【开题报告】固体废物中有机磷农药的测定气相色谱-火焰光度检测器法

【开题报告】固体废物中有机磷农药的测定气相色谱-火焰光度检测器法
【开题报告】固体废物中有机磷农药的测定气相色谱-火焰光度检测器法

开题报告

化学

固体废物中有机磷农药的测定气相色谱-火焰光度检测器法一、选题的背景与意义

有机磷农药是为取代有机氯农药发展起来的,它比有机氯农药较易降解,残留期较短,是现有农药中品种最多、使用最广的一类,约有100多种。环境中有机磷农药的污染和毒害已日益引起人们的广泛关注。有机磷农药毒性较高,是急性中毒类农药,如对硫磷和内吸磷等都是剧毒品。

有机磷农药常被用作杀虫剂喷洒在果树、蔬菜上,残留在水果、蔬菜上的农药或进入环境的农药进入有机体,对人、畜毒性较大,大部分对生物体内胆碱酯酶有抑制作用,抑制胆碱酯酶使其失去分解乙酰胆碱的能力,造成乙酰胆碱积累,引起神经功能紊乱,从而导致肌体的损害。

有机磷农药的各类环境质量标准和污染物排放(控制)标准,均没有针对固废。现收集到与土壤或固废相关的标准,见表1。

表1 有机磷农药相关环境质量或排放标准

环境质量或排

放标准标准号排放限值

浓度单

土壤环境质量

标准

GB15618-1995 无相关排放标准

乐果对硫

甲基对硫磷

马拉硫

浸出液

危险废物毒性

标准浸出毒性

鉴别GB5085.3-2007

8 0.3 0.2 5 mg/L

生活垃圾填埋

污染控制标准

GB16889-2008 无相关排放标准展览馆用地土

壤环境质量标

HJ350-2007 无相关排放标准城镇垃圾农用GB8172-1987 无相关排放标准

控制标准

在现行的有机磷农药的监测分析方法中,主要采用有机溶剂提取,净化步骤除去干扰物,用气相色谱氮磷检测器(NPD)或火焰光度检测器(FPD)检测,再根据色谱峰的保留时间定性,外标法定量。此方法仅适应于水和土壤中有机磷农药的分析,尚未制定固体废物中有机磷农药的标准分析方法。

现根据对目前农田里常用有机磷农药的使用情况调研以及相关有机磷农药的标准,筛选出12种左右的有机磷农药,分别为甲拌磷、乐果、二嗪农、乙拌磷、异稻瘟净、甲基对硫磷、马拉硫磷、对硫磷、毒死蜱、稻丰散、丙溴磷、乙硫磷,对这12种有机磷农药制定标准方法。

三、研究的方法与技术路线:

考虑到快速溶剂萃取法(ASE)具有萃取速度快、溶剂用量少、效率高、密封性能好造成环境污染小的特点,决定样品的前处理采用ASE提取,经浓缩定量后采用GC-FPD的方法检测固体废物中的有机磷农药。

技术路线:

四、研究的总体安排与进度:

2010.08.15~2010.08.30 了解毕业论文的工作内容,确定工作方向,查找相关

国内

外文献,熟悉基本的研究方法和研究思路;

2010.09.01~2010.09.31依据方案进行反复的实验,不断改进,并得到实验结

果;

2010.12.06~2010.12.24 完成开题论证、开题报告、文献综述、两篇外文的翻译;

2011.04.10之前完成毕业论文初稿,交由导师修改;

2011.04.10~2011.04.25毕业论文定稿;

2011.05月准备毕业论文答辩。

五、主要参考文献:

[1] Michael D. David, James N. Seiber. Comparison of Extraction Techniques,

Including Supercritical Fluid, High-Pressure Solvent, and Soxhlet, for

Organophosphorus Hydraulic Fluids from Soil[J]. Anal. Chem. 1996, 68:

3038~3044

[2] 梅文泉, 黎其万, 郑永权, 等. 双毛细管柱气相色谱法测定水样中多种有机

磷农药残留量[J].农业环境科学学报. 2007, 26(增刊): 297~299

[3] 王凌, 牟瑛琳, 黎先春. 加速溶剂萃取-气相色谱/质谱(ASE-GC/MS)法测定

近海沉积物中的有机磷农药[J]. 中国卫生检验杂志, 2007, 17(5): 769~771

[4] 朱晓兰, 蔡继宝, 杨俊, 等. 加速溶剂萃取-气相色谱法测定土壤中的有机

磷农药残留[J]. 分析化学, 2005, 33(6): 821~824

[5] Yahya R. Tahboub, Mohammad F. Zaater, Zeiad A. Al-Talla. Determination of

the limits of identi?cation and quantitation of selected organochlorine and

organophosphorous pesticide residues in surface water by full-scan gas

chromatography/mass spectrometry[J]. Journal of Chromatography A, 2005,

1098: 150~155

[6] E. Schreck. Development and validation of a rapid multiresidue method for

pesticidedetermination using gas chromatography–mass spectrometry: A

realistic case in vineyard soils[J]. Talanta, 2008, 77: 298~303

[7] J. Aybar Mu?oz, E. Fernández González, L.E. García-Ayuso, et al. A new

approach to qualitative analysis of organophosphorus pesticide residues in

cucumber using a double gas chromatographic system: GC-pulsed-?ame

photometry and retention time locking GC-mass spectrometry[J]. Talanta,

2003, 60: 433~447

[8] Stanis?aw Walorczyk, Bogus?aw Gnusowski. Fast and sensitive determination

of pesticide residues in vegetables using low-pressure gas chromatography with

a triple quadrupole mass spectrometer[J]. Journal of Chromatography A, 2006,

1128: 236~243

[9] C.Cháfer-Pericás, R. Herráez-Hernández, P. Campíns-Falcó. In-tube solid-

phase microextraction-capillary liquid chromatography as a solution for the

screening analysis of organophosphorus pesticides in untreated environmental water samples[J]. Journal of Chromatography A, 2007, 1141: 10~21

[10] EPA Method 8141B: Organophosphorus Compounds By Gas Chromatography

Capillary Colum Technique[S]

[11] EPA Method 8270C: Semivolatile Organic Compounds By Gas

Chromatography- Mass Spectrometry(GC/MS) [S]

[12] EPA Method 8085: Compound-independent elemental quantitation of

pesticides by gas chromatography with atomic emission detection (GC/AED)

[S]

[13] EPA Method 1657: The determination of organo-phosphorus Pesticides in

Municipal and Industrial Wastewater[S]

[14] EPA Method 614:The determination of organophosphorus Pesticides in

Municipal and Industrial Wastewater[S]

[15] EPA Method 622:The determination of organophosphorus pesticides in

Municipal and Industrial Wastewater[S]

[16] GB 5085.3-2007 危险废物鉴别标准浸出毒性鉴别[S] 附录I

[17] GB 13192-91 气相色谱法测定水质有机磷农药[S]

[18] GB/T 14552-2003 水、土中有机磷农药测定的气相色谱法[S]

[19] GB/T 19649-2006 粮谷中475种农药及相关化学品残留量的测定气相色

谱-质谱法[S]

