第六章 电液伺服系统与比例系统

电液比例阀工作原理 (2)

电液比例阀就是阀内比例电磁铁输入电压信号产生相应动作,使工作阀阀芯产生位移,阀口尺寸发生改变并以此完成与输入电压成比例压力、流量输出元件。阀芯位移也可以以机械、液压或电形式进行反馈。电液比例阀具有形式种类多样、容易组成使用电气及计算机控制各种电液系统、控制精度高、安装使用灵活以及抗污染能力强等多方面优点,应用领域日益拓宽。近年研发生产插装式比例阀与比例多路阀充分考虑到工程机械使用特点,具有先导控制、负载传感与压力补偿等功能。它出现对移动式液压机械整体技术水平提升具有重要意义。特别就是电控先导操作、无线遥控与有线遥控操作等方面展现了其良好应用前景。 2 工程机械电液比例阀种类与形式 电液比例阀包括比例流量阀、比例压力阀、比例换向阀。工程机械液压操作特点,以结构形式划分电液比例阀主要有两类:一类就是螺旋插装式比例阀(screwin cartridge proportional valve),另一类就是滑阀式比例阀(spool proportional valve)。 螺旋插装式比例阀就是螺纹将电磁比例插装件固定油路集成块上元件,螺旋插装阀具有应用灵活、节省管路与成本低廉等特点,近年来工程机械上应用越来越广泛。常用螺旋插装式比例阀有二通、三通、四通与多通等形式,二通式比例阀主比例节流阀,它常它元件一起构成复合阀,对流量、压力进行控制;三通式比例阀主比例减压阀,也就是移动式机械液压系统中应用较多比例阀,它主对液动操作多路阀先导油路进行操作。利用三通式比例减压阀可以代替传统手动减压式先导阀,它比手动先导阀具有更多灵活性与更高控制精度。可以制成如图1所示比例伺服控制手动多路阀,不同输入信号,减压阀使输出活塞具有不同压力或流量进而实现对多路阀阀芯位移进行比例控制。四通或多通螺旋插装式比例阀可以对工作装置实现单独控制。 滑阀式比例阀又称分配阀,就是移动式机械液压系统最基本元件之一,就是能实现方向与流量调节复合阀。电液滑阀式比例多路阀就是比较理想电液转换控制元件,它保留了手动多路阀基本功能,还增加了位置电反馈比例伺服操作与负载传感等先进控制手段。它就是工程机械分配阀更新换代产品。 出于制造成本考虑与工程机械控制精度要求不高特点,一般比例多路阀内不配置位移感应传感器,具有电子检测与纠错功能。,阀芯位移量容易受负载变化引起压力波动影响,操作过程中要靠视觉观察来保证作业完成。电控、遥控操作时更应注意外界干涉影响。近来,电子技术发展,人们越来越多采用内装差动变压器(LDVT)等位移传感器构成阀芯位置移动检测,实现阀芯位移闭环控制。这种由电磁比例阀、位置反馈传感器、驱动放大器与其它电子电路组成高度集成比例阀,具有一定校正功能,可以有效克服一般比例阀缺点,使控制精度到较大提高。 3 电液比例多路阀负载传感与压力补偿技术 节约能量、降低油温与提高控制精度,同时也使同步动作几个执行元件运动时互不干扰,现较先进工程机械都采用了负载传感与压力补偿技术。负载传感与压力补偿就是一个很相似概念,都就是利用负载变化引起压力变化去调节泵或阀压力与流量以适应系统工作需求。负载传感对定量泵系统来讲就是将负载压力负载感应油路引至远程调压溢流阀上,当负载较小时,溢流阀调定压力也较小;负载较大,调定压力也较大,但也始终存一定溢流损失。变量泵系统就是将负载传感油路引入到泵变量机构,使泵输出压力随负载压力升高而升高(始终为较小固定压差),使泵输出流量与系统实际需要流量相等,无溢流损失,实现了节能。 压力补偿就是提高阀控制性能而采取一种保证措施。将阀口后负载压力引入

液压伺服控制课后题答案大全王春行版

第二章 液压放大元件 习题 1. 有一零开口全周通油的四边滑阀,其直径m d 3108-?=,径向间隙 m r c 6105-?=,供油压力Pa p s 51070?=,采用10号航空液压油在40C ?工作,流 量系数62.0=d C ,求阀的零位系数。s pa ??=-2104.1μ3/870m kg =ρ 解:对于全开口的阀,d W π= 由零开口四边滑阀零位系数 2. 已知一正开口量m U 31005.0-?=的四边滑阀,在供油压力Pa p s 51070?=下测得零位泄漏流量min /5L q c =,求阀的三个零位系数。 解:正开口四边滑阀零位系数ρ s d q p w c k 20= s s d co p p wu c k ρ = ρ s d c p wu c q 2= 3. 一零开口全周通油的四边滑阀,其直径m d 3108-?=,供油压力 Pa p s 510210?=,最大开口量m x m 30105.0-?=,求最大空载稳态液动力。 解:全开口的阀d W π= 最大空载液动力: 4. 有一阀控系统,阀为零开口四边滑阀,供油压力Pa p s 510210?=,系统稳定性要求阀的流量增益s m K q /072.220=,试设计计算滑阀的直径d 的最大开口量 m x 0。计算时取流量系数62.0=d C ,油液密度3/870m kg =ρ。 解:零开口四边滑阀的流量增益: 故m d 31085.6-?= 全周开口滑阀不产生流量饱和条件

