小型单相变压器设计与相关计算

小型单相变压器设计与相关计算
小型单相变压器设计与相关计算

小型单相变压器设计

1、小型单相变压器简介

变压器是通过电磁耦合关系传递电能的设备,用途可综述为:经济的输送电能、合理的分配电能、安全的使用电能。实际上,它在变压的同时还能改变电流,还可改变阻抗和相数。

小型变压器指的是容量1000V。A以下的变压器.最简单的小型单相变压器由一个闭合的铁心(构成磁路)和绕在铁心上的两个匝数不同、彼此绝缘的绕组(构成电路)构成.这类变压器在生活中的应用非常广泛.

1。1 变压器的基本结构

1、1、1主要组成

(1) 铁心

为了减少铁损耗,变压器的贴心是用彼此绝缘的硅钢片叠成或非晶体片制成.其中套有绕组的部分称为铁心柱,连接铁心柱的部分称为铁轭,为了减少磁路中不必要的气隙,乡邻两层硅钢片的接缝要相互错开。

(2)绕组

变压器的绕组用绝缘导线或扁导线绕成,实际变压器的高,低压绕组并不是分装在两个铁心柱上,而是同心地套在同一个铁心柱上的。为了绝缘的方便,通常低压绕组在里面,靠近铁心柱,高压绕组套在低压绕组外面。(3)其他

除铁心和绕组外,因容量和冷却方式的不同,还需要增加一些其他部件,例如外油绝缘套等等.

1、1、2主要类型

按相数的不同,变压器可分为单向相变压器和三相变压器等。

按每相绕组数量的不同,变压器可分为双绕组变压器、三绕组变压器、多绕组变压器和自耦变压器等。

按结构形式的不同,变压器可分为心式和壳式两种。心式变压器的特点是绕组包围着铁心。脆变压器用铁量较少,构造简单,绕组的安装和绝缘比较容易,多用于容量较大的变压器中。壳式变压器的特点是铁心包围绕组。脆变压器用铜量少,多用于小容量变压器中。

2、变压器的工作原理

变压器的功能主要有:电压变换;阻抗变换;隔离;稳压(磁饱和变压器)等,变压器常用的铁心形状一般有E型和C型铁心。

变压器(transformer)是利用电磁感应原理将某一电压的交流换成频率相同的另一电压的交流电的能量的变换装备。

变压器的主要部件是一个铁心和套在铁心上的两个绕组,如图(1)所示。一个绕组接电源,称为原绕组(一次绕组、初级),另一个接负载,称为副绕组(二次绕组、次级)。原绕组各量用下标1表示,副绕组各量用下标2表示.原绕组匝数为,副绕组匝数为。

图(1)变压器结构示意图

理想状况如下(不计电阻、铁耗和漏磁),原绕组加电压,产生电流,建立磁通,沿铁心闭合,分别在原副绕组中感应电动势。

当变压器二次侧空载时,一次侧仅流过主磁通的电流(í0),这个电流称为激磁电流。当二次侧加负载流过负载电流í2时,也在铁芯中产生磁通,力图改变主磁通,但一次电压不变时,主磁通是不变的,一次侧就要流过两部分电流,一部分为激磁电流í0,一部分为用来平衡í2,所以这部分电流随着í2变化而变化。当电流乘以匝数时,就是磁势.

上述的平衡作用实质上是磁势平衡作用,变压器就是通过磁势平衡作用实现了一、二次侧的能量传递。

2、1 电压变换

当一次绕组两端加上交流电压时,绕组中通过交流电流,在铁心中将产生既及一次绕组交链,又及二次绕组交链的主磁通。

(1—1)

(1-2)

(1—3)

()

(1—4)

说明只要改变原、副绕组的匝数比,就能按要求改变电压。

2、2 电流变换

变压器在工作时,二次电流的大小主要取决于负载阻抗模||的大小,而一次电流的大小则取决于的大小。

(1-5)

(1—6)

说明变压器在改变电压的同时,亦能改变电流。

2。3 阻抗变换

变压器的二次绕组接有阻抗模|Z L|的负载时,若忽略Z1,Z2和I0,则

|Z L|=U2/I2=U1/ (K2*I1)

U1及I1之比相当于从变压器一次绕组看进去的等效电阻模|Ze|=k2|Z l| 可见,当负载直接接电源时,电源的负载阻抗模为|Z L|,通过变压器接电源时,相当于将组抗模增加到|Z L|的k2倍,在电子技术中经常利用变压器的这一阻抗变换作用来实现“组抗匹配”

2、4电压比

N1——一次侧绕组的匝数;

N2——二次侧绕组的匝数。

当N1>N2时,Ku>l,此时U1>U2.这时的变压器称为降压变压器。

当N1<N2时, Ku<1,此时U1<U2,这时的变压器称为升压变压器。

3、设计内容

计算内容有四部分:额定容量的确定;铁心尺寸的选定;绕组的匝数及导线直径;绕组(线圈)排列及铁心尺寸的最后确定。

3、1 额定容量的确定

变压器的容量又称表现功率和视在功率,是指变压器二次侧输出的功率,通常用KVA表示.

3、1、1 一次绕组的容量

对于小容量变压器来说,我们不能就认为一次绕组的容量等于二次绕组的总容量,因为考虑到变压器中有损耗,所以一次绕组的容量应该为

S =(单位为V·A) (3—2) 式中——变压器的额定容量;

——变压器的效率,约为0.8~0。9,表3—1 所给的数据是生产时间的统计数据,可供计算时初步选用.

表3-1 小容量变压器计算参考数据

变压器容量V·A 磁通密度

×10T

效率η(%)

电流密度

铁心计算中

小于10 6000~7000 60~70 3~2.5 2

10~50 7000~8000 70~80 2。5~2 2~1。5 50~100 8000~9000 80~85 2。5~2 1。5~1。3 100~500 9000~

11000

85~90 2。5~1。5 1.3~1.25

500~1000 11000~1200

90~92 1.5~1.2 1.25~1。1

小容量单相变压器二次侧为多绕组时,若不计算各个绕组的等效的阻抗

及其负载阻抗的幅角的差别,可认为输出总视在功率为二次侧各绕组输出视

在功率之代数和,即

(3-1)式中——二次侧总容量(V·A)

,,……—-二次侧各个绕组电压的有效值(V);

,,……—- 二次侧各个绕组的负载电流有效值(A).

