C .34 D .43 3.如图是教学用的直角三角板,边AC =30 cm ,∠C =90°, tan ∠BAC =3 3 ,则边BC 的长为( ) A .303cm B .203cm C .103cm D .53cm 4.如图所示,河堤横断面迎水坡AB 的坡比是1:3,堤高BC =5 m ,则坡面AB 的长度是( ) A .10 m B .103m C .15 m D .53m 5.如图,在下列网格中,小正方形的边长均为1,点A ,B ,O 都在格点上,则∠AOB 的正弦值是( ) A . 31010 B .12 C .13 D .1010 6.在Rt △ABC 中,∠C =90°,AB =10,sinA =25,则BC 的长 为 ,tanA = . 7.如图,在Rt △ABC 中,∠ACB =90°,CD ⊥AB ,垂足为D .若AC =5,BC =2,则sin ∠ACD = . 8.如图,是拦水坝的横断面,斜坡AB =125米,BD =10米,AE =38米,若斜面AB 坡度为1∶2,则坡DE 的坡度为 . 9.在Rt △ABC 中,∠C =90°,AB =2BC ,现给出下列结论: ①sinA =32; ②cosB =12; ③tanA =3 3 ; ④tanB = 3 其中正确的是 .(填序号) 10.已知Rt △ABC 中,∠C =90°,BC =12,tanA =3 4 . 求AC 、AB 和cosB . 11.如图,在矩形ABCD 中,点E 在AB 边上,沿CE 折叠矩形ABCD ,使点B 落在AD 边上的点F 处,若AB =4,BC =5,求tan ∠AFE 和sin ∠BCE 的值. 12.如图是一个大坝的横断面,它是一个梯形ABCD ,其中坝顶AB =3米,经测量背水坡AD =20米,坝高10米,迎水坡BC 的坡度i =1:0.6,求坡AD 的坡度和坝底宽CD . 13.已知:如图,△ABC 中,AB =9,BC =6,△ABC 的面积 第3题图 第5题图 第4题图 第8题图 第7题图

理解锐角三角函数的定义

理解锐角三角函数的定义 1.理解锐角三角函数的定义、性质及应用,特殊角三角函数值的求法,运用锐角三角函数解决与直角三角形有关的实际问题.题型有选择题、填空题、解答题,多以中、低档题出现; 2.命题的热点为根据题中给出的信息构建图形,建立数学模型,然后用解直角三角形的知识解决问题. 知识网络 考点一、锐角三角函数的概念 如图所示,在Rt△ABC中,∠C=90°,∠A所对的边BC记为a,叫做∠A的对边,也叫做∠B的邻边,∠B所对的边AC记为b,叫做∠B的对边,也是∠A的邻边,直角C所对的边AB记为c,叫做斜边. 锐角A的对边与斜边的比叫做∠A的正弦,记作sinA,即;锐角A的邻边与斜边的比叫做∠A的余弦,记作cosA,即;锐角A的对边与邻边的比叫做∠A的正切,记作tanA,即. 同理;;.要点诠释: (1)正弦、余弦、正切函数是在直角三角形中定义的,反映了直角三角形边与角的关系, 是两条线段的比值.角的度数确定时,其比值不变,角的度数变化时,比值也随之变化. (2)sinA,cosA,tanA分别是一个完整的数学符号,是一个整体,不能写成 , ,不能理解成sin与∠A,cos与∠A,tan与∠A的乘积.书写时习惯上省略∠A的角的记号“∠”,但对三个大写字母表示成的角(如∠AEF),其正切应写成“tan∠AEF”,不能写成“tanAEF”;另外,、、常写成、、., (3)任何一个锐角都有相应的锐角三角函数值,不因这个角不在某个三角形中而不存在. (4)由锐角三角函数的定义知: 当角度在0°<∠A<90°之间变化时,,,tanA>0.考点二、特殊角的三角函数值 (1)通过该表可以方便地知道30°、45°、60°角的各三角函数值,它的另一个应用就是:如果知道了一个锐角的三角函数值,就可以求出这个锐角的度数,例如:若 则锐角.,

