机械设计中常用结构

机械设计中常用结构
机械设计中常用结构

第4章常用机构

4.1 平面连杆机构

4.1.1 平面连杆机构的组成

我们将机构中所有构件都在一平面或相互平行的平面内运动的机构称为平面机构。

1、构件的自由度

如图4-1所示,一个在平面内自由运动的构件,有沿X轴移动,沿y轴移动或绕A点转动三种运动可能性。我们把构件作独立运动的可能性称为构件的“自由度”。所以,一个在平面自由运动的构件有三个自由度。可用如图4-1所示的三个独立的运动参数x、y、θ表示。

2、运动副和约束

平面机构中每个构件都不是自由构件,而是以一定的方式与其他构件组成动联接。这种使两构件直接接触并能产生一定运动的联接,称为运动副。两构件组成运动副后,就限制了两构件间的部分相对运动,运动副对于构件间相对运动的这种限制称为约束。机构就是由若干构件和若干运动副组合而成的,因此运动副也是组成机构的主要要素。

两构件组成的运动副,不外乎是通过点、线、面接触来实现的。根据组成运动副的两构件之间的接触形式,运动副可分为低副和高副。

(1)低副两构件以面接触形成的运动副称为低副。按它们之间的相对运动是转动还是移动,低副又可分为转动副和移动副。

①转动副组成运动副的两构件之间只能绕某一轴线作相对转动的运动副。通常转动副的具体结构形式是用铰链连接,即由圆柱销和销孔所构成的转动副,如图4-2(a)所示。

②移动副组成运动副的两构件只能作相对直线移动的运动副,如图4-2(b)所示。

由上述可知,平面机构中的低副引入了两个约束,

仅保留了构件的一个自由度。因转动副和移动副都是面接触,接触面压强低,称为低副。我们将由若干构件用低副连接组成的机构称为平面连杆机构,也称低副机构。由于低副是面接触,压强低,磨损量小,而且接触面是圆柱面和平面,制造简便,且易获得较高的制造精度。此外,这类机构容易实现转动、移动等基本的运动形式及转换,因而是在一般机械和仪器中应用广泛。平面连杆机构也有其缺点:低副中的间隙不易消除,引起运动误差,且不易精确地实现复杂的运动规律。

(2)高副两构件以点或线接触形成的运动副称为高副,如图4-3所示。这类运动副因为接触部位是点或线接触,接触部位压强高,故称为高副。

3、构件分类

机构中的构件可分为三类。

(1)机架它是机构中视作固定不动的构件,起支撑其他活动构件的作用。

(2)原动件它是机构中接受外部给定运动规律的活动构件。

(3)从动件它是机构中的随原动件运动的活动构件。

4.1.2平面机构的运动简图

为方便对机构进行分析,可以撇开机构匮与运动无关的因素(如构件的形状、组成构件的零件数目、运动副的具体结构等),用简单线条和符号表示构件和运动副,并按一定比例定出各运动副的位置,以简图表示出机构各构件间相对运动关系,这种简图为机构运动简图。它是表示机构运动特征的一种工程用图)

1、常用运动副的符号(如图4-4)

2、构件的表示法

不管构件形状如何,都用简单线条表示,带短线的线条表示机架,如图4-5(b)、(c)、(e)所示。

如图4-6(a)所示表示能组成两转动副的构件,图4-6(b)所示表示组成一个转动副和一个移动副的构件;

如图4-6(c)、(d)所示表示能组成三个转动副的构件。

3、绘制机构运动简图的方法

在绘制机构运动简图时,首先必须分析该机构的实

际构造和运动情况,分清机构中的主动件和从动件;然

后从主动件开始,顺着运动传递路线,仔细分析各构件

之间的相对运动情况;从而确定组成该机构的构件数、

运动副数及性质。并按一定的比例,用特定的符号,正

确绘制出机构运动简图。

下面以如图4-7所示颚式破碎机为例,说明绘制机

构运动简图的步骤。

(1)分析机构,确定构件的相对运动

如图4-7(a )所示颚式破碎机中,运动由皮带轮5输入,通过偏心轴2带动活动颚3及摇杆4运动,构件1为机架,起支撑作用。结构上,皮带轮5和偏心轴2可以看做一个构件,其作用是将外部输入的旋转运动转变成偏心2绕A 点旋转运动。活动颚板2工作时可绕偏心轴2的几何中心B 点相对转动,摇杆4在C 、D 两点分别与活动颚板3的机架通过铰链连接。

(2)确定所有运动副的类型和数目

从上述运动分析及图中可以看出,偏心轴为主动构件,活动颚板、摇杆为从动件,机架为固定构件。各构件间均用转动副(共4个铰链)连接。

(3)测量各运动副的相对位置尺寸

逐一测量出四个运动副中心A 与B 、B 与C 、C 与D 、D 与A 之间的和长度L AB 、L BC 、L CD 、L DA 。

(4)选定比例尺,用规定符号绘制运动简图

根据测量出的各运动副的位置尺寸,选择恰当的视图方向,选定合适的绘图比例,给出各运动副的位置,并用规定的符号和线条绘出各构件。

(5)标明机架、构件序号、原动件、绘图比例等得

到机构运动简图[如图4-7(b)]。

4.1.3平面机构的自由度

1、平面机构自由度的计算

平面机构自由度就是该机构所具有的独立运动数目。平面机构自由度与组成机构的构件数目、运动副的数目及运动副的性质有关。

在平面机构中,每个平面低副(转动副、移动副)引入两个约束,使构件失去两个自由度,保留一个自由度;而每个平面高副(齿轮副、凸轮副等)引入一个约束,使构件失去一个自由度,保留两个自由度。

如果一个平面机构中含含有N个活动构件(机架为参考坐标系,相对固定而不计),未用运动副联接之前,这些活动构件的自由度总数为3N。当各构件用运动副连接起来之后,由于运动副引入的约束使构件的自由度减

少。若机构中P

L 个低副和P

H

个高副。则所有运动副引

入的约束数为2P

L +P

H

。因此,自由度的计算可用活动

构件的自由度总数减去运动副引入的约束总数。

基机构的自由度用F表示,则有:

F=3N-(2P

L +P

H

)=3N-2P

L

-P

H

(4-1)

例4-1试计算图4-8所示四个平面机构的自由度

解图4-8(a)的自由度:图中除机架以外的活动构件数为2,转动副数为3,没有高副,由式(4-1)得:

F=3N-2P

L -P

H

=3×2-2×3-0=0

该机构自由度为0,不能运动。

图4-8(b)自由度:图中除机架以外的活动构件数为3,转动副数为4,没有高副,由式(4-1)得:

F=3N-2P

L -P

H

=3×3-2×4-0=1

该机构自由度为1,具有确定的相对运动。

图4-8(c)自由度:图中除机架以外的活动构件数为3,转动副数为5,没有高副,由式(4-1)得:

F=3N-2P

L -P

H

=3×3-2×5-0=-1

该机构自由度为-1,不能运动。

图4-8(d)自由度:图中除机架以外的活动构件数为4,转动副数为5,没有高副,由式(4-1)得:

F=3N-2P

L -P

H

=3×4-2×5-0=2

该机构自由度为2,原动件数为1,没有确定的相对运动(乱动)

例4-2试计算如图4-7(b)所示叶、颚式破碎机的机构自由度。

解图4-7(b)中,除机架以外的活动构件数为3,转动副数为4,没有高副,由式(4-1)得:

F=3N-2P

L -P

H

=3×3-2×4-0=1

该机构自由度为1,原动件数为1,具有确定的相对运动。

2、机构具有确定相对运动的条件

由以上分析和计算可知,如果机构的自由度等于或小于零,所有构件就不能运动,因此,就构不成机构(称为刚性桁架)。当机构自由度大于零时,如果机构自由等于原动件数,机构具有确定的相对运动;如果机构自由数大于原动件数,机构运动不确定。因此,机构具有确定的相对运动的充分必要条件:机构的自由度必须大于零,且原动件的数目必须等于机构自由度数,即:机构的原动件数=机构的自由度>0。

3、机构自由度计算中几种特殊情况的处理

(1)复合铰链

如图4-9(a)所示,A处的符号容易被误认为是一个转动副,若观察它的侧视图,如图4-9(b)所示,则可以看出构件1、2、3在A处构成了两个同轴的转动副。这种由三个或以上构件在同一处组成转动副,即为复合铰链。

在计算机构自由度时,复合铰链处的转动副数目应为该处汇交的构件数减1。

例4-3试计算如图4-10所示机构的自由度。解图4-10中除机架外有5个活动构件(4个杆件和1个滑块),A、B、C、D、E共4个简单铰链,应计2个铰链,故共

有铰链6个,1个移动副,即P

L =7,高副数P

H

=0。运

用式(4-1)计算机构自由度得:

F=3N-2P

L -P

H

=3×5-2×7-0=1

该机构有1个自由度,原动件数为1,该机构具有确定的相对运动。

(2)局部自由度

机构中某些构件所具有的局部运动,并不影响整个机构运动的自由度。

如图4-11(a)所示,构件3是滚子,它能绕C点作独立的运动,不论该滚子是否转动,转快或转慢,都不影响整个机构的运动。这种不影响整个机构运动的、局部的独立运动,称为局部自由度。

在计算机构自由度时,应将滚子3与杆2看成是固定在一起的一个构件,如图4-11(b)所示,不计滚子与杆2间的转动副。而滚子的作用仅仅是将B处的滑动磨擦变为滚动磨擦,减少功率损耗,降低磨损。

(3)虚约束

在机构中与其他约束重复而不起限制运动作用的约束称为虚约束。在计算机构自由度时,应当去除不计。

如图4-12所示为机车车轮联动机构。在此机构中AB 、CD 、EF 三个构件相互平行且长度相等:L AB =L CD =L EF ,L BC =L AD ,L CE =L DF ,按前述机构自由度的计算方法,此机构中N =4,P L =6、P H =0。机构自由度为:

F=3N -2P L -P H =3×4-2×6-0=0

这表明该机构不能运动,显然与实际情况不符。进一步分析可知,机构中的运动轨迹有重叠现象。因为如果去掉构件4(转动副E 、F 也不再存在)当原动件1转动时,构件3上E 点的轨迹是不变的。因此,构件4及转动副E 、F 是否存在对于整个机构的运动并无影响。也就是说,机构中加入构件4及转动副E 、F 后,虽然使机构增加了一个约束,但此约束并不起限制机构运动的作用,所以是虚约束。因此,在计算机构自由度时应除去构件4和转动副E 、F 。此时机构中N =3,PL =4、PH =0,则机构实际自由度为:

F=3N -2P L -P H =3×3-2×4-0=1

由此可知,当机构中存在虚约束时,其消防办法是将含有约束的构件及其组成的运动副去掉。

平面机构的虚约束常出现于下列情况中:

(1)被联接件上点的轨迹与机构上联接点的轨迹重

合时,这种联接将出现虚约束,如图4-12所示。

(2)机构运动时,如果两构件上两点间距离始终保持不变,将此两点用构件和运动副联接,则会带进虚约束,如图4-13所示的A、B两点。

(3)如果两个构件组成的移动副如图4-14(a)所示相互平行,或两个构件组成多个轴线重合的转动副时,如图4-14(b)所示,只需考虑其中一处,其余各处带进的约束均为虚约束。

(4)机构中对运动不起限制作用的对称部分,如图4-18所示齿轮系,中心轮1,通过三个齿轮2、2'、2"、驱动内齿轮、齿轮2'和齿轮2"中有两个齿轮对传递运动不起独立作用,从而引入了虚约束。

虚约束对机构运动虽然不起作用,但可以增加构件的刚性,增强传力能力,因而在机构中经常出现。

例4-4在如图4-16所示机构中,凸为主动件,试判断机构是否具有确定的运动。

解该机构中,表面上看起业有7个活动构件,实际上,3、4、5三个构件不存在相对运动,组成一个三解形构件,应看成一个构件,滚子2处为局部自由度,该处铰链要去掉,故对该机构计算机构自由度时,正确有活动件数为4个,转动副为4上,移支副为1个(存在1个虚约束),高副1个,所以其机构自由度计算为:

F=3N-2P

L -P

H

=3×4-2×5-0=1

该机构自由度和原动件数都为1,故机构具有良确定的相对运动。

4.1.4铰链四杆机构及其演化

1、铰链四杆机构的基本形式

铰链四杆机构是将四个构件用四个转动副连接组成的机构。如图4-17所示,构件4为固定构件,称为机加;构件1和构件3通过铰链与机架相连,称为连架杆,其中,能围绕与机架相连的铰链做整周连续转动的连架称为曲柄,只能围绕与机架相连的铰链在一定范围内摆动的连架称为摇杆;构件2与机架不直接相连,称为连杆。

铰链四杆机构有以下几种基本形式:

(1)曲柄摇杆机构

在铰链四杆机构中,若两个连架杆中有一个为曲柄,另一个为摇杆,就称为曲柄摇杆机构。一般曲柄为原动件,连杆摇杆为动件。如图4-7所示颚式破碎机,如图4-9(a)所示雷达天线摇摆机构,如图4-18(b)所示家用缝纫机踏板机构(摇杆为主动件)。

(2)双曲柄机构

在铰链四杆机构中,若两个连架杆都为曲柄,则称为双曲柄机构。如图4-19(a)所示震动筛的双曲柄机构可以将曲柄AB的匀角速转动变成曲柄CD的变角速转动。

在双曲柄机构中,用得最多的是平行双曲柄机构,

这种机构的对边两构件长度相等。如图4-19(b)所示工程车的平行双曲柄机构可保证载人升降台平稳升降。如图4-12所示火车轮驱机构,如图4-20所示反平行四边形机构等。

(3)双摇杆机构

铰链四杆机构中,若两连架杆均为摇杆,则称为双摇杆机构。

如图4-21(b)所示的鹤式起重机构,当AB杆摆动时,CD杆也作摆支,连杆CB未端的E点作近似水平直接运动,使之在吊起重物时,减少不必要的升降,降低了能耗。图4-21(a)为其机构运动简图。

2、铰链四杆机构的演化

工程实际应用中中,平面四杆机构多种多样,但在碚分是在铰链四杆机构的基础上演化而来的。了解四杆机构的演化方法,是分析和设计平面连杆机构的基础。

如图4-22(a)所示的曲柄摇杆机构中,1为曲柄,3为摇杆,C点为轨迹以D为圆心、杆长CD为半径的圆弧tt。今在机架4上制作一同样轨迹的圆弧槽tt,并将摇杆3做成弧圆形滑块置于槽中滑动,如图4-22(b)所示。这时,弧形滑块在圆弧中的运动完全等同于绕转动副D 转动的作用,圆弧槽tt的圆心即相当于摇杆3的摆动中心D,其半径相当于摇杆3的长度CD。又若再将圆弧槽tt的半径增加至无穷大,其圆心D移至无穷远处,则圆弧槽变成了直槽,置于其中的滑块3作往复运动,从而将转动副D演化为移动副,曲柄摇杆机构演化为含一个移动副的四杆机构,称为内柄滑块机构,如图4-22(c)所示。图中e为曲柄回转中心A于经过C点直槽中心线的距离,称为偏心距。当e≠0时称为偏置曲柄滑块机构;当e=0时称为对心曲柄滑块机构。内燃机、蒸汽机、往复式抽水机、空气压缩机及冲床等的主机构都采用了曲柄滑块机构。

如图4-23所示,内燃机活塞运动机构即为对心曲柄滑块机构。

如图4-24所示,曲柄滑块机构的基础上,取不同的构件作机架,则分别可得到曲柄滑块机构、曲柄导杆机

构、曲柄摇机构和定块机构。

曲柄滑块机构主要应有于压力机、内燃机、送料机构中;如图4-25(a)所示曲柄导杆机构常用于牛头刨床;如图4-25(b)所示摇块机构用于自动卸料机构;如

图4-25(c)所示定块机构用于手摇唧筒等。

在曲柄滑块机构中,若将其中转动副C或B演化为移动副,则得到含两个移动副的四杆机构。如图4-26所示为转动副C演化为移动副的过程,所得机构如图4-26(b)所示称为曲柄移动导机构,其中移动导杆3的位移S与主动件曲柄1的转角φ的正弦成正比,即S=asinφ,故此机构又称正弦机构。

4.1.5平面四杆机构的基本特性

1. 铰链四杆机构有曲柄的条件

如图4-27所示,杆AB 为曲柄,设l 1、l 2、l 3、l 4分别为AB 、BC 、CD 、AD 各杆长度。且设l 1<l 4,A 为整周回转副。

在△BCD 中

l 1+l 4<l 2+l 3 (4-2) 在△B 'C 'D 中

l 3≤(l 4-l 1)+l 2,即:l 1+l 3≤l 2+l 4 (4-3)

l 2≤(l 4-l 1)+l 3,即:l 1+l 3≤l 2+l 4 (4-4)

将式(4-2)~式(4-4)中任意两式相加可得:

l 1≤l 2,l 1≤l 3 ,l 1≤l 4。

所以,l 1为最短杆,且l 1与任意 一杆长度之和都小于其他两杆长度之和。

结论:铰链四杆机构有曲柄的条件是:

(1)最短杆与最长杆的长度之和应小于或等于其具有的几种基本形式:

(2)最短杆或其邻杆应为机架。

根据铰链四杆机构有曲柄的条件,我们可以判别出其具有的几种基本形式:

当铰链四杆机构满足构件长度和条件时,若:

(1)最短杆为连架杆时 为曲柄摇杆机构。

(2)最短杆为机架时 为双曲柄机构。

(3)最短杆为连杆时 为双曲柄机构。

当铰链四杆机构不满足构件长度和条件时,为双摇杆机构。

2、急回特性

如图4-28所示,当曲柄AB 为主动件作等速回转时,摇杆CD 为从动件变速摆动,曲柄AB 每回转一周,出现两次与连杆BC 共线的位置,这时摇杆CD 分别处在两个极限位置C 2D ,这时曲柄所在位置之间的夹角θ称为极位夹角....