3、1、3确定变压器的额定容量

变压器的二次容量为

式中 S2——变压器二次容量,VA:

U2、U3、…Un——二次各绕组电压有效值,v;

I2、I3、…In-—二次仍各绕组电流有效值.A。

变压器在传递功率过程中,本身存在着铁损和铜损,故一次容量比二次容量大.

式中η--变压器的效率.η总是小于1,变压器的容量越小,η也越小,v的数值见表1:

表1:小容量变压器效率值

变压器的额定容量:

3、2 铁心尺寸的选定

3、2、1 计算铁心截面积A

为了减小铁损耗,变压器的铁心是用彼此绝缘的硅钢片叠成或非晶材料

制成。其中套有绕组的部分称为铁心柱,连接铁心柱的部分称为铁轭,为了减

少磁路中不必要的气隙,变压器铁心在叠装时相临两层硅钢片的接缝要相互

错开.

小容量变压器铁心形式多采用壳式,中间心柱上套放绕组,铁心的几何尺

寸如图(4)所示。

图(4)

小容量心柱截面积A大小及其视在功率有关,一般用下列经验公式计算(单位为㎝ ).

(3—5) A——铁心柱的净面积,单位为cm 2

—-截面计算系数,及变压器额定容量有关,按表3-2选取,当采用

优质冷轧硅钢片时可取小些截面积计算系数

表3—2截面积计算系数的估算值

/VA <10 10~50 50~100 100~500 >500

2~1.75 1。75~1.5 1.5~1.35 1.35~1.25 1。25~1.0

单相变压器毕业设计

单相变压器毕业设计 Document serial number【UU89WT-UU98YT-UU8CB-UUUT-UUT108】

目录 单相变压器的设计 摘要:本次设计的课题是单相变压器,基本要求是输入电压范围在24V到60V,功率为100W的单相升压变压器。首先要了解变压器的工作原理、结构和分类,

其次是变压器的设计步骤包括额定容量的确定;铁芯尺寸的选定;绕组的匝数与导线直径;绕组(线圈)排列及铁芯尺寸的确定。 关键词:变压器基本原理设计步骤 前言 随着科学技术进步,电工电子新技术的不断发展,新型电气设备不断涌现,人们使用电的频率越来越高,人与电的关系也日益紧密,对于电性能和电气产品的了解,已成为人们必需的生活常识。 变压器是一种静止的电气设备,它是利用电磁感应原理把一种电压的交流电能转变成同频率的另一种电压的交流电能,以满足不同负载的需要。在电力系统中,变压器是一个重要的电气设备,它对电能的经济传输,灵活分配和安全使用具有重要的作用,此外,也使人们能够方便地解决输电和用电这一矛盾。 输电线路将几万伏或几十万伏高电压的电能输送到负荷区后,由于用电设备绝缘及安全的限制,必需经过降压变压器将高电压降低到适合于用电设备使用的低电压。当输送一定功率的电能时,电压越低,则电流越大,电能有可能大部分消耗在输电线路的电阻上。为此需采用高压输电,即用升压变压器把电压升高输电电压,这样能经济的传输电能。 它的种类很多,容量小的只有几伏安,大的可达到数十万千伏安;电压低的只有几伏,高的可达几十万伏。如果按变压器的用途来分类,几种应用最广泛的变压器为:电力变压器、仪用互感器和其他特殊用途的变压器;如果按相数可以分为单相和三相变压器。不管如何进行分类,其工作原理及性能都是一样的。变压器是通过电磁耦合关系传递电能的设备,用途可综述为:经济的输送电能、合

电气工程--小型单相变压器设计原理

东北石油大学 课程报告

2011年7 月15 日

目录 1、小型单相变压器 (1) 2、变压器的工作原理 (1) 2.1 电压变换 (1) 2.2 电流变换 (2) 3、变压器的基本结构 (2) 4、设计内容 (3) 4.1 额定容量的确定 (3) 4.2 铁心尺寸的选定 (4) 4.3 绕组的匝数与导线直径 (6) 4.4 绕组(线圈)排列及铁心尺寸的最后确定 (7) 5、实例计算 (8) 6、结论 (10) 7、心得体会 (10) 参考文献 (12) 附录 (13)

1、小型单相变压器 变压器是通过电磁耦合关系传递电能的设备,用途可综述为:经济的输送电能、合理的分配电能、安全的使用电能。实际上,它在变压的同时还能改变电流,还可改变阻抗和相数[1] 。 小型变压器指的是容量1000V.A 以下的变压器。最简单的小型单相变压器由一个闭合的铁心(构成磁路)和绕在铁心上的两个匝数不同、彼此绝缘的绕组(构成电路)构成。这类变压器在生活中的应用非常广泛。 2、变压器的工作原理 变压器的功能主要有:电压变换;阻抗变换;隔离;稳压(磁饱和变压器)等,变压器常用的铁心形状一般有E 型和C 型铁心。 变压器(transformer )是利用电磁感应原理将某一电压的交流换成频率相同的另一电压的交流电的能量的变换装备 [2-4] 。 文献[5]所述,变压器的主要部件是一个铁心和套在铁心上的两个绕组。一个绕组接电源,称为原绕组(一次绕组、初级),另一个接负载,称为副绕组(二次绕组、次级)。原绕组各量用下标1表示,副绕组各量用下标2表示。原绕组匝数为1 N ,副绕组匝数为2N 。 理想状况如下(不计电阻、铁耗和漏磁),原绕组加电压1u ,产生电流1i ,建立磁通φ,沿铁心闭合,分别在原副绕组中感应电动势21e e 和。 2.1 电压变换 当一次绕组两端加上交流电压1u 时,绕组中通过交流电流1i ,在铁心中将产生既与一次绕组交链,又与二次绕组交链的主磁通 φ。 (1) (2) (3) (4)