5. 已知一双喷嘴挡板阀,供油压力Pa p s 510210?=,零位泄漏流量 s m q c /105.736-?=,设计计算N D 、0f x 、0D ,并求出零位系数。计算时取8.00d =C , 64.0df =C ,3/870m kg =ρ。 解:由零位泄漏量 ρπs f N df c p X D C q 02???= 即16 0N f D X = 得: mm p C q D s df c N 438.0216=??= ρ π 则: 若: 8.00 =d df C C , 16 10= N f D X 则mm D D N 193.044.00== 第三章 液压动力元件 习题 1. 有一阀控液压马达系统,已知:液压马达排量为rad m D m /10636-?=,马达容积效率为95%,额定流量为s m q n /1066.634-?=,额定压力Pa p n 510140?=,高低压腔总容积34103m V t -?=。拖动纯惯性负载,负载转动惯量为2 2.0m kg J t ?=,阀的流量增益s m K q /42=,流量-压力系数Pa s m K c ??=-/105.1316。液体等效体积弹性模量Pa 8e 107?=β。试求出以阀芯位移V x 为输入,液压马达转角m θ为输出的传递函数。 解:解:由阀控液压马达的三个基本方程 由阀控液压马达的三个基本方程 可得 ()q m m 32 t c tm t t 22 e m m s s s 4V K D J K C X V J D D θβ= +++

浅识电液比例控制系统

浅识电液比例控制系统 张明飞机械设计及理论TS14050104 17世纪帕斯卡提出著名的帕斯卡定律,奠定了液压传动的理论基础,而到1940年底在飞机上首先出现了电液伺服系统,其滑阀由伺服电机拖动,但伺服电机惯量很大,成了限制系统动态性的主要环节。50年代初出现了高速响应的永磁式力矩马达,后期又出现了以喷嘴挡板阀作为先导级的电液伺服阀,使电液伺服系统成为当时响应最快,控制精度最高的伺服系统。1958年美国学者勃莱克布恩等公布了他们在麻省理工学院的研究工作,为现代电液伺服系统的理论和实践奠定了基础。但是由于电液伺服器件的价格过于昂贵,对油质要求十分严格,控制损失(阀压降)较大,使伺服技术难以为更广泛的工业应用所接受。随着现代电子技术和测试技术的发展为工程界提供了可靠而廉价的检测、校正技术,这也为电液比例技术的发展提供了有利的条件。 电液比例技术的发展可以划分为下面四个阶段: 第一阶段,从1967年瑞士Beringer公司生产KL比例复合阀起,到70年代初日本油公司申请了压力和流量比例阀两项专利为止,是比例技术的诞生时期。这一阶段的比例阀,仅仅是将比例型的电一机械转换器(如比例电磁铁)用于工业液压阀,以代替开关电磁铁或调节手柄。阀的结构原理和设计准则几乎没有变化,大多不含受控参数的反馈闭环,其工作频宽仅在1~5Hz之间,稳态滞环在4.7%之间,多用于开环控制。 第二阶段,1975年至1980年间可以认为比例技术的发展进入了第二阶段。采用各种内反馈原理的比例元件大量问世,耐高压比例电磁铁和比例放大器在技术上日趋成熟,比例元件工作频宽己经达到5一1SHz,稳态滞环亦减少到3%左右。其应用领域日渐扩大,不仅用于开环控制,也被应用于闭环控制。 第三阶段,20世纪80年代,比例技术的发展进入了第三阶段。比例元件的设计原理进一步完善,采用了压力、流量、位移内反馈和动压反馈及电校正手段,使阀的稳态精度、动态响应和稳定性都有了进一步提高。除了因制造成本所限,比例阀在中位仍保留死区外,它的稳态和动态特性均己和工业伺服阀无异。另一项重大进展是,比例技术开始和插装阀相结合,己开发出各种不同功能和规格的

电液比例控制系统的实验分析的毕业论文

电液比例控制系统的实验分析的毕业论文 目录 第1章序论 (1) 1.1电液比例控制技术的形成和发展趋势 (1) 1.2F ESTO D IDACTIC自动化控制技术培训简介 (3) 1.3研究思路与容 (4) 第2章电液比例控制技术概述 (5) 2.1电液比例控制技术的含义与容 (5) 2.2电液比例控制的特点 (5) 2.3比例控制的基本原理 (6) 2.4比例控制的应用 (6) 2.5电液比例控制元件的围 (6) 第3章电液比例控制系统主要元件 (7) 3.1额定值信号给定单元 (7) 3.2放大器 (8) 3.3比例溢流阀。 (11) 3.4液压缸 (14) 3.5三位四通比例阀 (16)

第4章电液比例控制系统实验研究 (20) 4.1F ESTO试验台须知 (20) 4.2压力机(单向放大器的特性曲线) (20) 4.3滚轧机的接触滚轮(比例压力阀) (25) 4.4夹紧装置(压力回路) (29) 4.5铣床(双向放大器的特性曲线) (33) 4.6压印机(斜坡额定值的设定) (37) *4.7车斗(额定值的外部控制) (42) 第5章总结 (49) 参考文献 (50) 致谢 (51) 诚信声明

第1章序论 电液比例控制技术,是在以开环传动为主要特征的传统液压传动技术,和以闭环控制为特征的电液伺服控制技术基础上,为适应一般工程系统对传动与控制特性或有所侧重或兼而有之的特别要求,从20世纪60、70年代开始,逐步发展起来的流体传动与控制领域中一个具有旺盛生命力的新分支。现今,电液比例控制技术已成为工业机械、工程建设机械及国防尖端产品不可或缺的重要手段,引起相关工业界、技术界的格外目重视。但由于所具有的一些特点,对这种技术的了解、掌握、运用,不论是理论上,还是实践上,都有很多问题研究、探讨、总结、提髙,使其形成相应的科学体系,以更好地推动技术的发展和相关人才的培养。 电液比例技术本来就是流体传动与控制技术中的一个新的分支。所以,原来一般液压传动技术和电液伺服技术所共有的主要特点、优点与缺点、电液比例技术照样具备。但由于它是新发展起来的技术分支,所以,在应用电子技术,计算机技术、位息技术、自动控制技术、摩擦磨损技术及新工艺、新材料等方面,往往表现出更前卫,这给电液比例技术带来更多新的特点。此外,诸如数字技术、高速开关技术等,也与电液比例技术结合得非常紧密。 1.1电液比例控制技术的形成和发展趋势 电液比例控制技术从形成至今,大致上可划分为四个阶段: 从1967年瑞士Beringer公司生产XL比例复合阀,到70年代初日本油研公司申请压力和流量两项比例阀专利,标志着比例技术的诞生时期。此间,比例技术开始在液压控制领域中作为独立的分支,并以开环控制应用为主。这一阶段的比例阀仅仅是将新型

