超氧化物歧化酶

超氧化物歧化酶
超氧化物歧化酶

超氧化物歧化酶(SOD)简述

YB 2012级生物技术

摘要:超氧化物歧化酶首先由Mann和Keilin从牛红细胞中分离提取出,是生物体内一种重要的抗氧化酶,由于其具有清除生物体内超氧阴离子自由基的作用,而引起广大学者的关注。本文概述了SOD的分类、结构、理化性质及研究进展,并对其应用前景进行了展望。

关键词:超氧化物歧化酶;SOD;理化性质

生物体内低浓度超氧阴离子自由基(O-2)是维持生命活动所必需的,其浓度过高时,可引起机体组织细胞氧化损伤,导致机体发生疾病,甚至死亡。超氧化物歧化酶(Superoxide dismutase,简称SOD)是清除生物体内超氧阴离子自由基的一种重要抗氧化酶,具有抗衰老、抗癌、防白内障等作用[1],因而受到全世界学术界广泛关注,使之成为涉及分子生物学、微生物学、医学等学科领域及医药、化工、食品等生产行业的一个热门研究课题[2]。

1.SOD的分类

SOD广泛存在于动、植物及微生物中[1]。根据其结合金属种类不同,可分为三类:第一类为Cu·Zn-SOD,呈蓝绿色,相对分子量约为32kDa,主要存在于真核细胞细胞浆、叶绿体和过氧化物酶体内;第二类为Mn- SOD,呈紫红色,相对分子量约为40kDa,主要存在于真核细胞线粒体和原核细胞中;第三类为Fe-SOD,呈黄褐色,相对分子量约为38.7kDa,主要存在于原核细胞及一些植物中[2]。

2.SOD的结构

1975年Richardson得到了Cu?Zn-SOD的三维结构[5],发现它是由2个基本相似的亚基组

成的二聚体,且每个亚基含有1个铜原子

和1个锌原子。2个相同亚基之间通过非

共价键的疏水相互作用而缔合,类似于圆

筒的端面。Cu?Zn-SOD的单个亚基活性中

心结构见图1。

从图中可知Cu与4个来自组氨酸残基

(His44,46,61,118)的咪唑氮配位呈现1个三角双锥畸变的四方锥构型,Zn则与3个来自组氨酸残基(His61,69,78)的咪唑氮和1个天门冬氨酸残基(Asp81)的羧基氧配位,呈畸变的四面体构型。

Mn-SOD和Fe-SOD的结构则比较简单,且二者相似,每个亚基的活性中心金属离子,都是与1个水分子和3个组氨酸(His)残基及1个天门冬氨酸(Asp)残基的羧基氧配位,呈畸变四方锥构型[6]。Mn-SOD和Fe-SOD一般为二聚体或四聚体,每个亚基含0.5一1.0个Mn和Fe 原子。它们在空间结构上与Cu·Zn-SOD不同,含有较高程度的。一螺旋,而件折登较少。

现已有多种生物中的SOD的三维结构登录到GenBank中,并且对其内部结构特征进行了分析。

3.SOD的理化性质

3.1 SOD的主要物化特性

近年来很多专家对SOD的物化特性进行了系统研究,研究结果表明:SOD属酸性蛋白酶,对pH、热和蛋白酶水解等反应比一般酶稳定[7]。将三类SOD的主要物化特性列于表1。Joan

等人指出不同来源的Cu·Zn-SOD具有较高的同源性,它们的物化特性也很相似,据推测它们可能由同一原始酶进化而来。不同来源的Mn-SOD和Fe-SOD也具有相似的物理性质和较高的同源性,它们可能由另一原始酶进化而成。

3.2SOD的活性中心和催化机理

三类SOD的活性中心都含有金属离子。如采用物理或化学方法除去金属离子,则酶活丧失;如重新加上金属离子,则酶活又恢复。

Cu·Zn - SOD的活性中心形态像个椭圆形口袋,口袋底部的Cu2+与4个His和1个H2O 配位,E2+与3个His和1个Asp配位。Cu和Zn离子之间通过共同连接1个His而构成咪唑桥结构[8]。口袋长15A°、宽9A°、深6A°,口袋底部是Cu2+和Zn2+存在的部位,底物就结合于口袋之中。活性中心的His对酶活性至关重要,该残基受损,酶活性丧失,位于活性

中心附近且与Cu2+相距6A°的精氨酸143,因具有正电荷,是进人活性中心的诱导者,并提供H+以加快歧化速度。如果该酶残基被修饰,大部分正电荷消失,不利的进人,酶活性降低99% 。Cu2+和Zn2+对活性中心的作用亦不同,Cu2+是必需的,任何金属取代Cu2+都可使酶失活,而Zn2+被Co2+, Hg2+、Cd2+取代而不影响活性[7]。

Mn-SOD和Fe-SOD的活性中心的金属离子与3个His,1个Asp和1个H2O配位。三类SOD 的活性中心均含有金属离子,His、Asp和H2O[8]。

氧化物可以与Cu2+和Zn2+配位而使酶失活,但不受乙醇、氯仿影响;金属的鳌合剂如EDTA 可除去Cu2+、Zn2+,导致酸失活;H2O2能与Cu2+反应,使Cu2+变成Cu+,导致酶失活;添加·OH清除剂可保护酶的天然结构。Mn-SOD具有抗CN-能力,但可被乙醇、氯仿破坏,Mn-SOD可由氧诱导产生,其增加是和高压氧的量有关,故认为Mn-SOD是内源性0夏的“清道夫”。Fe-SOD能抗CN-,但氧不能诱导Fe-SOD的产生,Fe-SOD是外源性的清除剂。

SOD是生物体内防御氧化损伤的一种十分重要的金属酶,它的作用底物是超氧阴离子,它催化超氧阴离子发生歧化反应,从而清除q。其催化机理是:SOD(氧化型)+ →SOD-(还原型)+,SOD-(还原型)+→ SOD(氧化型)+H2O2,总反应式:

3.3SOD的化学修饰

SOD作为药用酶用于临床受以下因素的影响:①半

衰期短,通常只有6~10min;②分子量大,不易透过细胞

膜;③抗原性;④如用于口服,易被蛋白水解酶水解。鉴

于上述不利因素,对SOD分子进行改造就显得十分重要,

近年很多专家对SOD分子的修饰进行了研究[9~11],目的是

为了提高SOD的稳定性。实验表明:修饰酶不仅完全保

留了天然酶的活性,而且在耐热、耐酸、耐碱和抗胃蛋

白酶水解能力等方面都明显地优于天然酶,修饰酶较天然酶稳定(表2,图2),特别是酶经修饰后大大延长了在体内停留时间[12]。

目前对SOD进行分子修饰改造的途径有:①对SOD氨基酸残基进行化学修饰;②用水溶性大分子对SOD进行共价修饰;③对SOD进行酶切修饰[7]。近年来用水溶性大分子对SOD修饰研究和应用较多,原因有3个方面:①反应条件温和,且酶活保持较好;②形成共价蛋白加合物水溶性好;③具有较好的生物相容性[10]。天然牛血SOD的t1/2的6min,而右旋糖酐SOD、低

分子聚蔗糖SOD、高分子聚蔗糖SOD、聚乙二醇SOD的t1/2;分别为7,14,24,35h[12]。并且聚乙二醇与SOD共价修饰后,除可使半衰期延长外,还可粘附于血管内皮细胞表面,增加了其抗自由基作用[13]。另据Michelson等人报道,SOD被脂质体包裹可明显延长半衰期。将SOD包人脂质质体后不但可提高SOD进人细胞的量,还可以选择性地将SOD导人到一定的器官中[14]。