气相色谱检测器的分类和工作原理及应用范围

气相色谱检测器的分类和工作原理及应用范围 待测组分经色谱柱分离后,通过检测器将各组分的浓度或质量转变成相应的电信号,经放大器放大后,由记录仪或微处理机得到色谱图,根据色谱图对待测组分进行定性和定量分析。 气相色谱监测器根据其测定范围可分为: 通用型检测器:对绝大多数物质够有响应; 选择型检测器:只对某些物质有响应;对其它物质无响应或很小。 根据检测器的输出信号与组分含量间的关系不同,可分为: 浓度型检测器:测量载气中组分浓度的瞬间变化,检测器的响应值与组分在载气中的浓度成正比,与单位时间内组分进入检测器的质量无关。 质量型检测器:测量载气中某组分进入检测器的质量流速变化,即检测器的响应值与单位时间内进人检测器某组分的质量成正比 目前已有几十种检测器,其中最常用的是热导池检测器、电子捕获检测器(浓度型);火焰离子化检测器、火焰光度检测器(质量型)和氮磷检测器等。 一.检测器的性能指标——灵敏度(高)、稳定性(好)、响应(快)、线性范围(宽) (一)灵敏度——应答值 单位物质量通过检测器时产生的信号大小称为检测器对该物质的灵敏度。 响应信号(R)—进样量(Q)作图,可得到通过原点的直线,该直线的斜率就是检测器的灵敏度,以S表示: (3) 由此可知:灵敏度是响应信号对进入检测器的被测物质质量的变化率。 气相色谱检测器的灵敏度的单位,随检测器的类型和试样的状态不同而异: 对于浓度型检测器: 当试样为液体时,S的单位为mV·ml/mg,即1mL载气中携带1mg的某组分通过检测器时产生的mV数; 当试样为气体时,S的单位为mV·ml/ml,即1ml载气中携带1ml的某组分通过检测器时产生的mV数;

用火焰光度检测器的气相色谱法测定硫化物

用火焰光度检测器的气相色谱法测定硫化物,在国内色谱生产厂家中已有部分涉及,但因在定性、稳定性及计算方法等多方面的技术限制,一直未能推广,GC微量硫分析仪是在我公司原有火焰光度检测器的基础上,经过不断改进,定型为微量硫专用分析仪,具有较高的灵敏度,稳定性好,定性、定量准确,操作简便等优点。 1.原理: 硫化物在富氢火焰中能够裂解生成一定数量的硫分子,并且能在该火焰条件下发出394纳米的特征光谱,经干涉滤光片除去其它波长的光线后,用光电倍增管把光信号转换成电信号并加以放大,然后经微机处理并打印出结果。因为光电倍增管本身的放大能力以及我们研制的FPD的特殊性,所以保证了GC微量硫分析仪的高选择性和高灵敏度。 被分析气体样品经色谱柱分离后,不同的硫化物在不同的时刻进入FPD,从而在工作站上出现不同保留时间的色谱峰。因为硫化物响应与硫浓度的平方成正比,所以工作站必须根据开方峰面积和校正系数计算出分析结果并根据保留时间,直接标定和显示各种硫化物的实际含量。 2.定性定量: 用色谱法分析硫化物,定性问题一直未能很好地解决。众所周知,硫化物的存在形式多种多样,而在实际工作中又不可能拥有众多硫化物的标样,这就给广大的硫分析工作者造成了极大的难题。但是,在实际工作中,多数情况下只需要对硫化物进行大致的定性。如只需要看无机硫,低沸点有机硫,高沸点有机硫的的分布情况,以便指导脱硫工作的进行。这种情况在许多化工厂是很普遍的。鉴于这种情况,一般分析人员采用的定性手段为:对无机硫,如硫化氢、二氧化硫,可以用GDX301柱子进行分离以便定性;对低沸点有机硫,如甲硫醇、甲硫醚、硫氧化碳可以用TCP柱子分离以进行定性;而对高沸点有机硫,一般不作定性,大多数采用反吹方式测定其总含量。也可直接用反吹法分析总硫,这也是本仪器的一大特点。 一般而言,在样品气中,如原料天然气、炼厂尾气、煤造气生成的原料气,无机硫、低沸点的有机硫含量占很大比例(几乎达90%以上),因此采用以上方法进行定性定量分析是切实可行的。它不仅简化了分析程序,而且分析结果也比较准确。这样做,不仅可监视样气中的硫含量,而且也为选择脱硫剂和脱硫路线提供了理论依据。 3.色谱柱的选用: 本仪器随机配备了两根色谱柱: A. TCP柱 4×0.5,2米,20%TCP,白色101担体,60~80目。 B. GDX柱,4×0.5,2米,GDX301,60~80目。 一般选用TCP柱做有机硫分析,用GDX柱做无机硫分析。在既有无机硫,又有有机硫的样品分析时,可用双柱TCP柱和GDX柱,两次进样,此时应选02方式。而在进行总硫分析时,可选GDX柱用反吹法来做,选06,07方式或选用01,03(只显示不能画峰图,主要用于在线分析)。选用00,02方式做硫化氢,硫氧化碳和有机总硫。 4.进样: 由于硫化氢具有较强的化学活性,很容易被其他物质吸附而使其含量降低,从而影响测定的准确度。因此在测定过程中,采用吸附性较低的玻璃注射器采集样品,且要求样品的贮存时间不能太长,仪器中凡是样品经过的管线均经过钝化处理。也可采用特殊处理的六通阀自动进样。 5.仪器特点: ①独特的火焰光度检测器结构,操作简便,稳定时间快,采用特殊的火焰结构消除烃类化合物的干扰,使选择性大幅提高; ②在光信号的收集上,采用聚焦的方式,使捕捉到的信号大幅增加,灵敏度成倍数提高; ③采用优质材质及精湛的加工工艺,密封性很好,在实际操作中,抗外界干扰能力大幅提高,稳定性较好; ④在检测器底部,采用加热功能,有效去除冷凝水,使分析精度有很大提高; ⑤整机稳定性较好,操作简便,易于掌握。 6.参考谱图: 常见有机硫在TCP柱上保留时间

火焰光度检测器fpd ()

