晶体结构,配合物结构知识点与习题2

晶体结构,配合物结构知识点与习题2
晶体结构,配合物结构知识点与习题2

配合物结构

一、配位化合物的定义

由提供孤电子对(NH 3、H 2O 、X -

)或π电子(H 2C =CH 2

、 )的物种与提供适当空轨道的物种(金属原子或金属离子)组成的化合物称为配位化合物,简称为配合物。

二、配位化合物的组成

1.配合物由内界(inner )和外界(outer )组成。外界为简单离子,配合物可以无外界,但不可以无内界。例如:

Fe(CO)5 Pt(NH 3)2Cl 2

2.内界由中心体(center )和配位体(ligand )组成。

(1) 中心体:提供适当的空轨道的原子或离子,绝大部分是d 区或ds 区元素。用M 表示。 (2) 配位体 (L)(简称配体):提供孤对电子对或π电子的离子,离子团或中性分子。

三、配位化合物的分类(Classification )

1.Classical complexes :配体提供孤电子对,占有中心体的空轨道而形成的配合物。

例如:+23)Ag(NH ,-

34Cu(CN)

2.π-complexes :配体提供π电子,占有中心体的空轨道而形成的配合物。

例如:255)H Fe(C ,)]H C (K[PtCl 423(第一个π配合物,Zeise ’s salt )

M H 2C

CH 2

M

配体提供:2个π电子 4个π电子 6个π电子

四、配位体(L )Ligand

1.根据配体中配位原子的不同,配体可分类成:

(1) 单基(齿)配体(unidentate ligand ):配体中只含有一个配位原子; 例如:NH 3、H 2O 、X -

、 (py)

(2) 多基(齿)配体(multidentate ligand ):配体中含有两个或两个以上的配位原子。由单齿配体组成

的配合物,称为简单配合物;由多齿配体组成的配合物,称为螯合物(chelate )。

2.一些常见的配体:

(1) 单基配体:X -:F -(fluoro)、Cl -(chloro)、Br -(bromo)、I -

(iodo)、H 2O (aquo)、

CO (carbonyl)、NO (nitrosyl)、C 5H 5N (py)、OH -

(hydroxo)

(2) 双基配体:en (乙二胺) H 2NCH 2CH 2NH 2(ethylenediamine )

ox 2-(草酸根) (oxalate ion ) gly -

(氨基乙酸根)

bipy (联吡啶) (2,2’-dipyridyl )

(3) 多基配体:EDTA (乙二胺四乙酸)(六齿)(H 4Y)

(ethylenediaminetetracetato )

五、配位数(Coordination Number )

1.中心原子(或离子)所接受的配位原子的数目,称为配位数

2.若单基配体,则配位数 = 配体数;若多基配体,则配位数 = 配体数 ? 配位原子数 / 每个配体 3.确定配位数的经验规则—EAN 规则(Effective atomic number rule )或十八电子(九轨道)规则

(1) 含义:

a .EAN 规则:中心体的电子数加上配体提供给中心体的电子数等于某一稀有气体的电子构型(36,54,

86)

b .十八电子规则:中心体的价电子数 + 配体提供的电子数 =18,(n - 1)d 10n s 2n p 6

N

O C O C

O

O H 2NCH 2C O O N N HOOCH 2C

NCH 2CH 2N HOOCH 2C CH 2COOH CH 2COOH

c .九轨道规则:五个 (n - 1)

d 轨道(或者五个n d 轨道),1个n s 轨道和3个n p 轨道(9个价轨道)都

充满电子。

(2) 应用

a .确定配位数:Fe(CO)x (NO)y 8 + 2x + 3y = 18

∴x = 5,y = 0 或 x = 2,y = 2

b .判断配合物是否稳定:

4HCo(CO) -4Co(CO) 4Co(CO) 18e (stable) 18e (stable) 17e (unstable)

c .可以判断中性羰基配合物是否双聚

Mn(CO)5 17e ,2Mn(CO)5 → Mn 2(CO)10,Co(CO)4,2Co(CO)4 → Co 2(CO)8 d .判断双核配合物中金属原子之间是否存在金属键(式中数字为配体提供的电子数以及中心体的价电子数)

18216421=++++?+x 1811725=

+++++x ∴ x = 0 无金属键 ∴ x = 2 有金属键

e .正确书写配合物的结构式:

455)H Fe(C -21033]CO)(Re H [

f .正确书写反应方程式: Re 2O 7 + 17CO Re 2(CO)10 + 7CO 2

+ Fe(CO)2 + 2CO

Cr(CO)6 + 4NO

Cr(CO)4 + 6CO

六、配位化合物的命名(The Nomenclature of Coordination Compounds )

1.从总体上命名

(1) 某化某:外界是简单阴离子,[Cr(H 2O)4Cl 2]Cl ,氯化二氯·四氨合铬(Ⅲ) (2) 某酸某:

a .外界是含酸根离子:[Co(NH 3)5Br]SO 4:硫酸溴·五氨合钴(Ⅲ)

b .内界是配阴离子:K 3[Fe(CN)6]:六氰合铁(Ⅲ)酸钾 2.内界的命名

(1) 内界的命名顺序:配体名称 + 合 + 中心体名称 + (用罗马数字表示的中心体氧化数)

例如:[PtCl 2(NH 3)(C 2H 4)]:二氯·氨·(乙烯)合铂(Ⅱ)

(2) 配体的命名顺序:

a .先无机配体后有机配体,有机配体名称一般加括号,以避免混淆;

b .先命名阴离子配体,再命名中性分子配体;

c .对于都是中性分子(或阴离子),先命名配体中配位原子排在英文字母顺序前面的配体,例如NH 3和H 2O ,应先命名NH 3;

d .若配位原子数相同,则先命名原子数少的配体。例如:NH 3、NH 2OH ,先命名NH 3。

(3) 配体的名称

a .英文的数字前缀

Cl(OC)4W 4Cl (C 5H 5)(OC)Mn

Mn(CO)(C 5H 5

)

O

O

C

C

x Re H CO

Re Re CO

CO CO

H H

OC OC

OC

OC

CO

CO

Fe(CO)3

mono(一) di(二) tri(三) tetra(四) penta(五) hexa(六) hepta(七) octa(八) nona(九) deca(十) b .M ←SCN 硫氰酸根 (-SCN) thiocyano M ←NCS 异硫氰酸根 (-NCS) isothiocyano

M ←NO 2 硝基 (-NO 2) nitro

来自HO

NO 2 M ←ONO 亚硝酸根 (-ONO) nitrito 来自H - ONO

NO 亚硝酰基 nitrosyl CO 羰基 carbonyl

M ←CN 氰根 cyano M ←NC 异氰根 isocyano

3.多核配合物的命名

在桥基配体名称前面加上希腊字母μ ,例如:

3323Fe(CO)CO)Fe((OC)-μ

三( μ-

羰基)·

二[三羰基合铁(0 )] 二( μ- 氯)·二[二氯合铁(Ⅲ

)]

氯化μ – 羟·二[五氨合铬

(Ⅲ

)]

七 几种常见配位数的配合物的几何异构现象 a .四配位:

(i) 正四面体:不存在几何异构体

, AA, A

-cis -t r a n s +]Cl )[Co(NH 243 ]O)(H RuCl [323

-c i s -t r a n s -fac -mer

(4) 确定几何异构体的方法 ?? 直接图示法

a .只有单齿配体的配合物 以Ma 2cdef 为例 (9种): 第一步,先确定相同单齿配体的位置

Cl Fe Cl Cl Cl Fe Cl

Cl [(NH 3)Cr O H Cr(NH 3)5]Cl 5NH 3

Co

NH 3H 3N Cl H 3N Cl Co Cl H 3N NH 33H 3N Cl Ru OH 2

H 2O Cl H 2O

OH 2Ru

OH 2

Cl Cl

2Cl M a

a

① ②

第二步,再确定其他配体的位置 ① (6种):

② (3种):

b .既有单齿配体,又有双齿配体的配合物 以

2ef 为例 (6种) 第一步,先固定双齿的位置

① ②

第二步,确定双齿配体中配位原子的位置. ①

第三步,最后确定单齿配体的位置.