4.SOD的研究进展

超氧化物歧化酶是生物体防御氧化损伤重要的生物酶。近些年,国内外学者除对动物SOD进行研究外,还对植物SOD和微生物SOD进行了研究。

4.1 微生物SOD的研究进展

近几十年,SOD一直是国内外学者研究的热点。但他们的研究大多集中于从动物血液或脏器中提取SOD,易受原料来源、产品得率、稳定性及安全性等方面的限制。微生物具有原料便宜易得,可大规模生产的优势,因而,近些年很多学者都致力于用微生物发酵生产SOD的研究。上世纪80年代后,美国和日本已先后开发了用发酵法生产SOD,大大降低

了生产成本。目前,国内外在微生物SOD的菌种选育、发酵工艺、分离提纯、生理学研究、基因克隆表达及SOD应用方面都取得一定的研究进展[15,16]。

4.2 植物SOD的研究进展

植物细胞在正常代谢活动和逆境条件下均能产生活性氧。近年来,国内外的专家学者主要研究了SOD与植物抗逆性的关系。研究表明,在逆境条件下,植物的抗性与植物体内能否维持较高的SOD活性水平有关。环境胁迫能诱导植物SOD基因的表达。当前,不同类型的SOD 基因已被转化到多种植物中,有实验结果表明,SOD在转基因植物中的过量表达可以不同程

度地提高植物对环境胁迫的抵抗能力[17,18]。因此,可利用基因工程方法来获得抗逆植株。4.3 动物SOD的研究进展

目前,SOD作为O2-特异清除剂,已被广泛应用于医药、食品及化妆品行业当中。

4.3.1 SOD在医药行业中的应用

SOD由于半衰期短、分子量大、易失活等缺点,不利于临床使用,而基因工程手段对SOD

分子进行化学修饰则成为近些年的研究热点。实验表明,修饰酶不仅完全保留了天然酶的活性,在耐热、耐酸碱度、抵抗蛋白酶水解以及稳定性方面也明显优于天然酶,大大延长了它在体内停留的时间[4]。当前已有多种药用SOD应用于临床中,主要集中于抗炎症、抗衰老、抗辐射、抗肿瘤和自身免疫系统疾病等与活性氧损伤有密切关系的病症中。

4.3.2 SOD在食品工业中的应用

SOD应用于食品工业中,主要是作为食品添加剂和重要的功能性基料。目前,已开发的产品有以大蒜为原料生产的大蒜粉、大蒜油,以猕猴桃为原料生产的猕猴桃汁以及添加SOD的牛奶、咖啡、酸奶、啤酒等保健食品。

4.3.3 SOD在化妆品行业中的应用

由于SOD具有抗衰老作用,它已被广泛应用于化妆品中,对于治疗皱纹、雀斑、粉刺、色素沉着等具有明显作用。因此,含有SOD的化妆品倍受女性青睐。

5.展望

目前,SOD作为药用酶用于临床已有深入研究,但由于其制备纯化工艺复杂,生产成本高,因而在食品中应用不是很广泛,鉴于从微生物中提取SOD存在诸多优点,因此用微生物发酵生产SOD有可能不经过提纯直接用于食品、化妆品及食品添加剂中。随着研究进一步加深,利用微生物生产SOD进入产业化阶段,相信其在医药、食品、化妆品等方面应用更加广泛。

参考文献

[1] 丁书茂,杨旭.超氧化物歧化酶及其模拟化合物研究进展[J].高等函授学报(自然科学版),2004,17(1): 1-5.

[2] 张晓燕.超氧化物歧化酶的研究现状及在食品中的应用综述[J].扬州职业大学学报,2002,6(1): 34-37.

[3] 蔡敬杰,樊志.超氧化物歧化酶的研究进展[J].天津化工,1997,2: 2-4.

[4] 王震宙,陈红兰.SOD的应用研究进展[J].食品科技: 29-30.

[5] 陈忠宁.毛宗万,唐雯霞.铜锌超氧化物歧化酶的结构机理及其模拟研究进展[J].化学通报.1993,(6):1-7.

[6] 沈良.郭洪.超氧化物歧化醉及其摸拟研究[J].杭州师范学院学报.2002,1(3):54-70.

[7] 张博润等.SOD的研究进展和应用前景[J].微生物学通报.1992,19(6):352-357.

[8] 顾永清.SOD及其在生物学中的应用[J].生物学通报,1993,28(7):8-11.

[9] 吴云等·右旋糖酐对超氧化物歧化酶的化学修饰及其某些性质的研究[J].生物化学与生物物理学报,1986,18(3):308-310.

[10] 区耀华等.超氧化物歧化酶化学修饰的初步研究[J].生物化学与生物物理进展,1989,16(3):203-205.

[11] 白如琴等.天然与修饰超氧化物歧化酶某些物理性质比较[J].山西大学学报(自然版),1994,17(2):196-199.

[12] 袁勤生等.超氧化物歧化酶研究进展[J]·中国药学杂志,1989,24(7):387-391.

[13] 罗晓波.自由基和抗自由基药物在心肌缺血灌注损伤中的研究进展[J].中国药学通报,1992,8(4):l74-177.

[14] 陈雨亭等.SOD脂质体及临床应用[J].生物化学与生物物理进展,1989,16(l):23-26.

[15] 王素芳,蒋琳兰,赵树进.微生物超氧化物歧化酶的研究进展[J].药物生物技术,2002,9(6):378-380.

[16] 杨明琰,张晓琦等.微生物产超氧化物歧化酶的研究进展[J].微生物学杂志,2004,24(1):49-51.

[17] 马旭俊,朱大海.植物超氧化物歧化酶(SOD)的研究进展[J].遗传,2003,25(2): 225-231.

[18] 覃鹏,刘飞虎,梁雪妮.超氧化物歧化酶与植物抗逆性[J].黑龙江农业科学,2002,(1): 31-34.

SOD(超氧化物歧化酶)活性测定

SOD(超氧化物歧化酶)活性测定 氮蓝四唑法 一、原理 超氧化物歧化酶(superoxide dismutase ,SOD)普遍存在动、植物的体内,是一种清除超氧阴离子自由基的酶,它催化下面的反应: o 2.-+H O 2 22+O H + 反应产物H 2O 2可由过氧化氢酶进一步分解或被过氧化物酶利用。超氧化物歧化酶抑制氮蓝四唑(NBT)在光下的还原作用来确定酶活性的大小。在有氧化物质存在下,核黄素可被光还原,被还原的核黄素在有氧条件下极易被氧化而产生超氧阴离子,超氧阴离子可将氮蓝四唑还原为蓝色的甲腙,后者在560nm 处有最大吸收。而SOD 可清除超氧阴离子,从而抑制了甲腙的形成。于是光还原反应后,反应液蓝色愈深,说明酶的活性愈低,反之酶的活性俞高。据此可计算出酶活性的大小。 二、材料、仪器设备及试剂 (一)材料 植物器官(花瓣、叶片等) (二)仪器设备 冰箱、低温高速离心机、微量加样器 (1mL 、20μL 、100μL)、移液管、精密电子天平、UV-752型紫外分光光度计、试管、研钵、剪刀、镊子、荧光灯(反应试管处照度为4000Lux 或Lx) (三)试剂 (1) 0.05mol/L 磷酸缓冲液(PH7.8)。 (2) 130mmol/L 甲硫氨酸(Met)溶液:称1.9399gMet 用磷酸缓冲液定溶至100mL 。 (3)750μmol/L 氮蓝四唑溶液:称取0.06133gNBT 用磷酸缓冲液定溶至100mL ,避光保存。 (4)100μmol/LEDTA -Na 2溶液:称取0.03721g EDTA-Na 2,用磷酸缓冲液定溶1000mL 。 (5)20μmol/L 核黄素溶液:称取0.0753g 核黄素用蒸馏水定溶到1000mL ,避光保存。 三、试验步骤 (一)酶液的提取 (1)称取植物材料(去叶脉)0.2g ,加1ml 预冷的磷酸缓冲液在冰浴上研磨成浆,加缓冲