火焰光度检测器-FPD(SFPD 、DFPD 、PFPD) 一.概述 1.FPD是1966年问世的,它是一种高灵敏度、高选择性的检测器,对含磷、硫的有机化合物和气体硫化物特别敏感。 2.主要用来检测 ⑴ 油精馏中硫醇、COS、H2S、CS2、、SO2; 0 水质污染中的硫醇; ⑵ 空气中H2S、SO2、CS2; 0 农药残毒; 0 天然气中含硫化物气体。 3.FPD检测硫化物是目前最好的方法,为了提高FPD灵敏度和操作特性,在单火焰气体的流路形式上作了多种尝试,随后设计出了双火焰光度检测器(DFPD),但没有从根本上解决测硫灵敏度 和操作特性欠佳的缺点,最近几年在市场上又推出了脉冲火焰光度检测器(DFPD),无论在测硫、 测磷的灵敏度和选择性都有了成百倍的提高。也可以说,在测磷方面已没有必要再推荐氮磷检 测器了,测硫也基本上满足了当前各领域分析的要求。 二.FPD简明工作原理 FPD实质上是一个简单的发射光谱仪,主要由四部分组成: 1.光发射源是一个富氢火焰(H2 :O2> 3 :1),温度可达2000 ~ 3250 ℃ ; 2.波长选择器,常用波长选择器有干涉式或介质型滤光片; 3.接收装置包括光电倍增管(PMT)和放大器,作用是把光的信号转变成电的信号,并适当放大; 4.记录仪和其它的数据处理。 FPD简明工作原理为:当含磷、硫的化合物,在富氢火焰中燃烧时,在适当的条件下,将发射一系列的特征光谱。其中,硫化物发射光谱波长范围约在300 ~ 450nm之间,最大波长约在 394nm 左右;磷化合物发射光谱波长范围约在480 ~ 575nm之间,最大波长约在526 nm左右。 含磷化合物,一般认为首先氧化燃烧生成磷的氧化物,然后被富氢焰中的氢还原成HPO,这个被火焰高温激发的磷裂片将发射一定频率范围波长的光,其光强度正比于HPO的浓度,所以 FPD 测磷化合物响应为线性。 含硫的化合物在富氢火焰中燃烧,在适当温度下生成激发态的S2*分子,当回到基态时,也发射某一波段的特征光。它和含磷的化合物工作机理的不同是:必须由两个硫原子,并且在适当的温度 条件下,方能生成具有发射特征光的激发态S2*分子,所以发射光强度正比于S2*分子,而S2*分子与SO2的浓度的平方成正比,故FPD测硫时,响应为非线性,但在实际上,硫发射光谱强度(IS2 * )与 n 含硫化物的质量、流速之间的关系为IS2=I0[SO2],式中:n不一定恰好等于2,它和操作条件以及化合物的种类有很大的关系,特别是在单火焰定量操作时,若以n = 2计算将会造成很大的定量误差。三. 双火焰光度检测器(DFPD) 双火焰光度检测器(DFPD),克服了单火焰的响应依赖于火焰条件与样品种类的缺点,使响应仅和样品中的硫(磷)的质量有关,并在检测硫时基本遵循平方关系。DFPD工作原理是使用了两个空 气-氢气火焰,将样品分解区域与特征光发射测量区域分开,即从柱流出的样品组分首先与空气混合,然后与过量的氢气混合,在第一个火焰喷嘴上燃烧。第一个火焰将烃类溶剂和复杂的组分分解成比 较简单的产物,这些产物和尚未反应的氢气再与补充的空气相混合,这时的氢气含量仍稍过量,既

7890A气相色谱中文指标-ECD-FPD

Agilent 7890A 气相色谱性能指标 1.工作条件: 温度: 15-35℃ 湿度: 5-95% 电源: 220V ± 10% , 50-60HZ 2.气相色谱仪,包括:气相色谱主机,2个分流/不分流进样口,检测器两 个,2个自动进样器(可以同时进样),原装化学工作站。 3. 技术性能 3.1气相色谱: 色谱性能:保留时间重现性: < 0.0008min; 峰面积重现性: < 1% RSD。 3.1.1 主机 *3.1.1.1 电子流量控制(EPC):所有流量、压力均可以电子控制,以提高重现性,13路电子流量控制 *3.1.1.2 压力调节精度:0.001psi 3.1.1.3 大气压力传感器补偿高度或环境变化 3.1.1.4 程序升压/升流:20阶 3.1.1.5具有4种EPC操作模式:恒温,恒压,程序升压,程序升流 3.1.1.6*扳转式顶盖设计 3.1.2 炉箱 3.1.2.1 操作温度:室温以上4℃至450℃ 3.1.2.2 温度设定:1℃,程序升温间隔 0.1℃ 3.1.2.3 升温速度:120C/ min 3.1.2.4 程序升温:20/21 阶 3.1.2.5 稳定性:< 0.01℃ 3.1.2.6 温度准确度:± 1% 3.1.2.7 炉箱冷却速度:450℃到50℃, 240秒

3.1.3 毛细柱分流/不分流进样口(具有电子压力控制功能) 3.1.3.1 最高温度:400℃ 3.1.3.2 电子参数设定压力,流速和分流比 *3.1.3.3 压力设定范围:0-150psi 3.1.3.4 流量设定范围:0-200ml/分钟N2 0-1250ml/分钟H2 *3.1.3.5 压力设定精度:0.001psi 3.1.3.6 最大载气流量:1250ml/min 3.1.4 150位自动进样器 3.1. 4.1 进样速度:0.1s 3.1. 4.2 进样量:0.1-50ul 3.1. 4.3 具有重叠进样的功能 3.1. 4.4 进样针位置:2-30mm可调 3.1. 4.5 样品容量:2ml 3.1. 4.6 进样精度:RSD<0.6% 3.1.5 电子气路控制电子捕获检测器(Micro-ECD) *3.1.5.1 安装隐含阳极和大体积流速,防止污染 3.1.5.2 最高使用温度:400℃ 3.1.5.3 放射源:<15mCi63Ni箔 *3.1.5.4 最低检测限::<6 fg/mL 林丹 *3.1.5.5 动态范围:>5×105(六氯化苯) 3.1.5.6 数据采集速率:高达50Hz 3.1.6 火焰光度检测器(FPD) 3.1.6.1 EPC电子气路控制 3.1.6.2 最低检测限:<3.6 pg S/sec用十二烷硫醇; ≤60 fg P/sec磷酸丁三酯混合物; 3.1.6.3 硫选择性 = 106 gS/gC 3.1.6.4 动态范围:>103 S十二烷硫醇, 104 P磷酸丁三酯混合物 3.2 化学工作站 3.2.1 软件:中文软件,Win 2000/XP 操作环境 3.2.2 软件可控制仪器

气相色谱仪有哪些检测器修订版

气相色谱仪有哪些检测 器修订版 IBMT standardization office【IBMT5AB-IBMT08-IBMT2C-ZZT18】

1、氢火焰离子化检测器(FID)用于微量有机物分析 2、热导检测器(TCD)用于常量、半微量分析,有机、无机物均有响应 3、电子捕获检测器(ECD)用于有机氯农药残留分析 4、火焰光度检测器(FPD)用于有机磷、硫化物的微量分析 5、氮磷检测器(NPD)用于有机磷、含氮化合物的微量分析 6、催化燃烧检测器(CCD)用于对可燃性气体及化合物的微量分析 7、光离子化检测器(PID)用于对有毒有害物质的痕量分析 FID(氢火焰检测器)居多。 它几乎对所有的有机物都有响应,而对无机物、惰性气体或火焰中不解离的物质等无响应或响应很小,它的灵敏度比热导检测器高100-10000倍,检测限达10-13g/s,对温度不敏感,响应快,适合连接开管柱进行复杂样品的分离,线性范围为10的7次方是气体色谱检测仪中对烃类(如丁烷,己烷)灵敏度最好的一种手段,广泛用于挥发性碳氢化合物和许多含炭化合物的检测。 TCD(热导池检测器); 热导池检测器(TCD)是一种结构简单、性能稳定、线性范围宽、对无机、有机物质都有响应、灵敏度适宜的检测器。其与FID、ECD、FPD等检测器并列为色谱法中最常用的检测器。 FPD (火焰光度检测器) FPD的原理是基于样品在富氢火焰中燃烧,使含硫、磷的化合物经燃烧后又被氢还原, 产生激发态的S2*(S2的激发态)和 HPO*(HPO的激发态),这两种受激物质反回到基态时幅射出400nm和550nm左右的光谱,用光电倍增管测量这一光谱的强度,光强与样品的质

