黑曲霉生产糖化酶及酶活测定_单海艳

黑曲霉生产糖化酶及酶活测定_单海艳
黑曲霉生产糖化酶及酶活测定_单海艳

第19卷 第7期 牡丹江大学学报 Vol.19 No.7 2010年7月 Journal of Mudanjiang University Jul. 2010

92 文章编号:1008-8717(2010)07-0092-03

黑曲霉生产糖化酶及酶活测定

单 海 艳

(牡丹江大学,黑龙江 牡丹江 157000)

摘 要:本文对黑曲霉突变株Uv11-48生产糖化酶液体深层发酵进行了全程生产工艺的研究,证实了黑曲霉突变株是一种产孢力强、抗污染能力强、易培养的糖化酶生产菌,经液体深层通风发酵可得出:只要充分利用突变株的有利条件,掌握好菌种特性,合理配制营养,控制好发酵条件,便可获得高酶活力的高产糖化酶。本实验还运用了几种酶活力测定方法,以资进行优劣探讨。

关键词:黑曲霉;液体通风发酵;糖化酶;酶活力 中图分类号:Q-331 文献标识码:B 一、前言

(一)黑曲霉菌种特性 1.黑曲霉的分类地位

黑曲霉在分类学上处于:真菌门、半知菌亚门、丝孢纲、丝孢目、丛梗孢科、曲霉属、黑曲霉群,拉丁学名:Aspergillus niger 。

2.黑曲霉形态、生理、生态特性

孢子头呈暗黑色,菌丝体由具横隔的分枝菌丝构成,菌丝黑褐色,顶囊球形,小梗双层,分生孢子球形,平滑或粗糙。一般进行无性生殖,其可育细胞称足细胞。

3.黑曲霉突变株的形态、生理、生态、特征 在查氏培养基上菌落曲型为炭黑色,有辐射沟纹,从菌落边缘向中心,分化为伸长部位,活性部位,成熟部位,老化部位几个区域即孢子萌发最早出现于中心部位是伸展部位,并逐渐形成密生部位,分生孢子部位,最后在中心出现的是成熟部位,菌落背面无色或稍黄。

(二)糖化酶的分类、地位、性质及用途 1.糖化酶在国际酶学委员会,在系统命名法中的地位

糖化酶是淀粉酶,在系统命名法中属水解酶类。 2.糖化酶的性质

糖化酶(glucamylase )又名糖化型淀粉酶(glueoamylase )或淀粉葡萄糖苷酶。其系统名称为淀粉α1.4-葡萄聚糖水解酶。糖化酶是一种胞外外切酶,但其专一性低,主要是从淀粉链的非还原性末端切开α-1.4-键。一般淀粉水解程度达80%。

(1)糖化酶中糖和蛋白组成

糖化酶是一种糖蛋白,通常碳水化合物占4%-18%,这些碳水化合物主要是半乳糖、葡萄糖、葡萄糖胺和甘露糖,糖化酶残基的排列在其热和酸碱稳定性上有特殊意义。

(2)糖化酶组分多型性

真菌产生的糖化酶组分多型性是常见的,市售的糖化酶中可分离出葡萄糖酶?和葡萄糖酶И两种组分。而市售黑曲霉生产的糖化酶曾分离出六种活性组分,每种均可从可溶性淀粉中释放出单一的β-D-葡萄糖。这六种组分的分子量,沉淀系数,化学组分,等电点,酶的动力学及其它性质各异。培养基成分和的生产条件对糖化酶组分多型性也有影响,天然糖化酶在微生物培养或酶的制备过程中可能受葡萄糖苷酶和蛋白酶的作用而成多型性的酶类。

(3)糖化酶的热稳性

工业用的糖化酶都是利用它的热稳性,α-环状糊精可提高糖化酶的热稳性,最适温度范围一般为50℃~60℃。

(4)从酶PH 稳定性上看: 糖化酶具较宽的PH 值适应范围,但最适PH 为4-5。

(5)Ca 离子与酶结合后可使结构变得松散些,更有利于催化反应。

(6)糖化酶与底物亲和性

收稿日期:2009-11-26

作者简介:单海艳(1977—),女,牡丹江大学化工系讲师,研究方向:生物教学。

DOI:10.15907/https://www.360docs.net/doc/3910847711.html,ki.23-1450.2010.07.036

糖化酶是将麦芽糖糊精转化为D-葡萄糖,底物水解速度主要受底物分子的大小及结构影响。同时也受水解碳链序列中F一个键的影响,碳链越来越大。其最大反应速度随底物碳链的增长而增加,呈线性变化。

3.糖化酶的用途

主要用途是作淀粉糖化剂。在食品工业制造葡萄糖、麦芽糖、糊精糖浆和直链淀粉薄膜,改善面色质地,加工蔬菜、制造菜汁、菜泥。在发酵工业方面与α-淀粉一起还广泛用在谷氨酸、柠檬酸发酵生产中,作为淀粉原料,代替了麦芽和液体,提高了淀粉利用率。在我国,糖化酶还用于处理原理,水解棉中的低聚糖,减少棉纤维的粘缠以利于纺纱。

二、材料与方法

(一)材料:菌种:黑曲霉

仪器:恒温培养箱 离心机 水浴锅恒温液体振荡培养器小型液体发酵罐分光光度计等

试剂:链霉素 0.1%苯甲酸钠乳酸氢氧化钠硫酸铵等

(二)方法

液体深层发酵

工艺流程:试管斜面菌种→种子扩大培养→液体深层通风发酵→过滤→离心→干燥→粗酶制剂→酶活测定

配方:斜面种子培养基:蔗糖30g 硫酸铵3g 磷酸氢钾1g 硫酸镁0.5g 硫酸铁0.01g 水 1000 ml 琼脂2% 液体摇瓶扩大培养基:玉米面4%,豆饼粉3%

麦麸1% Kcl 0.5g 水1000ml自然PH通风

恒温液体深层通风发酵培养基:玉米粉10% 豆饼粉4%麦麸1%水1000ml PH 4.5

1.粗酶提取

发酵液→过滤→盐析→固形物→烘干→加入淀粉添充剂→磨粉→粗酶制剂。

2.酶活力测定

酶活力测定方法

(一)钢圈法:5ml3%琼脂倒皿 →再加5ml 可溶性淀粉与3% 琼脂→放入三个灭过菌的钢圈 分别滴入不同浓度的酶液→定期测定透明圈直径。

(二)比色法:10ml 20%可溶性淀粉 5ml柠檬酸 PH4.8(对照不加酶液,处理加1ml) 加1ml 10%NaOH终止反应,对照补加1ml酶液→滤纸过渡→比色。

三、结果与讨论

(一)结果

1.钢圈实验结果如下表:

糖化酶钢圈测试

时间 编号 1cm 2cm 3cm 平均值

23日8:101号(原液) 1.365 1.365 1.340 1.357

23日8:102号(稀释1倍) 1.320 1.290 1.270 1.290

23日8:103号(稀释2倍) 1.170 1.165 1.165 1.167

23日11:101号(原液) 1.4555 1.475 1.475 1.463

23日11:102号(稀释1倍) 1.340 1.380 1.380 10355

23日11:103号(稀释2倍) 1.315 1.365 1.325 1.335

23日16:001号(原液) 1.460 1.525 1.500 1.495

23日16:002号(稀释1倍) 1.365 1.370 1.385 1.373

23日16:003号(稀释2倍) 1.220 1.26.0 1.255 1.245

24日8:301号(原液) 1.760 1.765 1.760 1.762

24日8:302号(稀释1倍) 1.375 1.470 1.400 1.412

24日8:303号(稀释2倍) 1.300 1.350 1.325 1.326

2.DNS测定结果如下表

糖化酶酶活测定

反应时间含糖酶解产糖 CK 处理 CK 处理比色反应 Ehr 10 min 0.094 0.25 0.480 1.219 0.738 8.368 50.21 30min 0.041 0.338 0.229 1.635 1.406 23.89 47.79 平 均49

(二)分析

本实验得到酶活性一般,分析原因如下:

1.发酵当中,基质粘度过大,菌丝发生球结,这是通气不足的原因,因通气不足,氧的含量较低,造成代谢不彻底,有机酸积累,PH始终降低,正常发酵,应是PH先下降然后开始回升,结束发酵。

93

2.原材料当中的玉米粉可能染有杂菌,原材料的营养成份肯定有一定变化,杂生产过程中所产生的代谢物对发酵可能有一定的影响,本实验没有做检测,在此提出有待于进一步探讨。

3.糖化酶是诱导酶。淀粉能诱导酶的形成,培养基中淀粉浓度与糖化酶的酶活及糖化酶的mRNA含量成正相关,在培养基中适当提高培养基中淀粉含量,可以增加产酶的量,酶活也有所提高。本实验没有添加任何诱导物。

4.适当浓度的钙离子对加强酶活力,保护酶有一定的作用,在发酵过程中加产酶促进剂,如:吐温-80与可促进产酶。

5.在发酵过程中有杂菌污染,曾用链霉素加以控制。以上几项对酶活力和酶量有着直接或间接的影响,当然在实验操作过程中,一些人为的因素,人为的误差对实验也有一定影响。

四、小结

用液体深层发酵生产糖化酶,由于黑曲霉具很强的抗污染力,生产力强,易培养,所以菌种培养条件一般很好控制,不会受到污染,而发酵条件难以控制。这正是提高酶活的关键。据中科院研究认为,酶的形成时刻与培养时间无关,而与培养基的PH变化有关,只有当PH从3.0回升时才能开始检测出酶活力,PH回升到4.5以后酶开始大量形成。

参考文献:

[1]郭勇.酶工程.科学出版社,2004.

[2]尹光琳.发酵工业全书.中国医药科技出版社,1992.

(上接77页)这套理论,运用了早期转换生成语法中的“核心句”的概念,打破了传统句法的束缚,使用更能反映词与词深层关系的分词法,彻底抛弃了传统语法中词性(parts of speech)对译者的禁锢,使用符合同构现象翻译中表面的差异可能恰恰是深层的一致。换句话说,一个符号从一个体系中搬到另一个体系中保留原来的面貌虽然在表面看是忠于原有的符号,但实际上可能恰恰背叛了原来的符号。将2从2-4-8这一体系中拿出来,放到16-32-64这个体系中,就应该将2改成16;因为在后面一体系中能真实反映2在原来体系中价值的恰恰是16。这样奈达建立起了一套强调目的语或者叫做强调“归化”译法的理论。只要在20世纪80年代关注过翻译研究的人一定会发现,奈达这个名字几乎是翻译研究人员挂在嘴边的常用词,讨论翻译几乎到了言必称奈达的地步。

我们比较一下“功能对等”和“信达雅”等中国翻译标准,就会发现它们从本质上有殊途同归之妙。尽管奈达长篇大论,引经据典,使用了语言学、符号学等概念,他得出的结论和“信达雅”、“神似”、“化境”有很多相似之处。两者表达的角度和方法上完全不同,一个客观把握,一个微观求证,但在指导翻译实践中,基本上都是把译者往相同的方向引导。由于奈达的理论有其不严密的地方,所以后来招来了不少批评,主要认为他的理论太宽松,容易忽略原文语言文化的特色。如根据奈达的理论,有些文化中男子见面时要亲面颊,但西方文化在同样的场合都是握手。因此可以说,亲面颊这一符号的功能对等物就是握手。这一下,反对的人一定就多了,因为显然在握手和亲面颊之间存在着极大的文化差异,这么一对等,不就抹掉了原文的文化特色吗?(叶子南,2004:261)

结束语:说到翻译标准,最具代表性和权威性的,莫过于严复的“信达雅”与奈达的“功能对等”了。然而,这两个标准都有其自身的不足,不足以作为“翻译标准”的承担者。“翻译标准”在哪里?谁能找到呢?我们期待着。

参考文献:

[1]黄忠廉,李亚舒.科学翻译学[M].北京:中国对外翻译出版公司,2004.

[2]刘扬,王佳娣.信达雅——箴言化高层级的翻译标准[J].湘潭大学学报,2007,(5).

[3]沈云龙.梁任公近著.佛典之翻译:中卷[C].台北:文海出版社,1985.

[4]叶子南.英汉翻译对话录[M].北京:北京大学出版社,2004.

[5]郁达夫.读了珰生的译诗而论及于翻译[J].论语,1933, (8).

[6]张培基等.英汉翻译教程[M].上海:外语教育出版社,2007.

94

(完整版)年产5000吨糖化酶发酵车间设计

南阳理工学院 本科生毕业设计 学院(系):生物与化学工程学院 专业:生物工程 学生: ******* 指导教师:李慧星 完成日期 2010 年 5 月

南阳理工学院本科生毕业设计 年产5000吨糖化酶发酵车间设计 The design of annual output of 5000 tons of glucoamylase fermentation factory workshop 总计:毕业设计(论文)28页 表格: 5 个 插图: 1 幅

南阳理工学院本科毕业设计 年产5000吨糖化酶发酵车间设计 The design of annual output of 5000 tons of glucoamylase fermentation factory workshop 学院(系):生物与化学工程学院 专业:生物工程 学生姓名:郭留洋 学号:***** 指导教师:****** 评阅教师: 完成日期:2010年5月 南阳理工学院 Nanyang Institute of Technology

年产5000吨糖化酶发酵车间的工艺设计 生物工程专业郭留洋 【摘要】糖化酶是工业生产的主要酶制剂之一,广泛用于酿酒、葡萄糖、果葡糖浆、抗菌素、乳酸、有机酸、味精、棉纺厂等各方面。本设计以玉米淀粉为主要原料,利用黑曲霉,采用机械搅拌通风罐进行发酵生产,完成生产5000吨糖化酶发酵车间工艺设计,通过工艺流程设计、工艺衡算、设备选型和车间布置设计,设计出生产5000吨糖化酶发酵车间采用3个75m3发酵罐和3个6m3种子罐等,并依据生物工程工厂车间布置原则,对发酵罐车间进行合理布置,绘制了工艺流程图和车间布置图,工艺设计的结果为糖化酶的生产提供一定参考。 【关键字】糖化酶工厂设计深层发酵黑曲霉

黑曲霉菌株发酵生产糖化酶发酵罐设计

目录 第一章绪论 (1) 第二章罐体几何尺寸的确定 (2) 2.1夹套反应釜的总体结构 (2) 2.2 几何尺寸的确定 (2) 第三章罐体主要部件尺寸的设计计算 (5) 3.1 罐体 (5) 3.2 罐体壁厚 (5) 3.5人孔和视镜 (6) 3.6接口管 (6) 3.6.1 管道接口(采用法兰接口) (6) 3.6.2 仪表接口 (7) 第四章冷却装置设计 (8) 4.1 冷却方式 (8) 4.2 装液量 (8) 4.3 冷却水耗量 (9) 4.4 冷却面积 (9) 第五章搅拌器轴功率的计算 (10) 5.1不通气条件下的轴功率P0 (10) 5.2通气搅拌功率Pg的计算 (11) 5.3电机及变速装置选用 (11) 第六章结论 (13) 参考文献 (13)