电液伺服控制系统的应用研究

电液伺服控制系统的应用研究 【摘要】电液伺服控制是液压技术领域的重要分支。多年来,许多工业部门和技术领域对高响应、高精度、高功率—重量比和大功率液压控制系统的需要不断扩大,促使液压控制技术迅速发展。特别是控制理论在液压系统中的应用、计算及电子技术与液压技术的结合,使这门技术不论在元件和系统方面、理论与应用方面都日趋完善和成熟,并形成一门学科。目前液压技术已经在许多部门得到广泛应用,诸如冶金、机械等工业部门及飞机、船舶部门等。我国于50年代开始液压伺服元件和系统的研究工作,现已生产几种系列电液伺服产品,电液伺服控制系统的研究工作也取得很大进展。 【关键词】电液伺服控制应用 1、电液控制系统的特点、构成及分类 电液控制系统是一门比较年轻的技术,它的发展和普遍应用还不到50年,然而,凭借它的优点却形成了流体传动与控制的一个重要分支,并成为现代控制工程的基本技术构成之一。 1.1电液控制系统的特点 1) 液压执行元件的功率--重量比和转矩--惯性矩比(或力--质量比)大,具有很大的功率传递密度,可以构成体积小、重量轻、响应速度快的大功率控制单元。 2) 液压系统的负载刚度大,精度高。由于液压杠、执行元件的泄漏很少,液体介质的体积弹性模量又很大,故具有较大的速度--负载刚性,即速度--力或转速--力矩曲线斜率的倒数很大,因此有可能用于开环系统。用于闭环系统时则表现为位置刚度大,其定位精度受负载变化的影响小。 3) 液压控制系统可以安全,可靠并迅速地实现频繁的带负载启动和制动,进行正反向直线或回转运动和动力控制,而且具有很大的调速范围。 电气或电子技术和液压传动及控制相结合的产物--电液控制系统兼备了电气和液压的双重优势,形成了具有竞争力和自身技术特点。 当然,在某些场合下,指令和反馈元件也可全部采用机械、气动或液压元件,此时,即称为机械--液压控制系统和气动--液压控制系统。 1.2 电液控制系统的构成 工程实际中系统的指令及放大单元多采用电子设备。电机械转换器往往是动圈式或动铁式电磁元件和伺服电机、步进电机等。液压转换及放大器件可以是各类开关式,伺服式和比例式器件实际上是一功率放大单元。液压执行元件通常是液压缸和液压马达,其输出参数只能是位移、速度、加速度和力或者转角、角速

自动控制原理课程设计方案——旋压机电液伺服系统设计方案

第一章绪论 1.1题目概述 由原题目已知数据可画出系统方框图: 已知技术参数和设计要求: (1)σp≤25%; t s≤0.25s; (2)速度信号V=0.5m/min时,误差e(t)≤0.05mm; 1 .2旋压机电液伺服系统背景简介 旋压技术是先进制造技术的重要组成部分,是局部连续塑性成形工艺,属于回转成形范畴,主要用于形成薄壁空心回转体零件。该技术广泛应用于航空航天、火箭、导弹、兵器等军事工业和通用机械、汽车等民用工业中。旋压机的仿形系统对旋压加工产品的质量及加工精度的影响至关重要。大型立式强力旋压机采用的是电液仿形技术,其液压系统包含了旋轮座纵向和横向液压系统、辅助系统等主要系统。旋轮座横向电液伺服系统和纵向电液伺服系统组成了旋轮座仿形系统,该系统利用电液比例伺服阀控制液压油缸活塞杆的位移量,并通过按加工精度要求输入预定变化规律的控制信号来实现对位移量的精确控制,从而达到所要求的加工精度。采用电液比例伺服控制技术不仅改善了系统的控制性能,而且大大简化了液压系统,降低了费用,同时还提高了系统的可靠性。