八 配合物的化学键理论

⑴价键理论

1.价键理论的基本内容:

(1) 配合物的中心体M 与配体L 之间的结合,一般是靠配体单方面提供孤对电子对与M 共用,形成配

键M ←∶L ,这种键的本质是共价性质的,称为σ配键。

(2) 形成配位键的必要条件是:配体L 至少含有一对孤对电子对,而中心体M 必须有空的价轨道。 (3) 在形成配合物(或配离子)时,中心体所提供的空轨道(s 、p ,d 、s 、p 或s 、p 、d)必须首先进行杂

化,形成能量相同的与配位原子数目相等的新的杂化轨道。 2.讨论:

(1) 配合物中的中心体可以使用两种杂化形式来形成共价键:

M a

a M f a c d M d a c e M a d a c M a c a d

e M a c a d M a c a e

f M d c a a M e c a a M

e d c a

a M M M B A A B

M

B A B A M B B A

A M

B A M A B M B A A B e f M

B A B e

f M B B A A M B A

M B A M A B

一种杂化形式为(n - 1)d 、n s 、n p 杂化,称为内轨型杂化。这种杂化方式形成的配合

物称为内轨型配合物(inner complexes );

另一种杂化形式为n s 、n p 、n d 杂化,称为外轨型杂化,这种杂化方式形成的配合物

称为外轨型配合物(outer complexes );

(2) 对于四配位:

a .正四面体配合物:

中心体一定采取sp 3杂化,一定是外轨型配合物,对于(n - 1)d 10电子构型的四配位配合物,

一定为四面体。

b .平面四方配合物:

中心体可以采取dsp 2杂化,也可以采取sp 2d 杂化,但sp 2d 杂化类型的配合物非

常罕见。舍去低能n p 价轨道而用高能n d 价轨道的杂化是不合理的。

☆ 对于(n - 1)d 8电子构型四配位的配合物(或配离子):+243)Ni(NH 、-

24Ni(CN),前者

为正四面体,后者为平面四方,即前者的Ni 2+采取sp 3杂化,后者的Ni 2+采取dsp 2杂化。而Pd 2+、Pt 2+为中心体的四配位配合物一般为平面四方,因为它们都采取dsp 2杂化。 Ni 2+

的sp 3

杂化:3d

8

3d

4s

4p

Ni 2+的dsp 2

杂化

3d

4s

4p

dsp 2

杂化

(3) 对于六配位:

中心体既能采取sp 3d 2杂化,也能采取d 2sp 3杂化。

☆ 对于(n - 1)d x (x = 4、5、6)电子构型中心体而言,其六配位配合物采取内轨型杂化还是采取外轨型杂

化,主要取决于配体对中心体价电子是否发生明显的影响而使(n - 1)d 价轨道上的d 电子发生重排。

(4) 中心离子采取内外轨杂化的判据 ?? 磁矩

a .配合物分子中的电子若全部配对,则属反磁性(diamagnetism );反之,当分子中有未成对

电子,则属顺磁性(paramagnetism )。因此,研究和测定配合 物的磁性,可提供有关中心金属离子电子结构和氧化态等方面的信息。

b .测量配合物磁性的仪器为磁天平(magneti

c balance ),有古埃磁天平(Guay balance )和法

拉第磁天平(Faraday balance ),后者可以变温测量物质的磁矩。

c .为求得配合物的未成对电子数,可仅考虑自旋角动量对磁矩的贡献,称“唯自旋”(spin-only )处理:唯自旋的磁矩 )2(+?=n n s μ n 为未成对电子数 3.价键理论的应用:

(1) 可以确定配合物的几何构型,即:

sp 3杂化 — 正四面体,dsp 2杂化 — 平面四方,sp 3d 或dsp 3杂化 — 三角双锥,d 4s —

四方锥,sp 3d 2或d 2sp 3杂化 — 正八面体。

必须说明的是三角双锥与四方锥的结构互换能非常小,所以它们两者可以互

相转变。例如:-25MnCl (d 4高自旋)四方锥、-

35Co(CN)(d 7低自旋)四方锥,

都不能用杂化轨道理论解释,而看作三角双锥的互变异构体则很容易理解:因为Mn 2+和Co 2+ 都有一个(n - 1)d 空轨道,所以Mn 2+和Co 2+可以采取dsp 3杂化,所以这两种配离子是三角双锥互变异构成四方锥型。

(2) 可以判断配合物的稳定性

同种中心体、配体与配位数的配合物,内轨型配合物比外轨型配合物稳定。

例如:+363)Co(NH 稳定性大于+

263)Co(NH 的稳定性,36Fe(CN)-稳定性大于36FeF -的稳定性。 4.价键理论的局限性

(1) 只能解释配合物基态的性质,不能解释其激发态的性质,如配合物的颜色。

(2) 不能解释+

243)Cu(NH 离子为什么是平面四方几何构型而Cu 2+离子不是采取dsp 2杂化?因为Cu 2+电

子构型为3d 9,只有把一个3d 电子激发到4p 轨道上,Cu 2+离子才能采取dsp 2杂化,一旦这样就不稳定,

易被空气氧化成334Cu(NH )+,实际上234

Cu(NH )+在空气中很稳定,即Cu 2+离子的dsp 2

杂化不成立。 (3) 不能解释第一过渡系列+2氧化态水合配离子+

262O)M(H 的稳定性与d x 有如下关系:

d 0 < d 1 < d 2< d 3 > d 4 > d 5 < d 6 <d 7 < d 8 > d 9 > d 10

Ca 2+ Sc 2+ Ti 2+ V 2+ Cr 2+ Mn 2+ Fe 2+ Co 2+ Ni 2+ Cu 2+ Zn 2+ (4)

5F e (C

O ),

2(CO)Co

都是稳定的配合物。 已知,CO 的电离势要比H 2O 、NH 3的电离势高,这意味着CO 是弱的

σ给予体,即M ←CO ,σ配键

很弱。实际上羰基配合物是稳定性很高的配合物。

⑵晶体场理论

1.晶体场理论的基本要点:

(1) 把中心离子M n +看作带正电荷的点电荷,把配体L 看作带负电荷的点电荷,只考虑M n +与L 之间的

静电作用,不考虑任何形式的共价键。

(2) 配体对中心离子的(n

-

1)d 轨道要发生影响(五个d 轨道在自由离子状态中,虽然空间的分布不同,

但能量是相同的),简并的五个d 轨道要发生分裂,分裂情况主要取决于配体的空间分布。

(3) 中心离子M n +的价电子[(n - 1)d x ]在分裂后的d 轨道上重新排布,优先占有能量低的(n - 1)d 轨道,

进而获得额外的稳定化能量,称为晶体场稳定化能(crystal field stabilization energy, CFSE)。

2.中心体d 轨道在不同配体场中的分裂情况

(1)d 轨道的角度分布图

xy xz yz 22d y x - 2d z

Fig. 16.4 The angular distribution wave functions diagram of the five d orbitals and their spatial relation to ligands on the x , y and z -axes.

从图16.3中可以看出xy d 、xz d 、yz d 的角度分布图在空间取向是一致的,所以它们是 等价的,而22d y x -、2d z 看上去似乎是不等价的,实际上它们也是等价的,因为2d z 可以看 作是22d z x -和22d z y -的组合(图16.4)。

Fig. 16.5 Illustration of the 2d z orbital as a linear combination of the 22d z x -and 22d z y - orbitals.

(2) 在假想的球形场中(spherical field )

球形场中每个d 轨道上的电子 受到配体提供电子对的排斥

作用相同

(3) 在正八面体场中(octahedral field ) O h a .建立坐标:

对于正八面体配合物ML 6,中

心体(M)放在坐标

轴原点,六个配体L 分别在x ±,y ±,z ±轴上且离

原点的距离为a 。相当于从球形场配体中拿掉许多配 体,最后只剩下x ±,y ±,z ±轴上六个配体。

b .d 轨道的分裂情况: 对中心体M

的(n - 1)d 轨道而 言:从2d z 与22d y x -的角度分布图

来,这两个轨道的电子云最大密度处恰好对着x ±,y ±,z ±上的六个配体,受到配体电子云的排斥作用增大,所以2d z 与22d y x -轨道的能量升高;从xy d 、

xz d 、yz d 的角度分布图来看,这三个轨道的电子云最大密度处指向坐标轴的对角线处,离x ±,y ±,z

±上的配体的距离远,受到配体电子云的排斥作用小,

所以xy d 、xz d 、yz d 轨道的能量降低。

故在正八面体场中,中心体M 的(n - 1)d 轨道分裂成两组(图16.7):

Fig. 16.7

Crystal field splitting in an octahedral complex

c .分裂能

(i) 定义: Δ )()(o g 2g t e E E -= (1)

(ii) e g 与t 2g 两组d 轨道的能量

根据能量守恒定律:064g 2g =+)t ()e (E E (2)

由(1)、(2)联立方程 得:o )(o )(Δ5

2

, Δ53 g

2g -==t e E E

令?o = 10D q ,则:2g

g

6q 4q , (e )(t )E D E D -==

d .晶体场稳定化能 (CFSE)o 2g

g

o (t

)

(e )(CFSE)(4q)6q D n D n -?+?=,

其中)e ()t (n n g g 2 、为g g e t 2、

上的电子数。 0g 6g 2)()(e t CFSE (4q)624q D D =-?=-

2g 4g 2)()(e t C F S E (4q )46q 2D D D =-?+?=- (4) 在正四面体场中(The tetrahedral field )T d

a .建立坐标:

取边长为a 的立方体,配合物ML 4的中心

体M 在立方体的体心,四个配体L 占有个立方体四个互不相邻的顶点上,三个坐标轴分别穿过立方体的三对面心。

e – 二重简并

t – 三重简并 g – 中心对称 u – 中心反对称 1 – 镜面对称 2 – 镜面反对称

Fig. 16.6 A sketch showing six negative charges

arranged octohedrally around a central M species with a set of Cartesian axes for reference.