第一章绪论 我设计的是一台30M3机械搅拌通风发酵罐,发酵生产糖化酶。 糖化酶,也称葡萄糖淀粉酶(EC3.2.1.3),主要用途是作为淀粉糖化剂。它与a-淀粉酶结合可将淀粉酶转化为葡萄糖,可供葡萄糖工业,酿酒工业和氨基酸工业等应用,是工业生产中最重要的酶类之一,也是我国产量最大的酶制剂产品。黑曲霉A.S.3.4309是国内糖化酶活性最高的菌株之一。 糖化酶生产菌重要的有:雪白根霉,德氏根霉,河内根霉,爪哇根霉,台湾根霉,臭曲霉,黑曲霉,河枣曲霉,宇佐美曲霉,红曲霉,扣囊拟内孢霉,泡盛曲霉,头孢霉,甘薯曲霉,罗耳伏革菌。 综合温度、PH等因素选择黑曲霉A.S.3.4309菌株,该菌种最适发酵温度为32-34℃,pH为4.5,培养基为玉米粉2.5%,玉米浆2%,豆饼粉2%组成。 主要生产工艺过程为如下:菌种用蔡式蔗糖斜面于32℃培养6天后,移植在以玉米粉2.5%,玉米浆2%.组成的一级种子培养基中,与32℃摇瓶培养24-36h,再接入(接种量1%)种子罐(培养基成分与摇瓶发酵相同),并与32℃通气培养搅拌24-36h,然后再接入(接种量5%-7%)发酵罐。发酵培养基由玉米粉2.5%,玉米浆2%,豆饼粉2%组成(先用a-淀粉酶液化),发酵温度为32℃,在合适的通气搅拌条件下发酵96小时酶活性可达6000u·ml-1 。 发酵液滤去菌体,如有影响糖化效率的葡萄糖甘转移酶存在,则通过调节滤液PH 等方法使其除去,再通过浓缩将酶调整到一定单位,并加入防腐剂(如苯甲酸)。如制备粉状糖化酶,则可通过盐析或加酒精使酶沉淀,沉淀经过压滤,滤泥再通过压条烘干,粉碎,即可制成商品酶粉。 发酵罐主要由罐体和冷却蛇管,以及搅拌装置,传动装置,轴封装置,人孔和其它的一些附件组成。这次设计就是要对20M3通风发酵罐的几何尺寸进行计算;考虑压力,温度,腐蚀因素,选择罐体材料,确定罐体外形、罐体和封头的壁厚;根据发酵微生物产生的发酵热、发酵罐的装液量、冷却方式等进行冷却装置的设计、计算;根据上面的一系列计算选择适合的搅拌装置,传动装置,和人孔等一些附件的确定,完成整个装备图,完成这次设计。 这次设计包括一套图样,主要是装配图,还有一份说明书。而绘制装配图是生物工程设备的机械设计核心内容,绘制装配图要有合理的选择基本視图,和各种表达方式,

黑曲霉植酸酶液体发酵工艺研究

第14卷第3期武汉科技学院学报Vo1.14No.3 2001年9月JOURNAL OF WUHAN INS TITUTE OF SCIE NCE AND TECHNOLOGY Sep.2001 黑曲霉植酸酶液体发酵工艺研究 王亚林严建芳 (武汉工业学院生物与化学工程系武汉430022) 摘要研究了黑曲霉液体培养生产植酸酶的发酵工艺,研究了培养基碳源、诱导物、表面活性剂等因素对产酶的影响,对发酵时间、p H变化规律等进行了研究和分析。 关键词植酸酶黑曲霉发酵X 中图分类号Q815;Q814.9 植酸酶作为一种饲料和食品添加剂,在国内外已开始得到广泛应用,特别是由于其在改善环境方面的作用,更是受到人们的极大关注。植酸酶主要存在于植物及微生物中,由于在微生物中含量较高而具有较大的开发价值。目前,美国、荷兰和丹麦等国已先后运用发酵法生产植酸酶,我国也已在进行这方面的研究开发。可以预计,植酸酶制剂将有良好的市场前景。 1材料与方法 1.1菌种 黑曲霉(Aspergillus niger)W S201,武汉工业学院微生物室保存。 1.2培养基 1.2.1种子培养基:豆芽汁蔗糖培养基。 1.2.2摇瓶发酵培养基(%):葡萄糖3.0,淀粉7.0,NH4NO30.5,蛋白胨0.2,CaCl20.2,MgSO4# 7H2O0.05,KCl0.05,MnSO4.4;H2O0.03,pH值5.5。 1.3培养方法 配制培养基时适当加热、摇动或搅拌,使淀粉溶解成液态或胶状,121e灭菌20min。在30?1e下摇床培养3~5d(转速220~250r/min)。 1.4植酸酶的测定 植酸酶活力的定义:37e,pH5.5条件下每分钟从植酸钠中释放出1L mol无机磷所需的酶为1u。 酶活测定方法:取0.1ml含酶液加至一洁净试管中;加入0.9ml反应液,反应液为含0.5%植酸钠的乙酸-乙酸钠缓冲液(pH5.5),在37e恒温反应30min;加入1ml10%三氯醋酸终止反应;加入2ml显色液,摇匀后静置15~30min显色,显色液由1%钼酸铵50ml与3.66 X收稿日期:2001-06-26 作者简介:王亚林,男,副教授,在读博士生;研究方向:发酵工程、生化工程

米曲霉

1.菌种特点: 米曲霉( Asp.oryzae) 属于真菌菌落生长快,10d直径达5~6cm,质地疏松,初白色、黄色,后变为褐色至淡绿褐色。背面无色。分生孢子头放射状,一直径150~300μm,也有少数为疏松柱状。分生孢子梗2mm左右。近顶囊处直径可达12~25μm,壁薄,粗糙。顶囊近球形或烧瓶形,通常40~50μm。上覆小梗,小梗一般为单层,12~15μm,偶尔有双层,也有单、双层小梗同时存在于一个顶囊上。分生孢子幼时洋梨形或卵圆形,长大后多变为球形或近球形,一般4.5μm,粗糙或近于光滑。(半知菌亚门丝孢钢丝孢目从梗孢科曲霉属真菌中的一个常见种)。菌落生长较快,质地疏松。初呈白色、黄色,后转黄褐色至淡绿褐色,背面无色,分布甚广,主要在粮食、发酵食品、腐败有机物和土壤等处。是我国传统酿造食品酱和酱油的生产菌种。也可生产淀粉酶、蛋白酶、果胶酶和曲酸等。会引起粮食等工农业产品霉变。米曲霉(Aspergillus oryzae)具有丰富的蛋白酶系,能产生酸性、中性和碱性蛋白酶,其稳定性高,能耐受较高的温度,广泛地应用于食品、医药及饲料等工业中。米曲霉也是美国食品与药物管理局和美国饲料公司协会1989年公布的40余种安全微生物菌种之一。米曲霉 米曲霉 米曲霉是一类产复合酶的菌株,除产蛋白酶外,还可产淀粉酶、糖化酶、纤维素酶、植酸酶等。在淀粉酶的作用下,将原料中的直链、支链淀粉降解为糊精及各种低分子糖类,如麦芽糖、葡萄糖等;在蛋白酶的作用下,将不易消化的大分子蛋白质降解为蛋白胨、多肽及各种氨基酸,而且可以使辅料中粗纤维、植酸等难吸收的物质降解,提高营养价值、保健功效和消化率,广泛应用于食品、饲料、生产曲酸、酿酒等发酵工业,并已被安全地应用了1000多年。米曲霉是理想的生产大肠杆菌不能表达的真核生物活性蛋白的载体。米曲霉基因组所包含的信息可以用来寻找最适合米曲霉发酵

两种曲霉糖化性质的比较

两种曲酶糖化性质的比较研究在国内传统的制酒行业中,由于黑曲霉含有丰富的酶系如液化酶、糖化酶、纤维素酶和蛋白酶等,自70年代大多都由米曲霉改为黑曲霉作糖化用菌种。但在日本迄今仍在采用米曲霉做糖化菌,说明其中必有原因。鉴于此,本实验以黑曲霉和米曲霉为研究对象,研究比较它们的液化酶和糖化酶(葡萄糖淀粉酶)生产性质。 黑曲霉是一种常见的真菌, 属于半知菌类曲霉属。黑曲霉对营养要求较低, 只要培养基中含有碳源、氮源及磷、钾、镁、硫等元素即能生长良好。黑曲霉可以产生许多种酶, 现已成为工业应用常见的菌种之一。根据bigelis1989年的统计, 25种主要商品酶制剂中就有15种来源于黑曲霉仁, 。它们分别是α-淀粉酶、过氧化氢酶、纤维素酶、葡萄糖酶、糖化酶、葡萄糖氧化酶、半纤维素酶、橙皮昔酶、脂肪酶、果胶酶、蛋白酶、单宁酶。美国准许使用的食品工业用酶生产菌种只有黑曲霉、酵母、枯草杆菌等约20种, 其中以黑曲霉所产酶类最多。我国酶制剂工业生产用菌种中, 黑曲霉占了17种中3种, 即黑曲霉变异株和,它们分别用于糖化酶、果胶酶和酸性蛋白酶的生产[1]。黑曲霉酶类在工业上具有重要的作用, 例如, 柠檬酸等有机酸的发酵生产、食品及饮料加工以及用于轻化工业、纺织工业、饲料加工和废物的处理等等。总之, 黑曲霉生产的酶制剂具有用量大、应用范围广、安全性好的特点, 已愈来愈受到人们的重视。 米曲霉的菌丝由多细胞组成,是一类产复合酶的菌株,除产蛋白酶外,还可产淀粉酶、糖化酶、纤维素酶、植酸酶等。在淀粉酶的作用下,将原料中的直链、支链淀粉降解为糊精及各种低分子糖类,如麦芽糖、葡萄糖等;在蛋白酶的作用下,将不易消化的大分子蛋白质降解为蛋白胨、多肽及各种氨基酸,而且可以使辅料中粗纤维、植酸等难吸收的物质降解,提高营养价值、保健功效和消化率,广泛应用于食品、饲料、生产曲酸、酿酒等发酵工业。 1 材料与方法 1.1材料 菌种:黑曲霉UV-48;米曲霉-4 1.2培养基 种子培养基(土豆汁培养基;察式培养基);发酵培养基(麸皮培养基;液