旋压技术,也叫金属旋压成形技术,是通过旋转使工件受力点由点到线由线到面,同时在某个方向给予一定的压力使金属材料沿着这一方向变形和流动而成形为某一形状的技术。旋压成形过程是将金属板料或空心零件的毛坯固定在旋压机的芯模上,在毛坯随机床转动同时,用旋轮将毛坯逐点压下,使其形状或者壁厚发生局部连续塑性变形,从而制成所需的产品的成形过程。可以生产更接近最终形状(净性)的金属零件。这里,金属材料必须具有塑性变形或流动性能,旋压成形也不等同于塑性变形,它是集塑性变形和流动变形的复杂过程,特别需要指出的是,我们所说的旋压成形技术不是单一的强力旋压或普通旋压,它是两者的结合。强力旋压用于各种筒、锥体异形体的旋压成型壳体的加工技术,是一种比较老的成熟的方法和工艺,也叫滚压法。旋压是综合了锻造、挤压、拉伸、弯曲、环压、横轧和滚压等工艺特点的少无切削加工的先进工艺。它通常被认为只能成形轴对称回转体零件,而近年来所开展的三维非轴对称零件旋压技术研究表明,旋压已突破其原有的理论范畴及加工范围。旋压件的基本形状大致可分为圆筒形、圆锥形、凹形、凸形、管形、阶梯形、缩口形等,还有由这些形状组成的复合形状。旋压加工具有设备简单、节省原材料、成本低廉和产品质量高等优点。陶瓷的制坯工艺可能为金属旋压提供工艺雏型。在我国早在三千五百年至四千年前的殷商时代,就会应用陶轮或陶车制作陶坯(例如罐、壶和盘等容器、器皿、装饰品),后来又在十世纪初期发明金属旋压工艺,并且将有色金属薄板(如金、银、锡和铜等)制成空心件如:精美的银碗、银碟等器皿。一直到十三世纪,金属旋压技术才传播到英国,其后将近五百多年,在1840年左右,才由约旦传播到美国和欧洲各国。强力旋压技术是直到上个世纪五十年代才从普通旋压技术的基础上发展起来的。最早是在瑞典、德国被用于民间工业,到1953年美国的普拉特惠特尼公司和洛奇西普来机床厂合作才制成了三台旋压机床,初次成功将这种技术应用到航空工业中。由于旋压工艺的先进性、经济性和实用性,且该工艺具有变形力小,节约原材料等特点,近四十多年来,国外工业发达国家的金属旋压工艺技术有了飞跃的发展,日趋成熟。其主要标志为:金属旋压设备己经定型,工艺流程比较稳定,产品多种多样,应用日益广泛。目前世界上在强力旋压技术的发展和应用上,美国和德国居于领先水平,其工艺已经成熟,设备己系列化、性能最为先进。近几年西班牙又异军突起,其他国家在强力旋压的探讨和应用上正在

对电液比例及伺服控制系统的综述

摘要 本文详尽阐述了电液比例控制系统构成、分类和特点,结合对液压伺服控制系统的控制结构及其特点和基本要求的论述,分析了两种控制系统目前的发展状况。回顾电液控制系统发展历史,展望电液控制系统的发展趋势。 关键词:比例控制伺服控制发展趋势 Abstract The paper expounded the composition, classification and the characteristics of the electro-hydraulic proportional control system. Combined with the discussion of the control structure, basic requirements and the characteristics of hydraulic servo control system, the paper analyzed the state of the development of the two kinds of control systems. Reviewing the development history of the electro-hydraulic control system, the paper elaborated the development trend of the electro-hydraulic control system. Keywords: proportional control , servo control, development trend

电液伺服控制系统概述

电液伺服控制系统概述 摘要:电液伺服控制是液压领域的重要分支。多年来,许多工业部门和技术领域对高响应、高精度、高功率——重量比和大功率液压控制系统的需要不断扩大,促使液压控制技术迅速发展。特别是控制理论在液压系统中的应用、计算及电子技术与液压技术的结合,使这门技术不论在原件和系统方面、理论与应用方面都日趋完善和成熟,并形成一门学科。目前液压技术已经在许多部门得到广泛应用,诸如冶金、机械等工业部门及飞机、船舶部门等。 关键词:电液伺服控制液压执行机构 伺服系统又称随机系统或跟踪系统,是一种自动控制系统。在这种系统中,执行元件能以一定的精度自动地按照输入信号的变化规律动作。液压伺服系统是以液压为动力的自动控制系统,由液压控制和执行机构所组成。 一、电液控制系统的发展历史 液压控制技术的历史最早可以追溯到公元前240年,一位古埃及人发明的液压伺服机构——水钟。而液压控制技术的快速发展则是在18世纪欧洲工业革命时期,在此期间,许多非常实用的发明涌现出来,多种液压机械装置特别是液压阀得到开发和利用,使液压技术的影响力大增。18世纪出现了泵、水压机及水压缸等。19世纪初液压技术取得了一些重大的进展,其中包括采用油作为工作流体及首次用电来驱动方向控制阀等。第二次世界大战期间及战后,电液技术的发展加快。出现了两级电液伺服阀、喷嘴挡板元件以及反馈装置等。20世纪50~60年代则是电液元件和技术发展的高峰期,电液伺服阀控制技术在军事应用中大显身手,特别是在航空航天上的应用。这些应用最初包括雷达驱动、制导平台驱动及导弹发射架控制等,后来又扩展到导弹的飞行控制、雷达天线的定位、飞机飞行控制系统的增强稳定性、雷达磁控管腔的动态调节以及飞行器的推力矢量控制等。电液伺服驱动器也被用于空间运载火箭的导航和控制。电液控制技术在非军事工业上的应用也越来越多,最主要的是机床工业。在早些时候,数控机床的工作台定位伺服装置中多采用电液系统(通常是液压伺服马达)来代替人工操作,其次是工

第六章电液比例阀与比例控制回路(2015)

第六章
电液比例阀及 比例控制回路
6.1 概述
本 章 介 绍
6.2 电液比例阀 6.3 电液比例控制基本回路 6.4 电液比例控制工业应用

6.1 概述
从广义讲,凡是输出量,如压力、流量、位移、速度、加速 度等,能随输入信号连续地按比例地变化的控制系统,都称 为比例控制系统。从这个意义上说,伺服控制也是一种比例 控制。电液比例控制可以分为开环控制和闭环控制。
图6-1 电液比例开环控制系统方框图
图6-2 电液比例闭环控制系统方框图

目前,最常用的分类方式是按被控对象(量或参数)来进行分 类。则电液比例控制系统可以分为: 比例流量控制系统 比例压力控制系统 比例流量压力控制系统 比例速度控制系统 比例位置控制系统 比例力控制系统 比例同步控制系统