【2019A新教材高中数学必修第一册】5.2.1 三角函数的概念 导学案

5.2.1 三角函数的概念 1.借助单位圆理解任意角三角函数的定义; 2.根据定义认识函数值的符号。理解诱导公式一; 3.能初步运用定义分析和解决与三角函数值有关的一些简单问题。 1.教学重点:任意角的三角函数(正弦函数、余弦函数、正切函数)的定义; 2.教学难点:任意角的三角函数概念的建构过程,解决与三角函数值有关的一些简单问题。 一、设角, 是一个任意角,R ∈αα它的终边与单位圆交于点),(P y x 。 那么(1) 的正弦函数。叫做α记作 ,;sin α=y 即 (2) 的余弦函数。叫做α记作 ,;cos α=x 即 (3) 的正切。叫做α记作 ;tan α=x y 即 )0(tan ≠=x x y α是 以角为自变量,以单位圆上点的纵坐标与横坐标的比值为函数值的函数,称为 (tangent function)。 二、三角函数的定义域。 三角函数 定义域 αsin =y αcos =y αtan =y 三、诱导公式 =+)2sin(παk ;=+)2(cos παk ; =+)2(tan παk 。Z k ∈ 一、探索新知 探究一.角α的始边在x 轴非负半轴,终边与单位圆交于点P 。当πα=时,点P 的坐标是什么?当

322ππα或= 时,点P 的坐标又是什么?它们唯一确定吗? 探究二 :一般地,任意给定一个角α,它的终边OP 与单位圆交点P 的坐标能唯一确定吗? 1.任意角的三角函数定义 设角, 是一个任意角,R ∈αα它的终边与单位圆交于点),(P y x 。 那么(1) 的正弦函数。叫做α记作 ,;sin α=y 即 (2) 的余弦函数。 叫做α记作 ,;cos α=x 即 (3) 的正切。叫做α记作 ;tan α=x y 即 )0(tan ≠=x x y α是 以角为自变量,以单位圆上点的纵坐标与横坐标的比值为函数值的函数,称为 (tangent function)。 正弦函数,余弦函数,正切函数都是以角为自变量,以单位圆上点的坐标或坐标的比值为函数值的函数,我们将他们称为三角函数. 通常将它们记为:正弦函数 R x x y ∈=,sin 余弦函数 R x x y ∈=,cos 正切函数 )(2,tan Z k k x x y ∈+≠=ππ 探究三:在初中我们学了锐角三角函数,知道它们都是以锐角为自变量。以比值为函数值的函数,设)2 ,0(π ∈x ,把按锐角三角函数定义求得的锐角x 的正弦记为1z ,并把按本节三角函数定义求得的 x 的正弦记为1y 。1z 与1y 相等吗?对于余弦、正切也有相同的结论吗?

8.锐角三角函数的定义

8.锐角三角函数的定义 (20070911190543578657)第1题. (2007甘肃陇南非课改,3分) 如图,P 是∠α的边OA 上一点, 且点P 的坐标为(3,4), 则sin α= ( ) A . 35 B . 4 5 C . 34 D . 43 答案:B (20070911190544421885)第2题. (2007福建厦门课改,4分)已知在Rt ABC △中,90C ∠= ,直角边AC 是直角边BC 的2倍,则sin A ∠的值是 . (2007091119054531242)第3题. (2007甘肃兰州课改,4分)把Rt ABC △各边的长度都扩大3倍得Rt A B C '''△,那么锐角A ,A '的余弦值的关系为( ) A.cos cos A A '= B.cos 3cos A A '= C.3cos cos A A '= D.不能确定 答案:A (20070911190546140878)第4题. (2007甘肃兰州课改,4分)下列函数中,自变量x 的取值范围是2x >的函数是( ) A.y = B.y = C.y = D.y = 答案:C (20070911190546843991)第5题. (2007广西河池课改,2分)已知在Rt ABC △中,∠C 为直角,AC = 4cm ,BC = 3cm ,sin A = . 答案:5 3 (20070911190547625356)第6题. (2007海南课改,2分)在Rt ABC △中, 90=∠C ,如果2=AB ,1=BC ,那么B sin 的值是( ) A . 2 1 B .23 C .33 D .3 答案:B (20070911190548859809)第7题. (2007山西太原课改,3分)在正方形网格中,α∠的位置如图所示,则sin α的值为( ) α