超氧化物歧化酶资料

超氧化物歧化酶 超氧化物歧化酶,别名肝蛋白、奥谷蛋白,简称:SOD。SOD是一种源于生命体的活性物质,能消除生物体在新陈代谢过程中产生的有害物质。对人体不断地补充SOD具有抗衰老的特殊效果。超氧化物歧化酶是1938年Marn等人首次从牛红血球中分离得到超氧化物歧化酶开始算起,人们对SOD的研究己有七十多年的历史。1969年McCord等重新发现这种蛋白,并且发现了它们的生物活性,弄清了它催化过氧阴离子发生歧化反应的性质,所以正式将其命名为超氧化物歧化酶。 SOD(超氧化物歧化酶)是国际上公认的具有人体垃圾“清道夫”、“抗衰王”、“美容骄子”之称,是对抗“百病之源”活性氧自由基最有力的物质,是近半个世纪以来社会科学界、医学界、生物界最举世瞩目的价值发现,它的研究与发展代表着生物医药的高科技技术发展的前沿,在科技成果及学术领域占据重要的国际地位。SOD(超氧化物歧化酶)被国家列入生物医药“国家十一五规划”重点项目。2011年是“国家十二五规划”的第一年,SOD行业将再次跻身国家当前优先发展的高科技产业化项目,标志着中国健康产业链SOD新兴行业的崛起, 使全人类迈入健康经济时代。利用超氧化物歧化酶(SOD)产业化建设,一方面可架构生物医药、保健食品、日用美容化妆品、化工化学、农业五大版块经济支柱的绿色产业链循环经济圈发展。另一方面打造SOD科技应用成果转化的孵化器平台引领生化医药美容化妆品食品等行业的新型健康原料的应用,有利于促进再生资源利用,产生巨大的社会效益和经济效益。 一、反应机理 超氧化物岐化酶,它催化如下的反应: 2O2-+2H+→H2O2+O2 O2-称为超氧阴离子自由基,是生物体多种生理反应中自然生成的中间产物。它是活性氧的一种,具有极强的氧化能力,是生物氧毒害的重要因素之一。 SOD是机体内天然存在的超氧自由基清除因子,它通过上述反应可以把有害的超氧自由基转化为过氧化氢。尽管过氧化氢仍是对机体有害的活性氧,但体内的过氧化氢酶(CAT)和过氧化物酶(POD)会立即将其分解为完全无害的水。这样,三种酶便组成了一个完整的防氧化链条。 SOD属于金属蛋白酶,按照结合金属离子种类不同,该酶有以下三种:含铜与锌超氧化物歧化酶(Cu-ZnSOD )、含锰超氧化物歧化酶(Mn-SOD )和含铁超氧化物歧化酶(Fe-SOD )。三种SOD都催化超氧化物阴离子自由基,将之歧化为过氧化氢与氧气。 目前,人们认为自由基(也称游离基)与绝大部分疾病以及人体的衰老有关。所谓的自由基就是当机体进行代谢时,能夺去氧的一个电子,这样这个氧原子就变成自由基。自由基很不稳定,它要在身体组织细胞的分子中再夺取电子来使自己配对,当细胞分子推陈出新动一个电子后,它也变成自由基,又要去抢夺细胞膜或或细胞核分子中的电子,这样又称会产生新的自由基。如,超氧化物阴离子自由基、羟自由基、氢自由基和甲基自由基,等等。在细胞由于自由基非常活泼,化学反应性极强,参与一系列的连锁反应,能引起细胞生物膜上的脂质过氧化,破坏了膜的结构和功能。它能引起蛋白质变性和交联,使体内的许多酶及激素失去生物活性,机体的免疫能力、神经反射能力、运动能力等系统活力降低,同时还能破坏核酸结构和导致整个机体代谢失常等,最终使机体发生病变。因此,自

超氧化物歧化酶的现状研究进展(一)

超氧化物歧化酶的现状研究进展(一) 关键词:超氧化物歧化酶;生理功能;特性;应用摘要:超氧化物歧化酶是生物体内清除超氧阴离子自由基的一种重要酶,具有重要的生理功能,在医药、食品、化妆品中有广泛的应用前景。现从分类、分布、结构、性质、催化机理、制备、应用等方面探讨了超氧化物歧化酶的基础研究进展。 关键词:超氧化物歧化酶;生理功能;特性;应用Advanceincurrentresearchofsuperoxidedismutase. Abstract:SuperoxideDismutase(SOD)isanimportantenzymeinorganism,whichcanremovesuperoxidefreeradical.Itiswide-lyusedinclinicaltreatment,food,andcosmeticindustryforitsimportantphysiologicfunction.Thisreviewpresentsabasicreseachoutline ofSOD,includingclassification,distribution,structure,property,thecatalysemechanism,preparationandapplication. Keywords:Superoxidedismutase;Physiologicfunction;Property;Application 1938年Mann和Keilin〔1〕首次从牛红细胞中分离出一种蓝色的含铜蛋白质(Hemocuprein),1969年Mccord及Fridovich〔2〕发现该蛋白有催化O2,发生歧化反应的功能,故将此酶命名为超氧化物歧化酶(SuperoxideDismutase,SOD,EC1.15.1.1)。该酶是体内一种重要的氧自由基清除剂,能够平衡机体的氧自由基,从而避免当体内超氧阴离子自由基浓度过高时引起的不良反应,同时SOD是一种很有用途的药用酶。有关SOD的研究受到国内外学者的广泛关注,涉及到化学、生物、医药、日用化工、食品诸领域,是一个热门研究课题。通过多年努力,在SOD的基础研究方面取得了巨大成果。目前,SOD临床应用主要集中在抗炎症方面(以类风湿以及放射治疗后引起的炎症病人为主),此外对某些自身免疫性疾病(如红斑狼疮、皮肌炎)、肺气肿、抗癌和氧中毒等都有一定疗效;在食品工业主要用作食品添加剂和重要的功能性基料;在其它方面也有相关应用。现就有关SOD的基础研究进展及应用方面作以简述。 1SOD的种类与分布 SOD是一类清除自由基的蛋白酶,对需氧生物的生存起着重要的作用,是生物体防御氧毒性的关键。迄今为止,科学家已从细菌、真菌、原生动物、藻类、昆虫、鱼类、植物和哺乳动物等生物体内都分离得到了SOD。基于金属辅基不同,这些SOD至少可以分为Cu/Zn-SOD、Mn-SOD、Fe-SOD三种类型〔3〕。 表1不同种类型的SOD分布(略) 一般来说,Fe-SOD是被认为存在于较原始的生物类群中的一种SOD类型;Mn-SOD是在Fe-SOD 基础上进化而来的一种蛋白类型,由于任何来源的Mn-SOD和Fe-SOD的一级结构同源性都很高,均不同于Cu/Zn-SOD的序列,可见它们来自同一个祖先;Cu/Zn-SOD分布最广,是一种真核生物酶,广泛存在于动物的血、肝和菠菜叶、刺梨等生物体中。 除以上三种SOD外,Sa-OukKang等人最近又从链霉菌Streptomycesspp.和S.coelicotor中发现了两种新的SOD,一种是含镍酶即Ni-SOD,另一种是含铁和锌的酶即Fe/ZnSOD,它们均为四聚体,表观分子量分别是13KD和22KD,它们之间没有免疫交叉反应〔4~6〕。 2SOD的催化机理 超氧化物歧化酶作用的底物是超氧阴离子自由基(O·-2),它既带一个负电荷,又只有一个未成对的电子。在不同条件下,O·-2既可作还原剂变成O2,又可作氧化剂变成H2O2,H2O2又在过氧氢酶(Catalase,CAT)的作用下,生成H2O和O2,由此可见,有毒性的O·-2在H2O2又在过氧氢酶(Catalase,CAT)的作用下,生成H2O和O2,由此可见,有毒性的O·-2在SOD和CAT共同作用下,变成了无毒的H2O和O2。其作用机理如下:SOD+O·-2SOD-+O2SOD-+O·-2+2H+SOD+H2O22O·-2+2H+SODO2+H2O2H2O2CATH2O+O2