电液比例控制技术的发展动力
1.传统的液压控制方式是开关型控制。它通过电磁驱动或手动驱动来 实现液压流体的通、断和方向控制,从而实现被控对象的机械化和自 动化。但是这种方式无法实现对液流流量、压力连续地按比例地控制 ,同时控制的速度比较低、精度差、换向时冲击比较大。
2.当需要高性能的速度或位置控制时,以前电液伺服阀曾经是唯一实 用的解决办法。电液伺服阀是一种高技术条件的方向和流量控制阀, 不可避免地带来成本高、不耐污染、维修不便等问题。在并不需要伺 服阀的全部性能潜力的应用场合,这些问题可能成为主要的缺点。
3.发展电液比例阀的主要目的在于填补从简单的通/断电磁阀控制与复 杂的电液伺服控制之间的空白。虽然比例阀的部分性能指标不如伺服 阀,但对许多应用场合来已经够用了,同时可以体现出明显的成本和维 护优势。

电液伺服控制系统

6-1 怎样区分一个系统是位置、速度或力电-液伺服控制系统。 按系统被控制的物理量的性质来区分,如果是要实现位置控制,当然就是位置电液伺服系统。 6-2 试比较电-液伺服系统与机-液伺服系统的主要优缺点和性能特点。 机液伺服系统的指令给定、反馈和比较都是采用机械构件,优点是简单可靠,价格低廉,环境适应性好,缺点是偏差信号的校正及系统增益的调整不如电气方便,难以实现远距离操作,另外,反馈机构的摩擦和间隙都会对系统的性能产生不利影响。机液伺服系统一般用于响应速度和控制精度要求不是很高的场合,绝大多数是位置控制系统。 电液伺服系统的信号检测、校正和放大等都较为方便,易于实现远距离操作,易于和响应速度快、抗负载刚度大的液压动力元件实现整合,具有很大的灵活性和广泛的适应性。特别是电液伺服系统与计算机的结合,可以充分运用计算机快速运算和高效信息处理的能力,可实现一般模拟控制难以完成的复杂控制规律,因而功能更强,适应性更广。电液伺服系统是液压控制领域的主流系统。 6-3 为什么说电-液伺服系统一般都要加以校正。 当电液位置伺服控制系统的某些性能指标不甚满意时,简单的方法可通过增大系统的开环增益来提高响应速度和控制精度,但提高开环增益受系统稳定性条件的制约,也就是受液压固有频率和阻尼比的限制。全面改善系统的性能仅仅靠调整开环增益是远远不够的,通过对电液伺服系统进行针对性的校正,往往能够获得更高性能的电液伺服系统,并且不同的校正方法,会得到不同的改善效果。 6-4 怎样才能简化位置电-液伺服控制系统。 当电液伺服阀的频宽与液压固有频率相近时,电液伺服阀的传递函数可用二阶环节来表示;当电液伺服阀的频宽大于液压固有频率(3~5倍)时,电液伺服阀的传递函数可用一阶环节来表示。又因为电液伺服阀的响应速度较快,与液压动力元件相比,其动态特性可以忽略不计,而把它看成比例环节。一般的液压位置伺服系统往往都能够简化成以下的这种形式。 ()()V 2h h h 21K G s H s s s s ζωω=??++ ??? 6-5 怎样理解系统刚度高,误差小。 以负载误差为例,对于I 型系统稳态负载误差为()ce L L022v m K e T K i D ∞= ,负载误差()L e ∞的大小与负载干扰力矩L0T 成正比,而与系统的闭环静刚度22V m ce K i D K 成反比,所以当系统的刚 度高时误差较小。

电液比例阀工作原理

电液比例阀是阀内比例电磁铁输入电压信号产生相应动作,使工作阀阀芯产生位移,阀口尺寸发生改变并以此完成与输入电压成比例压力、流量输出元件。阀芯位移也可以以机械、液压或电形式进行反馈。电液比例阀具有形式种类多样、容易组成使用电气及计算机控制各种电液系统、控制精度高、安装使用灵活以及抗污染能力强等多方面优点,应用领域日益拓宽。近年研发生产插装式比例阀和比例多路阀充分考虑到工程机械使用特点,具有先导控制、负载传感和压力补偿等功能。它出现对移动式液压机械整体技术水平提升具有重要意义。特别是电控先导操作、无线遥控和有线遥控操作等方面展现了其良好应用前景。 2 工程机械电液比例阀种类和形式 电液比例阀包括比例流量阀、比例压力阀、比例换向阀。工程机械液压操作特点,以结构形式划分电液比例阀主要有两类:一类是螺旋插装式比例阀(screwin cartridge proportional valve),另一类是滑阀式比例阀(spool proportional valve)。 螺旋插装式比例阀是螺纹将电磁比例插装件固定油路集成块上元件,螺旋插装阀具有应用灵活、节省管路和成本低廉等特点,近年来工程机械上应用越来越广泛。常用螺旋插装式比例阀有二通、三通、四通和多通等形式,二通式比例阀主比例节流阀,它常它元件一起构成复合阀,对流量、压力进行控制;三通式比例阀主比例减压阀,也是移动式机械液压系统中应用较多比例阀,它主对液动操作多路阀先导油路进行操作。利用三通式比例减压阀可以代替传统手动减压式先导阀,它比手动先导阀具有更多灵活性和更高控制精度。可以制成如图1所示比例伺服控制手动多路阀,不同输入信号,减压阀使输出活塞具有不同压力或流量进而实现对多路阀阀芯位移进行比例控制。四通或多通螺旋插装式比例阀可以对工作装置实现单独控制。 滑阀式比例阀又称分配阀,是移动式机械液压系统最基本元件之一,是能实现方向与流量调节复合阀。电液滑阀式比例多路阀是比较理想电液转换控制元件,它保留了手动多路阀基本功能,还增加了位置电反馈比例伺服操作和负载传感等先进控制手段。它是工程机械分配阀更新换代产品。 出于制造成本考虑和工程机械控制精度要求不高特点,一般比例多路阀内不配置位移感应传感器,具有电子检测和纠错功能。,阀芯位移量容易受负载变化引起压力波动影响,操作过程中要靠视觉观察来保证作业完成。电控、遥控操作时更应注意外界干涉影响。近来,电子技术发展,人们越来越多采用内装差动变压器(LDVT)等位移传感器构成阀芯位置移动检测,实现阀芯位移闭环控制。这种由电磁比例阀、位置反馈传感器、驱动放大器和其它电子电路组成高度集成比例阀,具有一定校正功能,可以有效克服一般比例阀缺点,使控制精度到较大提高。 3 电液比例多路阀负载传感与压力补偿技术 节约能量、降低油温和提高控制精度,同时也使同步动作几个执行元件运动时互不干扰,现较先进工程机械都采用了负载传感与压力补偿技术。负载传感与压力补偿是一个很相似概念,都是利用负载变化引起压力变化去调节泵或阀压力与流量以适应系统工作需求。负载传感对定量泵系统来讲是将负载压力负载感应油路引至远程调压溢流阀上,当负载较小时,溢流阀调定压力也较小;负载较大,调定压力也较大,但也始终存一定溢流损失。变量泵系统是将负载传感油路引入到泵变量机构,使泵输出压力随负载压力升高而升高(始终为较小固定压差),使泵输出流量与系统实际需要流量相等,无溢流损失,实现了节能。