。 当曲柄以角速度ω从AB 1到AB 2顺时针转过α1=180゜+θ时,摇杆2从C 1D 位置摆到C 2D 。所花时间为t 1,平均速度为ν1。当曲柄以ω从AB 2到AB 1转过α2=180゜-θ时,摇杆从C 2D 置摆回到C 1D 所花时间为t 2,平均速度ν2。由于α1>α1,所以t 1>t 2,ν1<ν2。

这说明,当曲柄等速回转时,摇杆来回摆动的速度不同,其返回的速度较大,机构的这种性质,称为急回特性。行程速比系数常用K 来表示。

机械结构设计的方法和基本要求

机械结构设计的方法和基本要求 摘要:随着现代机械制造业的快速发展,对机械产品质量也提出更高的要求。 从现行大多机械设备设计情况看,更注重以自动化、轻量化、精密型以及高效型 等为设计方向。但也有部分设备运行中在噪声、振动问题上较为严重,不仅影响 设备综合性能的发挥,也容易对操作人员带来一定的伤害。通过实践研究发现, 将动态设计方法引入其中,对提升机械结构设计水平可起到明显作用。 关键词:机械结构设计;方法;要求 引言 机械结构设计是在总体设计的基础上,根据所确定的原理方案,确定并绘出 具体的结构图,以体现所要求的功能。是将抽象的工作原理具体化为某类构件或 零部件,具体内容为在确定结构件的材料、形状、尺寸、公差、热处理方式和表 面状况的同时,还须考虑其加工工艺、强度、刚度、精度以及与其它零件相互之 间关系等问题。 1机械零件结构工艺性分析的重要性 日常生产中,在对机器零件进行设计时,要求其结构不仅具体满足使用条件,而且要求结构的工艺性能良好,即具有很强的可行性和经济性。只有满足机械结 构设计的工艺性,才能保障生产地顺利进行,还具有零件装载完整、成本消耗少 等优点,能在市场竞争中处于优势地位。因此机器零件的结构工艺性设计是进行 机械设计的关键,其涉及面广、综合性强,值得深入研究。 此外,重视对机械零件的结构工艺性进行分析,可以促进机械加工工艺过程 合理化,减少工作量,提高工作效率。具体来讲,应该做好以下几方面工作:1)认真分析机械零件的结构对机械零件(尤其是复杂零件)的结构进行分析时,首 先要通过对图纸的详细分析,弄清各零件在产品中的装配关系和作用,再对该零 件指数(包括形状、尺寸等)和性质(如粗糙度等)进行详细分析;2)认真分 析零件加工工艺性在对机械零件的结构进行了详细、认真分析的基础上,搞清楚 各形状和尺寸的设计基准,分析个表面工艺性,检查各加工面设计基准与定位基 准是否重合,避免基准链换算而增加计算工作量。 2.机械结构设计常见问题分析 2.1机械结构在温度变化较大时,会产生较大的尺寸变化 较长零部件或者机械结构在温度变化较大时,会产生较大的尺寸变化,在设 计时应考虑温度变化产生的自由伸缩空间,如可以采用能够自由移动的支座、自 由胀缩的管道结构等。 2.2滑动轴承采用接触式密封结构 由于滑动轴承比滚动轴承的间隙大,而且滑动轴承发生一些磨损后,轴心产 生相应的移动,因此滑动轴承宜采用接触式密封结构。 2.3同一轴上布置两个键时,根据不同的键类型,选择不同的结构方式 半圆键是靠侧面传力的,由于键槽较深,若在同一个横剖面内采用对称布置 两个半圆键,将严重削弱轴的强度,最好将两个半圆键设计在同一轴向母线上, 平键两侧是工作面,上表面与轮毂键槽底面间有间隙,工作时靠轴槽、键及毂槽 的侧面受挤压来传递转矩,不能实现轴上零件的轴向固定,靠上下面压紧产生承 受载荷,连接处的偏压也承受载荷。 2.4对于带传动、链传动错误的结构设计 带传动结构设计时,由于紧边下垂较小,而松边下垂较大,应使紧边在下,

机械设计基础第六版重点复习

《机械设计基础》知识要点 绪论;基本概念:机构,机器,构件,零件,机械 第1章:1)运动副的概念及分类 2)机构自由度的概念 3)机构具有确定运动的条件 4)机构自由度的计算 第2章:1)铰链四杆机构三种基本形式及判断方法。 2)四杆机构极限位置的作图方法 3)掌握了解:极限位置、死点位置、压力角、传动角、急回特性、极位夹角。 4)按给定行程速比系数设计四杆机构。 第3章:1)凸轮机构的基本系数。 2)等速运动的位移,速度,加速度公式及线图。 3)凸轮机构的压力角概念及作图。 第4章:1)齿轮的分类(按齿向、按轴线位置)。 2)渐开线的性质。 3)基本概念:节点、节圆、模数、压力角、分度圆,根切、最少齿数、节圆和分度圆的区别。 4)直齿轮、斜齿轮基本尺寸的计算;直齿轮齿廓各点压力角的计算;m = p /π的推导过程。 5)直齿轮、斜齿轮、圆锥齿轮的正确啮合条件。 第5章:1)基本概念:中心轮、行星轮、转臂、转化轮系。 2)定轴轮系、周转轮系、混合轮系的传动比计算。 第9章:1)掌握:失效、计算载荷、对称循环变应力、脉动循环变应力、许用应力、安全系数、疲劳极限。 了解:常用材料的牌号和名称。 第10章: 1)螺纹参数d、d1、d2、P、S、ψ、α、β及相互关系。 2)掌握:螺旋副受力模型及力矩公式、自锁、摩擦角、当量摩擦角、螺纹下行自锁条件、常用螺纹类型、螺纹联接类型、普通螺纹、细牙螺纹。 3)螺纹联接的强度计算。 第11章: 1)基本概念:轮齿的主要失效形式、齿轮常用热处理方法。 2)直齿圆柱齿轮接触强度、弯曲强度的计算。 3)直齿圆柱齿轮、斜齿圆柱齿轮、圆锥齿轮的作用力(大小和方向)计算及受力分析。 第12章: 1)蜗杆传动基本参数:m a1、m t2、γ、β、q、P a、d1、d2、V S及蜗杆传动的正确啮合条件。 2)蜗杆传动受力分析。 第13章: 1)掌握:带传动的类型、传动原理及带传动基本参数:d1、d2、L d、a、α1、α2、F1、F2、F0 2)带传动的受力分析及应力分析:F1、F2、F0、σ1、σ2、σC、σb及影响因素。 3)弹性滑动与打滑的区别。 4)了解:带传动的设计计算。 第14章: 1)轴的分类(按载荷性质分)。 2)掌握轴的强度计算:按扭转强度计算,按弯扭合成强度计算。 第15章: 1)摩擦的三种状态:干摩擦、边界摩擦、液体摩擦。 第16章: 1)常用滚动轴承的型号。 2)向心角接触轴承的内部轴向力计算,总轴向力的计算。 滚动轴承当量动载荷的计算。滚动轴承的寿命计算。 第17章: 1)联轴器与离合器的区别 第一章平面机构的自由度和速度分析 1、自由度:构件相对于参考系的独立运动称为自由度。 2、运动副:两构件直接接触并能产生一定相对运动的连接称为运动副。构件组成运动副后,其运动受到约束,自由度减少。

现代机械设计方法复习题

现代机械设计方法试题-----复习使用 一、图解题 1.图解优化问题:min F (X)=(x 1-6)2+(x 2-2)2 s .t . 0.5x 1+x 2≤4 3x 1+x 2≤9 x 1+x 2≥1 x 1≥0, x 2≥0 求最优点和最优值。 最优点就是切点坐标:X1=2.7,x2=0.9 最优值:12.1【带入公式结果】 2.若应力与强度服从正态分布,当应力均值μs 与强度均值μr 相等时,试作图表示两者的干涉情况,并在图上示意失效概率F 。 参考解: 3.已知某零件的强度r 和应力s 均服从正态分布,且μr >μs ,σr <σs ,试用图形表示强度r 和应力s 的分布曲线,以及该零件的分布曲线和可靠度R 的围。 参考解: f (s) f (r) Y >0安全状态;Y <0安全状态;Y =0极限状态 f (Y)