小功率单相逆变电源毕业设计

德州职业技术学院 毕业设计(论文) (2012届毕业生) 题目小功率单相逆变电源的设计制作 指导教师张洪宝 系部电子与新能源工程技术系 专业应用电子技术 班级09级应用电子技术 学号 200902050124 姓名张艳霞 2011年 9月 19 日至 2011年 11月 18日共 9 周

该设计主要应用电力电子电路技术和开关电源电路技术有关知识。涉及模拟集成电路、电源集成电路、直流稳压电路、开关稳压电路等原理,充分运用芯片KA7500B的固定频率脉冲宽度调制电路及场效应管(N沟道增强型MOSFET)的开关速度快、无二次击穿、热稳定性好的优点而组合设计的电路。该逆变电源的主要组成部分为:DC/DC电路、输入过压保护电路、输出过压保护电路、过热保护电路、DC/AC变换电路、振荡电路、全桥电路。 在工作时的持续输出功率为150W,具有工作正常指示灯、输出过压保护、输入过压保护以及过热保护等功能。该电源的制造成本较为低廉,实用性强,可作为多种便携式电器通用的电源。 关键词:过热保护;过压保护;集成电路;振荡频率;脉宽调制

The main application of power electronic circuit design technology and switching power supply circuit technology knowledge. Involves analog integrated circuits, power supply integrated circuits, DC circuit, the switching regulator circuit theory, make full use of the chip KA7500B fixed frequency pulse width modulation circuit and FET (N-channel enhancement mode MOSFET) switching speed, no second breakdown, thermal stability, good benefits and the modular design of the circuit. The inverter main components: DC / DC circuit, input over-voltageprotection circuit, output over-voltage protection circuit, overheat protection circuit, DC / AC conversion circuit, oscillation circuit, full-bridge circuit. In the work of continuous output power of 150W, with a normal light work, output overvoltage protection, input over-voltage protection and thermal overload protection. The power of the relatively low manufacturing cost, practical, and a variety of portable electronic devices can be used as a common power supply. Keywords: thermal protection; over-voltage protection; integrated circuits; oscillation frequency; pulse width modulation

单相变压器毕业设计

目錄 摘要 (2) 前言 (2) 1.变压器的工作原理及分类 (3) 1.1变压器的基本工作原理 (3) 1.2变压器的分类 (4) 2.变压器的基本结构 (4) 2.1铁芯 (4) 2.2绕组 (5) 2.3其他 (5) 3.设计的内容 (5) 3.1 额定容量的确定 (5) 3.1.1 二次侧总容量 (5) 3.1.2一次绕组的容量 (6) 3.1.3变压器的额定容量 (6) 3.1.4一次电流的确定 (6) 3.2铁芯尺寸的选定 (7) 3.2.1计算铁芯截面积A (7) 3.3 绕组的匝数与导线直径 (9) 3.3.1绕组的匝数计算 (9) 3.3.2导线直径的计算 (9) 3.4 绕组(线圈)排列及铁心尺寸的最后确定 (11) 4.结论 (12) 参考文献 (13)

單相變壓器的設計 摘要:本次設計的課題是單相變壓器,基本要求是輸入電壓範圍在24V到60V,功率為100W 的單相升壓變壓器。首先要瞭解變壓器的工作原理、結構和分類,其次是變壓器的設計步驟包括額定容量的確定;鐵芯尺寸的選定;繞組的匝數與導線直徑;繞組(線圈)排列及鐵芯尺寸的確定。 關鍵字:變壓器基本原理設計步驟 前言 隨著科學技術進步,電工電子新技術的不斷發展,新型電氣設備不斷湧現,人們使用電的頻率越來越高,人與電的關係也日益緊密,對於電性能和電氣產品的瞭解,已成為人們必需的生活常識。 變壓器是一種靜止的電氣設備,它是利用電磁感應原理把一種電壓的交流電能轉變成同頻率的另一種電壓的交流電能,以滿足不同負載的需要。在電力系統中,變壓器是一個重要的電氣設備,它對電能的經濟傳輸,靈活分配和安全使用具有重要的作用,此外,也使人們能夠方便地解決輸電和用電這一矛盾。 輸電線路將幾萬伏或幾十萬伏高電壓的電能輸送到負荷區後,由於用電設備絕緣及安全的限制,必需經過降壓變壓器將高電壓降低到適合於用電設備使用的低電壓。當輸送一定功率的電能時,電壓越低,則電流越大,電能有可能大部分消耗在輸電線路的電阻上。為此需採用高壓輸電,即用升壓變壓器把電壓升高輸電電壓,這樣能經濟的傳輸電能。 它的種類很多,容量小的只有幾伏安,大的可達到數十萬千伏安;電壓低的只有幾伏,高的可達幾十萬伏。如果按變壓器的用途來分類,幾種應用最廣泛的變壓器為:電力變壓器、儀用互感器和其他特殊用途的變壓器;如果按相數可以分為單相和三相變壓器。不管如何進行分類,其工作原理及性能都是一樣的。變壓器是通過電磁耦合關係傳遞電能的設備,用途可綜述為:經濟的輸送電能、合理的分配電能、安全的使用電能。實際上,它在變壓的同時還能改變電流,還可改變阻抗和相數。小型變壓器指的是容量1000V.A以下的變壓器。最簡單的小型

单相变压器 实验报告

单相变压器 实验报告 1610900 杨凤妍 物理伯苓班 一、变压器空载特性 E 型 220V 110V 55V U1初级线圈电压/V 222.8 111.3 55.03 U2次级线圈电压/V 10.7 5.3 2.67 I1初级线圈电流/ mA 32 10.2 7.2 P1初级线圈功率/W 2.7 0.8 0.23 初级功率因数 0.384 0.709 0.609 计算初级视在功率/W 7.03125 1.12835 0.377668 环型 220V 110V 55V U1初级线圈电压/V 220.1 121.2 54.9 U2次级线圈电压/V 11.34 6.26 2.84 I1初级线圈电流/ mA 4.2 1.7 0 P1初级线圈功率/W 0.55 0.15 0 初级功率因数 0.6 0.753 计算初级视在功率/W 0.916667 0.199203 输入电压 测量参数