基于单片机的电液比例控制系统设计

摘要:随着微电子技术、智能技术、传感与检测技术等的快速发展以及向工程机械领域的不断渗透,现代工程机械正处于机电液一体化的崭新的发展时代。其中,电液比例控制系统具有控制精度高、安装使用灵活以及抗污染能力强等多方面优点,其应用领域日益拓宽。本文采用C8051F040微控制器为核心设计与开发的电压比例控制器,相对于传统的单片机所构成的电液比例控制系统,具有更高的稳定性、可靠性和实时响应能力。因此,其更能适应我国工程机械领域的应用环境。本文首先阐述了电液比例控制系统的发展历史,特点,以及分类情况。其次,介绍了整个控制系统的功能,并详细介绍了以C8051F040微控制器为核心的系统的硬件结构。接着,详细阐述了控制器与电液比例阀的接口电路,即由电机驱动芯片LMD18200构成的驱动电路的原理与设计。最后,本文讨论了整个系统软件部分的设计情况。 关键词:电液比例控制,C8051F,LMD18200,PID Based on SCM electrohydraulic proportional control system design Student:Liu Xin Tutor:Cai Peizhong (Oriental Science & Technology College of Hunan Agricultural University, Changsha 410128, China) Abstract:With the rapid development of micro-electronics, intellectual technology, sensing and detection technology and the continuous penetration of them into the field of engineering mechanisms, modern engineering mechanism is in a new age of the integration of mechanism, electrics and hydraulic pressure. Electro-hydraulic proportional control system has a lot of advantages,such as the high control accuracy, the flexible installation and use, the strong resistance on contamination and so on ,so that the application of electro-hydraulic proportional control system has increasingly broadened. The Electro-Hydraulic proportional control system that based on C8051F040 controller in this paper has higher stability and dependability and real-time responsive capacity, compared to that based on traditional singlechips. Therefore, it can adapt to the application environment of the modern engineering mechanism better than other control systems in our country.Firstly, it is described the development history, basic

电液位置伺服系统研究现状

电液位置伺服系统研究现状 张如兴 摘要当系统中被控制的物理量是位置量,同时检测反馈信号以及输入指令信号也是位置信号的由机构和液压元件组成的闭环控制系统。信号的传输是机械液压方式的,这一类系统称为机液位置伺服系统。机液伺服系统的优点是结构简单、工作可靠、抗污染能力强、造价低廉,因此广泛应用于航空、航天、舰船、工程机械、汽车、动力工程、机床控制、和农业机械等各个领域。机液伺服系统的缺点是机械连接件较多,因此不可避免饿带来了间隙、摩擦和刚度的影响。但是,由于它所具有的优点,应用的历史悠久,而且也广泛。 关键词位置伺服系统、伺服阀、应用范围 电液伺服位置系统在不断的进步中,越来越来得到广泛的应用。现在我就浅谈电液伺服位置系统得到一些应用和现状。 电液伺服阀是电液伺服控制系统的核心控制元件,其性能直接决定和制约着整个电液伺服控制系统的控制精度、响应特性、工作可靠性及寿命。随着航空、航天和军事工业对电液伺服系统性能要求的提高,民用工业对低成本、易维护、环保型电液伺服系统需求,传统电液伺服阀已不能满足要求。为提高伺服阀性能,国内外展开了以新型功能材料为基础的高频响、高精度电液伺服阀,以结构改进为基础的大流量、抗污染、低成本型电液伺服阀,以及以水作为介质的水压伺服阀的研究。 l新型功能材料在电液伺服阀中的应用 1.1超磁致伸缩材料 超磁致伸缩材料(GMM)的基本物理原理为磁致伸缩效应,即物体随磁化方向伸长或缩短的现象Ⅲ。此种材料做成的转换器具有输出力大、响应速度快、控制精度高等优点。 1.2压电材料/电致伸缩材料 压电材料(1rZT)和电致伸缩材料(PMN)部是电介质,在其极化方向上施加一定强度的电场.则会引起材料的机械变形.去掉电场后叉能恢复到原状态”。此种材料做成的转换器同样具有输出力大、响应速度快、控错精度高等优点.与GMM材料相比,研究成熟,价格低,但其需要较高的驱动电压。 1.3形状记忆台金 形状记忆台金(SMA)是指其宥一定初始形状的合盒在低温下经塑性形变并固定成另一种形变后,通过加热到某一l晦界温度以上叉可恢复成初始形状的一类合金此种材料做成的转换器体积小精度低,价格较低。 1.4磁流变流体 磁流变流体(MRF)属可控流体,由高磁导率、低磁滞性的微小软磁性颗粒和非导磁性液体混合而成的悬浮体。在外磁场作用下,表面黏度系数陡然增大两个数量级以上;当外加磁场增强时,会在一瞬间(0.1 s左右)变成类固体,失去流动性当撤销磁场后,材料立即恢复原状"。 国内哈尔滨工业大学利用MRF在外加磁场作用下,具有较大磁化强度的特点,提出了在力矩马达衔铁和铁芯的工作气隙中加入MRF,利用MRF来改善伺服阀动态性能的方法。实验表明,添加磁流变流体后消除了射流管伺服阀的自激震荡,但响应速度降低。 1.5电流变流体