强度r 与应力s 的差可用一个多元随机函数Y =r -s =f (x 1,x 2,…,x n )表示,这又称为功能函数。 设随机函数Y 的概率密度函数为f (Y ),可以通过强度r 与应力s 的概率密度函数为f (r )和f (s )计算出干涉变量Y =r-s 的概率密度函数f (Y ),因此零件的可靠度可由下式求得: Y Y f Y p R ? ∞ =>=0 d )( )0( 从公式可以看出,因为可靠度是以Y 轴的右边对f (Y )积分,因此可靠度R 即为图中Y 轴右边的阴影区域。而失效概率F =1-R ,为图中Y 轴左边的区域。 4.用图表示典型产品的失效率与时间关系曲线,其失效率可以分为几个阶段,请分别对这几个阶段进行分析。 失效率曲线:典型的失效率曲线。失效率(或故障率)曲线反映产品总体寿命期失效率的情况。图示13.1-8为失效率曲线的典型情况,有时形象地称为浴盆曲线。失效率随时间变化可分为三段时期: (1)早期失效期,失效率曲线为递减型。产品投于使用的早期,失效率较高而下降很快。主要由于设计、制造、贮存、运输等形成的缺陷,以及调试、跑合、起动不当等人为因素所造成的。当这些所谓先天不良的失效后且运转也逐渐正常,则失效率就趋于稳定,到t 0时失效率曲线已开始变平。t 0以前称为早期失效期。针对早期失效期的失效原因,应该尽量设法避免,争取失效率低且t 0短。 (2)偶然失效期,失效率曲线为恒定型,即t 0到t i 间的失效率近似为常数。失效主要由非预期的过载、误操作、意外的天灾以及一些尚不清楚的偶然因素所造成。由于失效原因多属偶然,故称为偶然失效期。偶然失效期是能有效工作的时期,这段时间称为有效寿命。为降低偶然失效期的失效率而增长有效寿命,应注意提高产品的质量,精心使用维护。加大零件截面尺寸可使抗非预期过载的能力增大,从而使失效率显著下降,然而过分地加大,将使产品笨重,不经济,往往也不允许。 (3)耗损失效期,失效率是递增型。在t 1以后失效率上升较快,这是由于产品已经老化、疲劳、磨损、蠕变、腐蚀等所谓有耗损的原因所引起的,故称为耗损失效期。针对耗损失效的原因,应该注意检查、监控、预测耗损开始的时间,提前维修,使失效率仍不上升,如图13.1-8中虚线所示,以延长寿命不多。当然,修复若需花很大费用而延长寿命不多,则不如 报废更为经济。

机械设计复习要点及重点习题(机械类)

复习课本,课后每章作业题,以及打印习题 做过作业题每个都必须掌握,没掌握看书,涉及到公式记住,讲过的题必须掌 握方法, 一绪论 1、机器的基本组成要素是什么? 【答】机械系统总是由一些机构组成,每个机构又是由许多零件组成。所以,机器的基本组成要素就是机械零件。 2、什么是通用零件?什么是专用零件?试各举三个实例。 【答】在各种机器中经常能用到的零件称为通用零件。如螺钉、齿轮、弹簧、链轮等。 在特定类型的机器中才能用到的零件称为专用零件。如汽轮机的叶片、内燃机的活塞、曲轴等。 3、在机械零件设计过程中,如何把握零件与机器的关系? 【答】在相互连接方面,机器与零件有着相互制约的关系; 在相对运动方面,机器中各个零件的运动需要满足整个机器运动规律的要求; 在机器的性能方面,机器的整体性能依赖于各个零件的性能,而每个零件的设计或选择又和机器整机的性能要求分不开。 二机械设计总论 1、机器由哪三个基本组成部分组成?传动装置的作用是什么? 【答】机器的三个基本组成部分是:原动机部分、执行部分和传动部分。 传动装置的作用:介于机器的原动机和执行部分之间,改变原动机提供的运动和动力参数,以满足执行部分的要求。 2、什么叫机械零件的失效?机械零件的主要失效形式有哪些? 【答】机械零件由于某种原因丧失工作能力或达不到设计要求的性能称为失效。 机械零件的主要失效形式有 1)整体断裂; 2)过大的残余变形(塑性变形); 3)零件的表面破坏,主要是腐蚀、磨损和接触疲劳; 4)破坏正常工作条件引起的失效:有些零件只有在一定的工作条件下才能正常工作,如果破坏了这些必要的条件,则将发生不同类型的失效,如带传动的打滑,高速转子由于共振而引起断裂,滑动轴承由于过热而引起的胶合等。

机械设计知识点(经典)总结..

机械设计知识点总结(一) 1.螺纹联接的防松的原因和措施是什么? 答:原因——是螺纹联接在冲击,振动和变载的作用下,预紧力可能在某一瞬间消失,联接有可能松脱,高温的螺纹联接,由于温度变形差异等原因,也可能发生松脱现象,因此在设计时必须考虑防松。措施——利用附加摩擦力防松,如用槽型螺母和开口销,止动垫片等,其他方法防松,如冲点法防松,粘合法防松。 2.提高螺栓联接强度的措施 答:(1)降低螺栓总拉伸载荷Fa的变化范围:a,为了减小螺栓刚度,可减螺栓光杆部分直径或采用空心螺杆,也可增加螺杆长度,b,被联接件本身的刚度较大,但被链接间的接合面因需要密封而采用软垫片时将降低其刚度,采用金属薄垫片或采用O形密封圈作为密封元件,则仍可保持被连接件原来的刚度值。(2)改善螺纹牙间的载荷分布,(3)减小应力集中,(4)避免或减小附加应力。 3.轮齿的失效形式 答:(1)轮齿折断,一般发生在齿根部分,因为轮齿受力时齿根弯曲应力最大,而且有应力集中,可分为过载折断和疲劳折断。(2)齿面点蚀,(3)齿面胶合,(4)齿面磨损,(5)齿面塑性变形。 4.齿轮传动的润滑。 答:开式齿轮传动通常采用人工定期加油润滑,可采用润滑油或润滑脂,一般闭式齿轮传动的润滑方式根据齿轮的圆周速度V的大小而定,当V<=12时多采用油池润滑,当V>12时,不宜采用油池润滑,这是因为(1)圆周速度过高,齿轮上的油大多被甩出去而达不到啮合区,(2)搅由过于激烈使油的温升增高,降低润滑性能,(3)会搅起箱底沉淀的杂质,加速齿轮的磨损,常采用喷油润滑。 5.为什么蜗杆传动要进行热平衡计算及冷却措施 答:由于蜗杆传动效率低,发热量大,若不及时散热,会引起箱体内油温升高,润滑失效,导致齿轮磨损加剧,甚至出现胶合,因此对连续工作的闭式蜗杆传动要进行热平衡计算。措施——1),增加散热面积,合理设计箱体结构,铸出或焊上散热片,2)提高表面传热系数,在蜗杆轴上装置风扇,或在箱体油池内装设蛇形冷却水管。

机械创新设计较完整版

第一讲 1、机械创新设计与现代设计、常规设计有什么差异和关联?创新设计方法:充分发挥设计者的创造力,利用人类现有相关科学技术知识,实现创新构思,获得新颖性、创造性、实用性成果.特点:强调发挥创造性,提出新方案,提供新颖。独特的设计方法,获得具有创新性、新颖性、实用性的成果。现代设计:以计算机为工具,运用各类工程应用软件及现代设计理念进行的机械设计。 常规设计:常规设计是以应用公式、图标为先导,已成熟的技术为基础,借助设计经验等常规方法进行设计 关联: 机械常规设计始终是最基本的机械设计方法,在强调现代设计、创新设计时不可忽视其重要性。 创新设计的基础——常规、现代设计方法的综合、灵活运用。现代设计方法仅仅借助了先进、高效的计算机应用手段,提高了设计过程的效率,但没有脱离常规设计的思维。 2.现代创新人才应具备那些基本素质? (1) 具备必须的基础知识和专业知识 (2) 不断进取与追求的精神 (3) 合理的创新思维方式(突破传统定式) (4) 善于捕捉瞬间的灵感(创新的必备条件) (5) 掌握一定的创新技法 3.学习机械创新设计的内容有那些? 1.机构的创新设计 2.机构应用创新设计 3.机构组合设计产生新机构系统 4.机械结构的创新设计 5.利用反求原理进行创新设计 6.利用仿生原理进行创新设计 第二讲 1简述创造性思维四大特性