【开题报告】固体废物中有机磷农药的测定气相色谱-火焰光度检测器法

开题报告 化学 固体废物中有机磷农药的测定气相色谱-火焰光度检测器法一、选题的背景与意义 有机磷农药是为取代有机氯农药发展起来的,它比有机氯农药较易降解,残留期较短,是现有农药中品种最多、使用最广的一类,约有100多种。环境中有机磷农药的污染和毒害已日益引起人们的广泛关注。有机磷农药毒性较高,是急性中毒类农药,如对硫磷和内吸磷等都是剧毒品。 有机磷农药常被用作杀虫剂喷洒在果树、蔬菜上,残留在水果、蔬菜上的农药或进入环境的农药进入有机体,对人、畜毒性较大,大部分对生物体内胆碱酯酶有抑制作用,抑制胆碱酯酶使其失去分解乙酰胆碱的能力,造成乙酰胆碱积累,引起神经功能紊乱,从而导致肌体的损害。 有机磷农药的各类环境质量标准和污染物排放(控制)标准,均没有针对固废。现收集到与土壤或固废相关的标准,见表1。 表1 有机磷农药相关环境质量或排放标准 环境质量或排 放标准标准号排放限值 浓度单 位 土壤环境质量 标准 GB15618-1995 无相关排放标准 乐果对硫 磷 甲基对硫磷 马拉硫 磷 浸出液 危险废物毒性 标准浸出毒性 鉴别GB5085.3-2007 8 0.3 0.2 5 mg/L 生活垃圾填埋 污染控制标准 GB16889-2008 无相关排放标准展览馆用地土 壤环境质量标 准 HJ350-2007 无相关排放标准城镇垃圾农用GB8172-1987 无相关排放标准

控制标准 在现行的有机磷农药的监测分析方法中,主要采用有机溶剂提取,净化步骤除去干扰物,用气相色谱氮磷检测器(NPD)或火焰光度检测器(FPD)检测,再根据色谱峰的保留时间定性,外标法定量。此方法仅适应于水和土壤中有机磷农药的分析,尚未制定固体废物中有机磷农药的标准分析方法。 现根据对目前农田里常用有机磷农药的使用情况调研以及相关有机磷农药的标准,筛选出12种左右的有机磷农药,分别为甲拌磷、乐果、二嗪农、乙拌磷、异稻瘟净、甲基对硫磷、马拉硫磷、对硫磷、毒死蜱、稻丰散、丙溴磷、乙硫磷,对这12种有机磷农药制定标准方法。 三、研究的方法与技术路线: 考虑到快速溶剂萃取法(ASE)具有萃取速度快、溶剂用量少、效率高、密封性能好造成环境污染小的特点,决定样品的前处理采用ASE提取,经浓缩定量后采用GC-FPD的方法检测固体废物中的有机磷农药。 技术路线: 四、研究的总体安排与进度:

电离火焰检测器

DLJ-305电离火焰检测器 一、概述: DLJ-305电离式火焰监测器主要用于燃气工业燃烧器的火焰检测,是根据燃料燃烧产生离子的原理研制的,精选进口军工集成器件装配,采用军工高速光电器件传输火焰信号,检测灵敏度高,抗干扰性强,可对火焰进行连续监测,并能排除积碳、布线电容的影响,只对火焰敏感,对高温无反应。 二、主要技术参数: 电源电压:200~240V·AC 50/60HZ 火焰探头:I(离子型) 检测响应时间:<0.2S 熄火延时关阀时间:1~7秒可调 点火时间:5~7秒 探头距离:≤200米 探头电极耐温:≤1300℃(长期) 三、监测器工作程序: 接通电源,监测器输出定时点火信号和电磁阀打开信号,若点火成功,则点火信号关闭后继续输出燃料阀打开信号;若点火失败,则关闭点火信号及燃料阀打开信号,并输出无源报警信号。 四、监测器接线端子定义如下: 1、接离子探头 2、电源零线 3、电源火线 4、5输出点火信号,220V·AC容量5A 6、7输出阀开信号,220V·AC,容量5A 8、9输出无源常开,有火闭合

9、10输出无源常闭,有火断开 五、尺寸: 壳体:ABS工程塑料(防水型) 颜色:灰色 体积:158×90×41mm 安装尺寸:182×52mm矩形安装(长宽预留200×100) 安装孔:φ7.0mm 离子探头安装螺纹:M14×1.25(或按客户要求订做) 离子探头直径:φ12 伸入火焰区Φ4 离子探头电极材质:pyromax高温合金 离子探头长度:按客户要求订做 安装检测电极必须能接触到火焰,检测孔Φ12.5mm,电极长期工作温度1300℃,不需冷却。 六、安装: 该监测器检测火焰采用接触式检测方式,安装检测电极时,必须使中心电极在监测时能接触到火焰,检测电极的中心电极必须对地绝缘,不要接触燃烧器内的金属材料或耐火材料。 检测电极的中心电极材料选用特殊的抗高温氧化材料,安装检测电极时,不需要通风冷却,检测电极可以在1300℃的高温下长期使用,最高使用温度不大于1400℃,请用户选择合适的位置安装。 该监测器使用单电极检测,如用户使用隔离交流电源,请将隔离电源输出端的一根线接地,同时接入监测器端子2上。 七、调试: 为了提高绝缘性能以减小布线分布电容,最好用耐压500V的导线布线,控制室外的检测线最好采用空中布线,尽量不采用地沟布线。检测线不应与其它电源线或信号线混在一起。用户在不接通电源的情况下,请测量检测输出端对地的电阻值,电阻値必须大于20MΩ,测量用三用表,不能用摇表测量,以免损坏控制器。 在无火焰情况下,打开模块盖,接通电源,顺的时针缓慢调节模块左上方的蓝色方形灵敏度调节电位器,直到继电器吸合,绿色指示灯亮,然后反时针缓慢电位器,使绿色指示灯灭,继电器刚好释放为标准,再反时针调2圈,这时监测器调试好。 模块中央的圆形电位器调节熄火关阀时间,调节范围为1~7秒,顺时针调节关阀时间延长,反之阀时间减短,依火焰燃烧稳定状态设置关阀时间,适用不同的工况需要。 监测器灵敏度在出厂时已调试完毕,一般情况下不需要重新调试。