超氧化物歧化酶

超氧化物歧化酶,分子结构:NH2;SCH2 CHCOOHSCH2 CHCOOHNH2 ,别名肝蛋白、奥谷蛋白,简称:SOD。SOD是一种源于生命体的活性物质,能消除生物体在新陈代谢过程中产生的有害物质。对人体不断地补充SOD具有抗衰老的特殊效果。超氧化物歧化酶是1938年Marn等人首次从牛红血球中分离得到超氧化物歧化酶开始算起,人们对SOD 的研究己有七十多年的历史。1969年McCord等重新发现这种蛋白,并且发现了它们的生物活性,弄清了它催化过氧阴离子发生歧化反应的性质,所以正式将其命名为超氧化物歧化酶。 超氧化物岐化酶的催化如下的反应:2O2-+2H+→H2O2+O2 O2-称为超氧阴离子自由基,是生物体多种生理反应中自然生成的中间产物。它是活性氧的一种,具有极强的氧化能力,是生物氧毒害的重要因素之一。SOD是机体内天然存在的超氧自由基清除因子,它通过上述反应可以把有害的超氧自由基转化为过氧化氢。尽管过氧化氢仍是对机体有害的活性氧,但体内的过氧化氢酶(CAT)和过氧化物酶(POD)会立即将其分解为完全无害的水。这样,三种酶便组成了一个完整的防氧化链条。 过氧化物游离基可造成机体的损害,本品由哺乳动物的红细胞、肝和组织中分离提取的一种肽链大分子的金属酶,能促使过氧化物游离基转化成过氧化氢和氧,从而清除炎症过程中伴随产生的过氧化物游离基,而有强大的抗炎作用。临床用于类风湿关节炎、骨关节病、放射性膀胱炎。可以清除体内过量的自由基,提高人体免疫力,延缓衰老;抗疲劳,调节女性生理周期,推迟更年期。 应用 ( 1) 治疗自身免疫性疾病。各种自身免疫性疾病的发病机制虽有不同, 但O2- 前列腺素及由巨噬细胞、单核细胞、中性白细胞产生出来的水解酶类在引起病变上都起了重要作用。动物实验已证实SOD 和其他氧自由基清除剂能抑制自身免疫性疾病的慢性发病过程。应用SOD 治疗红斑狼疮和类风湿性关节炎均有很好的效果。 ( 2) 治疗某些心血管疾病。心血管疾病是人类第一大疾病, 心血管药物研究已成为生物技术革命的尖端领域。美国每年用于这方面的开发费用占到其全国医药工业总研究费用的25% 以上, 我国也把心血管药物研究列为国家医药攻关的重点, 美国和日本正在全力开发SOD。 ( 3) 抗衰老。虽然SOD 与衰老的关系以及SOD 能否作为抗衰老的有效药物, 国内外尚有争议, 但SOD 可减缓衰老的病理过程是无可非议的。衰老机制十分复杂, 按衰老的自由基学说, 氧化是导致衰老、细胞破裂和进行性病变的主要原因。SOD 能阻止、清除自由基的连锁反应, 能有效防止脂质过氧化, 也就抑制了脂褐素的形成。常见的高血压冠心病、动脉硬化和老年性痴呆症, 无不与O2- 堆积有关。如果补充一些SOD, 无疑能起到“雪中送炭” 的作用。 SOD 的开发 随着对SOD 研究的广泛进行, 人们开始对SOD 基因进行分离、序列分析、基因克隆与表达研究。美国Chiron 公司已将重组SOD 用于肾移植。Bio- Technology General 公司将基因工程方法生产的SOD 用于治疗新生儿的氧障碍。德国、日本相继开展了这方面的研究和开发工作。中国医学科学院基础医学研究所和海军总医院分子生物学研究室于1989 年底成功地在F.Coli 中构建的Cu/Zn- SOD 高效表达载体, 其表达量占菌体蛋白

超氧化物歧化酶(SOD)的生产

超氧化物酶(SOD)的生产 SOD(超氧化物歧化酶)是一种源于生命体的活性物质,能消除生物体在新陈代谢过程中产生的有害物质。对人体不断地补充SOD具有抗衰老的特殊效果。超氧化物歧化酶(Superoxide Dismutase, EC1.15.1.1, SOD)是1938 年Marn等人首次从牛红血球中分离得到超氧化物歧化酶开始算起,人们对SOD 的研究己有七十多年的历史。1969年McCord等重新发现这种蛋白,并且发现了它们的生物活性,弄清了它催化过氧阴离子发生歧化反应的性质,所以正式将其命名为超氧化物歧化酶。 它催化如下的反应:202+2H+→H2O2+O2 O2-称为超氧阴离子自由基,是生物体多种生理反应中自然生成的中间产物。它是活性氧的一种,具有极强的氧化能力,是生物氧毒害的重要因素之一。SOD是机体内天然存在的超氧自由基清除因子,它通过上述反应可以把有害的超氧自由基转化为过氧化氢。尽管过氧化氢仍是对机体有害的活性氧,但体内6性极强的过氧化氢酶(CAT)和过氧化物酶(POD)会立即将其分解为完全无害 的水。这样,三种酶便组成了一个完整的防氧链条。 一、实验目的 a.掌握有机溶剂沉淀法的原理和基本操作。 b.掌握SOD酶提取分离的一般步骤。 二、实验原理 超氧化物歧化酶(superoxide dismutase,SOD)是一种具有抗氧化、抗衰老、抗辐射和消炎作用的药用酶。它可催化超氧负离子(O2-)进行歧化反应,生成氧和过氧化氢。大蒜蒜瓣和悬浮培养的大蒜细胞中含有较丰富的SOD,通过组织或细胞破碎后,可用pH7.8的磷酸缓冲溶液提取出来。由于SOD不溶于丙酮,可用丙酮将其沉淀析出。 有机溶剂沉淀的原理是有机溶剂能降低水溶液的介电常数,使蛋白质分子之间的静电引力增大。同时,有机溶剂的亲水性比溶质分子的亲水性强,它会抢夺本来与亲水溶质结合的自由水,破坏其表面的水化膜,导致溶质分子之间的相互作用增大而发生聚集,从而沉淀析出。 三、实验器材 研钵,石英纱,烧杯(50ml),玻璃棒,pH计,冷冻离心机,离心管。 四、试剂和材料 新鲜蒜瓣,0.05mol/L磷酸缓冲溶液(pH7.8),氯仿-乙醇混合液(氯仿:无水乙醇=3:5),丙酮(用前预冷至-10℃)。