(方法的开放性;过程的自觉性;解决问题的顿悟性;结果的独特性)。 影响创造性思维形成与发展的主要因素包括哪些? (1)天赋能力:与生俱来的所有神经元 (2)生活实践:后天实践活动具有的重大意义 (3)科学地学习与训练科学、简单易行的专业学习与训练 2.了解和阐述创造性思维、创造活动、创造能力三者的关系。3.理解综合、分离创造原理的特性和基本实施途径。 概念:有目的的将复杂对象分解,提取核心技 术,并利用于其他新事物。 特征:1)与综合创造原理对立,但不矛盾; 2)冲破事物原有形态的限制,在分离中产生新的技术价值; 3)实质上综合法与分离法两者无明显界限,实践中常常相互贯穿,共同促成新事物。 实施途径:1)基于结构的分解;2)基于特性、原理的列举分离 第三讲 1.学习创造原理的基础知识有什么实际意义? 2.物场三要素是指什么?(两个物与一个场)比较完全物场(三个要素齐全的场)、不完全物场(三要素中有两个要素存在的场)、非物场(三要素中仅有一个要素的场)的异同。 3.列举三种所熟悉的创造理论,简述其实施的基本途径。 (1)物场要素变换:电磁场取代机械场 (2)物场要素补建:超声波加工(特种加工工艺) 第四讲 1、实施群体集智法应遵循哪些原则?提出自己运用此法的技巧。(要求从不同角度提两点) 1.自由思考原则:解放思想、消除顾虑 2.延迟评判原则:过早的结论会压制不同的 想法,可能扼杀有创造性的萌芽 3.以量求质原则:相关统计表明,一批设想 的价值含量与总数量成非线性正比。 4.综合改善原则:充分利用信息的增值。 2.为什么设问探求法特别强调“善于提问”?简述所学的九种基本提问。 ●学习者的基本技能 ●创造者分析、解决问题的基础 ①有无其他用途;②能否借用(直接);③能否改变使用(间接);④能否扩大(改良); ⑤能否缩小(改良);⑥能否代用;⑦能否重新调整;⑧能否颠倒;⑨能否组合

机械设计工程师考试大纲

机械工程师考试大纲,你看一下有没有含金量 Ⅰ.基本要求 1.熟练掌握工程制图标准和表示方法。掌握公差配合的选用和标注。 2.熟悉常用金属材料的性能、试验方法及其选用。掌握钢的热处理原理,熟悉常用金属材料的热处理方法及其选用。了解常用工程塑料、特种陶瓷、光纤和纳米材料的种类及应用。3.掌握机械产品设计的基本知识与技能,能熟练进行零、部件的设计。熟悉机械产品的设计程序和基本技术要素,能用电子计算机进行零件的辅助设计,熟悉实用设计方法,了解现代设计方法。 4.掌握制订工艺过程的基本知识与技能,能熟练制订典型零件的加工工艺过程,并能分析解决现场出现的一般工艺问题。熟悉铸造、压力加工、焊接、切(磨)削加工、特种加工、表面涂盖处理、装配等机械制造工艺的基本技术内容、方法和特点并掌握某些重点。熟悉工艺方案和工艺装备的设计知识。了解生产线设计和车间平面布置原则和知识。 5.熟悉与职业相关的安全法规、道德规范和法律知识。熟悉经济和管理的基础知识。了解管理创新的理念及应用。 6.熟悉质量管理和质量保证体系,掌握过程控制的基本工具与方法,了解有关质量检测技术。7.熟悉计算机应用的基本知识。熟悉计算机数控(CNC)系统的构成、作用和控制程序的编制。了解计算机仿真的基本概念和常用计算机软件的特点及应用。 8.了解机械制造自动化的有关知识。 Ⅱ.考试内容 一、工程制图与公差配合 1.工程制图的一般规定 (1)图框 (2)图线 (3)比例 (4)标题栏 (5)视图表示方法 (6)图面的布置 (7)剖面符号与画法 2.零、部件(系统)图样的规定画法 (1)机械系统零、部件图样的规定画法(螺纹及螺纹紧固件的画法齿轮、齿条、蜗杆、蜗轮及链轮的画法花键的画法及其尺寸标注弹簧的画法) (2)机械、液压、气动系统图的示意画法(机械零、部件的简化画法和符号管路、接口和接头简化画法及符号常用液压元件简化画法及符号) 3.原理图 (1)机械系统原理图的画法 (2)液压系统原理图的画法 (3)气动系统原理图的画法 4.示意图 5.尺寸、公差、配合与形位公差标注 (1)尺寸标注 (2)公差与配合标注(基本概念公差与配合的标注方法) (3)形位公差标注 6.表面质量描述和标注 (1)表面粗糙度的评定参数

最新整理机械结构设计基础知识复习过程

机械结构设计基础知识 1前言 1.1机械结构设计的任务 机械结构设计的任务是在总体设计的基础上,根据所确定的原理方案,确定并绘出具体的结构图,以体现所要求的功能。是将抽象的工作原理具体化为某类构件或零部件,具体内容为在确定结构件的材料、形状、尺寸、公差、热处理方式和表面状况的同时,还须考虑其加工工艺、强度、刚度、精度以及与其它零件相互之间关系等问题。所以,结构设计的直接产物虽是技术图纸,但结构设计工作不是简单的机械制图,图纸只是表达设计方案的语言,综合技术的具体化是结构设计的基本内容。 1.2机械结构设计特点 机械结构设计的主要特点有:(1)它是集思考、绘图、计算(有时进行必要的实验)于一体的设计过程,是机械设计中涉及的问题最多、最具体、工作量最大的工作阶段,在整个机械设计过程中,平均约80%的时间用于结构设计,对机械设计的成败起着举足轻重的作用。(2)机械结构设计问题的多解性,即满足同一设计要求的机械结构并不是唯一的。(3)机械结构设计阶段是一个很活跃的设计环节,常常需反复交叉的进行。为此,在进行机械结构设计时,必须了解从机器的整体出发对机械结构的基本要求 2机械结构件的结构要素和设计方法 2.1结构件的几何要素 机械结构的功能主要是靠机械零部件的几何形状及各个零部件之间的相对位置关系实现的。零部件的几何形状由它的表面所构成,一个零件通常有多个表面,在这些表面中有的与其它零部件表面直接接触,把这一部分表面称为功能表面。在功能表面之间的联结部分称为联接表面。 零件的功能表面是决定机械功能的重要因素,功能表面的设计是零部件结构设计的核心问题。描述功能表面的主要几何参数有表面的几何形状、尺寸大小、表面数量、位置、顺序等。通过对功能表面的变异设计,可以得到为实现同一技术功能的多种结构方案。 2.2结构件之间的联接 在机器或机械中,任何零件都不是孤立存在的。因此在结构设计中除了研究零件本身的功能和其它特征外,还必须研究零件之间的相互关系。 零件的相关分为直接相关和间接相关两类。凡两零件有直接装配关系的,成为直接相关。没有直接装配关系的相关成为间接相关。间接相关又分为位置相关和运动相关两类。位置相关是指两零件在相互位置上有要求,如减速器中两相邻的传动轴,其中心距必须保证一定的精度,两轴线必须平行,以保证齿轮的正常啮合。运动相关是指一零件的运动轨迹与另一零件有关,如车床刀架的运动轨迹必须平行于于主轴的中心线,这是靠床身导轨和主轴轴线相平行来保证的,所以,主轴与导轨之间位置相关;而刀架与主轴之间为运动相关。 多数零件都有两个或更多的直接相关零件,故每个零件大都具有两个或多个部位在结构上与其它零件有关。在进行结构设计时,两零件直接相关部位必须同时考虑,以便合理地选择材料的热处理方式、形状、尺寸、精度及表面质量等。同时还必须考虑满足间接相关条件,如进行尺寸链和精度计算等。一般来说,若某零件直接相关零件愈多,其结构就愈复杂;零件的间接相关零件愈多,其精度要求愈高。例如,轴毂联接见图1。 2.3结构设计据结构件的材料及热处理不同应注意的问题 机械设计中可以选择的材料众多,不同的材料具有不同的性质,不同的材料对应不同的加工工艺,结构设计中既要根据功能要求合理地选择适当的材料,又要根据材料的种类确定适当的加工工艺,并根据加工工艺的要求确定适当的结构,只有通过适当的结构设计才能使所选择的材料最充分的发挥优势。 设计者要做到正确地选择材料就必须充分地了解所选材料的力学性能、加工性能、使用成本等信息。结构设计中应根据所选材料的特性及其所对应的加工工艺而遵循不同的设计原则。