电液比例控制技术B卷标准答案

试题 2012年~2013年第2学期 课程名称:电液比例控制技术专业年级:机电2010级 考生学号:考生姓名: 试卷类型:A卷□B卷□√考试方式:开卷□闭卷□√ …………………………………………………………………………………………………………………… 一、选择填空题(每题2分,共20分)(抄题目回答,不抄题目不给分) 1比例电磁铁的类型不包括(D)。 A力控制型比例电磁铁B行程控制型比例电磁铁 C位置调节型比例电磁铁D速度调节型比例电磁铁 2对于电液比例方向控制阀,与输入信号成比例的实质上是(D)。 A压力B流量C压力和流量D阀芯位移 3比例调速阀是液压系统中控制流量的元件,它适用于(A)系统中。 A执行元件负载变化大B执行元件负载变化小 C执行元件负载恒定D以上三种 4比例溢流阀采用①负反馈,比例减压阀采用②负反馈。(A) A①进口压力、②出口压力B①出口压力、②进口压力 C①出口压力、②进出口压差D①进出口压差、②出口压力 5当选用二级电液比例方向阀时,如果主阀进油口的压力不稳定,那么其先导阀的进油需要采用(B)。 A内泄式B外控式C内控式D外泄式 6恒压源的供油压力要保持恒定,下列哪种恒压源的功率损失小,效率高,适用于高压、大流量的大功率系统,而且也可以向几套液压控制系统供油(C) A定量泵+比例溢流阀B恒压变量泵+安全阀 C定量泵+蓄能器+卸荷溢流阀D恒压泵串联减压阀 7不带阀芯位移反馈闭环的比例方向阀的特点不包括(D)。 A死区大B抗污染能力强 C滞环大D滞环小 8二通进口压力补偿器采用定差减压原理,本质上是一个定差减压阀与(B)工作。 A恒流源串联B恒压源串联 C恒流源并联D恒压源并联 9比例流量控制泵不能称为(B) A功率适应泵B比例排量泵 C功率匹配泵D负载敏感泵 10复合控制变量泵具有(A)控制优先的特性。 A功率B流量C排量D压力 二、判断题(每题2分,共20分)(抄题目回答,不抄题目不给分) 1比例电磁铁具有感性负载大、电阻大、电流大和驱动力大等特点。(×) 2位置调节型比例电磁铁有很好的线性度,无需用颤振信号来减小滞环。(√) 3比例方向阀与其输入成比例的是它的输出流量和压力。(×) 4采用比例方向阀的控制回路本质上是一个串联式进、出油同时节流的调速回路。(√)

MATLAB电液位置伺服控制系统设计及仿真

数控机床工作台电液位置伺服控制系统设 计及仿真 姓名:雷小舟 专业:机械电子工程 子方向:机电一体化 武汉工程大学机电液一体化实验室

位置伺服系统是一种自动控制系统。因此,在分析和设计这样的控制系统时,需要用自动控制原理作为其理论基础,来研究整个系统的动态性能,进而研究如何把各种元件组成稳定的和满足稳定性能指标的控制系统。若原系统不稳定可通过调整比例参数和采用滞后校正使系统达到稳定,并选取合适的参数使系统满足设计要求。 1 位置伺服系统组成元件及工作原理 数控机床工作台位置伺服系统有不同的形式,一般均可以由给定环节、比较环节、校正环节、执行机构、被控对象或调节对象和检测装置或传感器等基本元件组成[1]。根据主机的要求知系统的控制功率比较小、工作台行程比较大,所以采用阀控液压马达系统。 系统物理模型如图1所示。 图1 数控机床工作台位置伺服系统物理模型 系统方框图如图2所示。 图2 数控机床工作台位置伺服系统方框图 数控机床工作台位置伺服系统是指以数控机床工作台移动位移为控制对象的自动控制系统。位置伺服系统作为数控机床的执行机构,集电力电子器件、控制、驱动及保护为一体。数控机床的工作台位置伺服系统输出位移能自动地、快速而准确地复现输入位移的变化,是因为工作台输出端有位移检测装置(位移传感器)将位移信号转化为电信号反馈到输入端构成负反馈闭环控制系统。反馈信号与输入信号比较得到差压信号,然后把差压信号通过伺服放大器转化为电流信号,送入电液伺服阀(电液转换、功率放大元件)转换为大功率的液压信号(流量与压力)输出,从而使液压马达的四通滑阀有开口量就有压力油输出到液压马达,驱动液压马达带动减速齿轮转动,从而带动滚珠丝杠运动。因滚珠丝杠与工作台相连所以当滚珠丝杠 运动时,工作台也发生相应的位移。 2数控工作台的数学模型 2.1 工作台负载分析 工作台负载主要由切削力c F ,摩擦力f F 和惯性力a F 三部分组成,则总负载力为: a f c L F F F F ++=