超氧化物歧化酶

超氧化物歧化酶的功能与应用 安徽工程大学生化院食品101 张云学号:3100401114 摘要:超氧化物歧化酶Orgotein (Superoxide Dismutase, SOD),别名肝蛋白、奥谷蛋白,简称:SOD。它是一种新型酶制剂。它在生物界的分布极广,几乎从动物到植物,甚至从人到单细胞生物,都有它的存在。SOD被视为生命科技中最具神奇魔力的酶、人体内的垃圾清道夫。SOD是氧自由基的自然天敌,是机体内氧自由基的头号杀手,是生命健康之本。耐高温SOD是国家“十五”、“十一五”863计划重大课题项目。 关键字:SOD 原理人体作用耐高温SOD 应用 SOD是Super Oxide Dismutase 缩写,中文名称超氧化物歧化酶,是生物体内重要的抗氧化酶,广泛分布于各种生物体内,如动物,植物,微生物等。SOD具有特殊的生理活性,是生物体内清除自由基的首要物质。SOD在生物体内的水平高低意味着衰老与死亡的直观指标;现已证实,由氧自由基引发的疾病多达60多种。它可对抗与阻断因氧自由基对细胞造成的损害,并及时修复受损细胞,复原因自由基造成的对细胞伤害。由于现代生活压力,环境污染,各种辐射和超量运动都会造成氧自由基大量形成;因此,生物抗氧化机制中SOD 的地位越来越重要! SOD类型:超氧化物歧化酶按其所含金属辅基不同可分为三种,第一种是含铜(Cu)锌(Zn)金属辅基的称(Cu.Zn—SOD),最为常见的一种酶,呈绿色,主要存在于机体细胞浆中;第二种是是含锰(Mn)金属辅基的称(Mn—SOD),呈紫色,存在于真核细胞的线粒体和原核细胞内;第三种是含铁(Fe)金属辅基的称(Fe—SOD),呈黄褐色,存在于原核细胞中。 1.1催化反应原理 超氧化物岐化酶(SuperoxideDismutase),简称SOD,ECl.15.1.1,它催化如下的反应:2O2-+2H+→H2O2+O2 O2-称为超氧阴离子自由基,是生物体多种生理反应中自然生成的中间产物。它是活性氧的一种,具有极强的氧化能力,是生物氧毒害的重要因素之一。 SOD是机体内天然存在的超氧自由基清除因子,它通过上述反应可以把有害的超氧自由基转化为过氧化氢。尽管过氧化氢仍是对机体有害的活性氧,但体内的过氧化氢酶(CA T)和过氧化物酶(POD)会立即将其分解为完全无害的水。这样,三种酶便组成了一个完整的防氧化链条。 功效认定超氧物歧化酶(Superoxide Dismutase简称SOD)是一种新型酶制剂,它在生物界的分布极广,几乎从人到细胞,从动物到植物,都有它的存在。原多从牛血中提取,1997年欧盟禁止使用动物中提取的SOD。 1.2功效认定 SOD是超氧化物歧化酶(superoxidedismutase)的英文缩写,是一种含有金属元素的活性蛋白酶,是目前生物学、医学和生命科学领域中世界级的高、尖、精课题。超氧化物歧化酶(SOD)目前世界范围内的开发,大都从动物血里提取,不但代价昂贵,而且动物性SOD 的排他性、不易常温保存、艾滋病等血液病毒的交叉感染及其它潜在危险,所以国际卫生组织呼吁:立刻停止动物性SOD的使用。SOD是中国卫生部批准的具有抗衰老、免疫调节、调节血脂、抗辐射、美容功能的物质之一,法定编号为ECl.15.1.1;CAS[905489]1。 世界各国对“超氧化物歧化酶”的作用认定:

《超氧化物歧化酶的研究》论文

超氧化物歧化酶的研究 年级:大三 专业:化学 学号:189940012 姓名:邢敏

超氧化物歧化酶的研究 超氧化物歧化酶(superoxide dismutase,简称SOD)是一种能够催化超氧化物通过歧化反应转化为氧气和过氧化氢的酶。它广泛存在于各类动物、植物、微生物中,是一种重要的抗氧化剂,保护暴露于氧气中的细胞,可清除生物体内超氧阴离子自由基,有效地抗御氧自由基对有机体的伤害。 氧化还原反应是生命体最重要的代谢途径,它不仅为生物提供能量,同时还决定着生命体的衰老和死亡。氧对于生命活动极其重要,但氧参与的代谢经常产生一些对细胞有毒害作用的副产物———氧自由基,即通常所说的活性氧(reactiveoxygen species,ROS)。细胞产生的活性氧包括:超氧根阴离子(O·-2)、氢氧根离子(OH-)、羟自由基(·OH)、过氧化氢(H2O2)、单线态氧(·2)和过氧化物自由基(ROO·)。它们都能通过氧化应激损伤细胞大分子,引起一系列有害的生化反应,造成蛋白质损伤、脂质过氧化、DNA突变和酶失活等。为了防止氧自由基对细胞体的破坏,几乎所有细胞都有一套完整的保护体,来清除细胞新陈代谢产生的各种活性氧。其中,超氧化物歧化酶(superoxide dismutase,SOD)在保护细胞免受氧自由基的毒害中发挥着重要作用。早在1969年,Mc Cord和Fridovich发现了一种血球铜蛋白能清除自由基(O·-2),并且将这种血球铜蛋白命名为超氧化物歧化酶(SOD)。SOD几乎存在于所有生物细胞中,通过把O·-2转化为 H2O2,H2O2再被过氧化氢酶和氧化物酶转化为无害的水(H2O),从而达到清除细胞内氧自由基,保护细胞的目的。

超氧化物歧化酶(SOD)的发现及其应用

超氧化物歧化酶(SOD)的发现及其应用 早在1930年,Keilin和Mann就发现了SOD,不过,当时他们仅认为是一种蛋白质,并命名为血铜蛋白。直到1969年,McCord和Fridovich在研究对黄嘌呤氧化酶时,发现SOD具有酶的活性,并正式把它命名为superoxidedismutse,中文名即为超氧化物歧化酶。 超氧化物歧化酶 一、超氧化物歧化酶(SOD)分类及作用 根据分子中所含的金属辅基不同,SOD可分为Cu,Zn-SOD,Fe-SOD,Mn-SOD 和Ni-SOD四类。其中Cu,Zn-SOD主要存在于真核细胞的细胞浆中,如猪血、鸭血、猪肝等动物血液和内脏器官等组织中;Mn-SOD存在于真核细胞的线粒体、细菌中;Fe-SOD只存在于原核细胞中,如海藻中的螺旋藻、铁钉叶等;Ni-SOD 是最近发现只存在于某些极少数原核细菌中。 SOD是机体内天然存在的超氧自由基清除因子,它可以把有害的超氧自由基转化为过氧化氢和氧气,生成的过氧化氢会被过氧化氢酶(CAT)和过氧化物酶(POD)分解为完全无害的水。因而SOD是机体内防止自由基损伤的第一道防线,,是生物体内最重要的抗氧化酶。SOD作为机体内最有效、最重要的抗氧化酶之一,能有效清除老年机体代谢过程中所产生的超氧自由基,延缓衰老。 二、自由基 自由基是一类非常活跃的化学物质,是个有不成对(奇数)电子的原子或原子团。其中最重要的是超氧自由基,它可聚集体表、心脏、血管、肝脏和脑细胞中。如果沉积在血管壁上,会使血管发生纤维性病变,导致动脉管硬化,高血压,心肌梗塞;沉积在脑细胞时,会引起老年人神经官能不全,导致记忆、智力障碍以及抑郁症,甚至老年性痴呆等,是造成人类衰老和疾病的元凶。而在衰老的皮肤和脑中存在的脂褐素和蜡样质,可使皮肤变黑和粗糙,这两种物质也是由自由