米曲霉生产糖化酶工艺

1.米曲霉是一种好气性真菌,菌丝一般呈黄绿色,米曲霉的菌丝由多细胞组成,是一类产复合酶的菌株,除产蛋白酶外,还可产淀粉酶、糖化酶、纤维素酶、植酸酶等。在淀粉酶的作用下,将原料中的直链、支链淀粉降解为糊精及各种低分子糖类,如麦芽糖、葡萄糖等;在蛋白酶的作用下,将不易消化的大分子蛋白质降解为蛋白胨、多肽及各种氨基酸,而且可以使辅料中粗纤维、植酸等难吸收的物质降解,提高营养价值、保健功效和消化率,广泛应用于食品、饲料、生产曲酸、酿酒等发酵工业。 米曲霉在工业上的应用:用于发酵生产豆豉、豆酱;与黑曲霉、绿色木霉复合发酵用于酱油生产;用于饲料工业;用于酿酒制曲、生产低醇乳糖饮料。 2.葡萄糖淀粉酶又称γ一淀粉酶, 简称糖化酶,糖化酶是一种含有甘露糖、葡萄糖、半乳糖和糖醛酸的糖蛋白,在工业中应用的糖化酶主要是从黑曲霉、米曲霉、根霉等丝状真菌和酵母中获得,从细菌中也分离到热稳定的糖化酶, 人的唾液、动物的胰腺中也含有糖化酶生产方法: a.黑曲霉固体发酵法 工艺流程:试管菌种→三角瓶款曲扩大培养→帘子曲种→通风制曲→成品。 b.液体深层发酵法. 工艺流程:试管斜面种子→种子扩大培养→发酵→过滤→浓缩→干燥→粗酶制剂。

糖化酶成品提取工艺 成品糖化酶可分为液体酶和固体酶2 种, 而固体酶的制备方法又可 分为盐析法、有机溶剂沉淀法和附吸法等, 采用一条合理的提取工艺, 可制备系列酶产品以满足不同行业的需求及降低成品的成本. 目前国外糖化酶生产一般采用液体深层培养, 发酵罐最大可达200m , 罐体都采用不锈钢制造, 冷却系统采用罐外冷却盘管关键阀门都采 用隔膜阀, 培养基可在罐内灭菌, 也可用薄板冷却器作连续灭菌, 并装有节能器, 发酵过程中的控制参数有搅拌功率、溶解氧、空气 中的二氧化碳与氧气量以及温度、P H 等。 糖化酶处理技术: 糖化酶的处理工艺过程分为预处理、固液分离、液体浓缩、酶的沉淀干燥四个工序。国外采用的无机絮凝剂有硫酸铝、碱式氯化铝、氯化铁、锌盐等能在水中形成各种氢氧化物凝胶;采用的有机高分子絮凝剂有聚苯乙烯磺酸、聚丙烯酸(或钠盐) 、聚甲基丙烯酸、聚丙烯酞胺等。国内外最普遍采用的固液分离设备是板框压滤机, 除此以外, 国外还有管式、多室式、碟式及篮式离心机, 国内主要采用篮式离心机, 也有少数管式离心机的厂家。国内外糖化酶的浓缩方式已从蒸发浓缩发展到超滤浓缩。目前采用的超滤装置有搅拌室式、浅道式系统、套筒膜式和中空纤维。沉淀酶方式, 国内外仍普遍用硫酸钱或硫酸钠等中性盐类盐析糖化酶。 3.植酸提高米曲霉产糖化酶能力:

大麦_淀粉酶和黑曲霉糖化酶在酿酒酵母中的表达和分泌

大麦α2淀粉酶和黑曲霉糖化酶在 酿酒酵母中的表达和分泌 3罗进贤 李政海 李文清 (中山大学生物化学系及生物工程中心,广州510275) 摘要 将大麦α2淀粉酶和黑曲霉糖化酶cDNA 重组进同一大肠杆菌2酵母穿梭质粒构建含双基因的表达分泌载体pMA G 15.用原生质体转化法将pMA G 15引入酿酒酵母(S.cerevisiae GRF18),在酵母P GK 基因的启动子和转录终止信号及本身的信号序列的调控下,实现大麦α2淀粉酶和糖化酶的高效表达,99%以上的酶活力分泌至培养基中.构建的酿酒酵母菌株GRF18(pMA G 15)在含15%可溶性淀粉的培养基中,培养47h 能水解99%的淀粉,并能发酵产生酒精. 关键词 大麦α2淀粉酶 黑曲霉糖化酶 酿酒酵母 表达和分泌 酿酒酵母是酿酒工业、酒精和单细胞蛋白的生产菌,但由于其不具有淀粉水解酶的活力不能发酵淀粉.发酵前淀粉需先经过蒸煮、液化、糖化等工序变成葡萄糖后才能被利用.从80年代中期开始将各种来源的α2淀粉酶和糖化酶基因分别克隆进酿酒酵母,构建能分解淀粉的酵母菌株[1~5].只是由于构建菌株的酶活力不高,降解淀粉的速率较慢还不能用于生产.我们曾将地衣芽孢杆菌α2淀粉酶基因及黑曲霉糖化酶G AI 的cDNA 分别或同时转入酿酒酵母获得表达和分泌[6~9],其中含α2淀粉酶和糖化酶双基因的酿酒酵母GRF18(YEpMA G 27),酶的表达和分泌水平都很高,但淀粉水解的速率仍较低.本文报道用酶学性质与黑曲霉糖化酶比较接近的大麦α2淀粉酶取代细菌α2淀粉酶,构建含大麦α2淀粉酶和黑曲霉糖化酶双基因的酿酒酵母工程菌,实现α2淀粉酶和糖化酶的高表达和分泌,获得能快速分解淀粉的酵母工程菌. 1 材料和方法 111 材料 11111 菌株与质粒 本研究所用菌株与质粒如表1,其中pBAL 27是含大麦α2淀粉酶基因的大肠杆菌2酵母穿梭质粒,pMA G 69为含黑曲霉糖化酶G AI cDNA 的大肠杆菌2酵母穿梭质粒. 11112 培养基 大肠杆菌培养和转化用LB 培养基,酵母的培养和转化使用的YPD , 1996209208收稿,1996211205收修改稿 3广东省自然科学基金资助项目 中国科学 (C 辑) 第28卷 第1期SCIENCE IN CHINA (Series C )  1998年2月