Fig. 16.8 A sketch showing the tetrahedral

arrangement of four negative charges

around a central M species with the

Cartesian coordinate system oriented to identify the positions of the d orbitals.

b .d 轨道在T d 场中的分裂情况:

2d z 与22d y x -原子轨道的电子云最大密度处离最近的一个配体的距离为

a 2

2 xy d 、xz d 、yz d 原子轨道的电子云最大密度处离最近的一个配体的距离为

2

a

,所 以xy d 、xz d 、yz d 原子轨道上的电子受到配体提供的电子对的排斥作用大,其原子轨道的能量升高;而2d z 与22d y x -原子轨道上的电子受到配位体提供的电子对

的排斥作用小,其原子轨道的能量降低。故在正四面体场中,中心体M 的(n - 1)d 轨道分裂成两组(图 16.9):

Fig. 16.9 Crystal field splitting in a tetrahedral complex

c .分裂能

(i) e t t E E -=2Δ (1) (ii) 2t ,e 两组d 轨道的能量

根据能量守恒定律:0462=+e t E E (2)

联立(1)(2)得: t t E Δ522= , t e E Δ5

3

-=

o 440

q 99

ΔΔt D =≈ 2

1.78q t E D =∴ ,

2.67q e E D =- d .(CFSE) t

2(C F S E )( 2.67q ) 1.78q t e t D n D n =-?+? 2 t e n n 、为2 t e 、轨道上的电子数。

(5) 在平面四方场中 (square planar field) S q

a .把正八面体场中的z ±轴上的两个配体(L)去掉,形成平面四方场配合物

b .d 轨道的分裂情况:分裂成四组:

Fig. 16.10 Splitting of d-orbital energies by a square field of ligands

(6)

九 配合物的稳定性及配位平衡

1.稳定常数(或形成常数)(Stability constant or formation constant )

(1) 实验:

-++??→?↓?→???→?↓??→?-

-

-

2CN

I 23N H Cl Ag(CN)AgI )Ag(NH AgCl Ag 3 说明配离子+23)Ag(NH 也有离解反应:+2

3)Ag(NH 3NH 2Ag ++

(2) Ag +与NH 3之间的平衡 — 配位平衡 3

2NH Ag +

++23)Ag(NH 32f 2

3[Ag(NH )]

[Ag ][NH ]

K +

+=

也可以用离解常数(K d )来表示(dissociation constant )

f

2323d 1

])[Ag(NH ]][NH [Ag K K ==+

+ (3) 实际上配离子的形成也是分步进行的。即: Ag + + NH 3Ag(NH 3)+ K 1

Ag(NH 3)+ + NH

3

+23)Ag(NH K 2

∴K f = K 1 · K 2 = β2 β累积平衡常数(accumulated constant)

通式:M + n L ML n βn = K 1 K 2……K n

下面我们所用的K f 就是该配离子的累积平衡常数 1.配合物的稳定型性的判据:

(1) 同类型的配合物(或配离子)(ML 4、ML 6),其K f 越大,越稳定;但不同类型配合物,要通过计算

说明。

(2) 螯合效应(chelate effect)-熵增原理(entropy increasing principles ) a .实例:

Non-chelated complex

lg K Ni 2+ + 2NH

3

[Ni(NH 3)2]2+

5.00 [Ni(NH 3)2]2+ + 2NH

3[Ni(NH 3)4]2+ 2.87 [Ni(NH 3)4]2+ + 2NH 3

[Ni(NH 3)6]2+

0.74 Chelated complex

lg K Ni 2+

+ en [Ni(en)]2+

7.51 [Ni(en)]2+

+ en [Ni(en)2]2+ 6.35 [Ni(en)2]2+

+ en

[Ni(en)3]2+

4.32

说明形成螯合物比形成简单配合物稳定。 b .Explain —Entropy increasing

[Ni(NH 3)6]2+ + 3en → [Ni(en)3]2+ + 6NH 3

上式表示反应物为4mol 物种,生成物为7mol 物种,生成物的混乱度大于反应物的混乱度,正反应方向是混乱度增加的方向,即熵增方向,所以螯合物的稳定性大于简单配合物的稳定性,这种效应称为“螯合效应”。

c .例外情况:若螯合物中螯环存在张力,该螯合物未必稳定。

例如:7f 23101.1 )Ag(NH ?=+K ,70.4 Ag(en)f =+

K

因为Ag +采取sp 杂化,形成Ag(en)+时,螯环中张力存在的缘故。

Practice Exercise :为什么比起[Cu(H 2O)4en]2+、[Cu(NH 3)2(en)2]2+来,[Cu(en)3]2+特别不稳定?(Cu 2+ + 3en :lg K 1 = 10.72,lg K 2 = 9.31,lg K 3 = -1.0) [Cu(H 2O)2(en)2]2+的两种几何异构体中,哪一个是主要形式?

2.影响配合物稳定性的因素

(1) 内因:中心体与配体的本身性质

(2) 外因:溶液的酸度、浓度、温度、压强等因素 3.硬软酸碱理论(Hard and soft acids and bases )(HSAB ) (1) 实验事实:

a 类金属离子 M (I)(碱金属)、M (II)(碱土金属离子)、

Ti 4+、Cr 3+、Fe 3+、Co 3+(高氧化态过渡金属离子)

与a 类金属离子形成配合物的稳定性

Sb As P N >>>> Te Se S O >>>> I Br Cl F >>> b 类金属离子 Cu +、Ag +、Hg +、Hg 2+、Pd 2+、Pt 2+

(重过渡金属离子,或低氧化态过渡金属离子)

与b 类金属离子形成配合物的稳定性

Sb As P N >><< Te ~Se S O <<< I Br Cl F <<<

根据与a 类、b 类金属离子形成配合物的稳定性,配体也分成a 类、b 类。 (2) Pearson 建议用―hard‖和―soft‖来描述(a)类和(b)类

Classification of hard and soft acids

Hard Acids

Hard Bases

)

()()(4444334332222I I Cl Hf Zr Ti Th Lu Gd Ce La Sc Sr Ca Mg Be K Na Li H ⅦⅤⅢ、、、、、、、、、、、、

、、、、、、、++++

+

+

+

+

+

++++++++

---

------F

ClO SO PO NO CO COO CH O R ROH O OH O H H N RNH NH 424

3432332224223、、、、、、、

、、、、、

、、 Borderline Acids

Borderline Bases

+

+++++++++++222233322222Sb Pb Sn Os Ru Ir Rh Zn Cu Ni Co Fe 、、、、、、、、、、、 -

---Br SO NO N N N H C NH H C 2322355256、

、、、、、

Soft Acids Soft Bases

+++++++++++I I Br Br Hg Hg Cd Au Ag Cu Pt Pt Pd 2222422、、、、

、、、、、、

、、 -

-----I O S RSH S R As R P (RO) P R SCN CO RNC CN H C H C R H 23223336642、、、、、

、、、、、、、、、

晶体结构习题与解答

第三章晶体结构习题与解答 3-1 名词解释 (a)萤石型和反萤石型 (b)类质同晶和同质多晶 (c)二八面体型与三八面体型 (d)同晶取代与阳离子交换 (e)尖晶石与反尖晶石 答:(a)萤石型:CaF2型结构中,Ca2+按面心立方紧密排列,F-占据晶胞中全部四面体空隙。 反萤石型:阳离子和阴离子的位置与CaF2型结构完全相反,即碱金属离子占据F-的位置,O2-占据Ca2+的位置。 (b)类质同象:物质结晶时,其晶体结构中部分原有的离子或原子位置被性质相似的其它离子或原子所占有,共同组成均匀的、呈单一相的晶体,不引起键性和晶体结构变化的现象。 同质多晶:同一化学组成在不同热力学条件下形成结构不同的晶体的现象。 (c)二八面体型:在层状硅酸盐矿物中,若有三分之二的八面体空隙被阳离子所填充称为二八面体型结构三八面体型:在层状硅酸盐矿物中,若全部的八面体空隙被阳离子所填充称为三八面体型结构。 (d)同晶取代:杂质离子取代晶体结构中某一结点上的离子而不改变晶体结构类型的现象。 阳离子交换:在粘土矿物中,当结构中的同晶取代主要发生在铝氧层时,一些电价低、半径大的阳离子(如K+、Na+等)将进入晶体结构来平衡多余的负电荷,它们与晶体的结合不很牢固,在一定条件下可以被其它阳离子交换。 (e)正尖晶石:在AB2O4尖晶石型晶体结构中, 若A2+分布在四面体空隙、而B3+分布于八面体空 隙,称为正尖晶石; 反尖晶石:若A2+分布在八面体空隙、而B3+一半分 布于四面体空隙另一半分布于八面体空隙,通式为 B(AB)O4,称为反尖晶石。 3-2 (a)在氧离子面心立方密堆积的晶胞中,画出 适合氧离子位置的间隙类型及位置,八面体间隙位 置数与氧离子数之比为若干四面体间隙位置数与氧 离子数之比又为若干 (b)在氧离子面心立方密堆积结构中,对于获得稳 定结构各需何种价离子,其中: (1)所有八面体间隙位置均填满; (2)所有四面体间隙位置均填满; (3)填满一半八面体间隙位置; (4)填满一半四面体间隙位置。 并对每一种堆积方式举一晶体实例说明之。 解:(a)参见2-5题解答。 (b)对于氧离子紧密堆积的晶体,获得稳定的结构 所需电价离子及实例如下: (1)填满所有的八面体空隙,2价阳离子,MgO; (2)填满所有的四面体空隙,1价阳离子,Li2O; (3)填满一半的八面体空隙,4价阳离子,TiO2; (4)填满一半的四面体空隙,2价阳离子,ZnO。