超氧化物歧化酶的研究

超氧化物歧化酶的研究 班级:生物班姓名:胡金金学号:11 摘要:超氧化物歧化酶是生物体内清除超氧阴离子自由基的一种重要酶,具有重要的生理功能,在医药、食品、化妆品中有广泛的应用前景。现从分类、分布、结构、理化性质、催化机理、分离提取工艺、应用前景等方面探讨了超氧化物歧化酶的基础研究进展。 关键词:超氧化物歧化酶、理化性质、生物学功能、提取工艺、应用前景 到现在为止,人们已从细菌、原生动物、藻类、霉菌、植物、昆虫、鸟、鱼类和哺乳动物等生物体内分离得到SOD。超氧化物歧化酶(superoxide dismutase,简称SOD),是一类广泛存在于生物体内的金属酶,能够催化超氧阴离子自由基发生歧化反应,平衡机体内的氧自由基,己成为化学及生物化学热 门的研究课题。作为生物体内超氧阴离子自由基的清洁剂,SOD在防辐射、抗衰老、消炎、抑制肿瘤和癌症、自身免疫治疗等方面显示出独特的功能,在医学、食品、化妆品等领域得到越来越多的应用。目前,世界各地学者对SOD的研究方兴未艾,深入研究SOD不仅有着大的理论意义,也有着重大的实际应用价值。 1超氧化物歧化酶的结构和理化性质 1.1超氧化物歧化酶的结构 超氧化物歧化酶(SOD)从结构上可分为两族:CuZn-SOD为第一族,Mn-SOD和Fe-SOD为第二族。天然存在的SOD,虽然活性中心离子不同,但催化活性部位却具有高度的结构同一性和进化的保守性,即活性中心金属离子都是与3或4个组氨酸(His)、咪唑基(Mn-SOD含1个天门冬氨酸羧基配位)和1个H2O分子呈畸变的四方锥或扭曲的四面体配位。CuZn-SOD作为SOD结构上的第一族,是人们对于SOD结构研究的突破口,也是人们了解最多的一种SOD。比较不同来源的CuZn-SOD的氨基酸序列可以发现,它们的同源性都很高。有些氨基酸还很保守,在所有序列中都不变,这暗示着这些氨基酸与活性中心有关。如图1牛红细胞CuZn-SOD的结构所示:每个铜原子除分别与4个组氨基酸残基(His1118)的咪唑氮配位外,还与一轴向水分子形成远距离的第五配位,Zn则与3个组氨酸残基(His)和1个天冬氨酸(D81)配位。Cu、Zn共同连接组氨酸61组成/咪唑桥0结构。图1 牛红细胞CuZn-SOD 的结构示意图 图1 牛红细胞CuZn-SOD的结构示意图[1] ] Mn-SOD和Fe-SOD同属于SOD结构上的第二族,Mn-SOD是由203个氨基酸残基构成的四聚体,Mn(ó)是处于三角双锥配位环境中,其中一轴向配位为水分子,另一轴向被蛋白质辅基的配位His-28占据,另3个配基His-83、His-170和Asp-166位于赤道平面。Fe-SOD的活性中心是由3个His,1个Asp 和1个H2O扭曲四面体配位而成。 1.2超氧化物歧化酶的理化性质 SOD 的等电点偏酸性, 为酸性蛋白SOD 对热、pH 值和蛋白水解酶的稳定性比一般酶要高。三种 SOD 的主要理化性质见下表[2]。 2超氧化物歧化酶生物学功能 2.1 超氧化物歧化酶与胁迫 生存环境的变化是不可避免的,任何生物必须去适应各种变化.以植物为例,经研究发现,不同条件、不同物种、不同的发育时期及不同器官发生胁迫后,SOD活性表现有升有降。然而SOD活性不论是升高还是降低,都表现出抗性强的品种比抗性弱的品种活性高.即当SOD活性降低时,抗性强的品种下降幅度小;而当SOD活性升高时,抗性强的品种升高幅度大;或者抗逆性强的品种活性升高而抗逆性弱的品种降低。这说明在逆境条件下植物的抗性强弱与植物体内能否维持较高的SOD活性水平有关。SOD的作用底物是生物体内产生的超氧阴离子自由基O厂,作用机理是: 之后H2O2:被抗坏血酸和过氧化氮酶(前者是主要的)分解为H2O和O2,从而解除O2-所造成的氧化胁迫

超氧化物歧化酶(SOD)的研究、应用和展望

超氧化物歧化酶(SOD)的研究、应用和展望 作者:李敬玺, 王选年, 银梅, 唐海蓉, 王新华 作者单位:河南科技学院,河南 新乡 453003 本文读者也读过(10条) 1.时沁峰.曹威荣超氧化物歧化酶(SOD)的研究概况[期刊论文]-畜禽业2009(4) 2.曹淑华.查向东超氧化物歧化酶研究综述[期刊论文]-安徽农业科学2003,31(4) 3.杨卫健.张双全超氧化物歧化酶的研究及应用前景[期刊论文]-淮阴师范学院学报(自然科学版)2002,1(4) 4.陈鸿鹏.谭晓风.CHEN Hong-peng.TAN Xiao-feng超氧化物歧化酶(SOD)研究综述[期刊论文]-经济林研究2007,25(1) 5.李敬玺.刘继兰.王选年.银梅.葛亚明.唐海蓉.LI Jing-xi.LIU Ji-lan.WANG Xuan-nian.YIN Mei.GE Ya-ming. TANG Hai-rong超氧化物歧化酶研究和应用进展[期刊论文]-动物医学进展2007,28(7) 6.王岚超氧化物歧化酶的研究及应用概况[期刊论文]-武汉工业学院学报2002(1) 7.盛良全.郑晓云.闫向阳.肖厚荣.厦炳乐.刘少民.SHENG Liangquan.ZHEN Xiaoyun.YAN Xiangyang.XIAO Hourong .XIA Binle.LIU Shaomin生命体中的超氧化物歧化酶(综述)[期刊论文]-安徽卫生职业技术学院学报2002,1(2) 8.杨东升超氧化物歧化酶的研究与应用[期刊论文]-化学与生物工程2004,21(3) 9.于平.Yu Ping超氧化物歧化酶研究进展[期刊论文]-生物学通报2006,41(1) 10.沈良.郭洪超氧化物歧化酶及其模拟研究[期刊论文]-杭州师范学院学报(自然科学版)2002,1(3) 本文链接:https://www.360docs.net/doc/384162928.html,/Conference_7003085.aspx

几种抗氧化酶的作用

一.超氧化物歧化酶(SOD): 超氧化物歧化酶,是一种新型酶制剂,是生物体重要的抗氧化酶,广泛分布于各种生物体,如动物,植物,微生物等。SOD具有特殊的生理活性,是生物体清除自由基的首要物质。SOD在生物体的水平高低意味着衰老与死亡的直观指标;现已证实,由氧自由基引发的疾病多达60多种。它可对抗与阻断因氧自由基对细胞造成的损害,并及时修复受损细胞。由于现代生活压力,环境污染,各种辐射和超量运动都会造成氧自由基大量形成;因此,生物抗氧化机制中SOD 的地位越来越重要! 超氧化物歧化酶(SOD)按其所含金属辅基不同可分为三种,第一种是含铜(Cu)锌(Zn)金属辅基的称(Cu.Zn—SOD),最为常见的一种酶,呈绿色,主要存在于机体细胞浆中;第二种是含锰(Mn)金属辅基的称(Mn—SOD),呈紫色,存在于真核细胞的线粒体和原核细胞;第三种是含铁(Fe)金属辅基的称(Fe—SOD),呈黄褐色,存在于原核细胞中。 SOD是一种含有金属元素的活性蛋白酶。超氧化物岐化酶(SOD)能催化如下的反应:O2-+H+→H2O2+O2,O2-称为超氧阴离子自由基,是生物体多种生理反应中自然生成的中间产物。它是活性氧的一种,具有极强的氧化能力,是生物氧毒害的重要因素之一。SOD 是机体天然存在的超氧自由基清除因子,它通过上述反应可以把有害的超氧自由基转化为过氧化氢。尽管过氧化氢仍是对机体有害的活性氧,但体的过氧化氢酶(CAT)和过氧化物酶(POD)会立即将其分解