二、初级220V变压器负载特性 E型 环型

三、变压器为双路输出,在空载时测U1,U 1’ 同向串联或反相串联时的输出电压。(所用变压器为环型变压器)数据表格如下: 调压器 22V U2电压 1.522 U2‘电压 1.518 U2,U2’同向串联电压 3.029 U2,U2’反向串联电压 四、图像绘制 1、变压器带负载时,初级输入功率与负载R 的关系图。 024******** 10 20 30 40 50 60 P 1初级线圈功率/W P1-R 图(E 型变压器) R/Ω 024681012 140 10 20 30 40 50 60 P 1初级线圈功率/W P1-R 图(环型变压器) R/Ω

变压器计算公式

变压器计算公式已知容量,求其各电压等级侧额定电流 口诀a : 容量除以电压值,其商乘六除以十。 说明:适用于任何电压等级。 在日常工作中,有些只涉及一两种电压等级的变压器额定电流的计算。将以上口诀简化,则可推导出计算各电压等级侧额定电流的口诀: 容量系数相乘求。 已知变压器容量,速算其一、二次保护熔断体(俗称保险丝)的电流值。 口诀b : 配变高压熔断体,容量电压相比求。 配变低压熔断体,容量乘9除以5。 说明: 正确选用熔断体对变压器的安全运行关系极大。当仅用熔断器作变压器高、低压侧保护时,熔体的正确选用更为重要。 这是电工经常碰到和要解决的问题。 已知三相电动机容量,求其额定电流 口诀(c):容量除以千伏数,商乘系数点七六。 说明: (1)口诀适用于任何电压等级的三相电动机额定电流计算。由公式及口诀均可说明容量相同的电压等级不同的电动机的额定电流是不相同的,即电压千伏数不一样,去除以相同的容量,所得“商数”显然不相同,不相同的商数去乘相同的系数,所得的电流值也不相同。若把以上口诀叫做通用口诀,则可推导出计算220、380、660、电压等级电动机的额定电流专用计算口诀,用专用计算口诀计算某台三相电动机额定电流时,容量千瓦与电流安培关系直接倍数化, 省去了容量除以千伏数,商数再乘系数。 三相二百二电机,千瓦三点五安培。 常用三百八电机,一个千瓦两安培。 低压六百六电机,千瓦一点二安培。

高压三千伏电机,四个千瓦一安培。 高压六千伏电机,八个千瓦一安培。 (2)口诀c 使用时,容量单位为kW,电压单位为kV,电流单位为A,此点一定要注意。 (3)口诀c 中系数是考虑电动机功率因数和效率等计算而得的综合值。功率因数为,效率不,此两个数值比较适用于几十千瓦以上的电动机,对常用的10kW以下电动机则显得大些。这就得使用口诀c计算出的电动机额定电流与电动机铭牌上标注的数值有误差,此误差对10kW以下电动机按额定电流先开关、接触器、导线等影响很小。 (4)运用口诀计算技巧。用口诀计算常用380V电动机额定电流时,先用电动机配接电压数去除、商数2去乘容量(kW)数。若遇容量较大的6kV电动机,容量kW 数又恰是6kV数的倍数,则容量除以千伏数,商数乘以系数。 (5)误差。由口诀c 中系数是取电动机功率因数为、效率为而算得,这样计算不同功率因数、效率的电动机额定电流就存在误差。由口诀c 推导出的5个专用口诀,容量(kW)与电流(A)的倍数,则是各电压等级(kV)数除去系数的商。专用口诀简便易心算,但应注意其误差会增大。一般千瓦数较大的,算得的电流比铭牌上的略大些;而千瓦数较小的,算得的电流则比铭牌上的略小些。对此,在计算电流时,当电流达十多安或几十安时,则不必算到小数点以后。可以四舍而五不入,只取整数,这样既简单又不影响实用。对于较小的电流也只要算到一位小数即可。 *测知电流求容量 测知无铭牌电动机的空载电流,估算其额定容量 口诀: 无牌电机的容量,测得空载电流值, 乘十除以八求算,近靠等级千瓦数。 说明:口诀是对无铭牌的三相异步电动机,不知其容量千瓦数是多少,可按通过测量电动机空载电流值,估算电动机容量千瓦数的方法。 测知电力变压器二次侧电流,求算其所载负荷容量 口诀: 已知配变二次压,测得电流求千瓦。 电压等级四百伏,一安零点六千瓦。

小功率单相电源变压器的设计

课程论文 (小功率单相电源变压器的设计) 姓名谢锦华杨志华曾宏毅赵也有学号27 28 29 30 专业07电气工程及其自动化4班 成绩 指导教师许俊云程良鸿 设计时间:2周

小功率单相电源变压器的设计 1.设计要求 对设计内容2中的变压器设计,要求结合实验室提供的实物(该变压器为一台单相变压器,视载功率约为6V A ,原方额定电压220伏,副方额定电压9V ),上网查阅有关变压器的设计资料。对预设计变压器给出详细的理论计算。 包括: 1原副方额定电流计算 2铁芯截面积计算 3硅刚片的选择 4原、副方绕组匝数的计算 5原、副方绕组导线直径计算 6铁芯窗口面积核算 本次我们组预设计单相变压器参数:视载功率50V A ,原/副方额定电压220V/ 12V 。 2.变压器参数具体计算 2.1变压器输入视在功率p sr 的计算 变压器输出视在功率 p sc 即为额定视在功率为50V A,根据下面公式即可算出原边视在功 率 η p p sc sr = 即 sr P VA 5.628 .050 ≈= 式中:η为变压器的效率,η总是小于1,对于功率为1KW 一下的变压器η=0.8~0.9 2.2变压器原边额定电流的计算 原边额定电流 1.2)~(1.11 U 1I p ?= sr 0.311.1220 62.5 1I ≈?= A 式中:U1为原边电压有效值,即就是外加电源电压,1.1~1.2是考虑到变压器空载励磁电流大小的经验系数 副边额定电流 1.2)~(1.12 U 2I p ?=sr 5.731.112 62.5 2I ≈?= A 2.3变压器铁芯面积S 的计算 小型单相变压器常用E 型铁芯,他的中柱面积S 的大小与变压器总输出实在功率有关,即 P SC K S = cm 2 14.14 502S ≈=