气相色谱检测器操作注意事项

气相色谱检测器操作注 意事项 The manuscript was revised on the evening of 2021

检测器操作注意事项 1.尾吹气的使用 吹气是从色谱柱出口处直接进入检测器的一路气体,又叫补充气或辅助气。填充柱不用尾吹气,而毛细管柱则大都采用尾吹气。这是因为毛细管柱的柱内载气流量太低(常规柱为1-3ml/min),不能满足检测器的最佳操作条件(一般检测器要求20ml/min的载气流量)。在色谱柱后增加一路载气直接进入检测器,就可保证检测器在高灵敏度状态下工作。尾吹气的另一个重要作用是消除检测器死体积的柱外效应。经分离的化合物流出色谱柱后,可能由于管道体积增大而出现体积膨胀,导致流速减缓,从而引起谱带展宽。加入尾吹气后就消除了这一问题。 那么,尾吹气流量多少合适呢这要看所用检测器和色谱柱的尺寸而定。比如,用大口径柱时,柱内流量可达15ml/min,这对微型TCD和单丝TCD来说已经够大了,就没必要再加尾吹气了。而对于FID、NPD、FPD 则需要至少10ml/min的尾吹气流量,对于ECD就需要20ml/min的尾吹气(ECD一般需要载气总流量大于25ml/min)。使用常规或微径柱时,尾吹气流量应相应增大。经验参考值为:FID、NPD、FPD需要柱内载气和尾吹气的流量之和为30ml/min左右。ECD则需要40-60ml/min。当需要在最高灵敏度状态下工作时,应针对具体样品优化尾吹气流量以及其他气体流量。一般情况下,尾吹气所用气体类型应与载气相同。 尾吹气流量是在安装好色谱柱后,在检测器出口处用皂膜流量计测定的。注意,测定尾吹气流量时要关闭其他气体(如使用FID时要关闭空

fpd检测器

书名:气相色谱检测方法(第二版)作者:吴烈钧编著 火焰光度检测器 第一节引言 火焰光度检测器(flame photometric detector,FPD)是利用富氢火焰使含硫,磷杂原子的有机物分解,形成激发态分子,当它们回到基态时,发射出一定波长的光。此光强度与被侧组分量成正比。所以它是以物质与光的相互关系为机理的检侧方法,属光度法。因它是分子激发后发射光,故它是光度法中的分子发射检测器。 1966年Brody和Chancy首次提出气相色谱FPD,称通用型FPD。它有易灭火等缺点。以后在气体的流路形式方面又作了改进。这些均属单火焰FPD(single flame photometric detector,简称SFPD)。为了克服SFPD的缺点,出现了双火焰光度检侧器(dual-flame photometric detector;简称DFPD)。近年又出现了脉冲火焰光度检侧器(pulsed-flame photometric detector;PFPD),使灵敏度和选择性均较SFPD, DFPD有很大提高,还扩大了检侧元素的范圈。 FPD是一种高灵敏度和高选择性的检测器,其主要特征是对硫为非线性响应,它是六个最常用的气相色谱检测器之一、主要用于含硫、磷化合物,特别是硫化物的痕量检测。近年也用于有机金属化合物或其他杂原子化合物的痕量检测。 第二节工作原理和响应机理 一、工作原理 图6-1为FPD系统示意图。它主要由二部分组成:火焰发光和光、电信号系统。 火焰发光部分由燃烧器(4)和发光室(2)组成,各气体流路和喷嘴等构成燃烧器,又称燃烧头。通用型喷嘴由内孔和环形的外孔组成。气相色谱柱流出物和空气混合后进入中心孔,过量氢从四周环形孔流出。这就形成了一个较大的扩散富氢火焰、烃类和硫、磷确化合物在火焰中分解,并产生复杂的化学反应,发出特征光。硫、磷在火焰上部扩散富氢焰中发光,烃类主要在火焰底部的富氧焰中发光,故在火焰底部加一不透明的遮光罩(3)挡住烃类光,可提高FPD的选择性。为了减小发光室的体积,可在喷嘴上方安一玻璃或石英管(1),以降低检测器的响应时间常数。 右为光、电信号部分,为了避免发光中产生的大量水蒸气,燃烧产物和高温对光、电系统的影响,用石英窗(5)和散热片(6)将发光室和光电系统隔开。因FPD不是将所有的光变成电信号,而是用滤光片(7)选择硫、磷特征光。图6-2为硫、磷和碳的相对光谱响应曲线,当硫化物进人火焰,.形成激发态的S2*分子,此分子回到基态发射出波长为320~480nm的光,

气相色谱FPD检测器在线分析磷化氢气体

浙江理工大学学报,第26卷,第2期,2009年3月 Journal of Zhejiang Sci2Tech U niversity Vol.26,No.2,Mar.2009 文章编号:167323851(2009)022******* 气相色谱FPD检测器在线分析磷化氢气体 俞晓晶a,丁高松a,金达莱a,汪丽娜b,王 勇c,姚奎鸿a (浙江理工大学,a.材料工程中心;b.分析测试中心;c.教务处,杭州310018) 摘 要:利用气相色谱方法,采用火焰光度检测器(FPD),对磷化氢气体进行了较为系统的气相分析,建立了快速、灵敏、可靠的磷化氢工业在线分析。调节色谱操作参数,验证实验数据的可靠性;用焰光度检测器检测,测量的灵敏度为2.48×1014μV?s/g,最小检测限为1.6129×10-13g/s;以柱效为评价指标,优化检测磷化氢的色谱操作条件,得出最佳柱箱温度和载气流速分别在140℃左右、80mL/min附近。 关键词:磷化氢;气相色谱;火焰光度检测器(FPD);在线分析 中图分类号:TQ016 文献标识码:A 0 引 言 磷化氢(P H3),又称磷烷,是一种重要的电子气体[123]。P H3有毒性、危险性非常大。我国P H3研究起步于“六五”期间,光明化工研究设计院受原化工部资金的支持,开展P H3的合成、净化、分析等系列研究,“七五”期间我国的南京特气公司(现改为华厦气体公司),也曾开展此方面的工作[4]。目前国内P H3大部分用户都采用进口的P H3用来进行5%的N22P H3配制[4]。P H3在国际上销售价格较高,国际上几大气体公司都有超纯P H3销售。由于涉及自主知识产权问题,有关电子气体的生产、净化、包装、分析等技术多在国际属于高度保密,可参考借鉴的相关资料非常稀少。 在线分析仪器是现代工业生产中不可缺少的一部分,并且起着“指导者”和“把关者”的作用。为保证质量和生产安全,各种工业生产,特别是连续自动化生产都离不开关键的质量监控,这是众所周知的事实[5]。随着IC产业国际化竞争日益加剧,开展电子气体的自主研究与生产势在必行,精确的分析也必不可少。作为一种重要的半导体器件掺杂源气体,P H3的定性与定量分析,特别是P H3在线测定方法的建立显得十分重要[6]。 磷化氢定量及定性分析方法主要有钼蓝比色法和气相色谱法。前者操作费时,灵敏度低,不适用于大量样品和低浓度样品的测定;后者方便快捷,但样品预处理复杂,而且由于磷化氢容易受外界因素如光和氧气等的影响,目前国内仍未将色谱法作为磷化氢分析的标准方法[7]。但是,针对P H3的在线分析,气相色谱法仍具有不可替代的快速和便捷的优点。 灵敏度和检测限是气相色谱仪检测器的主要性能指标[8],火焰光度检测器(FPD)是一种只对含硫、含磷化合物有高选择性、高灵敏度的检测器[9211],FPD检测器用于对磷化氢进行系统的气相在线分析尚未见报道。 本文主要采用火焰光度检测器(FPD)对磷化氢(P H3)进行在线系统模拟检测,通过调节柱箱温度和载气流速等色谱参数,在对其实验值和理论值进行比较证明其可靠性的同时,以色谱柱的柱效为性能指标,选择适用于在线分析磷化氢的最佳色谱条件。 收稿日期:2008-01-25 基金项目:浙江省科技厅分析测试科技计划项目(2007F70025) 作者简介:俞晓晶(1985- ),男,浙江武义人,硕士研究生,从事半导体及无机材料研究。