黑曲霉生产糖化酶及酶活测定_单海艳

第19卷 第7期 牡丹江大学学报 Vol.19 No.7 2010年7月 Journal of Mudanjiang University Jul. 2010 92 文章编号:1008-8717(2010)07-0092-03 黑曲霉生产糖化酶及酶活测定 单 海 艳 (牡丹江大学,黑龙江 牡丹江 157000) 摘 要:本文对黑曲霉突变株Uv11-48生产糖化酶液体深层发酵进行了全程生产工艺的研究,证实了黑曲霉突变株是一种产孢力强、抗污染能力强、易培养的糖化酶生产菌,经液体深层通风发酵可得出:只要充分利用突变株的有利条件,掌握好菌种特性,合理配制营养,控制好发酵条件,便可获得高酶活力的高产糖化酶。本实验还运用了几种酶活力测定方法,以资进行优劣探讨。 关键词:黑曲霉;液体通风发酵;糖化酶;酶活力 中图分类号:Q-331 文献标识码:B 一、前言 (一)黑曲霉菌种特性 1.黑曲霉的分类地位 黑曲霉在分类学上处于:真菌门、半知菌亚门、丝孢纲、丝孢目、丛梗孢科、曲霉属、黑曲霉群,拉丁学名:Aspergillus niger 。 2.黑曲霉形态、生理、生态特性 孢子头呈暗黑色,菌丝体由具横隔的分枝菌丝构成,菌丝黑褐色,顶囊球形,小梗双层,分生孢子球形,平滑或粗糙。一般进行无性生殖,其可育细胞称足细胞。 3.黑曲霉突变株的形态、生理、生态、特征 在查氏培养基上菌落曲型为炭黑色,有辐射沟纹,从菌落边缘向中心,分化为伸长部位,活性部位,成熟部位,老化部位几个区域即孢子萌发最早出现于中心部位是伸展部位,并逐渐形成密生部位,分生孢子部位,最后在中心出现的是成熟部位,菌落背面无色或稍黄。 (二)糖化酶的分类、地位、性质及用途 1.糖化酶在国际酶学委员会,在系统命名法中的地位 糖化酶是淀粉酶,在系统命名法中属水解酶类。 2.糖化酶的性质 糖化酶(glucamylase )又名糖化型淀粉酶(glueoamylase )或淀粉葡萄糖苷酶。其系统名称为淀粉α1.4-葡萄聚糖水解酶。糖化酶是一种胞外外切酶,但其专一性低,主要是从淀粉链的非还原性末端切开α-1.4-键。一般淀粉水解程度达80%。 (1)糖化酶中糖和蛋白组成 糖化酶是一种糖蛋白,通常碳水化合物占4%-18%,这些碳水化合物主要是半乳糖、葡萄糖、葡萄糖胺和甘露糖,糖化酶残基的排列在其热和酸碱稳定性上有特殊意义。 (2)糖化酶组分多型性 真菌产生的糖化酶组分多型性是常见的,市售的糖化酶中可分离出葡萄糖酶?和葡萄糖酶И两种组分。而市售黑曲霉生产的糖化酶曾分离出六种活性组分,每种均可从可溶性淀粉中释放出单一的β-D-葡萄糖。这六种组分的分子量,沉淀系数,化学组分,等电点,酶的动力学及其它性质各异。培养基成分和的生产条件对糖化酶组分多型性也有影响,天然糖化酶在微生物培养或酶的制备过程中可能受葡萄糖苷酶和蛋白酶的作用而成多型性的酶类。 (3)糖化酶的热稳性 工业用的糖化酶都是利用它的热稳性,α-环状糊精可提高糖化酶的热稳性,最适温度范围一般为50℃~60℃。 (4)从酶PH 稳定性上看: 糖化酶具较宽的PH 值适应范围,但最适PH 为4-5。 (5)Ca 离子与酶结合后可使结构变得松散些,更有利于催化反应。 (6)糖化酶与底物亲和性 收稿日期:2009-11-26 作者简介:单海艳(1977—),女,牡丹江大学化工系讲师,研究方向:生物教学。 DOI:10.15907/https://www.360docs.net/doc/3910847711.html,ki.23-1450.2010.07.036

糖化酶

我国糖化酶的研究概况 糖化酶是世界上生产量最大应用范围最广的酶类,介绍了糖化酶的结构组成、特性、生产、提取、活力检测以及提高酶活力的研究。主要的内容包括:一、糖化酶的简介 糖化酶是应用历史悠久的酶类,1 500年前,我国已用糖化曲酿酒。本世纪2O年代,法国人卡尔美脱才在越南研究我国小曲,并用于酒精生产。50年代投入工业化生产后,到现在除酒精行业,糖化酶已广泛应用于酿酒、葡萄糖、果葡糖浆、抗菌素、乳酸、有机酸、味精、棉纺厂等各方面,是世界上生产量最大应用范围最广的酶类。 糖化酶是葡萄糖淀粉酶的简称(缩写GA或G)。它是由一系列微生物分泌的,具有外切酶活性的胞外酶。其主要作用是从淀粉、糊精、糖原等碳链上的非还原性末端依次水解a一1,4糖苷键,切下一个个葡萄糖单元,并像B一淀粉酶一样,使水解下来的葡萄糖发生构型变化,形成B—D一葡萄糖。对于支链淀粉,当遇到分支点时,它也可以水解a一1,6糖苷键,由此将支链淀粉全部水解成葡萄糖。糖化酶也能微弱水解a一1,3连接的碳链,但水解a一1.4糖苷键的速度最快,它一般都能将淀粉百分之百地水解生成葡萄糖。 二、糖化酶的结构组成及分类 糖化酶在微生物中的分布很广,在工业中应用的糖化酶主要是从黑曲霉、米曲霉、根霉等丝状真菌和酵母中获得,从细菌中也分离到热稳定的糖化酶,人的唾液、动物的胰腺中也含有糖化酶。不同来源的淀粉糖化酶其结构和功能有一定的差异,对生淀粉的水解作用的活力也不同,真菌产生的葡萄糖淀粉酶对生淀粉具有较好的分解作用。 糖化酶是一种含有甘露糖、葡萄糖、半乳糖和糖醛酸的糖蛋白,分子量在60 000 到1 000 000间,通常碳水化合物占4% 18%。但糖化酵母产生的糖化酶碳水化合物高达80%,这些碳水化合物主要是半乳糖、葡萄糖、葡萄糖胺和甘露糖。 三、糖化酶的特性 1、糖化酶的热稳定性 在糖化酶的热稳定性机理及筛选热稳定性糖化酶菌株上。工业上应用的糖化酶都是利用它的热稳定性。一般真菌产生的糖化酶热稳定性比酵母高,细菌产生

酶制剂——植酸酶

酶制剂——植酸酶 早在1915年,Anderson提出天然植酸磷利用率不同于化学分离纯化产品的一个可能原因是饲料成分中存在水解植酸磷为无机磷的酶——植酸酶,并对植酸酶的来源、理化特性及作用机理进行了研究,从而引起了许多学者的广泛关注。近年来,随着发酵工程和生物技术的迅速发展以及人们环境保护意识的提高,采用DNA重组技术使微生物产生植酸酶活性大幅度提高,大大降低了植酸酶生产成本,从而使之得到广泛应用。植酸酶现已成为饲料酶制剂研究的一个热点,尤其在一些畜禽饲养密度大、环境污染严重的国家如美国、加拿大、芬兰、荷兰、法国、瑞士等。许多科学家对这一课题的研究很感兴趣,欧洲、北美和其它地区对此的兴趣也与日俱增。1994年欧共体、美国、芬兰、丹麦、德国等国的生产企业均前后推出各种植酸酶制剂,并利用DNA重组技术获得生产植酸酶的工程菌,为广泛应用植酸酶提供了可能。 一、植酸酶结构及性质 植酸酶,又称为肌醇六磷酸水解酶,是一种可使植酸磷复合物中的磷变成可利用磷的酸性磷酸酯酶。植酸酶广泛存在于动植物组织中,也存在于微生物(细菌、真菌和酵母)。目前分离出的植酸酶主要有两种:3-植酸酶(EC 3.1.3.8)和6-植酸酶(EC 3.1.3.26),前者最先水解的是肌醇3号碳原子位置的磷酸根,主要存在于动物和微生物;后者最先水解的是6号碳原子的磷酸根,主要存在于植物组织。因此,动物胃肠道可能有三种来源的植酸酶,但主要来源于饲料本身以及来源于微生物合成。 大量高浓度的植酸酶主要存在于无花果曲霉和黑曲霉与小麦麸的培养物中。因此饲料植酸酶的生产目前主要使用微生物曲霉菌株。霉菌植酸酶分子量一般在60 ~ 100KDal之间,曲霉植酸酶分子量较大。如土曲霉为214Kdal,无花果曲霉为85 ~ 100KDal,黑曲霉为200KDal。细菌植酸酶分子量一般较小,如大肠杆菌为42Kdal,枯草杆菌为38KDal。霉菌植酸酶通常有一个最适pH,在4.2 ~ 5.5范围内。细菌植酸酶最适pH稍高一些。据报道,某些霉菌植酸酶,特别是曲霉植酸酶具有多个最适pH值。酶的最适温度因酶来源不同而有差异。霉菌植酸酶适宜温度通常在45 ~ 57℃范围内,黑曲霉为53℃,无花果曲霉为55℃。