小型单相变压器设计与相关计算

小型单相变压器设计 1、小型单相变压器简介 变压器是通过电磁耦合关系传递电能的设备,用途可综述为:经济的输送电能、合理的分配电能、安全的使用电能。实际上,它在变压的同时还能改变电流,还可改变阻抗和相数。 小型变压器指的是容量1000V。A以下的变压器.最简单的小型单相变压器由一个闭合的铁心(构成磁路)和绕在铁心上的两个匝数不同、彼此绝缘的绕组(构成电路)构成.这类变压器在生活中的应用非常广泛. 1。1 变压器的基本结构 1、1、1主要组成 (1) 铁心 为了减少铁损耗,变压器的贴心是用彼此绝缘的硅钢片叠成或非晶体片制成.其中套有绕组的部分称为铁心柱,连接铁心柱的部分称为铁轭,为了减少磁路中不必要的气隙,乡邻两层硅钢片的接缝要相互错开。 (2)绕组 变压器的绕组用绝缘导线或扁导线绕成,实际变压器的高,低压绕组并不是分装在两个铁心柱上,而是同心地套在同一个铁心柱上的。为了绝缘的方便,通常低压绕组在里面,靠近铁心柱,高压绕组套在低压绕组外面。(3)其他 除铁心和绕组外,因容量和冷却方式的不同,还需要增加一些其他部件,例如外油绝缘套等等. 1、1、2主要类型

按相数的不同,变压器可分为单向相变压器和三相变压器等。 按每相绕组数量的不同,变压器可分为双绕组变压器、三绕组变压器、多绕组变压器和自耦变压器等。 按结构形式的不同,变压器可分为心式和壳式两种。心式变压器的特点是绕组包围着铁心。脆变压器用铁量较少,构造简单,绕组的安装和绝缘比较容易,多用于容量较大的变压器中。壳式变压器的特点是铁心包围绕组。脆变压器用铜量少,多用于小容量变压器中。 2、变压器的工作原理 变压器的功能主要有:电压变换;阻抗变换;隔离;稳压(磁饱和变压器)等,变压器常用的铁心形状一般有E型和C型铁心。 变压器(transformer)是利用电磁感应原理将某一电压的交流换成频率相同的另一电压的交流电的能量的变换装备。 变压器的主要部件是一个铁心和套在铁心上的两个绕组,如图(1)所示。一个绕组接电源,称为原绕组(一次绕组、初级),另一个接负载,称为副绕组(二次绕组、次级)。原绕组各量用下标1表示,副绕组各量用下标2表示.原绕组匝数为,副绕组匝数为。 图(1)变压器结构示意图 理想状况如下(不计电阻、铁耗和漏磁),原绕组加电压,产生电流,建立磁通,沿铁心闭合,分别在原副绕组中感应电动势。

实验三 单相变压器实验

实验三单相变压器实验 一.实验目的 1.通过空载和短路实验测定变压器的变比和参数。 2.通过负载实验测取变压器的运行特性。 二.预习要点 1.变压器的空载和短路实验有什么特点?实验中电源电压一般加在哪一方较合适? 2.在空载和短路实验中,各种仪表应怎样联接才能使测量误差最小? 3.如何用实验方法测定变压器的铁耗及铜耗? 三.实验项目 1.单相变压器空载实验测取空载特性U0=f(I0),P0=f(U0)。 2.单相变压器短路实验测取短路特性U K=f(I K),P K=f(I K)。 3.单相变压器负载实验保持U1=U1N,cos?2 =1的条件下,测取U2=f(I2)。 四.实验设备及仪器 1.实验台主控制屏 2.三相可调电阻器900Ω(NMEL-03)。 3.旋转指示灯及开关板(NMEL-05C)。 4.单相变压器(NMEL-25,额定参数:U1N/U2N=220V/110V,I1N/I2N=0.4A/0.8A) 5.交流电压表、电流表、功率、功率因数表(NMCL-001)。 五.实验内容 1.单相变压器空载实验Array实验线路如图3-1。A、V2分别为 交流电流表、交流电压表;W为功率表, 需注意电压线圈和电流线圈的同名端, 避免接错线。 实验时,变压器低压线圈2U1、2U2 接电源,高压线圈1U1、1U2开路。 a.在三相交流电源断电的条件下, 将调压器旋钮逆时针方向旋转到底。并 合理选择各仪表量程。 b.合上交流电源总开关,即按下绿色图3-1 空载实验接线图 “闭合”开关,顺时针调节调压器旋钮,使变 压器空载电压U0=1.2U2N。 c.然后,逐次降低电源电压,在(1.2~0.5)U2N的范围内;测取变压器的U0、I0、P0,共取6~7组数据,记录于表3-1中。其中U0=U2N的点必须测,并在该点附近测的点应密些。为了计算变压器的变比,在U2N以下读取原方电压的同时测取副方电压U1U1。1U2,填入表3-1中。 e.测量数据以后,断开三相电源,以便为下次实验作好准备。