晶体的结构和性质(竞赛)

高一化学竞赛辅导——晶体的结构和性质(第12周) 学习重难点: 1.了解晶体的特性,理解晶胞。 2.. 分子晶体、原子晶体、离子晶体和金属晶体组成粒子,粒子间作用力、熔沸点、硬度、导电性; 3.理解影响晶体熔点和沸点的因素、能进行不同晶体熔沸点比较。 学习过程: 一、晶体和晶胞 1、通常人们说的固体包括两类物质: 和 。 其中,橡胶、玻璃、琥珀、树脂属于 。 晶体具有的本质特征是“自范性”。即晶体能够自发的呈现封闭的规则凸多面体的外形,非晶态物质没有自范性。 2、晶面夹角不变定律(大概了解即可) 3、晶胞 (1)用锤子轻轻敲打具有整齐外形的晶体,会发现晶体劈裂出现的心晶面与某原来晶面平行,这种现象叫做晶体的解理性。古人由晶体解理性猜测,晶体是由无数个肉眼看不到的,形状、大小、组成原子数目和种类、取向相同的微小几何体堆积而成的,后来,这种观念发展成为晶胞的概念。 (2)晶胞:整块晶体是由完全等同的晶胞无隙并置堆积而成的。 注意:永远不要将晶胞看成是一个孤立的多面体,而应视为晶体微观空间中的一个单元,看见它,就要想象它的上下左右有完全相同的晶胞。 (3)晶胞中原子的计算 [例1] 如下图,是某晶体最小的结构单元,试写出其化学式。 分析:此题采用延伸法: 顶点上的原子,被8个晶体所共用,对每一个晶体只提供81 棱边上的原子,被4个晶体所共用,对每一个晶体只提供41 面心上的原子,被2个晶体所共用,对每一个晶体只提供2 1 体心上的原子,被1个晶体所共用,对每一个晶体只提供1 据此:1:3:11:4 1 12:818::=??=z y x 化学式为

[例2] 下图是超导化合物----钙钛矿晶体中最小重复单元(晶胞)的结构。请回答: (1)该化合物的化学式为 。 (2)在该化合物晶体中,与某个钛离子距离最近且相等的其他钛离子共有 个。 [例3] 根据离子晶体的晶胞(晶体中最小重复单元),求阴、阳离子个数比的方法是: (1)处于顶点的离子,同时为8个晶胞共有,每个离子有1/8属于晶胞; (2)处于棱上的离子同时为4个晶胞共有,每个离子有1/4属于晶胞; (3)处于面上的离子,同时为2个晶胞共有,每个离子有1/2属于晶胞; (4)处于内部的离子,则完全属于该晶胞。 现有甲、乙、丙三种晶胞,可推知甲晶体化学式为 ,乙晶体的化学式为 ,丙晶体中C 与D 的个数比为 。 [例4] 下图是NaCl 晶体结构的示意图: (1)若用+ -?Na - -Cl O ,请将位置表示出来; (2)每个+ Na 周围与它最接近且距离相等的+ Na 有 个。 分析:解答此类问题常用的是“分割法”——从晶体中分出最小的结构单元,或将最小的结构单元分成若干个面。 答案:12 二、分子晶体 ①概念:只含___________的晶体,称为分子晶体。 ②构成晶体的微粒是___________ ③晶体内微粒间的作用: 分子内原子间_______________________,相邻分子之间__________________________。 ④分子晶体的物理性质是: 熔点和沸点较______,有些分子具有易挥发、升华的性质。 硬度_________,一般都是绝缘体,熔融态_______导电。 2.常见的分子晶体 ①所有____________________,如水、硫化氢、氨、氯化氢、甲烷等。 ②部分____________________,如卤素(X 2)、氧(O 2)、硫(S 8)、氮(N 2)、白磷(P 4)、碳60(C 60)、稀有气体等。

(完整版)第一章原子结构与性质知识点归纳

第一章 原子结构与性质知识点归纳 山东临沂市莒南三中(276600) 张琛 山东省烟台市蓬莱四中(265602) 马彩红 2.位、构、性关系的图解、表解与例析 (1)元素在周期表中的位置、元素的性质、元素原子结构之间存在如下关系: 同位素(两个特性)

3.元素的结构和性质的递变规律 4.核外电子构成原理 (1)核外电子是分能层排布的,每个能层又分为不同的能级。 随着原子序数递增 ① 原子结构呈周期性变化 ② 原子半径呈周期性变化 ③ 元素主要化合价呈周期性变化 ④ 元素的金属性与非金属形呈周期性变化 ⑤ 元素原子的第一电离能呈周期性变化 ⑥ 元素的电负性呈周期性变化 元素周期律 排列原则 ① 按原子序数递增的顺序从左到右排列 ② 将电子层数相同的元素排成一个横行 ③ 把最外层电子数相同的元素(个别除外),排成一个 纵行 周期(7个横行) ① 短周期(第一、二、三周期) ② 长周期(第四、五、六周期) ③ 不完全周期(第七周期) 性质递变 原子半径 主要化合价 元 素 周 期 表 族(18 个纵行) ① 主族(第ⅠA 族—第ⅦA 族共七个) ② 副族(第ⅠB 族—第ⅦB 族共七个) ③ 第Ⅷ族(第8—10纵行) ④ 结 构

(2)核外电子排布遵循的三个原理: a.能量最低原理b.泡利原理c.洪特规则及洪特规则特例 (3)原子核外电子排布表示式:a.原子结构简图b.电子排布式c.轨道表示式5.原子核外电子运动状态的描述:电子云 6.确定元素性质的方法 1.先推断元素在周期表中的位置。 2.一般说,族序数—2=本族非金属元素的种数(1 A族除外)。 3.若主族元素族序数为m,周期数为n,则: (1)m/n<1时为金属,m/n值越小,金属性越强: (2)m/n>1时是非金属,m/n越大,非金属性越强;(3)m/n=1时是两性元素。

晶体结构 补充习题

晶体结构补充习题 班级学号姓名 一、是非题(判断下列叙述是否正确,正确的在括号中画√,错误的画X) 1、离子半径是离子型化合物中相邻离子核间距的一半。..................................() 2、所有层状晶体均可作为润滑剂和导电体使用。.................................................() 二、选择题(在下列各题中,选择出符合题意的答案,将其代号填入括号内) 1、下列离子中极化力和变形性均较大的是...............................................................()。 (A)Mg2+;(B)Mn2+;(C)Hg2+;(D)Al3+。 2、金属钙具有面心立方结构,在每个单位晶胞中含有Ca原子的个数为....()。 (A)1;(B)2;(C)3;(4)4。 3、下列两组物质:①MgO、CaO、SrO、BaO ②KF、KCl、KBr、KI 每组中熔点最高的分别是............................................................................................()。 (A)BaO和KI;(B)CaO和KCl;(C)SrO和KBr;(D)MgO和KF。 4、下列关于分子晶体的叙述中正确的是....................................................................()。 (A)分子晶体中只存在分子间力; (B)分子晶体晶格结点上排列的分子可以是极性分子或非极性分子; (C)分子晶体中分子间力作用较弱,因此不能溶解于水; (D)分子晶体在水溶液中不导电。 5、下列各组原子或离子半径大小顺序,其中错误的是.......................................()。 (A)Ca2+Mg2+>Al3+; (C)Ne>N3->Br-;(D)N3->O2->F-。 6、下列各种电子构型的正离子,其极化力和变形性均较小的是...................()。 (A)8电子构型;(B)9~17电子构型; (C)18电子构型;(D)18+2电子构型。 7、比较下列物质熔点,其中正确的是...........................................................................()。 (A)MgO>BaO;(B)CO2>CS2;(C)BeCl2>CaCl2;(D)CH4>SiH4。 8、下列晶体中,具有正四面体空间网状结构(原子以sp3杂化轨道键合)的是......................................................................................................................................()。(A)石墨;(B)金刚石;(C)干冰;(D)铝。

最新(四)竞赛专项练习题之晶体结构

(四)竞赛专项练习题 之晶体结构

(四)晶体结构 一、(2005)(12分) LiCl和KCl同属NaCl型晶体,其熔点分别为614℃和776℃。Li+、K+和Cl-的半径分别为76pm、133pm和181pm。在电解熔盐LiCl以制取金属锂的生产工艺中,加入适量的KCl晶体,可使电解槽温度下降至400℃,从而使生产条件得以改善。 1.说明加入熔点高的KCl反而使电解温度大大下降的原因; 2.有人认为,LiCl和KCl可形成固溶体(并画出了“固溶体的晶胞”)。但实验表明,液相LiCl和KCl能以任意比例混溶而它们的固相完全不混溶(即不能生成固溶体!)。请解释在固相中完全不混溶的主要原因。 3.写出计算LiCl和KCl两种晶体密度之比的表达式(须包含离子半径的符号); 4.在KCl晶体中,K+离子占据由Cl- 离子围成的八面体空隙,计算相距最近的八面体空隙中心之间的距离。 5.实验证明,即使产生了阳离子空位,KCl晶体在室温下也不导电。请通过计算加以说明。 二、(2005)(12分)为纪念1905年爱因斯坦连续发表6篇论文导致物理学大变革100周年,今年被定为国际物理年。本题涉及的“热电效应”机理也是爱因斯坦首先阐释的,即他提出的被后人称为“爱因斯坦振荡器”的独立振荡原子与温度关系的模型。