米曲霉在食品中的应用

米曲霉在食品中的应用 摘要:介绍了米曲霉的生物学特性,并综述了它在调味品、饲料、生产曲酸、消除乳糖不耐症、酿酒等方面的应用,提出了其发 展前景。 关键词:米曲霉;工业:应用;展望 1米曲霉的生物学特征 米曲霉CAs ) 是一种好气性真菌,属于半知菌亚门、曲霉属,菌丝一般呈黄绿色,后为黄褐色,分生孢子梗生长在厚壁的足细胞上,分生孢子头呈放射形,项囊球形或瓶形,小梗一般为单层,分生孢子球形平滑,少数有刺,培养适温为37度。米曲霉的菌丝由多细胞组成,是一类产复合酶的菌株,除产蛋白酶外,还可产淀粉酶、糖化酶、纤 维素酶、植酸酶等。在淀粉酶的作用下,将原料中的直链、支链淀粉降解为糊精及各种低分子糖类,如麦芽糖、葡萄糖等;在蛋白酶的作用下,将不易消化的大分子蛋白质降解为蛋白胨、多肽及各种氨基酸, 而且可以使辅料中粗纤维、植酸等难吸收的物质降解,提高营养价值、保健功效和消化率,广泛应用于食品、饲料、生产曲酸、酿酒等发酵业。 2米曲霉在工业上的应用 2.1用于发酵生产 豆豉、豆酱豆豉是我国古老的大豆发酵制品之一,营养丰富,药食兼用,对我国人民的饮食文化和医疗保健发 挥着重大作用。在传统豆豉酿造工艺中,米曲霉酿造豆豉在我国应用最早、最广。《食经》等历史文献记载作豉法大都是米曲霉豆豉。当时先人们能够巧妙地控制米曲霉的最适温度,不超过37℃,“温如人腋下”,直到“后着黄衣,色均足”。由于没有显微镜,看不到微生物的个体形态,但能通过微生物的群体形态“黄农”来控制微生物的生长繁殖。成曲以米曲霉为主,兼有其它霉菌、酵母和细菌等稳定的群 体。随着科学发展,在前人基础上相继出现改良的多菌制曲和无盐固态发酵工艺,己达到相当高的水平,在生产实践中产生了良好的效果。 随着人们对食品的营养结构及保健性要求的提高,虽然酱具特有的色、香、味,然而已满足不了人民生活水平不断提高的需求。最近,日本研制了保健酱一荞麦豆酱,其除了含有17种氨基酸外,还含有 其它酱品没有的芦丁(2.4rag/lOOg),在保持原有豆酱生理机能的同时,又增加了荞麦的保健性,是一种多功能的保健调味品。鞠洪荣等[3]研究表明,在传统工艺和日本工艺的基础上进行改进,即按一定比例如入米曲霉酿造的荞麦豆酱,酱香较浓,与传统豆酱相比具有独特的醇香味,且提高了营养价值和保健效果,有潜在的市场前景。 2.2与黑曲霉、绿色木霉复合发酵 用于酱油生产酱油酿造主要靠米曲霉的作用。在米曲霉生过程中能分泌多种酶系,其中最重要的是蛋白酶、淀粉酶和酯酶等。天然发酵酱油是利用蛋白酶的水解作用,将豆类中的蛋白质降解成多肽、氨基酸等可溶性含氮物,且口味好,营养丰富,是营养性风味调料的发展方向[4]。而淀粉酶的作用是将制曲后原料中的淀粉或经糖化后糖浆中残留的淀粉进一步彻底糖化降解,糖化后生成的单糖类如葡萄糖、果糖、多缩戊糖等,对酱油的色、香、味、体有重要影响。因此,米曲霉所产淀粉酶的性质与酱油质量好坏密切相关。吕嘉枥等[5]对分离纯化的米曲霉(今野菌株)所产.淀粉酶进行了研究,探索出了该菌株产淀粉酶的培养温度和最佳培养时间。米曲霉酶系活性的高低将直接影响到原料的利用率及产品的产率,影响酱油中可溶性含氮物的含量,从而也会影响酱油的品质;而米曲霉产孢子能力的强弱则会影

植酸酶

X X 大学题目:植酸酶 姓名 XX 学号XXXXXXXXX 学院生命科学学院 年级专业 2012级微生物 课程名称发酵工程调控 任课教师 XX

植酸酶 生命科学学院20XX级研究生 摘要:文章介绍了植酸酶分类和来源,以及现阶段植酸酶在饲料、食品、酒精、环境保护方面的应用,其中在饲料中的广泛应用给植酸酶的发展带来了良好的前景。植酸酶的生产主要有两种方法:固体发酵和液体发酵,虽然固体培养设备比较简单、成本低、对环境危害小、易于推广,但放大比较困难、培养参数控制较复杂、容易污染杂菌,而且生产的植酸酶分离纯化较难因此目前工业生产主要用液体发酵的方法进行生产。 关键词:植酸酶固体发酵液体发酵培养参数 1前言 1.1植酸酶的简介 植酸的化学名称是肌醇六磷酸酯,是肌醇和磷酸根结合而成的化合物,其化学结构是由六个碳原子构成的正六边形,每个碳原子上连有一个带负电的磷酸根,具很强的螯合能力,与EDTA接近。植酸的分子式为C6H18O24P6,含磷量为281.6mg/g。其结构见下图: 植酸酶( phytase)属于磷酸水解酶,是催化植酸和植酸盐水解成肌醇和磷酸( 或盐) 的一类酶的总称, 系统名称为肌醇六磷酸酶, 属于磷酸单脂水解酶, 是一类特殊的酸性磷酸酶,水解产物是肌醇、无机磷及其他可能与植酸结合的物质,如钙、锌、镁、锰等微量元素以及蛋白质、淀粉。

1.2植酸酶的分类 植酸酶的分类及来源植酸酶主要指 6-植酸酶和 3-植酸酶。 6-植酸酶( EC 3. 1. 3. 26) 首先催化磷酸从肌醇的第六位碳脱落, 3-植酸酶( EC 3. 1. 3. 8) 首先使肌醇第三位碳的磷酸解离, 最终产物都是单磷酸肌醇和正磷酸。植酸酶有三种来源:动物、植物和微生物, 因来源不同而具有显著不同的分子特征和催化 特性。 a 在动物消化道内作用的植酸酶可能来源于:a 小肠内分泌; b 肠道微生物产生; c 饲料中的内源性植酸酶; d 外源微生物产生的植酸酶等。其中,外源植酸酶在植酸水解过程中起主要作用。在自然界中,植酸酶广泛存在于动植物组织和微生物中。 b植物植酸酶均属于肌醇六磷酸-6-磷酸酶,存在于大多数禾谷物中,其活性有很大的 差异。而小麦、大麦和经处理的玉米蒸馏物的活性很高。谷物植酸酶在干燥状态下没 有活性,在消化道被激活后才有活性。 C 微生物植酸酶属于肌醇六磷酸-3-磷酸水解酶,自然界中许多微生物都产植酸酶,目 前认为产量最高的是真菌,其主要来源于曲霉菌和黑曲霉菌。 1.3 植酸酶的理化性质 植酸酶是一种单体蛋白, 其分子量因来源不同差异很大, 一般在 35-700 kD 之间, 包括一个大分子和一个小肽片断。研究发现无花果曲霉植酸酶有594 个氨基酸残基, 其中包括 37% 的非极性氨基酸、42% 的极性中性氨基酸、11. 5% 的酸性氨基酸和9. 5% 的碱性氨基酸, 其二级结构由 17. 3% 的 A螺旋、29%B折叠、32.6% 的转角和 24. 7% 的无规卷曲所形成。植酸酶除含有蛋白质外, 还含有约 27. 3%的寡糖, 是一种糖蛋白。 纯化的酶晶体结构包含434 个氨基酸, 115 个水分子和一个硫化物结合位点的二价硫 离子。 1.4 植酸酶的市场前景 植酸酶的研究从 20世纪 60年代就已开始,但由于对其认识不足, 相对于其他工业用酶发展缓慢, 到 80年代时, 饲料中还几乎不添加任何植酸酶。随着人们对动物营养学、饲料学研究的深入和集约化养殖的形成, 植酸酶的良好前景得以体现, 同时分子生