机械设计基础知识点

第二章平面机构的结构分析 §2.1 基本概念 构件:运动单元体 零件:制造单元体构件可由一个或几个零件组成。 ?构件:由一个或几个零件组成的没有相对运动的刚性系统。机器或机构中最小的运动单元。 ?零件:机器或机构中最小的制造单元。 ?例如:曲轴——单一零件。 ?连杆——多个零件的刚性组合体。 ?注意:构件与零件联系与区别? 一、机构的组成 机架:机构中相对不动的构件 原动件:驱动力(或力矩)所作用的构件。→输入构件 从动件:随着原动构件的运动而运动的构件。→输出构件 在任何一个机构中,只能有一个构件作为机架。在活动构件中至少有一个构件为原动件,其余的活动构件都是从动件。 二、自由度、约束 自由度:构件具有独立运动参数的数目(相对于参考系) 在平面内作自由运动的构件具有3个自由度;在三维空间作自由运动的构件具有6个自由度。约束:运动副对构件间相对运动的限制作用 ?对构件施加的约束个数等于其自由度减少的个数。 三、运动副 使两构件直接接触并能产生一定相对运动的连接成为运动副。运动副的作用是约束构件的自由度。 四、运动副类型及其代表符号 1. 低副——两构件以面接触而形成的运动副。 A.转动副:两构件只能在一个平面内作相对转动,又称作铰链。 自由度数1,只能转动; 约束数2,失去了沿X、Y方向的移动。 B.移动副:两构件只能沿某一轴线作相对移动。 自由度数1,只能X方向移动; 约束数2,失去Y方向移动和转动。

2. 高副—— 两构件以点或线接触而构成的运动副。 自由度数 2, 保持切线方向的移动和转动 约束数 1, 失去法线方向的移动。 五、运动链 运动链:若干个构件通过运动副联接而成的相互间可作相对运动的系统。 闭式运动链简称闭链:运动链的各构件首尾封闭 开式运动链简称开链:未构成首尾封闭的系统 §2.2 机构运动简图 定义:用运动副代表符号和简单线条来反映机构中各构件之间运动关系的简图。 构件均用形象、简洁的直线或小方块等来表示,画有斜线的表示机架。 §2.3 平面机构的自由度计算 机构的自由度:机构中活动构件相对于机架所具有的独立运动的数目。(与构件数目,运动副的类型和数目有关) 一、机构自由度计算公式 H L 23P P n F --= 式中,n 为活动构件个数; L P 为低副个数;H P 为高副个数。 (a)双曲线画规机构 F=3n- 2PL-PH=3×5-2×7-0=1 (b) 牛头刨床机构 F=3n- 2PL-PH=3×6-2×8-1=1 二、机构具有确定运动的条件 机构要能运动,它的自由度必须大于零。 F ≤0,构件间无相对运动,不成为机构。

现代机械设计方法(答案)

一、绪论 1.设计活动的特征有哪些? 时空性、物质性、需求性、创造性、过程性 2.试比较传统设计和现代设计的区别? 传统设计师静态的、经验的、手工的方法,在设计过程中被动地分析产品的性能;而传统设计师动态的、科学的、计算机化的方法,在设计过程中可以做到主动地设计产品参数。 3.简述现代设计方法的主要内容和基本特点。 主要内容:设计理论是对产品设计原理和机理的科学总结。设计方法是使产品满足设计要求以及判断产品是否满足设计原则的依据。 现代设计方法主要内容:设计方法学、计算机设计、有限元法、优化设计、可靠性设计 基本特点:程式性、创造性、系统性、最优性、综合性、数字性 二、设计方法学 1.设计过程包括哪几个阶段? 计划阶段、设计阶段、样机试制阶段、批量生产阶段、销售阶段 2.常用的创造性技法有哪些? 智力激励法、提问追溯法、联想类推法、组合创新法、反向探求法及系统搜索法6类 3.运用功能分析法进行系统原理方案设计的主要步骤有哪些? 三、相似理论及相似设计方法 1.相似三定理的内容和用途各是什么? 相似定理是用来判断两个现象相似的充分必要条件及其所应遵循的法则 内容: 第一定律:对于彼此相似的现象,其相似指标为1,相似判据为一个不变量; 第二定律:某个现象的物理量总数为n,量纲独立的物理量总数为k,则该现象相似准则的个数为n-k,且描述该现象各个物理量之间的关系可表示为相似准则π1,π2,,,,,,πn-k之间的关系,即 π,π,,,,,,π 第三定律:凡同一完整的方程组所描述的同类现象,当单值条件相似,且由单值条件的物理量所组成的相似准则在数值上相等,则这些现象就相识。 用途: 第一定理:介绍相似现象的属性; 第二定理:确定相似准则的个数以及相似结果的推广,也称π; 第三定理:也称模型化法则,也是相似现象的充要条件。 2.相似准则的导出方法及基本依据是什么? 导出方法:方程分析法、量纲分析法 基本依据:表示各物理量之间关系的方程式,其各项量纲必须是相同的 3.相似准则有哪些特点和性质? 如果两个现象相似,则这两者的无量纲形式的方程组和单值条件应该相同,具有相同的无量纲形式解。 出现在这两者的无量纲形式的方程组及单值条件中的所有无量纲组合数对应相等。 4.白炽灯的功率为其主要技术参数。现在要求在10~100W之间按几何级数分级设计六种型号。试确定其 功率系列(将计算值按0.5圆整) 解: 四、有限单元法 1.试简述有限单元法的主要思路、具体步骤及其依据。 核心思想:将复杂结构分解成形状简单、便于方程描述的规则单元,列出方程组求解 基本思路: “分”:用有限个规则单元代替原来的各种各样的连续系统,并用近似方程对每个单元的行为加以描述。 “和”:根据一定的规则,把关于单元的方程组合起来构成方程组,并引入外载及约束条件进行求解。 三个步骤:结构的离散化、单元分析、整体分析 2.单元刚度矩阵的物理意义是什么,具有哪些主要特征?

(完整word版)机械设计考试题库(带答案)

机械设计模拟题 一、填空题(每小题2分,共20分) 1、机械零件的设计方法有理论设计经验设计模型试验设计。 2、机器的基本组成要素是机械零件。 3、机械零件常用的材料有金属材料高分子材料陶瓷材料复合材料。 4、按工作原理的不同联接可分为形锁合连接摩擦锁合链接材料锁合连接。 5、联接按其可拆性可分为可拆连接和不可拆连接。 6、可拆联接是指不需破坏链接中的任一零件就可拆开的连接。 7、根据牙型螺纹可分为普通螺纹、管螺纹、梯形螺纹、矩形螺纹、锯齿形螺纹。 8、螺纹大径是指与螺纹牙顶相切的假想圆柱的直径,在标准中被定为公称直径。 9、螺纹小径是指螺纹最小直径,即与螺纹牙底相切的假想的圆柱直径。 10、螺纹的螺距是指螺纹相邻两牙的中径线上对应两点间的轴向距离。 11、导程是指同一条螺纹线上的相邻两牙在中径线上对应两点间的轴线距离。 12、螺纹联接的基本类型有螺栓连接双头螺栓连接螺钉连接紧定螺钉连接。 13、控制预紧力的方法通常是借助测力矩扳手或定力矩扳手,利用控制拧紧力矩的方法来控制预紧力的大小。 14、螺纹预紧力过大会导致整个链接的结构尺寸增大,也会使连接件在装配或偶然过载时被拉断。 15、螺纹防松的方法,按其工作原理可分为摩擦防松、机械防松、破坏螺旋运动关系防松。 16、对于重要的螺纹联接,一般采用机械防松。 17、受横向载荷的螺栓组联接中,单个螺栓的预紧力F?为。 18、键联接的主要类型有平键连接半圆键连接楔键连接切向键连接。 19、键的高度和宽度是由轴的直径决定的。 20、销按用途的不同可分为定位销连接销安全销。 21、无键联接是指轴与毂的连接不用键或花键连接。 22、联轴器所连两轴的相对位移有轴向位移径向位移角位移综合位移。 23、按离合器的不同工作原理,离合器可分为牙嵌式和摩擦式。 24、按承受载荷的不同,轴可分为转轴心轴传动轴。

机械设计中常用结构汇总

第4章常用机构 4.1 平面连杆机构 4.1.1 平面连杆机构的组成 我们将机构中所有构件都在一平面或相互平行的平面内运动的机构称为平面机构。 1、构件的自由度 如图4-1所示,一个在平面内自由运动的构件,有沿X轴移动,沿y轴移动或绕A点转动三种运动可能性。我们把构件作独立运动的可能性称为构件的“自由度”。所以,一个在平面自由运动的构件有三个自由度。可用如图4-1所示的三个独立的运动参数x、y、θ表示。 2、运动副和约束 平面机构中每个构件都不是自由构件,而是以一定的方式与其他构件组成动联接。这种使两构件直接接触并能产生一定运动的联接,称为运动副。两构件组成运动副后,就限制了两构件间的部分相对运动,运动副对于构件间相对运动的这种限制称为约束。机构就是由若干构件和若干运动副组合而成的,因此运动副也是组成机构的主要要素。