第六章习题

第六章 思考题 1、考虑伺服阀的动态时,如何用频率法分析系统的动态特性? 2、有哪些因素影响系统的稳态误差? 3、在电液伺服系统中为什么要增大电气部分的增益,减小液压部分的增益? 4、开环增益、穿越频率、系统频宽之间有什么关系? 5、未加校正的液压伺服系统有什么特点? 6、为什么电液伺服系统一般都要加校正装置,在电液位置伺服系统中加滞后校正、速度与加速度校正、压力反馈和动压反馈校正的主要目的是什么? 7、电液速度控制系统为什么一定要加校正,加滞后校正和加积分校正有什么不同? 8、在力控制系统中负载刚度对系统特性有何影响?影响了哪些参数? 9、力控制系统和位置控制系统对伺服阀的要求有什么不同?为什么? 习题 1、如下图所示液压位置伺服系统,已知: mA s m K q ??=-/102036, rad m D m /10536-?=,rad m n /1003.02-?=,m V K f /50=,s rad h /100=ω,225.0=h ξ。求 1)系统临界稳定状态时的放大器增益a K 多少? 2)幅值裕量为dB 6时的a K 为多少? 3)系统作s m /1022-?等速运动时的位置误差为多少?伺服阀零漂mA I d 6.0=?时引起的静差 为多少? 图1 电液位置伺服系统 2、有一稳定的电液位置伺服系统,其速度放大系数s K v /120 =,为了保证稳态精度的要求需将速度放大系数提高到s /1100,求滞后校正网络的传递函数。 3、有一振动台,其方块图如下图所示。已知系统参数为:s rad h /140=ω,2.0=h ξ, A s m K sv ??=-/10432,V A K a /1012-?=,m V K f /102.12?=,22101m A p -?=。求 1)、不加加速度反馈校正时的系统增益裕量g K 和闭环频宽b ω。 2)、将系统开环阻尼比提高到3.0=h ξ的加速度反馈系数fa K 和系统增益裕量g K 和闭环频宽b ω。

汽轮机电液伺服系统建模及控制方法

第46卷 第9期 热 力 发 电 V ol.46 No.9 收稿日期:2017-05-26 基金项目:陕西省科学技术研究发展计划项目(2013K07-28);陕西省教育厅专项科研计划项目(14JK1094) Supported by :Science and Technology Research and Development Program of Shaanxi Province (2013K07-28); Special Research Program of Shaanxi Provincial Department of Education (14JK1094) 第一作者简介:李艳(1972—),女,硕士,主要研究方向为智能控制与智能检测,liyandq@https://www.360docs.net/doc/383925472.html, 。 通讯作者简介:拓福婷(1992—),女,硕士研究生,812550272@https://www.360docs.net/doc/383925472.html, 。 汽轮机电液伺服系统建模及控制方法 李 艳1,2,拓福婷1,张孝杰3 (1.陕西科技大学电气与信息工程学院,陕西 西安 710021; 2.陕西农产品加工技术研究院,陕西 西安 710021; 3.濮阳市自来水公司,河南 濮阳 457000) [摘 要]汽轮机电液伺服系统液压油的油液密度、体积弹性模量等参数随环境温度、压力等条件变 化而变化,且系统存在未建模动态,致使电液伺服系统难以获得良好的跟随性。本文以 200 MW 中间再热凝汽式汽轮机电液伺服系统为研究对象,根据力平衡及流量连续性原则, 建立了双侧进油油动机数学模型。通过仿真分析了油液密度、体积弹性模量变化对系统性 能的影响,在此基础上设计了滑模变结构控制器,并采用指数趋近律设计方法来削弱滑模 变结构控制中的抖振问题。通过MATLAB 仿真平台,对所设计的控制系统进行仿真验证, 并与经参数优化后的PID 控制系统进行仿真对比。结果表明:本文所设计的控制器具有良 好的跟踪性和对不确定性参数、外负载干扰的适应能力。 [关 键 词]汽轮机;电液伺服系统;滑模变结构控制;参数不确定性;PID 控制;液压油 [中图分类号]TP273 [文献标识码]B [文章编号]1002-3364(2017)09-0117-07 [DOI 编 号]10.3969/j.issn.1002-3364.2017.09.117 Modeling and control method of electro-hydraulic servo system for steam turbine LI Yan 1,2, TUO Futing 1, ZHANG Xiaojie 3 (1. College of Electrical & Information Engineering, Shaanxi University of Science and Technology, Xi’an 710021, China; 2. Shaanxi Research Institute of Agricultural Products Processing Technology, Xi’an 710021, China; 3.Puyang City Water Company Production Division, Puyang 457000, China) Abstract: The oil density and volume elastic modulus of hydraulic fluid of the electro-hydraulic servo system in steam turbine change with the ambient temperature and pressure, and the system has unmodeled dynamic, which makes it difficult for the electro-hydraulic servo system to achieve a good tracking ability. Taking the electro-hydraulic servo system in a 200 MW intermediate reheat condensing steam turbine as the research object, this paper established a mathematical model for bilateral oil motive, according to the principle of force balance and flow continuity. The influence of oil density and volume elastic modulus on the system performance was analyzed by simulation. On this basis, a sliding mode variable structure controller was designed, and the exponential convergence law design method was used to weaken the chattering problem in sliding mode variable structure control. The simulation system of the designed control system was simulated and verified by Matlab simulation platform, and compared with the PID control system with optimized parameter. The results show that, the controller designed in this paper has good tracking ability and adaptability to uncertain parameters and external load interference. Key words: steam turbine, electro-hydraulic servo system, sliding mode variable structure control, parameter uncertainty, PID control, hydraulic oil 电液伺服系统具有控制精度高、响应速度快、 输出功率大的优点,在工业控制中有广泛应 用[1]。但是目前火电机组调节系统中的电液伺服系 统仍存在许多不利于提高系统性能的因素:强非线性,主要表现在控制阀的压力-流量特性、典型非线性环节[2];参数时变性,主要由于液压油的体积弹性模量及油液密度随环境温度、压力及油液中空气含量的变化而变化[3];此外还包括外界干扰和建模万方数据

相关文档
最新文档