任意角三角函数的概念教学设计

“任意角三角函数的概念”教学设计 陶维林 (江苏南京师范大学附属中学,210003) 一.内容和内容解析 三角函数是一个重要的基本初等函数,它是描述周期现象的重要数学模型.它的基础主要是几何中的相似形和圆,研究方法主要是代数中的图象分析和式子变形,三角函数的研究已经初步把几何与代数联系起来.它在物理学、天文学、测量学等学科中都有重要的应用,它是解决实际问题的重要工具,它是学习数学中其他学科的基础. 角的概念已经由锐角扩展到0°~360°内的角,再扩充到任意角,相应地,锐角三角函数概念也必须有所扩充.任意角三角函数概念的出现是角的概念扩充的必然结果.比较锐角三角函数与任意角三角函数这两个概念,共同点是,它们都是“比值”,不同点是锐角三角函数是“线段长度的比值”,而任意角三角函数是直角坐标系中“坐标与长度的比值,或者是坐标的比值”.正是由于“比值”这一与在角的终边上所取点的位置无关的特点,因此,可以用角的终边与单位圆的交点的坐标(或坐标的比值)来表示任意角的三角函数,这是概念的核心.这样定义,不仅简化了任意角三角函数的表示,也为后续研究它的性质带来了方便. 从锐角三角函数到任意角三角函数类似于从自然数到整数扩充的过程,产生了“符号问题”.因此,学习任意角三角函数可以与锐角三角函数相类比,借助锐角三角函数的概念建立起任意角三角函数的概念. 任意角三角函数概念的重点是任意角的正弦、余弦、正切的定义.它们是本节,乃至本章的基本概念,是学习其他与三角函数有关内容的基础,具有根本的重要的作用.解决这一重点的关键,是学会用直角坐标系中,角的终边上的点的坐标来表示三角函数.因为正切函数并不独立,最主要的是正弦函数与余弦函数. 任意角三角函数自然具有函数的一切特征,有它的定义域,对应法则以及值域.任意角三角函数的定义域是实数集(或它的子集),这是因为,在建立弧度制以后,角的集合与 实数集合间建立了一一对应关系,从这个意义上说,“角是实数”,三角函数是定义在实数集上的函数.各种不同的三角函数定义了不同的对应法则,因而可能有不同的定义域与值域.任意角三角函数概念是核心概念,它是解决一切三角函数问题的基点.无论是研究三角函数在各象限中的符号、特殊角的三角函数值,还是同角三角函数间的关系,以及三角函数的性质,等等,都具有基本的重要的意义. 在建立任意角三角函数这个定义的过程中,学生可以感受到数与形结合,以及类比、运动、变化、对应等数学思想方法.

锐角三角函数知识点及试题(含答案).

锐角三角函数 一.知识框架 二.知识概念 1.Rt △ABC 中 (1∠A 的对边与斜边的比值是∠A 的正弦,记作sinA = ∠A 的对边 斜边 (2∠A 的邻边与斜边的比值是∠A 的余弦,记作cosA = ∠A 的邻边斜边 (3∠A 的对边与邻边的比值是∠A 的正切,记作tanA = ∠A 的对边

∠A 的邻边 (4∠A 的邻边与对边的比值是∠A 的余切,记作cota = ∠A 的邻边∠A 的对边 2.特殊值的三角函数: 锐角三角函数(1 基础扫描 1. 求出下图中sinD ,sinE 的值. 2.把Rt △ABC 各边的长度都扩大2倍得Rt △A ′B ′ C ′,那么锐角A 、A ′的正弦值的关系为( . A . sinA =sinA ′ B . sinA =2sinA ′ C . 2sinA =sinA ′ D . 不能确定 3.在Rt △ABC 中,∠C=90°,若AB =5,AC =4,则sinB 的值是( A . 35