两构件组成的运动副,不外乎是通过点、线、面接触来实现的。根据组成运动副的两构件之间的接触形式,运动副可分为低副和高副。 (1)低副两构件以面接触形成的运动副称为低副。按它们之间的相对运动是转动还是移动,低副又可分为转动副和移动副。 ①转动副组成运动副的两构件之间只能绕某一轴线作相对转动的运动副。通常转动副的具体结构形式是用铰链连接,即由圆柱销和销孔所构成的转动副,如图4-2(a)所示。 ②移动副组成运动副的两构件只能作相对直线移动的运动副,如图4-2(b)所示。 由上述可知,平面机构中的低副引入了两个约束,仅保留了构件的一个自由度。因转动副和移动副都是面接触,接触面压强低,称为低副。我们将由若干构件用低副连接组成的机构称为平面连杆机构,也称低副机构。由于低副是面接触,压强低,磨损量小,而且接触面是圆柱面和平面,制造简便,且易获得较高的制造精度。此外,这类机构容易实现转动、移动等基本的运动形式及转换,因而是在一般机械和仪器中应用广泛。平面连杆机构也有其缺点:低副中的间隙不易消除,引起运动误差,且不易精确地实现复杂的运动规律。 (2)高副两构件以点或线接触形成的运动副称为高副,如图4-3所示。这类运动副因为接触部位是点或线接触,接触部位压强高,故称为高副。

机械现代设计方法及展望

机械现代设计方法及展望 摘要:机械设计是机械工程的重要组成部分,本文综述了目前常用的几种现代机械设计方法,并展望了未来的机械设计方法的发展趋势。 关键词:机械设计方法展望 1、引言 机械设计是根据使用要求对机械的工作原理、结构、运动方式、力和能量的传递方式、各个零件的材料和形状尺寸、润滑方法等进行构思、分析和计算并将这些转化为具体地描述以人为制造依据的工作过程。机械设计作为工程设计的重要组成部分,不仅代表着将科学发现转化为经济实践的成果,也表征着一个国家和地区的制造业发展水平。 近十几年里,工业产品的设计理论和制造方法发生了极大的变化。首先,由于计算机辅助设计(CAD)、辅助工程(CAE)和辅助制造(CAM)等方法的普遍推广,改变了传统的设计模式,提高了设计质量和工作效率,使设计加工周期大大缩短;其次,机器人及自动化生产线的广泛使用,把操作者从繁重的体力劳动和危险作业环境中解放出来,提高了劳动生产效率。 2、机械设计的常用现代设计方法 2.1专业的现代设计方法 由机械设计和计算机专业人员共同开发的计算机软件,能够反映和描述机械产品在实际工况下的各种损伤、失效和破坏的机理,可以定量分析和计算机械零件和机械的动态行为,并形成固定的设计程序,这就是专业的现代设计方法,如:振动分析和设计,摩擦学设计,热力学传热设计,强度、刚度设计,温度场分析等等。这些软件都是在传统的设计方法基础上,应用计算机技术开发出来的。例如:用Pro/M软件分析机械装置的动态特性,用ANSYS软件分析应力都是这方面很好的例子,为准确判断装置的可靠性和选择设计参数奠定了基础。 2.2 通用的现代设计方法 为了满足机械产品性能的高要求,在机械设计中大量采用计算机技术进行辅助设计和系统分析,这就是通用的现代设计方法。常见的方法包括优化、有限元、可靠性、仿真、专家系统、CAD等。这些方法并不只是针对机械产品去研究,还有其自身的科学理论和方法。 2.2.1 优化设计 机械优化设计是最优化技术在机械设计领域的移植和应用,其基本思想是根

机械工程材料基本知识

机械工程材料基本知识 1.1 金属材料的力学性能 任何机械零件或工具,在使用过程中,往往要受到各种形式外力的作用。如起重机上的钢索,受到悬吊物拉力的作用;柴油机上的连杆,在传递动力时,不仅受到拉力的作用,而且还受到冲击力的作用;轴类零件要受到弯矩、扭力的作用等等。这就要求金属材料必须具有一种承受机械荷而不超过许可变形或不破坏的能力。这种能力就是材料的力学性能。金属表现来的诸如弹性、强度、硬度、塑性和韧性等特征就是用来衡量金属材料材料在外力作用下表现出力学性能的指标。 1.1.1强度 强度是指金属材料在静载荷作用下抵抗变形和断裂的能力。强度指标一般用单位面积所承受的载荷即力表示,符号为c,单位为MPa 工程中常用的强度指标有屈服强度和抗拉强度。屈服强度是指金属材料在外力作用下,产生屈服现象时的应力,或开始出现塑性变形时的最低应力值,用③ 表示。抗拉强度是指金属材料在拉力的作用下,被拉断前所能承受的最大应力值,用c表示。 对于大多数机械零件,工作时不允许产生塑性变形,所以屈服强度是零件强度设计的依据;对于因断裂而失效的零件,而用抗拉强度作为其强度设计的依据。 1.1.2塑性 塑性是指金属材料在外力作用下产生塑性变形而不断裂的能力。 工程中常用的塑性指标有伸长率和断面收缩率。伸长率指试样拉断后的伸长量与原来长度之比的百分率,用符号S表示。断面收缩率指试样拉断后,断面缩小的面积与原来截面积之比,用表示。 伸长率和断面收缩率越大,其塑性越好;反之,塑性越差。良好的塑性是金属材料进行压力加工的必要条件,也是保证机械零件工作安全,不发生突然脆断的必要条件。 1.1.3 硬度 硬度是指材料表面抵抗比它更硬的物体压入的能力。硬度的测试方法很多,生产

现代机械设计方法复习题

现代机械设计方法试题-----复习使用 2 2 minF (X)=(x I-6)2+(X2-2)2 s- t?0. 5x i+x2W4 3x i+x2W9 X1+X2A1 X1> 0X2 >0 者的干涉情况,并在图上示意失效概率 参考解: 3. 已知某零件的强度r和应力S均服从正态分布,且口r> 口s, b r<(T s,试用图形表示强度r和应力s的分布曲线,以及该零件的分布曲线和可靠度R的范围。 参考解: Y>0安全状态;Y<0安全状态;Y=0极限状态 最优点就是切点坐标:X1=2.7,x2=0.9 最优值:12.1【带入公式结果】 2.若应力与强度服从正态分布,当应力均值与强度均值汀相等时,试作图表示两 、图解题 1.图解优化问题:

数。 设随机函数Y 的概率密度函数为f (Y),可以通过强度r 与应力s 的概率密度函数为f(r) 和f(s)计算出干涉变量 Y=r-s 的概率密度函数f(Y),因此零件的可靠度可由下式求得: R = p (Y .0) = ° f (Y)dY 从公式可以看出,因为可靠度是以 Y 轴的右边对f(Y)积分,因此可靠度 R 即为图中 Y 轴右边的阴影区域。而失效概率 F=1-R ,为图中Y 轴左边的区域。 4 ?用图表示典型产品的失效率与时间关系曲线,其失效率可以分为几个阶段,请分别 对这几个 阶段进行分析。 失效率曲线:典型的失效率曲线。失效率(或故障率)曲线反映产品 总体寿命期失效率的情况。图示 13.1-8为失效率曲线的典型情况,有时形 象地称为浴盆曲线。失效率随时间变化可分为三段时期: (1) 早期失效期,失效率曲线为递减型。产品投于 使用的早期,失效率较高 而下降很快。主要由于设计、制造、贮存、运输等形成的缺陷,以及调试、 跑合、起动不当等人为因素所造成的。当这些所谓先天不良的失效后且运 转也逐渐正常,则失效率就趋于稳定,到 t 0 时失效率曲线已开始变平。t 0 以前称为早期失效期。针对早期失效期的失效原因,应该尽量设法避免, 争取失效率低且 t o 短。 (2) 偶然失效期,失效率曲线为恒定型,即 t o 到t i 间的失效率近似为常 数。失效主要由非预期的过载、误操作、意外的天灾以及一些尚不清楚的 偶然因素所造成。由于失效原因多属偶然,故称为偶然失效期。偶然失效 期是能有效工作的时期,这段时间称为有效寿命。为降低偶然失效期的失 效率而增长有效寿命,应注意提高产品的质量,精心使用维护。加大零件 截面尺寸可使抗非预期过载的能力增大,从而使失效率显著下降,然而过 分地加大,将使产品笨重,不经济,往往也不允许。 (3) 耗损失效期,失效率是递增型。在 t i 以后失效率上升较 快,这是由于产品已经老化、 疲劳、磨损、蠕变、腐蚀等所谓有耗损的原因所引起的,故称为耗损失效期。针对耗损失 效的原因,应该注意检查、监控、预测耗损开始的时间,提前维修,使失效率仍不上升, 如图13.1-8中虚线所示,以延长寿命不多。当然,修复若需花很大费用而延长寿命不多, 则不如报废更为经济。 阜期 失效期偶然失效期 耗损 to