GC126-FPD火焰光度检测器使用说明书

1 GC126-FPD火焰光度检测器 1.1引言 1.1.1 GC126-FPD火焰光度检测器概述 GC126-FPD火焰光度检测器是GC126气相色谱仪中选配的特种检测器之一,是专门用于检测含磷化物及含硫化物;是一种高选择性及高灵敏度的检测器。它只对含磷化物、硫化物有响应,而其它元素对它无干扰或干扰很小,因此这种检测器可以应用在石油化工中的含硫化物的微量检测。特别是自然界生物体内含磷、含硫化合物很多,新合成有机磷化物、硫化物、农药中的大量杀虫剂、杀菌剂都是含磷、含硫的有机化合物,而这些农药的残留量测定必须依赖于对磷、硫有高灵敏度及高选择性的火焰光度检测器(特别是对硫化物唯有采用火焰光度检测器测定)。 故火焰光度检测器可以广泛应用在生物、农业、环保、化工、医药、食品等行业的质量检验。 GC126-FPD火焰光度检测器有两个单元所组成,其一是火焰光度控制器包括微电流放大器和负高压稳压输出;其二是火焰光度检测器。本使用说明书仅对GC126-FPD火焰光度检测器的结构原理、操作方法和仪器保养、检修作较详细的说明。 1.1.2 GC126-FPD火焰光度检测器基本参数 1.1. 2.1 技术指标 检测限:对磷:Dt≤2×10-11g/s(p)(甲基对硫磷) 对硫:Dt≤1×10-10g/s(s)(甲基对硫磷) 基线噪声:≤10μV P;108;衰减1/32 (1mV量程) S;108;衰减1/8 (1mV量程) 基线漂移:≤30μV/30min 线性范围:对磷:103 对硫:102 启动时间:检测器开机≤2h应能正常工作。

1.1. 2.2 检测器使用要求 电源电压:220V±22V,50Hz±0.5Hz 功率:≤100W 环境温度:+5℃~35℃ 相对湿度:≤85% 环境条件:检测器安装室内应没有腐蚀性气体及不致使电子器件的放大器、色谱数据处理机及色谱工作站正常工作的电场和电磁场存在,检 测器安装后工作台应稳固,不能有振动,以免影响检测器正常工 作。在接氢气瓶或氢发生器的室内2m内不得有火种存在或发火 装置的可能性。 1.1. 2.3 外形体积 510mm(长)×370mm(宽)×200mm(高) 1.1. 2.4 重量 1kg(该重量是指本检测器所带附件及备件经包装后的重量参考值)。 1.1. 2.5 检测器成套性 GC126-FPD火焰光度检测器一台 附件、备件清单、合格证、说明书与检测器同装纸箱。 1.1.3 开箱与验收 收到仪器后,应该校对检测器型号与选购的检测器订单是否相符合。同时开箱检查仪器在运输过程中是否有损坏,若有明显损坏现象应立即与本厂质量检验科联系酌情处理。检测器自用户购买日起14个月内,厂方免费为用户进行非用户人为所至的故障修理。

气相色谱检测器操作注意事项

气相色谱检测器操作注意事项

检测器操作注意事项 1.尾吹气的使用 吹气是从色谱柱出口处直接进入检测器的一路气体,又叫补充气或辅助气。填充柱不用尾吹气,而毛细管柱则大都采用尾吹气。这是因为毛细管柱的柱内载气流量太低(常规柱为1-3ml/min),不能满足检测器的最佳操作条件(一般检测器要求20ml/min的载气流量)。在色谱柱后增加一路载气直接进入检测器,就可保证检测器在高灵敏度状态下工作。尾吹气的另一个重要作用是消除检测器死体积的柱外效应。经分离的化合物流出众谱柱后,可能由于管道体积增大而出现体积膨胀,导致流速减缓,从而引起谱带展宽。加入尾吹气后就消除了这一问题。 那么,尾吹气流量多少合适呢?这要看所用检测器和色谱柱的尺寸而定。比如,用0.53mm大口径柱时,柱内流量可达15ml/min,这对微型TCD和单丝TCD来说已经够大了,就没必要再加尾吹气了。而对于FID、NPD、FPD则需要至少10ml/min的尾吹气流量,对于ECD就需要20ml/min的尾吹气(ECD一般需要载气总流量大于25ml/min)。使用常规或微径柱时,尾吹气流量应相应增大。经验参考值为:FID、NPD、FPD需要柱内载气和尾吹气的流量之和为30ml/min左右。ECD则需要40-60ml/min。当需要在最高灵敏度状态下工作时,应针对具体样品优化尾吹气流量以及其它气体流量。一般情况下,尾吹气所用气体类型应与载气相同。

尾吹气流量是在安装好色谱柱后,在检测器出口处用皂膜流量计测定的。注意,测定尾吹气流量时要关闭其它气体(如使用FID 时要关闭空气和氢气),用0.32mm以下内径的色谱柱时,可不关闭柱内载气,这时测得的流量为柱内载气和尾吹气流量之和。 2.FID使用注意事项(1)FID虽然是准通用型检测器,但有些物质在此检测器上的响应值很小或无响应。这些物质包括永久气体、卤代硅烷、H2O、NH3、CO、CO2、CS2、CCl4、等等。因此,检测这些物质时不应使用FID。(2)FID是用氢气和空气中燃烧所产生的火焰使被测物质离子化的,故应注意安全问题。在未接上色谱柱时,不要打开氢气阀门,以免氢气进入柱箱。测定流量时,一定不能让氢气和空气混合,即测氢气时,要关闭空气,反之亦然。无论什么原因导致火焰熄灭时,应尽快关闭氢气阀门,直到排除了故障,重新点火时,再打开氢气阀门。高档仪器有自动检测和保护功能,火焰熄灭时可自动关闭氢气。(3)FID的灵敏度与氢气、空气和氮气的比例有直接关系,因此要注意优化。一般三者的比例应接近或等于1:10:1,如氢气30-40ml/min,空气300-400ml/min,氮气30-40ml/min。另外,有些仪器设计有不同的喷嘴分别用于填充柱和毛细管柱,使用时应查看说明书。(4)为防止检测器被污染,检测器温度设置不应低于色谱柱实际