变压器的计算公式

一、按变压器的效率最高时的负荷率βM来计算变压器容量 当建筑物的计算负荷确定后,配电变压器的总装机容量为: S=Pjs/βb×cosφ2(KVA) (1) 式中Pjs ——建筑物的有功计算负荷KW; cosφ2——补偿后的平均功率因数,不小于0.9; βb——变压器的负荷率。 因此,变压器容量的最终确定就在于选定变压器的负荷率βb。 我们知道,当变压器的负荷率为: βb=βM=Po/PKH (2) 时效率最高 式中Po——变压器的空载损耗; PKH ——变压器的短路损耗。 然而高层建筑中设备用房多设于地下层,为满足消防的要求,配电变压器一般选 用干式或环氧树脂浇注变压器,表一为国产SGL型电力变压器最佳负荷率。 表国产SGL型电力变压器最佳负荷率βm 容量(千伏安) 500 630 800 1000 1250 1600 空载损耗(瓦) 1850 2100 2400 2800 3350 3950 负载损耗(瓦) 4850 5650 7500 9200 11000 13300 损失比α2:2.62 2.69 3.13 3.20 3.28 3.37 最佳负荷率βm% 61.8 61.0 56.6 55.2 55.2 54.5 技术文章选择变压器容量的简便方法: 我们在平时选用配电变压器时,如果把变压器容量选择过大,就会形成“大马拉小车”的现象。这不仅增加了设备投资,而且还会使变压器长期处于空载状态,使无功损失增加。如果变压器容量选择过小,将会使变压器长期处与过负荷状态,易烧毁变压器。因此,正确选择变压器容量是电网降损节能的重要措施之一,在实际应用中,我们可以根据以下的简便方法来选择变压器容量。高频变压器 变压器容量本着“小容量,密布点”的原则,配电变压器应尽量位于负荷中心,供电半径不超过0.5千米。

单相全桥逆变电路毕业设计

2008级应用电子技术 毕业设计报告 设计题目单相电压型全桥逆变电路设计姓名及 学号 学院 专业应用电子技术 班级2008级3班 指导教师老师 2011年05月1日

题目:单相电压型全桥逆变电路设计

目录 第一章绪论 1.1整流技术的发展概况 (4) 第二章设计方案及其原理 2.1电压型逆变器的原理图 (5) 2.2电压型单相全桥逆变电路 (6) 第三章仿真概念及其原理简述 3.1 系统仿真概述 (6) 3.2 整流电路的概述 (8) 3.3 有源逆变的概述 (8) 3.4逆变失败原因及消除方法 (9) 第四章参数计算 4.1实验电路原理及结果图 (10) 第五章心得与总结 (14) 参考文献 (15)

第一章绪论 1.1整流技术的发展概况 正电路广泛应用于工业中。整流与逆变一直都是电力电子技术的热点之一。桥式整流是利用二极管的单向导通性进行整流的最常用的电路。常用来将交流电转化为直流电。从整流状态变到有源逆变状态,对于特定的实验电路需要恰到好处的时机和条件。基本原理和方法已成熟十几年了,随着我国交直流变换器市场迅猛发展,与之相应的核型技术应用于发展比较将成为业内企业关注的焦点。 目前,整流设备的发展具有下列特点:传统的相控整流设备已经被先进的高频开关整流设备所取代。系统的设计已经由固定式演化成模块化,以适应各种等级、各种模块通信设备的要求。加上阀控式密封铅酸蓄电池的广泛应用,为分散供电创造了条件。从而大大提高了通信网运行可靠和通信质量。高频开关整流器采用模块化设计、N1配置和热插拨技术,方便了系统的扩展,有利于设备的维护。由于整流设备和配电设备等配备了微机监控器,使系统设备具有了智能化管理功能和故障保护及自保护功能。新旗舰、新技术、新材料的应用,使高频开关整流器跃上了一个新台阶。

毕业设计——5KVA单相变压器的设计分析

苏州工业职业技术学院 Suzhou Institute Of Industrral Techno'llogy 5KVA 单相变压器的设计分析 学生姓名: 专业班级: 数控11C1 学 号: 111021130 2014 年4月22日 部: 精密制造工程系 指导教师: 屠春娟、居正龙 王利杰

本人所呈交的5KVA单相变压器的设计分析,是我在指导教师的指导和查阅相关著作下独立进行分析研究所取得的成果。除文中已经注明引用的内容外,本论文不包含其他个人已经发表或撰写过的研究成果。对本文的研究做出重要贡献的个人和集体, 均已在文中作了明确说明并表示谢意。 作者签名: 日期:

【摘要】 变压器调压装置、电源电压波动、线路电压损失等变化都可造成用户电压不稳定,影响用电设备正常工作,此时需调整输出电压以保证用户电压保持稳定。高压输电可以使电能集中,从而减小电能在传输的时候的损耗,但是高压电对普通家庭用电器以及电路有致命的伤害,所以变压器就应运而生了。单相变压器由于损耗小、容量小、重量轻等优势可以方便的深入负荷中心,而具有极强的适用性。本课题主要以单相变压器为研究对象,首先,介绍了单相变压器的应用和结构;其次,介绍了单相变压器的主要设计思路,包括客户要求、用途分析、材料分析、结构分析;然后,介绍了单相变压器各个参数的计算,包括铁芯、线圈、直流电阻、负载损耗(115度)、温升及散热能力、阻抗电压等的计算;最后,介绍了单相变压器的机械结构设计过程及装配过程。 【关键词】:变压器;计算;设计;装配;

2 15 16 17 目录 引言 ......................... 一、 变压器的介绍 ............. (一) 变压器的应用........... (二) 单相变压器的原 理........ (三) 单相变压器的结 构........ 二、 设计思路 ............... (一) ..................... 客 户要求 ..................... (二) ..................... 用途分析 ..................... (三) ..................... 材料分析 ..................... (四) ..................... 结构分析 ..................... 、单相变压器参数的计算.... 铁芯确定 .................... 线圈确定 .............. 直流电阻计算 ........... 负载损耗计算(115度) 温升及散热能力计算.... 阻抗电压计算 ............ (四) (五) (六) 四、机械结构设计过程 ......... (一) 线包草图绘制 .......... (二) 生成实体 .............. (三) 装配 .................. 总结 ......................... 参考文献 ..................... 谢辞 ......................... 10 11 12 12 13 13