为完全无害的水。这样,三种酶便组成了一个完整的防氧化链条。 目前,人们认为自由基(也称游离基)与绝大部分疾病以及人体的衰老有关。所谓的自由基就是当机体进行代时,能夺去氧的一个电子,这样这个氧原子就变成自由基。自由基很不稳定,它要在身体组织细胞的分子中再夺取电子来使自己配对,当细胞分子推出新一个电子后,它也变成自由基,又要去抢夺细胞膜或细胞核分子中的电子,这样又称会产生新的自由基。如,超氧化物阴离子自由基、羟自由基、氢自由基和甲基自由基,等等。在细胞由于自由基非常活泼,化学反应性极强,参与一系列的连锁反应,能引起细胞生物膜上的脂质过氧化,破坏了膜的结构和功能。它能引起蛋白质变性和交联,使体的许多酶及激素失去生物活性,机体的免疫能力、神经反射能力、运动能力等系统活力降低,同时还能破坏核酸结构和导致整个机体代失常等,最终使机体发生病变。因此,自由基作为人体垃圾,能够促使某些疾病的发生和机体的衰老。虽然自由基会对机体产生诸多危害,但是在一般的条件下人体细胞也存在着清除自由基、抑制自由基反应的体系,它们有的属于抗氧化酶类,有的属于抗氧化剂。像SOD就是一种主要的抗氧化酶,能清除超氧化物自由基,在防御氧的毒性、抑制老年疾病以及预防衰老等方面起着重要作用。 SOD能专一地清除体有害的自由基,以解除自由基氧化体的某些组成成分而造成的机体损害。如氧中毒、急性炎症、水肿、自身免疫性疾病、辐射病等疾病都与活性氧的毒性有关。实验证明,SOD 能够清除自由基,因此可消除上述疾病的病因。此解毒反应过程是两

超氧化物歧化酶活性的测定

植物组织中超氧化物歧化酶和平测定方法 【实验目的】 1. 了解还原法测定抗氧化酶活性测定的原理方法。 2. 熟悉植物叶片中ROS 去除机制。 【实验原理】 超氧化物歧化酶(SOD )普遍存在于动植物与微生物体内。SOD 是含金属辅基的酶。高等植物有两种类型的SOD :Mn-SOD 和Cu/Zn-SOD 。SOD 能够清除超氧阴离子自由基 (O 2—),它与CAT 、POD 等酶协同作用来防御活性氧或其他过氧化物自由基对细胞膜系统的伤害,从而减少自由基对机体的毒害。 超氧阴离子自由基(O 2—)是生物细胞某些生理生化反应常见的中间产物。SOD 能通过歧化反应清除生物细胞中的超氧阴离子自由基,生成H 2O 2和O 2。生成的H 2O 2可被过氧化氢酶分解为O 2和H 2O : 2 O 2—+ 2H + H 2O 2+O 2 2 H 2O 2 O 2+H 2O 超氧自由基非常不稳定,寿命极短,一般用间接方法测定SOD 活性。本实验依据SOD 抑制氮蓝四唑(NBT )在光下的还原作用来确定酶活性的大小。有氧化物质存在时,核黄素可在光照条件下还原。被还原的核黄素在有氧条件下极易再氧化而产生O 2—。当加入NBT 后,在光照条件下O 2—又可将NBT 还原为蓝色的甲腙,后者在560nm 处有最大光吸收。 当加入SOD 时,SOD 可通过清除O 2—,而抑制NBT 的光还原反应,使蓝色甲腙生成速度减慢。于是,进行光还原反应后,反应液蓝色越深,说明酶的活性越低,反之酶的活性越高。抑制NBT 光还原的相对百分率与酶活性在一定范围内呈正相关关系,据此可以计算出酶活性的大小。常常将抑制50%的NBT 光还原反应时所需的酶量作为一个酶活性单位(U )。 【器材与试剂】 1. 实验仪器与用具 研钵、高速冷冻离心机、分光光度计、微量移液枪、刻度移液管、离心管、光照箱(光照度为4000lx )、容量瓶(10ml )、试管 2. 实验试剂 50mmol/L 磷酸缓冲液(pH7.8); 130mmol/L 甲硫氨酸(MET )溶液; 750μmol/L 氮蓝四唑(NBT )溶液; 100μmol/L EDTA- Na 2溶液; CAT SOD

超氧化物歧化酶

超氧化物歧化酶(SOD)的生产工艺研究

摘要 本文主要介绍SOD的作用和两种不同的生产工艺。通过一种传统的SOD生产工艺和一种利用选择性热变性的方法的牛血SOD提取生产工艺的对比研究从而反应出,由如今对SOD的需求而需要一种较新的生产工艺来取代传统工艺。讨论如何保证质量,提高酶的回收率和降低成本。 前言 在人体的正常新陈代谢就会产生自由基、是人体活动所需要的,但在某些特殊的情况下,体内会产生过量的自由基。如辐射、电磁波、汽车尾气、工业废气、废水的污染均会让体内产生过量的自由基。而自由基不到会引起人体衰老,还会让人体产生各种疾病如风湿性关节炎、癌症、高血压、肾脏病、白内障等等。SOD 是生物体内重要的抗氧化酶,广泛分布于各种生物体内,如动物,植物,微生物等。SOD具有特殊的生理活性,是生物体内清除自由基的首要物质。SOD在生物体内的水平高低意味着衰老与死亡的直观指标;现已证实,由氧自由基引发的疾病多达60多种。它可对抗与阻断因氧自由基对细胞造成的损害,并及时修复受损细胞,复原因自由基造成的对细胞伤害。由于现代生活压力,环境污染,各种辐射和超量运动都会造成氧自由基大量形成;因此,生物抗氧化机制中SOD的地位越来越重要! 关键字: SOD 猪血分离纯化鉴定 材料:牛血、猪血、0.9%NaCl、95%乙醇、氯仿、丙酮、去离子

方法一: 工艺流程图 工艺要点:⑴收集、浮洗新鲜猪血经离心去除黄色血浆,红细胞用0.9%NaCl溶液离心浮洗3次,收集红细胞。 ⑵溶血、去血红蛋白收集洗净的红细胞,加去离子水,在5℃下搅拌30min,然后加入0.25倍体积的95%乙醇和0.15倍体积的氯仿,搅拌15min;离心去血红蛋白,收集上清液。 ⑶沉淀、热处理将上清液加入1.2~1.5倍体积的丙酮,产生絮状沉淀;离心去上清液,得沉淀物,操作要在0℃左右进行;沉淀物加适量蒸馏水使其溶解,离心除去不溶性蛋白;上清液于55~65℃热处理10~15min,离心除去热变性蛋白,收集黄绿色澄清液。⑷沉淀、去不溶蛋白0℃条件下,在澄清液中加入适量丙酮,使其产生大量絮状沉淀;离心弃去上清液,沉淀用去离子水溶解;离心除不溶性蛋白;上清液置透析袋中,得透析液。

超氧化物歧化酶的研究与应用-论文

超氧化物歧化酶的研究与应用 霍荣辉 运城学院,运城,2006142121 摘要:超氧化物歧化酶(superoxide dismutase,简称SOD),是一类广泛存在于生物体内的金属酶,能够催化超氧阴离子自由基(O2-)发生歧化反应,平衡机体内的氧自由基,己成为化学及生物化学研究领域中热门的研究课题。作为生物体内超氧阴离子自由基的清洁剂,SOD 在防辐射、抗衰老、消炎、抑制肿瘤和癌症、自身免疫治疗等方面显示出独特的功能,在医学、食品、化妆品等领域得到越来越多的应用。目前,世界各地学者对SOD的研究方兴未艾,深入研究SOD不仅有着重大的理论意义,也有着重大的实际应用价值。现从分类、分布、结构、性质、催化机理、制备、应用等方面探讨了超氧化物歧化酶的基础研究进展。 关键字:超氧化物歧化酶;SOD;自由基;应用;研究 1SOD概述: 超氧化物歧化酶(Superoxide dismutase,SOD)是一种广泛存在于生物体内,能清除生物体内的超氧阴离子自由基(O2-)维持机体中自由基产生和清除动态平衡的一种金属酶。具有保护生物体,防止衰老和治疗疾病等作用。 1938年Mann和Keilin[1]首次从牛红细胞中分离出一种蓝色的含铜蛋白质(Hemocuprein),1969年Mccord及Fridovich[2]发现该蛋白有催化O2,发生歧化反应的功能,故将此酶命名为超氧化物歧化酶(SuperoxideDismutase,SOD,EC1.15.1.1)。现已发现了3种类型的SOD:Cu/Zn SOD、Mn-SOD、Fe-SOD[3]。 2SOD的分布、分类及理化性质 2.1SOD的分布与分类 SOD是一类清除自由基的蛋白酶,对需氧生物的生存起着重要的作用,是生物体防御氧毒性的关键。迄今为止,科学家已从细菌、真菌、原生动物、藻类、昆虫、鱼类、植物和哺乳动物等生物体内都分离得到了SOD。基于金属辅基不同,这些SOD至少可以分为Cu/ Zn-SOD、Mn-SOD、Fe-SOD三种类型。 表1 SOD的分类及分布