B . 45 C . 34 D . 4 3 4. 如图,△ABC 中,AB=25,BC=7,CA=24.求sinA 的值. 25 24 7C B A 5. 计算:sin30°·sin 60°+sin45°. 能力拓展 6. 如图,B 是线段AC 的中点,过点C 的直线l 与AC 成60°的角,在直线上取一点P ,连接AP 、PB ,使sin ∠APB=1 2,则满足条件的点P 的个数是( A 1个 B 2个 C 3个

D 不存在 7. 如图,△ABC 中,∠A 是锐角,求证:1 sin 2 ABC S AB AC A ?= ?? 8.等腰△ABC 中,AB=AC=5,BC=6,求sinA 、sinB . l C B A (第7题图 85 F E D 创新学习 9. 如图,△ABC的顶点都是正方形网格中的格点,则sin∠BAC等于( A. B C.

完整word版,三角函数教学设计

4.1、任意角的正弦函数、余弦函数的定义 一、教学内容分析 直角三角形简单朴素的边角关系,以直角坐标系为工具进行自然地推广而得到简明的任意角的三角函数定义,紧紧扣住三角函数定义这个宝贵的源泉,自然地导出三角函数线、定义域、符号判断、同角三角函数关系、多组诱导公式、图象和性质。三角函数定义必然是学好全章内容的关键,如果学生掌握不好,将直接影响到后续内容的学习,由三角函数定义的基础性和应用的广泛性决定了本节教材的重点就是定义本身. 二、学生学习情况分析 在初中学生学习过锐角三角函数。因此本课的内容对于学生来说,有比较厚实的基础,新课的引入会比较容易和顺畅。学生要面对的新的学习问题是,角的概念推广了,原先学生所熟悉的锐角三角函数的定义是否也可以推广到任意角呢?通过这个问题,让学生体会到新知识的发生是可能的,自然的。 三、设计思想 教学中注意用新课程理念处理教材,采用学生自主探索、动手实践、合作交流、阅读自学,师生互动,教师发挥组织者、引导者、合作者的作用,引导学生主体参与、揭示本质、经历过程. 根据本节课内容、高一学生认知特点,本节课采用“启发探索、讲练结合”的方法组织教学. 四、教学目标 1.掌握任意角的正弦、余弦的定义(包括这二种三角函数的定义域和函数值在各象限的符号); 2、理解任意角的三角函数不同的定义方法;掌握并能初步运用公式一;树立映射观点,正确理解三角函数是以实数为自变量的函数. 3、通过单位圆和角的终边,探讨任意角的三角函数值的求法,最终得到任意角三角函数的定义.根据角终边所在位置不同,分别探讨各三角函数的定义域以及这三种函数的值在各象限的符号.借助有向线段进一步认识三角函数. 4、通过任意三角函数的定义,认识锐角三角函数是任意三角函数的一种特例,加深特殊与一般关系的理解。 5、通过三角函数的几何表示,使学生进一步加深对数形结合思想的理解,拓展思维空间。通过学生积极参与知识的“发现”与“形成”的过程,培养合情猜测的能力,从中感悟数学概念的严谨性与科学性。