变压器的设计

目录 目录_________________________________________________________________________ 1摘要_____________________________________________________________________ 2 一、变压器的基本结构 ________________________________________________________ 3 二、变压器的工作原理________________________________________________________ 4 1.电压变换_______________________________________________________________ 4 2.电流变换_______________________________________________________________ 5 三、设计内容________________________________________________________________ 5 1、额定容量的确定 _______________________________________________________ 5 2、铁心尺寸的选定_______________________________________________________ 6 3、计算绕组线圈匝数______________________________________________________ 8 4、计算各绕组导线的直径并选择导线________________________________________ 9 5、计算绕组的总尺寸,核算铁芯窗口的面积_________________________________ 10四设计实例________________________________________________________________ 11 4.1 设计要求 ____________________________________________________________ 11 4.2计算变压器参数_______________________________________________________ 12五总结_____________________________________________________________________ 15参考文献____________________________________________________________________ 15附录

单相变压器实验报告

单相变压器实验报告 Document serial number【UU89WT-UU98YT-UU8CB-UUUT-UUT108】

单相变压器实验报告学院:电气工程学院 班级:电气1204班 姓名:卞景季 学号: 组号: 22 一、实验目的 通过空载和短路实验测定变压器的变比和参数。 通过负载实验测取变压器的运行特性。 二、实验预习 1、变压器的空载和短路实验有什么特点实验中电源电压一般加在哪一方较合适 答:空载试验的电压一般加在低压侧,因为低压侧电压低,电流大,方便测量。短路试验就是负载实验,高压加,低压短路,得到试验数据。 2、在空载和短路实验中,各种仪表应怎样联接才能使测量误差最小 答:在量程范围内,按实验要求电流表串联、电压表并联、功率表串联(同相端短接)。 3、如何用实验方法测定变压器的铁耗及铜耗。 答:空载实验所测得的功率为铁耗,短路实验所测得的功率为铜耗。 三、实验项目 1、空载实验 测取空载特性U 0=f(I ),P =f(U ) , cosφ =f(U )。 2、短路实验 测取短路特性U K =f(I K ),P K =f(I K ), cosφ K =f(I K )。 四、实验方法1

2、屏上排列顺序 D33、DJ11、 3、空载实验 (1相组式变压器DJ11U 1N /U 2N =220/55V ,I 路。 (2 (3范围内,测取变压器的U 0、I 0、P 0。 (4)测取数据时,U=U N 点必须测,并在该点附近测的点较密,共测取数据7-8组。记录于表3-1中。 (5)为了计算变压器的变比,在U N 以下测取原方电压的同时测出副方电压数据也记录于表3-1中。 表4、短路实验 (1)按下控制屏上的“停止”按钮,切断三相调压交流电源,按图3-2接线(以后每次改接线路,都要关断电源)。将变压器的高压线圈接电源,低压线圈直接短路。 图3-2 短路实验接线图 (2)选好所有测量仪表量程,将交流调压器旋钮调到输出电压为零的位置。 (3)接通交流电源,逐次缓慢增加输入电压,直到短路电流等于 为止,在~I N 范围内测取变压器的U K 、I K 、P K 。 (4)测取数据时,I K =I N 点必须测,共测取数据6-7组记录于表3-2中。实验时记下周围环境温度(℃)。 X

变压器经典计算

1. 反激式开关电源电路 2. 开关变压器功能 a. 磁能转换(能量储存) b. 绝缘 c. 电压转换 3. 工作流程 a. 根据PWM(脉宽调制法)控制,当晶体管(例功率MOSFET)打开时电流流过变压器初级绕组,这时变压器储存能量(在磁心GAP),与此同时,因为初级绕组和次级绕组极性不同,整流二极管断开时电流流过次级绕组; b. 因为次级绕组极性是不同于初级绕组,当晶体管关闭(例功率MOSFET)时存储的能量将被释放(从磁心GAP). 同时整流管也打开.所以,电流将流过开关电源变压器的次级绕组; c. 反馈绕组提供PWM工作电压(控制), 所以反馈绕组的圈数是依照PWM 的工作电压来计算;例如, UC3842B(PWM)工作电压是10-16Vdc ,你必须是依照这个电压计算反馈圈数,否则UC3842B(PWM)将不能正常工作!一般, UC3842B(PWM)损坏时,反馈电压是超过30Vdc. 4. 主要参数对整个路的影响 a. 电感:如果初级电感太低,变压器将储存的能量少,使输出电压不连续;如果次级电感也低,变压器的能量将不能完全释放,所以,输出电压将是非常低;这时PWM将不能正常工作.此时反馈绕组的电感也是过低或过高, b. 漏电感: 如果漏电感太高,它将产生一个高的尖峰电压在初级绕组. 它是非常的危险.因为高的尖峰电压可以损坏晶体管!另一方面,漏电感将影响开关电源变压器对电磁干扰的测试,它对整个电流将产生更多的噪音;所以开关变压器要求低漏电感. c. 绝缘强度:因为初级地是不同次级地;它有一个高电压在初级与次级之间,所以,它有很好的绝缘! 一。基本设计条件 1. 输入85-264V ac /输出5Vdc 2A 2. 最大工作比40% (晶体管关闭和打开的时间比率) 3. 工作频率75kHz 4. 温度等级: class B 二。基本的设计步骤 1.变压器尺寸 Ae*Ap=PB*102/2f*B*j*?*K Ae---- 有效截面积 Ap---- 磁芯绕线面积 PB ---- 输出功率 f ----- 工作频率 B ----- 有效饱和磁通 j ----- 电流密度 ? ----- 变压器效率 K ----- 骨架绕线系数 Ae*Ap=2(5.0+0.7)*102/2*75*103*0.17*2.5*0.8*0.2