超氧化物歧化酶在生活中的应用

龙源期刊网 https://www.360docs.net/doc/384162928.html, 超氧化物歧化酶在生活中的应用 作者:王兆才 来源:《文理导航》2017年第23期 【摘要】本文综述了国内外对于超氧化物歧化酶的应用,并就应用中出现的问题给出了自己的想法。文章还提出并分析了超氧化物歧化酶在生活中的应用价值,对食品、医疗、化妆品等方面进行了系统化的论述,望有助于日后对于超氧化物歧化酶在生活中的应用研究。 【关键词】超氧化物歧化酶;氧自由基;应用 1.超氧化物歧化酶分布、分类及生理功能 SOD是Super Oxide Dismutase缩写,中文名称超氧化物歧化酶,迄今为止的研究表明, 超氧化物歧化酶广泛存在于多种生物体内,目前已经从细菌、原生动物、霉菌、植物、昆虫、鸟类、鱼类和哺乳动物等生物体内分离并得到了超氧化物歧化酶.根据它活性中心结合的微量元素离子不同,超氧化物歧化酶主要分为3种类型,Fe-SOD,Mn-SOD,Cu/Zn-SOD三种。超氧化物歧化酶具有特殊的生理活性,它是生物体内清除自由基的首要物质。 2.目前对于超氧化物歧化酶的应用 机体在正常情况下产生的超氧阴离子自由基是维持生命活动所必须的,但是其含量过高就会对机体产生影响。不但机体会产生氧自由基,外界环境的多种物理或化学的刺激都能产生氧自由基。如电离辐射,紫外线等。而超氧化物歧化酶却能够清除并维持氧自由基的这种平衡,防止生物体机体的损伤,因而使他具有多方面的应用前景。以下是目前超氧化物歧化酶在应用方面的研究进展。 2.1超氧化物歧化酶在医药临床方面的应用 超氧化物歧化酶(SOD)是一种新型的抗炎症类药物,尤其是针对关节炎和类风湿关节炎有很明显的疗效,根据超氧化物歧化酶的作用机制和毒性的试验,证实了它对治疗因O2-引起的各种疾病都有一定的疗效。为此,超氧化物歧化酶可作为抗衰老、抗炎症、治疗自身免疫疾病患者广泛应用的医药品。此外,超氧化物歧化酶对治疗贝切特氏症、心肌梗塞等血虚性心脏病、胶原病、新生儿呼吸困难综合症、防御放射性伤害等病症也可望有效,目前人们正在积极开发研究中。 2.1.1治疗心肌缺血与缺血再灌注综合症

超氧化物歧化酶

超氧化物歧化酶(SOD)简述 YB 2012级生物技术 摘要:超氧化物歧化酶首先由Mann和Keilin从牛红细胞中分离提取出,是生物体内一种重要的抗氧化酶,由于其具有清除生物体内超氧阴离子自由基的作用,而引起广大学者的关注。本文概述了SOD的分类、结构、理化性质及研究进展,并对其应用前景进行了展望。 关键词:超氧化物歧化酶;SOD;理化性质 生物体内低浓度超氧阴离子自由基(O-2)是维持生命活动所必需的,其浓度过高时,可引起机体组织细胞氧化损伤,导致机体发生疾病,甚至死亡。超氧化物歧化酶(Superoxide dismutase,简称SOD)是清除生物体内超氧阴离子自由基的一种重要抗氧化酶,具有抗衰老、抗癌、防白内障等作用[1],因而受到全世界学术界广泛关注,使之成为涉及分子生物学、微生物学、医学等学科领域及医药、化工、食品等生产行业的一个热门研究课题[2]。 1.SOD的分类 SOD广泛存在于动、植物及微生物中[1]。根据其结合金属种类不同,可分为三类:第一类为Cu·Zn-SOD,呈蓝绿色,相对分子量约为32kDa,主要存在于真核细胞细胞浆、叶绿体和过氧化物酶体内;第二类为Mn- SOD,呈紫红色,相对分子量约为40kDa,主要存在于真核细胞线粒体和原核细胞中;第三类为Fe-SOD,呈黄褐色,相对分子量约为38.7kDa,主要存在于原核细胞及一些植物中[2]。 2.SOD的结构 1975年Richardson得到了Cu?Zn-SOD的三维结构[5],发现它是由2个基本相似的亚基组 成的二聚体,且每个亚基含有1个铜原子 和1个锌原子。2个相同亚基之间通过非 共价键的疏水相互作用而缔合,类似于圆 筒的端面。Cu?Zn-SOD的单个亚基活性中 心结构见图1。 从图中可知Cu与4个来自组氨酸残基

实验十保健食品中超氧化物歧化酶(SOD)活性的测定(精)

实验十保健食品中超氧化物歧化酶(SOD)活性的测定 一、实验原理 根据GB/T5009.171-2003,将25℃时抑制邻苯三酚自氧化速率50%所需的SOD定义为一个活力单位。在碱性条件下,邻苯三酚会发生自氧化,可根据SOD 抑制邻苯三酚自氧化能力测定SOD活力。 二、实验试剂 A液:pH 8.20的0.1mol/L三羟甲基氨基甲烷-盐酸缓冲液(内含1mmol/L EDTA·2Na)。称取 1.2114g三羟甲基氨基甲烷和37.2mgEDTA·2Na溶于62.4ml0.1mol/l盐酸溶液中,用蒸馏水定溶至100ml。 B液:4.5mmol/L邻苯三酚盐酸溶液。称取邻苯三酚56.7mg溶于少量10mmol/L盐酸溶液,并定容至100ml。 盐酸溶液:10mmol/L 蒸馏水:二重石英蒸馏水 三、实验仪器 紫外-可见分光光度计精密酸度计(0.01pH)离心机10ml比色管10ml 离心管玻璃乳钵。 四、测定步骤 ⑴取茶叶样品1.00g置于研钵中,加入9.0ml蒸馏水研磨5分钟,移入10ml 离心管。用少量蒸馏水冲洗研钵,洗液并入离心管中,加蒸馏水至刻度,经4000r/min离心15分钟,取上清液测定。 ⑵在25℃左右,于10ml比色管中依次加入A液2.35ml,蒸馏水2.00ml,B 液0.15ml。加入B液立即混合并倾入比色皿,分别测定在325nm波长条件下初始时和1Min后吸光度值,二者之差为邻苯三酚自氧化速率△A325(min-1)为 0.060。 ⑶在25℃左右,于10ml比色管中依次加入20.0ul样液或酶液,A液2.35ml,蒸馏水2.00ml,B液0.15ml。加入B液立即混合并倾入比色皿,分别测定在325nm 波长条件下初始时和1分钟后吸光度值,二者之差为样液或酶液抑制邻苯三酚自氧化速率△A′325(min-1)。加入样液或酶液的量使抑制邻苯三酚自氧化速率为1/2△A′325(min-1),即0.030。 五、计算

相关文档
最新文档