米曲霉

米曲霉( Asp.oryzae) 属于真菌菌落生长快,10d直径达5~6cm,质地疏松,初白色、黄色,后变为褐色至淡绿褐色。背面无色。分生孢子头放射状,一直径150~300μm,也有少数为疏松柱状。分生孢子梗2mm左右。近顶囊处直径可达12~25μm,壁薄,粗糙。顶囊近球形或烧瓶形,通常40~50μm。上覆小梗,小梗一般为单层,12~15μm,偶尔有双层,也有单、双层小梗同时存在于一个顶囊上。分生孢子幼时洋梨形或卵圆形,长大后多变为球形或近球形,一般4.5μm,粗糙或近于光滑。(半知菌亚门丝孢钢丝孢目从梗孢科曲霉属真菌中的一个常见种)。菌落生长较快,质地疏松。初呈白色、黄色,后转黄褐色至淡绿褐色,背面无色,分布甚广,主要在粮食、发酵食品、腐败有机物和土壤等处。是我国传统酿造食品酱和酱油的生产菌种。也可生产淀粉酶、蛋白酶、果胶酶和曲酸等。会引起粮食等工农业产品霉变。米曲霉(Aspergillus oryzae)具有丰富的蛋白酶系,能产生酸性、中性和碱性蛋白酶,其稳定性高,能耐受较高的温度,广泛地应用于食品、医药及饲料等工业中。米曲霉也是美国食品与药物管理局和美国饲料公司协会1989年公布的40余种安全微生物菌种之一。 米曲霉是一类产复合酶的菌株,除产蛋白酶外,还可产淀粉酶、糖化酶、纤维素酶、植酸酶等。在淀粉酶的作用下,将原料中的直链、支链淀粉降解为糊精及各种低分子糖类,如麦芽糖、葡萄糖等;在蛋白酶的作用下,将不易消化的大分子蛋白质降解为蛋白胨、多肽及各种氨基酸,而且可以使辅料中粗纤维、植酸等难吸收的物质降解,提

高营养价值、保健功效和消化率,广泛应用于食品、饲料、生产曲酸、酿酒等发酵工业,并已被安全地应用了1000多年。米曲霉是理想的生产大肠杆菌不能表达的真核生物活性蛋白的载体。米曲霉基因组所包含的信息可以用来寻找最适合米曲霉发酵的条件,这将有助于提高食品酿造业的生产效率和产品质量。米曲霉基因组的破译,也为研究由曲霉属真菌引起的曲霉病提供了线索。曲霉(Aspergillus oryzae)具有丰富的蛋白酶系,能产生酸性、中性和碱性蛋白酶,其稳定性高,能耐受较高的温度,广泛地应用于食品、医药及饲料等工业1.1影响米曲霉系的因素 影响米曲霉酶系形成、作用的因素主要有: 1.曲料:曲料米曲霉的菌丝由多细胞组成,具有产酶功能,菌丝体在曲料上生长好坏直接关系到其酶系的形成和酶活性的强弱。酱油制曲过程的实质就是要创造米曲霉生长的最适宜条件,保证米曲霉充分发育繁殖,分泌出酿造酱油所需的各种酶类。所以制曲原料的选择、处理和配比要严格把关。曲料要以蛋白质含量较高、碳水化合物适量为原则进行选择配比。曲料的处理要注意以下几点:1。粉碎要适度。颗粒太粗,会减少米曲霉生长繁殖的总面积,降低酶活力;颗粒太细,润水后容易结块,蒸料时会产生夹心,导致制曲通风不畅,不利于米曲霉的生长。 2.蒸煮要适度。控制蛋白质的适度变性,蛋白质的变性过程对米曲霉生长极其重要。 3.温度酱油发酵的过程就是各种酶促反应的过程,温度越高,酶

黑曲霉菌株发酵生产糖化酶发酵罐设计

目录

第一章绪论 我设计的是一台30M3机械搅拌通风发酵罐,发酵生产糖化酶。 糖化酶,也称葡萄糖淀粉酶(),主要用途是作为淀粉糖化剂。它与a-淀粉酶结合可将淀粉酶转化为葡萄糖,可供葡萄糖工业,酿酒工业和氨基酸工业等应用,是工业生产中最重要的酶类之一,也是我国产量最大的酶制剂产品。黑曲霉是国内糖化酶活性最高的菌株之一。 糖化酶生产菌重要的有:雪白根霉,德氏根霉,河内根霉,爪哇根霉,台湾根霉,臭曲霉,黑曲霉,河枣曲霉,宇佐美曲霉,红曲霉,扣囊拟内孢霉,泡盛曲霉,头孢霉,甘薯曲霉,罗耳伏革菌。 综合温度、PH等因素选择黑曲霉菌株,该菌种最适发酵温度为32-34℃,pH为,培养基为玉米粉%,玉米浆2%,豆饼粉2%组成。 主要生产工艺过程为如下:菌种用蔡式蔗糖斜面于32℃培养6天后,移植在以玉米粉%,玉米浆2%.组成的一级种子培养基中,与32℃摇瓶培养24-36h,再接入(接种量1%)种子罐(培养基成分与摇瓶发酵相同),并与32℃通气培养搅拌24-36h,然后再接入(接种量5%-7%)发酵罐。发酵培养基由玉米粉%,玉米浆2%,豆饼粉2%组成(先用a-淀粉酶液化),发酵温度为32℃,在合适的通气搅拌条件下发酵96小时酶活性可达6000u·ml-1 。 发酵液滤去菌体,如有影响糖化效率的葡萄糖甘转移酶存在,则通过调节滤液PH 等方法使其除去,再通过浓缩将酶调整到一定单位,并加入防腐剂(如苯甲酸)。如制备粉状糖化酶,则可通过盐析或加酒精使酶沉淀,沉淀经过压滤,滤泥再通过压条烘干,粉碎,即可制成商品酶粉。 发酵罐主要由罐体和冷却蛇管,以及搅拌装置,传动装置,轴封装置,人孔和其它的一些附件组成。这次设计就是要对20M3通风发酵罐的几何尺寸进行计算;考虑压力,温度,腐蚀因素,选择罐体材料,确定罐体外形、罐体和封头的壁厚;根据发酵微生物产生的发酵热、发酵罐的装液量、冷却方式等进行冷却装置的设计、计算;根据上面的一系列计算选择适合的搅拌装置,传动装置,和人孔等一些附件的确定,完成整个装备图,完成这次设计。 这次设计包括一套图样,主要是装配图,还有一份说明书。而绘制装配图是生物工程设备的机械设计核心内容,绘制装配图要有合理的选择基本视图,和各种表达方式,有合理的选择比例,大小,和合理的安排幅面。说明书就是要写清楚设计的思路和步骤。

糖化酶发酵、提取及活力测定

SHANDONGUNIVERSITYOFTECHNOLOGY 发酵工艺学实验报告 糖化酶发酵、提取及活力测定实验 学院:生命科学学院 专业班级:生物工程1602 项目组成员:刘松良、张金中、蔡超、何建雨、周钻钻 指导教师:王丽娟 2018年6月