小型单相变压器的绕制资料

实训八、小型单相变压器的绕制 小型单相变压器的绕制分设计制作和重绕修理制作两种,无论那种,其绕制工艺都是相同的。设计制作是将使用者的要求作为依据,以满足要求进行设计计算后再绕制;而重绕修理制作是以原物参数作为依据,进行恢复性的绕制。下面先学习设计制作方式的变压器绕制。 一、小型单相变压器的设计制作 小型单相变压器的设计制作思路是:由负载的大小确定其容量;从负载侧所需电压的高低计算出两侧电压;根据用户的使用要求及环境决定其材质和尺寸。经过一系列的设计计算,为制作提供足够的技术数据,即可做出满足需要的小型单相变压器。 (一)设计计算 1、计算变压器输出容量2S 输出容量的大小受变压器二次侧供给负载量的限制,多个负载则需要多个二次侧绕组,各绕组的电压、电流分别为22I U 、,33I U 、,44I U 、,..,则2S 为 ++=33222I U I U S (VA ) 2、估算变压器输入容量1S 和输入电流1I 对小型变压器,考虑负载运行时的功率损耗(铜耗及铁耗)后,其输入容量1S 的计算式为 η2 1S S = (VA ) 式中:η——变压器效率,始终小于1,kVA 1以下的变压器9.0~8.0=η。 输入电流I 1的计算式为 11 1) 2.11.1(U S I -= (A ) 式中:U 1——一次侧电压的有效值,V 。 3.变压器铁心截面积的计算及硅钢片尺寸的选用 (a)截面积的计算 小型单相变压器的铁心多采用壳式,铁心中柱放置绕组。铁心的几何形状如图1-11-1所示。它的中柱横截面 Fe A 的大小与变压器输出容量S 2的关系为 2S k A Fe =(cm 2) 式中:k ——经验系数,大小与S 2有关,可参考表1-11-1

单相变压器实验报告

实验一单相变压器 一.实验目的 1.通过空载和短路实验测定变压器的变比和参数。 2.通过负载实验测取变压器的运行特性。 二.实验项目 1.空载实验测取空载特性U O=f(I O),P O=f(U O)。 2.短路实验测取短路特性U K=f(I K),P K=f(I)。 3.负载实验 (1)纯电阻负载 保持U1=U1N, cos?=1的条件下,测取U2=f(I2)。 2 (2)阻感性负载 保持U1=U1N, cos?=0.8的条件下,测取U2=f(I2)。 2 三.实验设备及仪器 1.MEL系列电机教学实验台主控制屏(含交流电压表、交流电流表)2.功率及功率因数表(MEL-20或含在主控制屏内) 3.三相组式变压器(MEL-01)或单相变压器(在主控制屏的右下方)

变压器T选用MEL-01三相组式变压器中的一只或单独的组式变压器。实验时,变压器低压线圈2U1、2U2接电源,高压线圈1U1、1U2开路。 A、V1、V2分别为交流电流表、交流电压表。具体配置由所采购的设备型号不同由所差别。若设备为MEL-I系列,则交流电流表、电压表为指针式模拟表,量程可根据需要选择;若设备为MEL-II系列,则上述仪表为智能型数字仪表,量程可自动也可手动选择。仪表数量也可能由于设备型号不同而不同。若电压表只有一只,则只能交替观察变压器的原、副边电压读数,若电压表有二只或三只,则可同时接上仪表。 W为功率表,根据采购的设备型号不同,或在主控屏上或为单独的组件(MEL-20或MEL-24),接线时,需注意电压线圈和电流线圈的同名端,避免接错线。 a.在三相交流电源断电的条件下,将调压器旋钮逆时针方向旋转到底。并合理选择各仪表量程。 变压器T额定容量P N=77W,U1N/U2N=220V/55V,I1N/I2N=0.35A/1.4A b.合上交流电源总开关,即按下绿色“闭合”开关,顺时针调节调压器旋钮,使变压器空载电压U0=1.2U N c.然后,逐次降低电源电压,在1.2~0.5U N的范围内;测取变压器的U0、I0、P0,共取6~7组数据,记录于表2-1中。其中U=U N的点必须测,并在该点附近测的点应密些。为了计算变压器的变化,在U N以下测取原方电压的同时测取副方电压,填入表2-1中。 e.测量数据以后,断开三相电源,以便为下次实验作好准备。 表2-1

变压器参数计算(精)

Page 6 of 6 条件:INPUT :120V/60HZ OUTPUT : 30VDC@1.17A FULL WAVE RECTIFIER 12VDC @500mA FULL WAVE RECTIFIER 温升≤ 600C 电压调整率≤ 10% 解答: 1、原理图 2、交 /直流功率、电流、电压的转换 A 、功率 SEC#1DC 次级第二绕组交流输出功率 : PSEC#2=PDC x 1.57=1.57x 0.5x12=9.42W 次级交流输出总功率 : P总 =( PSEC#1+PSEC#2x2=(55.1+9.42x2=129.04W B 、电流次级第一绕组电流应为双臂电流 : I=0.82719 x 2=1.654A 次级第二绕组电流应为双臂电流 : I=0.3535 x 2=0.707A C 、电压 3、

4、 Sc D Wa 故有 (2d 2h 2d 2h 2当当转换系数K 0=交流输出功率/直流输出功率 转换系数K 1=次级交流电流/次级直流电流 次级第一绕组单臂电流 : K1=IAC /IDC IAC =0.707 x 1.17=0.82917ALT82- T8428A 次级第二绕组单臂电流 : K1' =IAC /IDC IAC ' =0.707 x 0.5=0.3535A转换系数K 2=次级交流电压/次级直流电压 次级第一绕组交流电压 : K2=UAC /UDC UAC =1.11 x 30=33.3V 次级第二绕组交流电压 : K2=UAC /UDC UAC ' =1.11 x 12=13.32V

当 5、 N SEC#1=145T SEC#2: 13.32X108= 4.44x60 xNSEC x1.5x104x 5.74=2301.7x104 N SEC#2=58T 6、电流的计算 A 次级反射到初级的电流 I 2’=Isec#1 NSEC#1/NPRI +Isec#2 NSEC#2/NPRI =1.654x145/523+0.707x58/523=0.536A B 铁损电流 铁的重量 G=p x Sc x Lc=7.65 x(8.5-4.4/2 x 2.8 x 0.97 x3.14 x (8.5+4.4/2 x 10-3 =0.863KG 因 1KG 铁片它的损耗为 3W, 所以磁环的铁损为 3X 0.863=2.59W 磁环的铁损电流 I=2.59/120=21.6MA

相关文档
最新文档