机械设计的结构要素

机械设计的结构要素 一、机械结构件的结构要素与设计方法 1、1 结构件的几何要素 机械结构的功能主要就是靠机械零部件的几何形状及各个零部件之间的相对位置关系实现的。零部件的几何形状由它的表面所构成,一个零件通常有多个表面,在这些表面中有的与其它零部件表面直接接触,把这一部分表面称为功能表面。在功能表面之间的联结部分称为联接表面。 零件的功能表面就是决定机械功能的重要因素,功能表面的设计就是零部件结构设计的核心问题。描述功能表面的主要几何参数有表面的几何形状、尺寸大小、表面数量、位置、顺序等。通过对功能表面的变异设计,可以得到为实现同一技术功能的多种结构方案。 1、2 结构件之间的联接 在机器或机械中,任何零件都不就是孤立存在的。因此在结构设计中除了研究零件本身的功能与其它特征外,还必须研究零件之间的相互关系。 零件的相关分为直接相关与间接相关两类。凡两零件有直接装配关系的,成为直接相关。没有直接装配关系的相关成为间接相关。间接相关又分为位置相关与运动相关两类。位置相关就是指两零件在相互位置上有要求,如减速器中两相邻的传动轴,其中心距必须保证一定的精度,两轴线必须平行,以保证齿轮的正常啮合。运动相关就是指一零件的运动轨迹与另一零件有关,如车床刀架的运动轨迹必须平行于于主轴的中心线,这就是靠床身导轨与主轴轴线相平行来保证的,所以,主轴与导轨之间位置相关;而刀架与主轴之间为运动相关。 多数零件都有两个或更多的直接相关零件,故每个零件大都具有两个或多个部位在结构上与其它 零件有关。在进行结构设计时,两零件直接相关部位必须同时考虑,以便合理地选择材料的热处理方式、形状、尺寸、精度及表面质量等。同时还必须考虑满足间接相关条件,如进行尺寸链与精度计算等。一般来说,若某零件直接相关零件愈多,其结构就愈复杂;零件的间接相关零件愈多,其精度要求愈高。 1、3 结构设计据结构件的材料 机械设计中可以选择的材料众多,不同的材料具有不同的性质,不同的材料对应不同的加工工艺, 结构设计中既要根据功能要求合理地选择适当的材料,又要根据材料的种类确定适当的加工工艺,并根据加工工艺的要求确定适当的结构,只有通过适当的结构设计才能使所选择的材料最充分的发挥优势。 设计者要做到正确地选择材料就必须充分地了解所选材料的力学性能、加工性能、使用成本等信息。结构设计中应根据所选材料的特性及其所对应的加工工艺而遵循不同的设计原则。

机械设计知识点总结

1螺纹联接的防松的原因和措施是什么 答:原因——是螺纹联接在冲击,振动和变载的作用下,预紧力可能在某一瞬间消失,联接有可能松脱,高温的螺纹联接,由于温度变形差异等原因,也可能发生松脱现象,因此在设计时必须考虑防松。措施——利用附加摩擦力防松,如用槽型螺母和开口销,止动垫片等,其他方法防松,如冲点法防松,粘合法防松。 2.提高螺栓联接强度的措施 答:(1)降低螺栓总拉伸载荷Fa的变化范围:a,为了减小螺栓刚度,可减螺栓光杆部分直径或采用空心螺杆,也可增加螺杆长度,b,被联接件本身的刚度较大,但被链接间的接合面因需要密封而采用软垫片时将降低其刚度,采用金属薄垫片或采用O形密封圈作为密封元件,则仍可保持被连接件原来的刚度值。(2)改善螺纹牙间的载荷分布,(3)减小应力集中,(4)避免或减小附加应力。3.轮齿的失效形式答:(1)轮齿折断,一般发生在齿根部分,因为轮齿受力时齿根弯曲应力最大,而且有应力集中,可分为过载折断和疲劳折断。(2)齿面点蚀,(3)齿面胶合(4)齿面磨损(5)齿面塑性变形。 4.齿轮传动的润滑。 答:开式齿轮传动通常采用人工定期加油润滑,可采用润滑油或润滑脂,一般闭式齿轮传动的润滑方式根据齿轮的圆周速度V的大小而定,当V<=12时多采用油池润滑,当V>12时,不宜采用油池润滑,这是因为(1)圆周速度过高,齿轮上的油大多被甩出去而达不到啮合区,(2)搅由过于激烈使油的温升增高,降低润滑性能,(3)会搅起箱底沉淀的杂质,加速齿轮的磨损,常采用喷油润滑。 5.为什么蜗杆传动要进行热平衡计算及冷却措施 《 答:由于蜗杆传动效率低,发热量大,若不及时散热,会引起箱体内油温升高,润滑失效,导致齿轮磨损加剧,甚至出现胶合,因此对连续工作的闭式蜗杆传动要进行热平衡计算。措施——1),增加散热面积,合理设计箱体结构,铸出或焊上散热片,2)提高表面传热系数,在蜗杆轴上装置风扇,或在箱体油池内装设蛇形冷却水管。6.带传动的有缺点。 答,优点——1)适用于中心距较大的传动,2)带具有良好的挠性,可缓和冲击,吸收振动,3)过载时带与带轮间产生打滑,可防止损坏其他零件,4)结构简单,成本低廉。缺点——1)传动的外廓尺寸较大,2)需要张紧装置,3)由于带的滑动,不能保证固定不变的传动比,4)带的寿命短,5)传动效率较低。 8 与带传动和齿轮传动相比,链传动的优缺点 答:与带传动相比,链传动没有弹性滑动和打滑,能保持准确的平均传动比,需要的张紧力小,作用在轴上的压力也小,可减小轴承的摩擦损失,结构紧凑,能在温度较高,有油污等恶劣环境条件下工作。与齿轮传动相比,链传动的制造和安装精度要求较低,中心距较大时其传动结构简单。链传动的缺点——瞬时链速和瞬时传动比不是常数,传动平稳性较差,工作中有一定的冲击和噪声。9.轴的作用,转轴,传动轴以及心轴的区别。 答:轴是用来支持旋转的机械零件。转轴既传动转矩又承受弯矩。传动轴只传递转矩而不承受弯矩或弯矩很小。心轴则只承受弯矩而部传动转矩。 < 10.轴的结构设计主要要求。 答:1),轴应便于加工,轴上零件要易于装拆。2),轴和轴上零件要有准确的加工位置,3)各零件要牢固而可靠的相对固定,4)改善受力状况,减小应力集中。11.形成动压油膜的必要条件。 答:1)两工作面间必须有楔形形间隙,2)两工作面间必须连续充满润滑油或其他粘性流体,3)两工作面间必须有相对滑动速度,其运动方向必须使润滑油从大截面流进,小截面流出,此外,对于一定的载荷,必须使速度,粘度及间隙等匹配恰当。 13.变应力下,零件疲劳断裂具有的特征。 答:1)疲劳断裂的最大应力远比静应力下材料的强度极限低,甚至屈服极限低,2)不管脆性材料或塑像材料,疲劳断裂口均表现为无明显塑性变形的脆性突然断裂,3)疲劳断裂是损伤的积累。 14.机械磨损的主要类型——磨粒磨损,粘着磨损,疲劳磨损,腐蚀磨损。 … 15.垫圈的作用——增加被联接件的支撑面积以减小接触处的压强和避免拧紧螺母时擦伤被联接件的表面。16.滚动螺旋的优缺点。 答:优点——1)磨损很小,还可以用调整方法消除间隙并产生一定预变形来增加刚度,因此其传动精度很高,2)不具有自锁性,可以变直线运动为旋转运动。缺点——1)结构复杂,制造困难,2)有些机构中为了防止逆转而需另加自锁机构。 18 齿轮传动的功率损耗包括——啮合中的摩擦损耗,搅动润滑油的油阻损耗,轴承中的摩擦损耗。 20.轴瓦材料的性能——1)摩擦系数小,2)导热性好,热膨胀系数小,3)耐磨,耐蚀,抗胶合能力强,4)要有足够的机械强度和可塑性。 21提高螺纹连接强度的措施a降低影响螺栓疲劳强度的应力幅b改善螺纹牙上载荷分布不均的现象c减小应力集中的影响d采用合理的制造工艺方法 22提高轴的强度的常用措施 / a合理布置轴上零件以减小轴的载荷b改进轴上零件的结构以减小轴的载荷c改进轴的结构已减小轴的载荷d改进轴的表面质量以提高轴的疲劳强度

相关文档
最新文档