1.左上图是热电效应之一的图解。给出图中所有英文单词(或词组)及物理学符号的意义,并为此图写一篇不超过200字(包括标点符号等)的说明文。 2.右上图是化学家合成的能实现热电效应的一种晶体的晶胞模型。图中的大原子是稀土原子,如镧;小原子是周期系第五主族元素,如锑;中等大小的原子是周期系VIII 族元素,如铁。按如上结构图写出这种热电晶体的化学式。给出计算过程。提示:晶胞的6个面的原子数相同。设晶体中锑的氧化态为-1,镧的氧化态为+3,问:铁的平均氧化态多大? 三、(2005B)(10分)固体发光材料是一种能将激发的能量转变为可见光的固体物质。在基质中掺入杂质,含量可达千分之几或百分之几,可调整发光效率、余辉及发光光谱。如在刚玉Al2O3基质中掺入0.05~1.0%的Cr3+及在Y2O3基质中掺入Eu3+等均可制成固体发光材料。 1.推测Al2O3基质中掺入Cr3+的发光原理。 2.Y2O3属立方晶系,将Y2O3的立方晶胞分为8个小立方体,Y在小立方体的面心和顶点,O位于小立方体内的四面体空隙,画出这样四个小立方体,指出Y和O的配位数。 【答案】

物理选修3---5第十八章:原子结构知识点汇总

物理选修3---5第十八章:原子结构知识点汇总 (训练版) 知识点一、电子的发现和汤姆生的原子模型: 1、电子的发现: 1897年英国物理学家汤姆生,对阴极射线进行了一系列的研究,从而 发现了电子。电子的发现表明:原子存在精细结构,从而打破了原子不可再分的观念。 2、汤姆生的原子模型: 1903年汤姆生设想原子是一个带电小球,它的正电荷均匀分布在整个球体内,而带负电的电子镶嵌在正电荷中。这就是汤姆生的枣糕式原子模型。 知识点二、α粒子散射实验和原子核结构模型 1、α粒子散射实验:1909年,卢瑟福及助手盖革手吗斯顿完成 ①实验装置的组成:放射源、金箔、荧光屏 1

②实验现象: a. 绝大多数α粒子穿过金箔后,仍沿原来方向运动, 不发生偏转。 b. 有少数α粒子发生较大角度的偏转 c. 有极少数α粒子的偏转角超过了90度,有的几乎达到180度,即被反向弹回。 2、原子的核式结构模型: 由于α粒子的质量是电子质量的七千多倍,所以电子不会使α粒子运动方向发生明显的改变,只有原子中的正电荷才有可能对α粒子的运动产生明显的影响。如果正电荷在原子中的分布,像汤姆生模型那模均匀分布,穿过金箔的α粒了所受正电荷的作用力在各方向平衡,α粒了运动将不发生明显改变。散射实验现象证明,原子中正电荷不是均匀分布在原子中的。 1911年,卢瑟福通过对α粒子散射实验的分析计算提出原子核式结构模型:在原子中心存在一个很小的核,称为原子核,原子核集中了原子所有正电荷和几乎全部的质 量,带负电荷的电子在核外空间绕核旋转。原子核半径小于1014-m,原子轨道半径约1010-m。 3、卢瑟福对实验结果的解释 电子对α粒子的作用忽略不计。 因为原子核很小,大部分α粒子穿过原子时离原子核很远,受到较小的库仑斥力,运动几乎不改变方向。 极少数α粒子穿过原子时离原子核很近,因此受到很强的库仑斥力,发生大角度散射。

金属的晶体结构习题答案

第一章 金属的晶体结构 (一)填空题 3.金属晶体中常见的点缺陷是 空位、间隙原子和置换原子 ,最主要的面缺陷是 。 4.位错密度是指 单位体积中所包含的位错线的总长度 ,其数学表达式为V L =ρ。 5.表示晶体中原子排列形式的空间格子叫做 晶格 ,而晶胞是指 从晶格中选取一个能够完全反应晶格特征的最小几何单元 。 6.在常见金属晶格中,原子排列最密的晶向,体心立方晶格是 [111] ,而面心立方晶格是 [110] 。 7 晶体在不同晶向上的性能是 不同的 ,这就是单晶体的 各向异性现象。一般结构用金属为 多 晶体,在各个方向上性能 相同 ,这就是实际金属的 伪等向性 现象。 8 实际金属存在有 点缺陷 、 线缺陷 和 面缺陷 三种缺陷。位错是 线 缺陷。 9.常温下使用的金属材料以 细 晶粒为好。而高温下使用的金属材料在一定范围内以粗 晶粒为好。 10.金属常见的晶格类型是 面心立方、 体心立方 、 密排六方 。 11.在立方晶格中,各点坐标为:A (1,0,1),B (0,1,1),C (1,1,1/2),D(1/2,1,1/2),那么AB 晶向指数为10]1[- ,OC 晶向指数为[221] ,OD 晶向指数为 [121] 。 12.铜是 面心 结构的金属,它的最密排面是 {111} ,若铜的晶格常数a=,那么 最密排面上原子间距为 。 13 α-Fe 、γ-Fe 、Al 、Cu 、Ni 、Cr 、V 、Mg 、Zn 中属于体心立方晶格的有 α-Fe 、Cr 、V , 属于面心立方晶格的有 γ-Fe 、Al 、Cu 、Ni 、 ,属于密排六方晶格的有 Mg 、 Zn 。 14.已知Cu 的原子直径为0.256nm ,那么铜的晶格常数为 。1mm 3Cu 中的原子数 为 。 15.晶面通过(0,0,0)、(1/2、1/4、0)和(1/2,0,1/2)三点,这个晶面的晶面指数为 . 16.在立方晶系中,某晶面在x 轴上的截距为2,在y 轴上的截距为1/2;与z 轴平行,则 该晶面指数为 (140) . 17.金属具有良好的导电性、导热性、塑性和金属光泽主要是因为金属原子具有 金属键 的 结合方式。 18.同素异构转变是指 当外部条件(如温度和压强)改变时,金属内部由一种金属内部由 一种晶体结构向另一种晶体结构的转变 。纯铁在 温度发生 和 多晶型转变。 19.在常温下铁的原子直径为0.256nm ,那么铁的晶格常数为 。 20.金属原子结构的特点是 。 21.物质的原子间结合键主要包括 离子键 、 共价键 和 金属键 三种。 (二)判断题 1.因为单晶体具有各向异性的特征,所以实际应用的金属晶体在各个方向上的性能也是不相同的。 (N) 2.金属多晶体是由许多结晶位向相同的单晶体所构成。 ( N) 3.因为面心立方晶体与密排六方晶体的配位数相同,所以它们的原子排列密集程度也相同 4.体心立方晶格中最密原子面是{111}。 Y 5.金属理想晶体的强度比实际晶体的强度高得多。N 6.金属面心立方晶格的致密度比体心立方晶格的致密度高。 7.实际金属在不同方向上的性能是不一样的。N 8.纯铁加热到912℃时将发生α-Fe 向γ-Fe 的转变。 ( Y ) 9.面心立方晶格中最密的原子面是111},原子排列最密的方向也是<111>。 ( N ) 10.在室温下,金属的晶粒越细,则其强度愈高和塑性愈低。 ( Y ) 11.纯铁只可能是体心立方结构,而铜只可能是面心立方结构。 ( N ) 12.实际金属中存在着点、线和面缺陷,从而使得金属的强度和硬度均下降。 ( Y ) 13.金属具有美丽的金属光泽,而非金属则无此光泽,这是金属与非金属的根本区别。N

几种常见晶体结构分析

几种常见晶体结构分析文档编制序号:[KK8UY-LL9IO69-TTO6M3-MTOL89-FTT688]

几种常见晶体结构分析 河北省宣化县第一中学 栾春武 邮编 075131 栾春武:中学高级教师,张家口市中级职称评委会委员。河北省化学学会会员。市骨干教师、市优秀班主任、模范教师、优秀共产党员、劳动模范、县十佳班主任。 联系电话: E-mail : 一、氯化钠、氯化铯晶体——离子晶体 由于离子键无饱和性与方向性,所以离子晶体中无单个分子存在。阴阳离子在晶体中按一定的规则排列,使整个晶体不显电性且能量最低。离子的配位数分析如下: 离子数目的计算:在每一个结构单元(晶胞)中,处于不同位置的微粒在该单元中所占的份额也有所不同,一般的规律是:顶点上的微粒属于该 单元中所占的份额为18,棱上的微粒属于该单元中所占的份额为1 4,面上 的微粒属于该单元中所占的份额为1 2,中心位置上(嚷里边)的微粒才完 全属于该单元,即所占的份额为1。 1.氯化钠晶体中每个Na +周围有6个Cl -,每个Cl -周围有6个Na +,与一个Na +距离最近且相等的Cl -围成的空间构型为正八面体。每个Na +周围与其最近且距离相等的Na +有12个。见图1。 图1 图2 NaCl