火焰检测器概述

火焰检测器概述 火焰检测器对于大家来说是个新名词,一直以来,对于我们的认识当中,火是不可掌握的,随着科学的发展,人们逐渐认识了火焰,同时也发明了认识火焰的工具——火焰检测器,它主要是由探头和信号处理器两个部分组成。 1.紫外光型 紫外光火焰检测器采用紫外光敏管作为传感元件,其光谱范围在O.006~0.4?m之间。紫外光敏管是一种固态脉冲器件,其发出的信号是自身脉冲频率与紫外辐射频率成正比例的随机脉冲。紫外光敏管有二个电极,一般加交流高电压。当辐射到电极上的紫外光线足够强时,电极间就产生“雪崩”脉冲电流,其频率与紫外光线强度有关,最高达几千赫兹。灭火时则无脉冲。 2.可见光型 可见光火焰检测器采用光电二极管作为传感元件,其光谱响应范围在0.33~0.7?m之间。可见光火焰检测器由探头、机箱和冷却设备等部分组成。炉膛火焰中的可见光穿过探头端部的透镜,经由光导纤维到达探头小室,照到光电二极管上。 该光电二极管将可见光信号转换为电流信号,经由对数放大器转换为电压信号。对数放大器输出的电压信号再经过传输放大器转换成电流信号。然后通过屏蔽电缆传输至机箱。在机箱中,电流信号又被转换为电压信号。代表火焰的电压信号分别被送到频率检测线路、强度检测线路和故障检测线路。强度检测线路设有两个不同的限值,即

上限值和下限值。当火焰强度超过上限值时,强度灯亮,表示着火;当强度低于下限值时,强度灯灭,表示灭火。 频率检测线路用来检测炉膛火焰闪烁频率,它根据火焰闪烁的频率是高于还是低于设定频率,可正确判断炉膛有无火焰。故障检测线路也有两个限值,在正常的情况下,其值保持在上、下限值之间。一旦机箱的信号输入回路出现故障,如光电管至机箱的电缆断线,则上述电压信号立刻偏离正常范围,从而发出故障报警信号。 3.红外光型 红外光火焰检测器采用硫化铅或硫化镉光敏电阻作为传感元件,其光谱响应范围在0.7-3.2?m之间。红外光火焰检测器也是由探头、机箱和冷却设备组成。燃烧器火焰的一次燃烧区域所产生的红外辐射,经由光导纤维送到探头,通过探头中的光敏电阻转换成电信号,再由放大器放大。该火焰信号由屏蔽电缆送到机箱,通过频率响应开关和一个放大器后,再同一个参考电压(可调)进行比较。

气相色谱培训考试题

2010年7月气相色谱培训考试题 单位:姓名:成绩: 考试时间:180min,满分100分 一、选择题(每题1分,共30分): 1.实验室常用气相色谱仪的基本组成是()。(1)光源;(2)气路系统;(3)单色器系 统;(4)进样系统;(5)分离系统;(6)吸收系统;(7)电导池;(8)检测系统;(9)记录系统。 2.(A)1-3-6-8-9 (B)2-4-5-8-9 (C)2-4-5-7-9 (D)2-4-6-7-9 3.气相色谱法中,在采用低固定液含量柱,高载气线速进行快速色谱分析时,采用() 作载气可以改善气相传质阻力。 4.(A)H2 (B)N2 (C)He (D)Ne 5.在分析苯、甲苯、乙苯的混合物时,气化室的温度宜选为()。已知苯、甲苯、乙 苯的沸点分别为80.1℃、110.6℃和136.1℃ 6.(A)80℃ (B)120℃ (C)160℃ (D)200℃ 7.在气液色谱中,色谱柱使用的上限温度取决于()。 (A)试样中沸点最高组分的沸点 (B)试样中沸点最低组分的沸点 (C)固定液的沸点 (D)固定液的最高使用温度 8.用气相色谱法测定废水中苯含量时常采用的检测器是()。 (A)热导池检测器 (B)氢火焰检测器 (C)电子捕获检测器 (D)火焰光度检测器 9.用气相色谱法测定O2、N2、CO和CH4等气体的混合物时常采用的检测器是()。 (A)热导池检测器 (B)氢火焰检测器 (C)电子捕获检测器 (D)火焰光度检测器 10.用气相色谱法测定含氯农药时常采用的检测器是()。 (A)热导池检测器 (B)氢火焰检测器 (C)电子捕获检测器 (D)火焰光度检测器 11.对于热导池检测器,一般选择检测器的温度为()。 (A)试样中沸点最高组分的沸点 (B)试样中沸点最低组分的沸点 (C)高于或和柱温相近 (D)低于柱温10℃左右

气相色谱检测器的分类及工作原理_图文(精)

一、按性能特征分类 从不同的角度去观察检测器性能,有如下分类: ! 、对样品破坏与否 组分在检测过程中,如果其分子形式被破坏,即为破坏性检测器,如FID 、NPD 、FPD 、MSD 等。 组分在检测过程中,如仍保持其分子形式,即为非破坏性检测器。如TCD 、PID 、IRD 等。 2、按响应值与时间的关系 检测器的响应值为组分在该时间的累积量,为积分型检测器,如体积检测器等。现气相色谱分析中,此类检测器一般已不用。 检测器的响应值为组分在该时间的瞬时量,为微分型检测器。本书介绍的所有检测器,均属此类。 3、按响应值与浓度还是质量有关 检测器的响应值取决于载气中组分的浓度,为浓度敏感型检测器,或简称浓度型检测器。它的响应值与载气流速的关系是:峰面积随流速增加而减小,峰高基本不变。因当组分量一定、改变载气流速时,只是改变了组分通过检测器的速度,即改变了半峰宽,其浓度不变。如TCD 、PID 等。凡非破坏性检测器,均是浓度型检测器。 当检测器的响应值取决于单位时间内进入检测器的组分量时,为质量(流量敏感型检测器或简称质量型检测器。它的响应值与载气流速的关系是:峰高随流速的增加而增大,而峰面积基本不变。因当组分量一定,改变载气流速时,即改变了单位时间内进入检测器的组分量,但组分总量未变,如FID 、NPD 、FPD 、MSD 等。

4、按不同类型化合物响应值的大小 检测器对不同类型化合物的响应值基本相当,或各类化合物的RRF 值之比小于!0 时,称通用型检测器,如TCD 、PID 等。 当检测器对某类化合物的RRF 值比另一类大十倍以上时,为选择性检测器。如NPD 、ECD 、FPD 等。 二、按工作原理(检测方法分类 按检测器的性能特征分类对把握检测器的某项性能十分有益,但众多的检测器,各有多种性能。某检测器归哪类,似乎没有一个内在的规律可循。如按工作原理或检测方法分类,因一种检测器只有一份工作原理,比较明确,有一定的规律可循,比较容易掌握。

MHT-3火焰检测器使用说明书

MHT–3型火焰检测器 使 用 说 明 书

武汉明正动力工程有限公司 目录 一、概述 (2) 二、主要技术参数 (2) 三、结构及工作原理 (2) 四、外形安装尺寸 (3) 五、安装和调试 (4) 六、故障分析及排除方法 (7) 七、订货须知 (7)