高中数学人教版必修4任意角的三角函数教学设计

高中数学人教版必修4任意角的三角函数教学设计 一、教学内容解析 这是一节关于任意角的三角函数的概念课。 三角函数是高中范围内即指数函数、对数函数和幂函数之后的最后学习的函数,是函数的一个下位概念,与指对数函数、幂函数属于同一抽象(概括)层次。它是一种重要的基本初等函数,是解决实际问题的重要工具,也是学习数学中其他知识内容的基础。 在初中,学生已学过锐角三角函数,知道直角三角形中锐角三角函数等于相应边长的比值。在此基础上,随着角的概念的推广,引入弧度制,相应地将锐角三角函数推广为任意角的三角函数,此时它与三角形已经没有什么关系了。任意角的三角函数是研究一个实数集(角的弧度数构成的集合)到另一个实数集(角的终边与单位圆交点的坐标或其比值构成的集合)的对应关系。认识它需要借助单位圆、角的终边以及两者的交点这些几何图形的直观帮助,这里体现了数形结合的思想,由锐角三角函数到坐标表示的锐角三角函数,再到单位圆上的点的坐标表示的锐角三角函数,直至得到任意角的三角函数的定义,体现了合情推理的思想方法。本节课将围绕任意角三角函数的概念展开,任意角三角函数的概念是本节课的重点,能够利用单位圆认识这个概念是解决教学重点的关键 一、教学目标设置 1、借助终边上一点的坐标理解任意角三角函数的定义: (1)能利用直角坐标系中角的终边上一点的坐标表示锐角三角

函数; (2)能利用直角坐标系中角的终边上一点的坐标表示任意角的三角函数; 2、借助单位圆理解任意角三角函数的定义: (3)能利用直角坐标系中角的终边与单位圆交点的坐标表示锐角三角函数; (4)能利用直角坐标系中角的终边与单位圆交点的坐标表示任意角的三角函数; 3、知道三角函数是研究一个实数集(角的弧度数构成的集合)到另一个实数集(角的终边与单位圆交点的坐标或其比值构成的集合)的对应关系,正弦、余弦和正切都是以角为自变量,以单位圆上点的坐标或坐标的比值为函数值的函数。 4、在借助单位圆认识任意角三角函数概念的过程中,体会数学结合思想,并利用这一思想解决有关定义应用的问题。 三、学生学情分析 1、学生在利用终边上一点的坐标表示锐角三角函数时可能存在障碍,因为之前掌握的是用直角三角形的边长的比值来表示的,要克服这个困难,关键是引导学生联系之前新学的内容,怎样把角放在坐标系内,怎样做出三角形,帮助学生建立终边上点的坐标的比值与直角三角形有过边长的比值的联系。 2、学生在如何使终边上一点的坐标表示锐角三角函数的表达式变得更简洁的这个节点处,联想不到使用单位圆,因为以前没有接触

锐角三角函数定义

一锐角三角函数定义(2011.1.24) 学习要求: 理解一个锐角的正弦、余弦、正切的定义.能依据锐角三角函数的定义,求给定锐角的三角函数值. 一、填空题 1.如图所示,B 、B ′是∠MAN 的AN 边上的任意两点,BC ⊥AM 于C 点,B ′C ′⊥AM 于C ′点,则△B 'AC ′∽______,从而 AC B A B C C B ) ()(= '='',又可得 ① ='' 'B A C B ______,即在Rt △ABC 中(∠C =90°),当∠A 确定时,它的______与______的比是一个___值; ②='' B A C A ______,即在Rt △ABC 中(∠C =90°),当∠A 确定时,它的______与______的比也是一个______; ③=' ' 'C A C B ______,即在Rt △ABC 中(∠C =90°),当∠A 确定时,它的______与______的比还是一个_____. 第1题图 第2题图 2.如图所示,在Rt △ABC 中,∠C =90°. ①斜边)(sin =A =______, 斜边)(sin =B =______; ②斜边 ) (cos =A =______, 斜边) ( cos = B =______; ③的邻边 A A ∠= ) (tan =______, ) (tan 的对边 B B ∠==______. 3.因为对于锐角α 的每一个确定的值,sin α 、cos α 、tan α 分别都有____________与它______,所以 sin α 、cos α 、tan α 都是____________.又称为α 的____________. 4.在Rt △ABC 中,∠C =90°,若a =9,b =12,则c =______, sin A =______,cos A =______,tan A =______,sin B =______,cos B =______,tan B =______. 5.在Rt △ABC 中,∠C =90°,若a =1,b =3,则c =______, sin A =______,cos A =______,tan A =______,sin B =______,cos B =______,tan B =______. 6.在Rt △ABC 中,∠C =90°,若∠A =30°,则∠B =______, sin A =______,cos A =______,tan A =______,sin B =______,cos B =______,tan B =______. 7.已知:如图,Rt △TNM 中,∠TMN =90°,MR ⊥TN 于R 点,TN =4,MN =3. 求:sin ∠TMR 、cos ∠TMR 、tan ∠TMR .