晶胞中平均Cl-个数:8×1 8 + 6× 1 2 = 4;晶胞中平均Na+个数:1 + 12×1 4 = 4 因此NaCl的一个晶胞中含有4个NaCl(4个Na+和4个Cl-)。 2.氯化铯晶体中每个Cs+周围有8个Cl-,每个Cl-周围有8个Cs+,与一个Cs+距离最近且相等的Cs+有6个。 晶胞中平均Cs+个数:1;晶胞中平均Cl-个数:8×1 8 = 1。 因此CsCl的一个晶胞中含有1个CsCl(1个Cs+和1个Cl-)。 二、金刚石、二氧化硅——原子晶体 1.金刚石是一种正四面体的空间网状结构。每个C 原子以共价键与4个C原子紧邻,因而整个晶体中无单 个分子存在。由共价键构成的最小环结构中有6个碳原 子,不在同一个平面上,每个C原子被12个六元环共用,每C—C键共6 个环,因此六元环中的平均C原子数为6× 1 12 = 1 2 ,平均C—C键数为 6×1 6 = 1。 C原子数: C—C键键数= 1:2; C原子数: 六元环数= 1:2。 2.二氧化硅晶体结构与金刚石相似,C被Si代替,C与C之间插 氧,即为SiO 2晶体,则SiO 2 晶体中最小环为12环(6个Si,6个O), 图3 CsCl 晶 图4 金刚石晶

(完整版)原子结构与性质知识点总结与练习

第一章原子结构与性质 一.原子结构 1.能级与能层 2.原子轨道 3.原子核外电子排布规律 ⑴构造原理:随着核电荷数递增,大多数元素的电中性基态原子的电子按右图顺序填入核外电子运动轨道(能级),叫做构造原理。 能级交错:由构造原理可知,电子先进入4s轨道,后进入3d轨道,这种现象叫能级交错。 说明:构造原理并不是说4s能级比3d能级能量低(实际上4s能级比3d能级能量高),而是指这样顺序填充电子可以使整个原子的能量最低。也就是说,整个原子的能量不能机械地看做是各电子所处轨道的能量之和。 (2)能量最低原理 现代物质结构理论证实,原子的电子排布遵循构造原理能使整个原子的能量处于最低状态,简称能量最低原理。 构造原理和能量最低原理是从整体角度考虑原子的能量高低,而不局限于某个能级。 (3)泡利(不相容)原理:基态多电子原子中,不可能同时存在4个量子数完全相同的电子。换言之,

一个轨道里最多只能容纳两个电子,且电旋方向相反(用“↑↓”表示),这个原理称为泡利(Pauli )原理。 (4)洪特规则:当电子排布在同一能级的不同轨道(能量相同)时,总是优先单独占据一个轨道,而且自旋方向相同,这个规则叫洪特(Hund )规则。比如,p3 的轨道式为或,而不是。 洪特规则特例:当p 、d 、f 轨道填充的电子数为全空、半充满或全充满时,原子处于较稳定的状态。即p0、d0、f0、p3、d5、f7、p6、d10、f14时,是较稳定状态。 前36号元素中,全空状态的有4Be 2s22p0、12Mg 3s23p0、20Ca 4s23d0;半充满状态的有:7N 2s22p3、15P 3s23p3、24Cr 3d54s1、25Mn 3d54s2、33As 4s24p3;全充满状态的有10Ne 2s22p6、18Ar 3s23p6、29Cu 3d104s1、30Zn 3d104s2、36Kr 4s24p6。 4. 基态原子核外电子排布的表示方法 (1)电子排布式 ①用数字在能级符号的右上角表明该能级上排布的电子数,这就是电子排布式,例如K :1s22s22p63s23p64s1。 ②为了避免电子排布式书写过于繁琐,把内层电子达到稀有气体元素原子结构的部分以相应稀有气体的元素符号外加方括号表示,例如K :[Ar]4s1。 (2)电子排布图(轨道表示式) 每个方框或圆圈代表一个原子轨道,每个箭头代表一个电子。 如基态硫原子的轨道表示式为 二.原子结构与元素周期表 1.原子的电子构型与周期的关系 (1)每周期第一种元素的最外层电子的排布式为ns1。每周期结尾元素的最外层电子排布式除He 为1s2外,其余为ns2np6。He 核外只有2个电子,只有1个s 轨道,还未出现p 轨道,所以第一周期结尾元素的电子排布跟其他周期不同。 (2)一个能级组最多所容纳的电子数等于一个周期所包含的元素种类。但一个能级组不一定全部是能量相同的能级,而是能量相近的能级。 2.元素周期表的分区 (1)根据核外电子排布 ①分区 ②各区元素化学性质及原子最外层电子排布特点 ↑↓ ↑ ↓ ↓ ↓ ↑ ↑ ↑

第3章-晶体结构习题

第 3 章晶体结构习题 1.选择题: 3-1.下列物质的熔点由高到低的顺序正确的为………………………… ( ) (A) CuCl2>SiO2>NH3>PH3 (B) SiO2>CuCl2>NH3>PH3 (C) SiO2>CuCl2>PH3>NH3 (D) CuCl2>SiO2>PH3>NH3 3-2.下列物质中,共价成分最大的是…………………………………… ( ) (A) A1F3 (B)FeCl3 (C) FeCl2 (D) SnCl4 3-3.下列碳酸盐中,分解温度最低的是…………………………………( ) (A) Na2CO3 (B) (NH4)2CO3 (C) ZnCO3 (D) MgCO3 3-4.下列各物质中只需克服色散力就能使之气化的是………………… ( ) (A)HCl (B)C (C)N2 (D)MgCO3 3-5.下列哪种稀有气体沸点最低………………………………………… ( ) (A) He (B) Ne (C) Ar (D) Xe 3-6.下列哪一种物质的沸点最高…………………………………………( ) (A) H2Se (B) H2S (C) H2Te (D) H2O 3-7.下列离子中,极化率最大的是………………………………………()(A)Na+(B)I—(C)Rb+(D)Cl— 3-8.若已知某种物质有两种或两种以上晶体,这种现象叫做…………()(A)同质多晶现象(B)类质同晶现象 (C)同构现象(D)异构现象 3-9.下列离子中,变形性最大的是………………………………………()(A)CO32—(B)SO42—(C)ClO4—(D)MnO4— 3-10.试判断下列化合物熔点变化顺序,正确的是………………………( ) (A) MgO>BaO>BN>ZnCl2>CdCl2 (B) BN>MgO>BaO>CdCl2>ZnCl2 (C) BN>MgO>BaO>ZnCl2>CdC12 (D) BN>BaO>MgO>ZnCl2>CdCl2