糖化酶发酵、提取及活力测定实验 何健雨王丽娟 生命科学学院生工1602班 1. 实验目的 (1)了解黑曲霉生长特性,学习糖化酶发酵工艺; (2)了解黑曲霉生长特性,学习糖化酶发酵工艺。 (3)学习并掌握糖化酶活力测定方法 2. 实验原理 葡萄糖淀粉酶( glucoamylase,EC.3.3.13)系统名为淀粉a-1,4-葡聚糖葡萄糖水解酶,俗称糖化酶,是国内酶制剂中产量最大的品种。糖化酶对淀粉分子的作用是从非还原性末端切开a-1,4键,也能切开a-1,3键和a-1,6键,生成葡萄糖。 生产糖化酶常用的菌种是黑曲霉,将活化好的黑曲霉制成孢子悬浮液,转接接到三角瓶直接进行发酵,或转接到三角瓶作为种子,进行一次扩大培养后,再转接到发酵罐进行糖化酶发酵。 黑曲霉糖化酶是一种胞外酶。首先采用过滤法将菌体等杂质除去,继而对滤液进行浓缩,最后用有机溶剂如乙醇将酶沉淀出来,对沉淀物进行干燥,加工成成品。 糖化酶有催化淀粉水解的作用,能从淀粉分子非还原性末端开始,分解a-1,4键,生成葡萄糖。葡萄糖分子中含有的醛基能被次碘酸钠氧化,过量的次碘酸钠钠,酸化后析出碘,再用硫代硫酸钠标准溶液标定,计算酶活力。 酶活力定义:1g固体酶粉(或1mL液体酶),于559CpH4.6的条件下,1h分解可溶性淀粉产生1mg葡萄糖,即为一个酶活力单位,以U/mL(U/g)表示。 3. 实验材料 优质大麦芽粉、大米粉、酒花;耐高温-α淀粉酶、糖化酶;乳酸(磷酸); 0.025 mol/L碘液;温度计(100℃)、恒温水浴锅、糖度计、布氏漏斗、分析天平、纱布、玻璃仪器。 4. 方法步骤

植酸酶

植酸酶的研究 一:植酸酶的概念 植酸酶又称肌醇六磷酸水解酶,是一种能降解植酸及其盐类的酯酶,属于蛋白质,是磷酸单脂水解酶。其具有特殊空间结构,能够依次分离植酸分子中的磷,将植酸(盐)降解为肌醇和无机磷,同时释放出与植酸(盐)结合的其他营养物质。 二:植酸酶的发现 植酸酶广泛存在于动物、植物和微生物中,而植物、动物中的植酸酶含量低,所以人们对植酸酶的研究重点转向了酶含量较高的微生物。 目前市场所售植酸酶制剂绝大多数属于微生物植酸酶。自然界中许多微生物(丝状真菌、酵母和细菌等)都能产生植酸酶,尤其是米曲霉和黑曲霉都能分泌具有高活力的植酸酶。 三:菌种选育 以黑曲霉霉菌为例从中得到植酸酶: 1.) 采样:可以从植株、果实中采样。 2). 产植酸酶菌株的分离筛选 分离培养基(%):植酸钙0.1,葡萄糖3.0,硝酸铵0.5,硫酸镁0.05,硫酸锰0.005,硫酸亚铁0.005,氯化钾0.05 分离样品稀释后涂平板,一定温度培养2—5天,产植酸梅的菌株水解植酸钙形成透明圈,以透明圈与菌落直径之比为粗筛的依据。粗筛菌株发酵,测定发酵产物植酸酶的活性,保留活性高的菌株进一步研究。 3). 产酶菌株的诱变 采用紫外线照射对分离菌株进行诱变,将诱变后的菌体做适当稀释后涂布于平板上,培养2—3d后,挑取单菌落接种到活化斜面上,用摇瓶进行初筛和复筛。 细胞破碎提取粗酶液,适当稀释后测酶活(植酸酶活性单位定义:37摄氏度,pH5.5的条件下,1分钟从底物释放1mol无机磷所需要的植酸酶量)。 4). 产酶条件优化 (1)原料配比对产酶的影响麸皮和米糠为畜禽常用的饲料,具有来源广泛价廉等特点,同时还富含植酸盐,对植酸酶的产生有一定的诱导作用。用不同比例麸皮和米糠混合物配制发酵培养基,接种后培养96h,测其酶活。 (2)起始pH值对产酶的影响选用不同起始pH值(4.5,5.0,5.5,6.0,6.5,7.0,7.5,8.0)发酵培养基,接种后培养96h,测其酶活。 (3)培养温度对产酶的影响在不同温度(25,30,35,40,45摄氏度)下接种培养96h,测其酶活。 (4)培养基含水量对产酶的影响培养基加水量选用10个(40,45,50,55,60,65,70,75,80,85%)梯度,接种后在30摄氏度培养96h,测其酶活。 (5)硫酸铵的流加量对产酶的影响在发酵过程中采用流加硫酸铵的形式补充一定的N 源 四:酶的提取及分离纯化 1)提取方法:

糖化酶活力测定(精)

糖化酶活力测定 1. 定义 1g 固体酶粉(或 1ml 液体酶,于 40℃、 pH 值为 4.6的条件下, 1h 分解可溶性淀粉产生 1mg 葡萄糖,即为 1个酶活力单位,以 u/g(u/ml表示。 2. 原理 糖化酶有催化淀粉水解的作用,能从淀粉分子非还原性末端开始,分解α-1,4-葡萄糖苷键生成葡萄糖。葡萄糖分子中含有醛基, 能被次碘酸钠氧化, 过量的次碘酸钠酸化后析出碘,再用硫代硫酸钠标准溶液滴定,计算酶活力。 3. 试剂和溶液 (1乙酸-乙酸钠缓冲溶液(pH 为 4.6。 称取乙酸钠(CH3COONa·3H2O 6.7g ,溶于水中,加冰乙酸(CH3COOH 2.6ml ,用水定容至 1000ml 。配好后用 pH 计校正。 (2硫代硫酸钠标准溶液(Na2S2O3, 0.05mol/L。 (3碘溶液(1/2I2, 0.1mol/L。 (4氢氧化钠溶液(NaOH , 0.1mol/L。 (5 200g/L可溶性氢氧化钠溶液。 (6硫酸溶液(2mol/L。 (7 20g/L可溶性淀粉溶液。 (8 10g/L淀粉指示液。 4. 仪器和设备

恒温水浴锅、秒表、比色管、玻璃仪器。 5. 步骤 (1 待测酶液的制备称取酶粉 1~2g , 精确至 0.0002g (或吸取液体酶 1.00ml , 先 用少量的乙酸缓冲液溶解, 并用玻璃棒捣研, 将上清液小心倾入容量瓶中。沉 渣部分再加入少量缓冲液,如此捣研 3~4次,最后全部移入容量瓶中,用缓冲液定容至刻度(估计酶活力在 100~250u/ml范围内,摇匀。通过 4层纱布过滤,滤液供测定用。 (2测定于甲、乙两支 50ml 比色管中,分别加入可溶性淀粉 25ml 及缓冲液 5ml ,摇匀后,于 40℃恒温水浴中预热 5min 。在甲管(样品中加入待测酶液 2ml , 立刻摇匀, 在此温度下准确反应 30min , 立刻各加入氢氧化钠溶液 0.2ml , 摇匀,将两管取出迅 速冷却,并于乙管(空白中补加待测酶液 2ml ,吸取上述反应液与空白液 5ml ,分别置于碘量瓶中,准确加入碘溶液 10ml ,再加氢氧化钠溶液 15ml ,摇匀,密塞,于暗处反应15min 。取出,加硫酸溶液 2ml ,立即用硫代硫酸钠标准溶液滴定,直至蓝色刚好消失为其终点。 (3计算 X =(A -B c×90.05×32.2/5×1/2×n×2=579.9×(A -B c×n 式中 X ——样品的酶活力(u/g或 u/ml A ——空白消耗硫代硫酸钠溶液的体积(ml B ——样品消耗硫代硫酸钠溶液的体积(ml c ——硫代硫酸钠溶液的浓度(mol/L 90.05——与 1ml 硫代硫酸钠标准溶液(1mol/L相当的以克表示的葡萄糖的质 量

相关文档
最新文档