三角函数的定义教学设计

课题:三角函数的定义 目标要求: 1. 理解任意角的概念、弧度的意义,能正确地进行弧度与角度的换算. 2. 掌握任意角的正弦、余弦、正切的定义. 知识原理 1. 与角α终边相同的角{α|β=α+2kπ,k ∈Z } 2. 终边在坐标轴上的角:{β|β= 2 πk ,k ∈Z } 3. 象限角:{β| 2πk <β<2)1(π+k ,k ∈Z },当k 被4除的余数为r 时,集合表示第r +1象限的角(r =0,1,2,3,). 4. 弧度制:圆周上等于半径的弧所对的圆心角称为1弧度的角. 5. 弧度制与角度制的换算:弧度=180o . 6. 若点P (x ,y )是角的终边与单位圆x 2+y 2=1的交点,则sinα=y ,cosα=y ,tanα= x y .等价地,若点P (x ,y ) 是角α终边上任意一点,r 是则sinα=r y ,cosα=r x ,点P 到原点的距离,tanα=x y . 7. 三角函数的符号: 例题选讲 例1 如图,点P 是半径为1的砂轮边缘上的一个质点,它从初始位置A 点出发,按照逆时针方向,以3πrad/s 的角速度作匀速圆周运动.求点P 的纵坐标y 关于时间t 的函数关系,并求它运动了4s 时的位置. 例2(1)角α的终边上一个点P (4t ,-3t )(t ≠0),求2sinα+cosα的 值. (2)已知角β的终边在直线y =3x 上,用三角函数定义求sinβ和tanβ的值. 例3 已知一扇形的中心角为α,所在圆的半径为R .

(1) 若α=60o ,R =10cm,求扇形的弧长及该弧所在的弓形面积; (2) 若扇形的周长是一定值C (C >0),当α为多少弧度时,该扇形有最大面 积? 例4 已知函数f (x )=2sin 2(4π+x )-3cos2x ,x ∈[4π,2 π]. (1)求f (x )的最大值与最小值 (2)若不等式| f (x )-m |<2在x ∈[ 4π,2π]上恒成立,求实数m 的取值范围. 巩固练习 一、选择题 1.对任意的锐角α,β下列不等关系中,正确的是( ) A .sin(α+β) >sinα+sinβ B .sin(α+β) >cosα+cosβ C .cos(α+β) <sinα+sinβ D .cos(α+β)<cosα+cosβ 2.已知α为第三象限角,则2 α所在的象限是( ) A .第一或第二象限B .第二或第三象限C .第一或第三象限D .第二或第四象限 3.若函数f (x )=sin x +2|sin x |( x ∈)的图象与直线y =k 有且仅有两个不同的交点,则k 的取值范围是( ) A .1≤k ≤3 B .1≤k <3 C .1<k ≤3 D .1<k <3 4.已知cosθtanθ<0,那么角θ是( ) A .第一或第二象限 B .第二或第三象限 C .第三或第四象限 D .第一或第四象限 二、填空题 5.已知集合A ={x |kπ+3π≤x≤kπ+2 π ,k ∈Z },B ={ x |4-x 2≥0},则A ∩B = 6.若sin x +cos x =k ,且sin 3x +cos 3x <0,则实数k 的取值范围为 三、解答题 7.设全集U =R . (1)解关于x 的不等式|x -1|+a -1 >0(a ∈R ); (2)记A 为(1)中不等式的解集,集合B ={x |sin(πx - 3π)+3cos(πx -3 π)=0},若A C U ∩B 中恰有三个元素,求a 的取值范围.

相关文档
最新文档