常见的金属晶体结构

第二章作业 2-1 常见的金属晶体结构有哪几种它们的原子排列和晶格常数有什么特点 V、Mg、Zn 各属何种结构答:常见晶体结构有 3 种:⑴体心立方:-Fe、Cr、V ⑵面心立方:-Fe、Al、Cu、Ni ⑶密排六方:Mg、Zn -Fe、-Fe、Al、Cu、Ni、Cr、 2---7 为何单晶体具有各向异性,而多晶体在一般情况下不显示出各向异性答:因为单晶体内各个方向上原子排列密度不同,造成原子间结合力不同,因而表现出各向异性;而多晶体是由很多个单晶体所组成,它在各个方向上的力相互抵消平衡,因而表现各向同性。第三章作业3-2 如果其它条件相同,试比较在下列铸造条件下,所得铸件晶粒的大小;⑴金属模浇注与砂模浇注;⑵高温浇注与低温浇注;⑶铸成薄壁件与铸成厚壁件;⑷浇注时采用振动与不采用振动;⑸厚大铸件的表面部分与中心部分。答:晶粒大小:⑴金属模浇注的晶粒小⑵低温浇注的晶粒小⑶铸成薄壁件的晶粒小⑷采用振动的晶粒小⑸厚大铸件表面部分的晶粒小第四章作业 4-4 在常温下为什么细晶粒金属强度高,且塑性、韧性也好试用多晶体塑性变形的特点予以解释。答:晶粒细小而均匀,不仅常温下强度较高,而且塑性和韧性也较好,即强韧性好。原因是:(1)强度高:Hall-Petch 公式。晶界越多,越难滑移。(2)塑性好:晶粒越多,变形均匀而分散,减少应力集中。(3)韧性好:晶粒越细,晶界越曲折,裂纹越不易传播。 4-6 生产中加工长的精密细杠(或轴)时,常在半精加工后,将将丝杠吊挂起来并用木锤沿全长轻击几遍在吊挂 7~15 天,然后再精加工。试解释这样做的目的及其原因答:这叫时效处理一般是在工件热处理之后进行原因用木锤轻击是为了尽快消除工件内部应力减少成品形变应力吊起来,是细长工件的一种存放形式吊个7 天,让工件释放应力的时间,轴越粗放的时间越长。 4-8 钨在1000℃变形加工,锡在室温下变形加工,请说明它们是热加工还是冷加工(钨熔点是3410℃,锡熔点是232℃)答:W、Sn 的最低再结晶温度分别为: TR(W) =(~×(3410+273)-273 =(1200~1568)(℃)>1000℃ TR(Sn) =(~×(232+273)-273 =(-71~-20)(℃) <25℃ 所以 W 在1000℃时为冷加工,Sn 在室温下为热加工 4-9 用下列三种方法制造齿轮,哪一种比较理想为什么(1)用厚钢板切出圆饼,再加工成齿轮;(2)由粗钢棒切下圆饼,再加工成齿轮;(3)由圆棒锻成圆饼,再加工成齿轮。答:齿轮的材料、加工与加工工艺有一定的原则,同时也要根据实际情况具体而定,总的原则是满足使用要求;加工便当;性价比最佳。对齿轮而言,要看是干什么用的齿轮,对于精度要求不高的,使用频率不高,强度也没什么要求的,方法 1、2 都可以,用方法 3 反倒是画蛇添足了。对于精密传动齿轮和高速运转齿轮及对强度和可靠性要求高的齿轮,方法 3 就是合理的。经过锻造的齿坯,金属内部晶粒更加细化,内应力均匀,材料的杂质更少,相对材料的强度也有所提高,经过锻造的毛坯加工的齿轮精度稳定,强度更好。 4-10 用一冷拔钢丝绳吊装一大型工件入炉,并随工件一起加热到1000℃,保温后再次吊装工件时钢丝绳发生断裂,试分析原因答:由于冷拔钢丝在生产过程中受到挤压作用产生了加工硬化使钢丝本身具有一定的强度和硬度,那么再吊重物时才有足够的强度,当将钢丝绳和工件放置在1000℃炉内进行加热和保温后,等于对钢丝绳进行了回复和再结晶处理,所以使钢丝绳的性能大大下降,所以再吊重物时发生断裂。 4-11 在室温下对铅板进行弯折,越弯越硬,而稍隔一段时间再行弯折,铅板又像最初一样柔软这是什么原因答:铅板在室温下的加工属于热加工,加工硬化的同时伴随回复和再结晶过程。越弯越硬是由于位错大量增加而引起的加工硬化造成,而过一段时间又会变软是因为室温对于铅已经是再结晶温度以上,所以伴随着回复和再结晶过程,等轴的没有变形晶粒取代了变形晶粒,硬度和塑性又恢复到了未变形之前。第五章作业 5-3 一次渗碳体、二次渗碳体、三次渗碳体、共晶渗碳体、共析渗碳体异同答:一次渗碳体:由液相中直接析出来的渗碳体称为一次渗碳体。二次渗碳体:从 A 中析出的渗碳体称为二次渗碳体。三次渗碳体:从 F 中析出的渗碳体称为三次渗碳体共晶渗碳体:经共晶反应生成的渗碳体即莱氏体中的渗碳体称为共晶渗碳体共析渗碳体:经共析反应生成的渗碳体即珠光体中的渗

化合物的晶体结构

实验6 化合物的晶体结构 一、一、实验目的: 巩固化合物晶体结构知识。 二、二、实验内容: 典型的化合物的晶体结构有: 1.1.NaCl型结构 NaCl晶体结构是如图6-1所示的立方面心格子,属立方晶系Fm3m空间群,a0=0.5628nm。阴离子按立方最紧密方式堆积,阳离子充填于全部的八面体空隙中,阴、阳离子的配位数都是6。 属于NaCl型晶体结构的晶体有很多,列于表6-1中。 (A) 立方面心格子(B) 晶胞(C) 晶胞绘制图 图6-1 氯化钠晶体结构 2. CsCl型结构 CsCl晶体结构是立方原始格子(图6-2),属立方晶系Pm3m空间群,a0=0.411nm。Cl-处于立方原始格子的八个角顶上,Cs+位于立方体中心,阴、阳离子的配位数都是8。 属于CsCl型晶体结构的晶体有CsBr、CsI、TlCl、NH4Cl。 图6-2 CsCl晶体结构图6-3 纤锌矿晶体结构 3. 纤锌矿(α-ZnS)型结构 纤锌矿(α-ZnS)的晶体结构属立方晶系P63mc空间群,a0=0.382nm,c0=0.625nm,Z=2。在纤锌矿结构中(图6-3),S2-按六方紧密堆积排列,Zn2+充填于1/2的四面体空隙中,阴、阳离子的配位数都是4。 属于纤锌矿(α-ZnS)型晶体结构的晶体有BeO、ZnO和AlN。

4. 闪锌矿(β-ZnS)型结构 闪锌矿(β-ZnS)的晶体结构属立方晶系空间群,a 0=0.540nm ,Z=4。如图6-4所示的闪锌矿结构是立方面心格子,S 2-位于立方面心的结点位置,Zn 2+交错地分布于立方体内的1/8小立方体的中心,阴、阳离子的配位数都是4。如果将S 2-看成是作立方最紧密堆积,则Zn 2+充填于1/2的四面体空隙中。 属于闪锌矿(β-ZnS)型晶体结构的晶体有β-SiC 、GaAs 、AlP 和InSb 。 图6-4 闪锌矿的晶体结构 5. CaF 2型结构 萤石的晶体结构如图6-5所示,属立方晶系Fm3m 空间群,a 0=0.545nm ,Z=4。Ca 2+ 位于立方面心的结点位置,F -位于立方体内的八个小立方体的中心,Ca 2+的配位数是8,F -的配位数是4。在萤石结构中可以将Ca 2+看成是作立方紧密堆积,F -充填于全部四面体空隙中,而全部的八面体空隙都没有被充填,因此,在结构中八个F -离子之间就形成一个“空洞”, 这些“空洞”为F -离子的扩散提供了条件。 属于萤石型晶体结构的晶体有BaF 2、PbF 2、SnF 2、CeO 2、ThO 2和UO 2,还有一些晶体的结构与萤石的完全相同,只是阴、阳离子的位置完全互换,如Li 2O 、Na 2O 、K 2O 等。 图6-5 萤石晶体结构 6. 金红石(TiO 2)型结构 金红石(TiO 2)的晶体结构以及结构中Ti —O 八面体链的排列示于图6-6中,金红石结构属四方晶系P42/mnm 空间群,a 0=0.459nm ,c 0=0.459nm ,Z=2。金红石结构为四方原始格子,Ti 4+位于四方原始格子的结点位置,体中心的Ti 4+自成另一套四方原始格子,O 2-在晶胞中处于一些特定位置上,Ti 4+的配位数是6,O 2-的配位数是3。 金红石结构中Ti-O 八面体以共棱的方式排成链状,晶胞中心的链和四角的Ti-O 八面体链的排列方向相差90?,链与链之间由Ti-O 八面体以共顶相连。如果把O 2-看成近似于六方紧密堆积,则Ti 4+位于1/2的八面体空隙之中。 属于金红石型晶体结构的晶体有GeO 2、SnO 2、PbO 2、MnO 2、MoO 2、NbO 2、WO 2、CoO 2、MnF 2、MgF 2。 m F 3 4

竞赛习题-晶体结构题

专题练习:晶体结构 1. 石墨晶体由如图(1)所示的C 原子平面层堆叠形成。有一种常见的2H 型石墨以二层重复的堆叠方式构成,即若以A 、B 分别表示沿垂直于平面层方向(C 方向)堆叠的两个不同层次,它的堆叠方式为ABAB……。图(2)为AB 两层的堆叠方式,O 和●分别表示A 层和B 层的C 原子。 ⑴ 在图(2)中标明两个晶胞参数a 和b 。 ⑵ 画出2H 型石墨晶胞的立体示意图,并指出晶胞类型。 2. 有一离子晶体经测定属立方晶系,晶胞参数a =4.00?(1?=10-8cm),晶胞的顶点位置为Mg 2+,体心位置为K +,所有 棱边中点为F -。 ⑴ 该晶体的化学组成是 ; ⑵ 晶胞类型是 ; ⑶ Mg 2+的F -配位数是 ,K +的F -配位数是 ; ⑷ 该晶体的理论密度是 g·cm -3。 ⑸ 设晶体中正离子和负离子互相接触,已知F -的离子半径为1.33?,试估计Mg 2+的离子半径是 ?,K +的离子半径是 ?。 3. NiO 晶体为NaCl 型结构,将它在氧气中加热,部分Ni 2+被氧化为Ni 3+,晶体结构产生镍离子缺位的缺陷,其组成成为 Ni x O(x<1),但晶体仍保持电中性。经测定Ni x O 的立方晶胞参数a=4.157?,密度为6.47g·cm -3。 ⑴ x 的值(精确到两位有效数字)为 ;写出标明Ni 的价态的Ni x O 晶体的化学式 。 ⑵ 在Ni x O 晶体中Ni 占据 空隙,占有率是 。 4. 完成下列各题: Cl Cl Cl Cl Cl Cl Cl Cl Cl Cl Cl Cl Cl Cl Cl Cl Cl Cl Cl Cl Cl Cl Cl Cl Cl Cl Cl Cl Cl ⑴ 两种铜溴配合物晶体中的一维聚合链结构的投影图 (其中部分原子给出标记)如下。 ①分别指出两种结构的结构基元由几个Cu 原子和几个Br 原子组成: 图 ⑴ 为 个Cu 原子, Br 原子; 图 ⑵ 为 个Cu 原子, 个Br 原子。 ② 用笔在图中圈出相应的一结构基元。 ⑵图⑶是由氯苯分子构成的平面点阵结构。 ① 在图中标出一个正当单位来,并标明两个基本向量a 和b ; ② 指出正当单位的组成 (内容); ③ 指出这种平面格子的正当单位的形式。 5. 甲烷水合物(nCH 4 · 46H 2O)是一种具有重要经济价值的化合物,在海洋深处蕴藏量非常大,是未来的重要能源之一。 它的晶体结构可看作由五角十二面体[512]和十四面体[51262]共面连接堆积形成。在立方晶胞中,[512]的中心处在顶角和体心位置;[51262]中心位置坐标为(0,1/4,1/2)、(0,3/4,1/2)、(1/2,0,1/4)、(1/2,0,3/4)、(1/4,1/2,0)、(3/4,