一﹑概述 MHT-3型火焰检测器是根据电力部有关标准和规范,总结和吸收国内外同类产品的经验,采用UV探测技术设计制造的一种紫外光式炉膛火焰检测装置。它具有结构简单,操作方便,性能可靠等优点。它可长期连续地检测各种燃气锅炉的火焰,是多种燃气锅炉安全监控系统必不可少的检测设备。 二﹑主要技术参数 表一主要技术参数 三﹑结构及工作原理 MHT-3型火焰检测器由处理器和探头两部分组成。处理器与探头间由两芯双绞屏蔽电缆连接。 MHT-3型火焰检测器的探头尾部的UV光敏管前装有石英防尘镜片,火焰发

出的光信号传至探头尾部UV 光敏管上,由UV 光敏管完成光电转换。探头与处理器间信号传输采取电流传输方式,以提高抗干扰能力,并通过两芯屏蔽电缆传至处理器。 处理器将由探头传来的信号通过匹配电路、施密特触发器、单稳态触发电路 进行处理后,进行有无火焰判别,并给出相应指示及输出。检测器工作原理框图如图一。 四﹑ 外形安装尺寸 4.1 处理器的外形安装尺寸: 见图二。 4.2 探头的外形安装尺寸: 见图三。

五﹑安装和调试 5.1探头的安装 5.1.1探头安装位置的要求: 5.1.1.1视野要合适。 A 探头视角内应尽可能充满目标火焰; B 探头视角范围内的目标火焰应比较稳定,改变风量及调节燃烧时不致造成目标火焰脱离视角范围; C 任何在视角范围内妨碍检测的物体,如:炉墙、水管、筋板等都应作修改,但所有修改应尽可能减小对风量的影响; D视角应不与其它火焰相交叉。 5.1.1.2便于安装、维护。 5.1.1.3应安装在炉壁不易结焦处。 5.1.1.4应安装在目标火焰的上部或侧面。 5.1.2确定探头安装的位置与角度: 5.1.2.1几个重要参数介绍如图四所示: A喷射扩散角度α: 经验值α=35°~50°;

气相色谱仪的及如何应用

气相色谱仪的简介及如何应用 气相色谱仪 气相色谱法适用于分析具有一定蒸气压且热稳定性好的组分,对气体试样和受热易挥发的有机物可直接进行分析,而对500℃以下不易挥发或受热易分解的物质部分可采用衍生化法或裂解法。 一、仪器的组成 气相色谱仪由载气源、进样部分、色谱柱、柱温箱、检测器和数据处理系统组成。进样部分、色谱柱和检测器的温度均在控制状态。 二、对仪器的基本要求 1.对仪器的一般要求 (1)载气源气体氦、氮和氢可用作气相色谱法的流动相,可根据供试品的性质和检测器种类选择载气,除另有规定外,常用载气为氮气。 (2)进样部分进样方式一般可采用溶液直接进样或顶空进样。采用溶液直接进样时,进样口温度应高于柱温30~50℃。顶空进样适用于固体和液体供试品中挥发性组分的分离和测定。 (3)色谱柱根据需要选择。新填充柱和毛细管柱在使用前需老化以除去残留溶剂及低分子量的聚合物,色谱柱如长期未用,使用前应老化处理,使基线稳定。 (4)柱温箱柱温箱温度的波动会影响色谱分析结果的重现性,因此柱温箱控温精度应在±1℃,且温度波动小于每小时0.1℃。 (5)检测器适合气相色谱法的检测器有火焰离子化检测器(FID)、热导检测器(TCD)、氮磷检测器(NPD)、火焰光度检测器(FPD)、电子捕获检测器(ECD)、质谱检测器(MS)等。火焰离子化检测器对碳氢化合物响应良好,适合检测大多数的药物;氮磷检测器对含氮、磷元素的化合物灵敏度高;火焰光度检测器对含磷、硫元素的化合物灵敏度高;电子捕获检测器适于含卤素的化合物;质谱检测器还能给出供试品某个成分相应的结构信息,可用于结构确证。除另有规定外,火焰离子化检测器一般用氢气作为燃气,空气作为助燃气。在使用火焰离子化检测器时,检测器温度一般应高于柱温,并不得低于150℃,以免水汽凝结,通常为250~350℃。 (6)数据处理系统目前多用计算机工作站。 药典规定,各品种项下规定的色谱条件,除载气、检测器、固定液品种及特殊指定的色谱柱材料不得改变外,其余如色谱柱内径、长度、载体牌号、粒度、固定液涂布浓度、载气流速、柱温、进样量、检测器的灵敏度等,均可适当改变,以适应具体品种并符合系统适用性试验

可见光火焰检测器

可见光火焰检测器 使用说明书 安装、使用产品前,请阅读使用说明书

1、产品介绍 JNHT-5型火焰检测器适用于多种燃料、多种工况下的火焰检测,由火焰检测探头、信号放大器及它们之间连接的屏蔽电缆组成。光学敏感元件为可见光及红外线全光谱型,适用范围广。探头经特殊设计,坚固耐用,在有冷却风的情况下可长期工作于燃烧器附近的恶劣环境中。探头信号预处理板具有自检功能,并且可以在线更换。 JNHT-5型火焰检测器可以用来检燃油火焰及煤粉火焰,检测光谱范围从600纳米到3000纳米。信号处理部分采用了单片机,增加了人工智能控制,对目标火焰的强度、包络脉动和特征频率进行实时检测,可有效地避免偷看和漏看现象。功能特点: u具有上电自检功能; u检测器的电源完全独立; u所有信号数字化处理,抗干扰能力强; u适用性广,可以检测各种油、煤火焰。 2、工作原理框图 显示 3、主要技术指标 灵敏度≥100Lx (λ0= 2000nm) 着火≤1 s 响应时间 熄火≤3 s(可调) 检测对象燃油、燃煤火焰 方式两组常开/常闭触点 信号输出 容量AC220V 50Hz 2A ,DC24V 2A 模拟量输出4~20 mA ,1~5V DC 工作方式长期连续工作 探头≤80℃(风冷) 工作环境要求 信号处理箱≤50℃

环境湿度≤85%RH 冷却方式风冷:探头冷却风量≥100 m3/h,风温≤50℃,探头冷却风入口与炉膛压差≥2000 pa 供电电源AC220V 50Hz 功耗15 W 检测距离400~6000 mm 4 、外形尺寸图 探头外形及尺寸图 火检处理器外形尺寸图 5 、安装要求 5.1 探头安装位置的要求: 5.1.1视野要合适。 A 探头视角内应尽可能充满目标火焰; B 探头视角范围内的目标火焰应比较稳定,改变风量及调节燃烧时不致造成目标火焰脱离视角范围; C 任何在视角范围内妨碍检测的物体,如:炉墙、水管、筋板等都应修改,但所有修改应尽可能减小对风量的影响; D 视角应尽量避免与其它火焰相交叉;

相关文档
最新文档