高二化学选修三《原子结构》知识点总结归纳 典例导析

原子结构 【学习目标】 1、根据构造原理写出1~36号元素原子的电子排布式; 2、了解核外电子的运动状态; 3、掌握泡利原理、洪特规则。 【要点梳理】 要点一、原子的诞生 我们所在的宇宙诞生于一次大爆炸。大爆炸后约2小时,诞生了大量的氢、少量的氦及极少量的锂。其后,经过或长或短的发展过程,氢、氦等发生原子核的融合反应,分期分批地合成了其他元素。(如图所示) 要点二、能层与能级 1.能层 (1)含义:在含有多个电子的原子里,由于电子的能量各不相同,因此,它们运动的区域也不同。通常能量最低的电子在离核最近的区域运动,而能量高的电子在离核较远的区域运动。根据多电子原子核外电子的能量差异可将核外电子分成不同的能层(即电子层)。如钠原子核外有11个电子,第一能层有2个电子,第二能层有8个电子,第三能层有1个电子。 要点诠释:电子层、次外层、最外层、最内层、内层 在推断题中经常出现与层数有关的概念,理解这些概念是正确推断的关键。为了研究方便,人们形象地把原子核外电子运动看成分层运动,在原子结构示意图中,按能量高低将核外电子分为不同的能层,并用符号K、L、M、N、O、P、Q……表示相应的层,统称为电子层。一个原子在基态时,电子所占据的电子层数等于该元素在周期表中所处的周期数。倒数第一层,称为最外层;从外向内,倒数第二层称为次外层;最内层就是第一层(K 层);内层是除最外层外剩下电子层的统称。以基态铁原子结构示意图为例:铁原子共有4个电子层,最外层(N层)只有2个电子,次外层(M层)共有14个电子,最内层(K层)有2个电子,内层共有24个电子。 2.能级 (1)含义:在多电子原子中,同一能层的电子,能量也可能不同,这样同一能层就可分成不同的能级(也可称为电子亚层)。能层与能级类似于楼层与阶梯之间的关系。在每一个能层中,能级符号的顺序是ns、np、nd、nf……(n代表能层)

晶体结构练习题答案

晶体结构练习题 一、(2005全国初赛)下图是化学家合成的能实现热电效应的一种晶体 的晶胞模型。图中的大原子是稀土原子,如镧;小原子是周期系第五主 族元素,如 锑;中等大小的原子是周期 系VHI族元素,如铁。按如上结构图写出这种热电晶体的化学式。给出 计算过程。提示: 晶胞的6个面的原子数相同。设晶体中锑的氧化态为一1,镧的氧化态为+3,问:铁的平均 氧化态多大? 解析:晶胞里有2个La原子(处于晶胞的顶角和体心); 有 8个Fe原子(处于锑形成的八面体的中心);锑八面体是共顶角 相连的,平均每个八面体有6/2 = 3个锑原子,晶 胞中共有8个八面体,8x3=24个锑原子;即:La2Fe8Sb24。 答案:化学式LaFe4Sb12 铁的氧化态9/4 = 2.25 二、(2004年全国初赛)最近发现,只含镁、镍和碳三种元素的晶体竟然也具有超导性。鉴于这三种元素都是常见元素,从而引起广泛关注。该晶体的结构可看作由镁原子和镍原子在一起进行(面心)立方最密堆积(ccp),它们的排列有序,没有相互代换的现象(即没有平均原子或统计原子),它们构成两种八面体空隙,一种由镍原子构成,另一种由镍原子和 镁原子一起构成,两种八面体的数量比是 1 : 3,碳原子只填充在 镍原子构成的八面体空隙 中。 (1)画出该新型超导材料的一个晶胞(碳原子用小球,镍原子用大O球,镁原子用大球)。 (2)写出该新型超导材料的化学式。 (1) (在(面心)立方最密堆积—填隙模型中,八面体空隙与堆积球的 比例为 1 : 1,在如 图晶胞中,八面体空隙位于体心位置和所有棱的中心位置,它们的比例 是 1 : 3,体心位置 的八面体由镍原子构成,可填入碳原子,而棱心位置的八面体由2个镁 原子和4个镍原子一起构成,不填碳原子。)

原子物理知识点总结全

原 子 物 理 一、卢瑟福的原子模型——核式结构 1.1897年,_________发现了电子.他还提出了原子的 ______________模型. 2.物理学家________用___粒子轰击金箔的实验叫 __________________。 3. 实验结果:绝大部分α粒子穿过金箔后________;少数α粒子发生了较大的偏转;极少数的α粒子甚至被____. 4. 实验的启示:绝大多数α粒子直线穿过,说明原子内部存在很大的空隙; 少数α粒子较大偏转,说明原子内部集中存 在着对 α粒子有斥力的正电荷; 极个别α粒子反弹,说明个别粒子正对着质量比 α粒子大很多的物体运动时,受到该物体很大的斥 力作用. 5.原子的核式结构: 卢瑟福依据α粒子散射实验的结果,提出了原子的核式结构:在原子中心有一个很小 的核,叫 ________, 原子的全部正电荷和几乎全部质量都集中在原子核里,带负电的电子在核外空间绕核旋 转. 例1:在α粒子散射实验中,卢瑟福用α粒子轰击金箔,下列四个选项中哪一项属于实验得到的正确结果: A.α粒子穿过金箔时都不改变运动方向 B . 极少数α粒子穿过金箔时有较大的偏转 ,有的甚至被反 弹 C.绝大多数α粒子穿过金箔时有较大的 偏转 D. α粒子穿过金箔时都有较大的偏转. 例2:根据α粒子散射实验,卢瑟福提出了原子的核式结构模 型。如图 1-1所示表示了 原子核式结构模型的 α粒子散射图景。图中实 线表示 α粒子的运动轨迹。其中一个 c α粒子在从a 运动到b 、再运动到c 的过程中(α粒子在b 点时距原子核最近),下 列判断正确的是 ( ) a b A .α粒子的动能先增大后减小 原子核 B .α粒子的电势能先增大后减小 C .α粒子的加速度先变小后变大 α粒子 D .电场力对α粒子先做正功后做负功 图1-1 二玻尔的原子模型 能级 1.玻尔提出假说的背景——原子的核式结构学说与经典物理学的矛盾:⑴按经典物理学理论,核外电子绕核运动时,要不断地辐射电磁波,电子能量减小,其轨道半径将不断减小,最终落于原子核上,即核式结构将是不稳定的,而事实上是稳定的.⑵电子绕核运动时辐射出的电磁波的频率应等于电子绕核运动的频率,由于电子轨道半径不断减小,发射出的电磁波的频率应是连续变化的,而事实上,原子辐射的电磁波的频率只是某些特定值。 为解决原子的核式结构模型与经典电磁理论之间的矛盾,玻尔提出了三点假设,后人称之为玻尔模型. 2.玻尔模型的主要内容: ⑴定态假说:原子只能处于一系列 __________的能量状态中,在 这些状态中原子是 _______的,电子虽然绕核运动, 但不向外辐射能量.这些状态叫做 ________. ⑵跃迁假说:原子从一种定态跃迁到另一种定态时,它辐射(或吸收)一定频率的光子,光子的能量由这两定态的能量差决定,即________________. ⑶轨道假说:原子的不同能量状态对应于 ______子的不同轨道 .原子的定态是不连续的,因此电子的可能轨道也是不 连续的. 3.氢原子的能级公式和轨道 公式 原子各定态的能量值叫做原子的能级,对于氢原子,其能级 公式为 :______________; 对应的轨道公式为: r n n 2 r 1。其中n 称为量子数,只能取正.E1=-13.6eV ,r1=0.53×10-10m .

相关文档
最新文档