温度采集报警系统的设计。

温度采集报警系统的设计。
温度采集报警系统的设计。

温度报警控制系统

目录 1.课程设计目的 (2) 2.课程设计的主要内容和任务分析 (2) 3.控制系统的总体要求 (2) 4.温度报警控制系统硬件部分设计分析 (3) 4.1 温度传感器DSl8B20 (3) 4.2 AT89C51单片机简介 (9) 4.3 74HC138功能介绍 (11) 4.4 74HC377功能介绍 (12) 4.5 74HC245功能介绍 (12) 4.6 温度报警控制系统电路图 (13) 5.温度报警控制系统软件部分设计分析 (14) 5.1 程序实现功能 (14) 5.2 程序流程图 (14) 5.3温度报警控制程序 (17) 6. 系统调试 (17) 课程设计体会 (18) 参考文献 (18) 附件 (19)

温度报警控制系统设计 1.设计目的: 1、通过温度报警控制系统的设计,了解数字式温度传感器DS18B20的工作原理及其控制方法; 2、通过温度报警控制系统的设计,掌握单片机AT89C51的结构原理及其控制指令的应用,熟练应用AT89C51完成一个系统的控制; 3、通过温度报警控制系统的设计,使学生了解一个控制系统设计的基本步骤,程序设计的基本方法,培养学生分析问题和解决问题的能力,将理论联系到实践中去,提高我们的动脑和动手的能力,通过课程设计,还可以使学生树立正确的世界观,培养实事求是、严肃认真、具有高度责任感的工作作风; 4、学习完成控制系统的硬件设计、软件设计、仿真调试的过程。 2.课程设计的主要内容和任务分析 任务:以单片机AT89C51作为核心,基于数字式温度传感器DS18B20的功能,设计一个具有LED显示功能、按键功能、温度检测功能及控制操作功能的控制系统。 内容:设计基于DS18B20的数字式烤箱温度控制系统,控制电路主要包括,led显示电路、按键电路、温度检测电路及控制电路。控制程序主要包括主程序、读出温度子程序、按键子程序、显示子程序、控制子程序等。要求能检测、显示烤箱温度,并控制烤箱温度在一可设定区域。 3.控制系统的总体要求: 1.对烤箱温度进行检测及控制。温度显示范围:0゜C~+99゜C,精度误差在

基于单片机的无线温度采集系统的设计

图书分类号: 密级: 毕业设计(论文) 基于单片机的无线温度采集系统的设计DESIGN OF THE WIRELESS TEMPERATURE COLLECTION SYSTEM BASED ON MCU 学生姓名 班级 学号 学院名称 专业名称 指导教师 2009年5月8日

徐州工程学院学位论文原创性声明 本人郑重声明:所呈交的学位论文,是本人在导师的指导下,独立进行研究工作所取得的成果。除文中已经注明引用或参考的内容外,本论文不含任何其他个人或集体已经发表或撰写过的作品或成果。对本文的研究做出重要贡献的个人和集体,均已在文中以明确方式标注。 本人完全意识到本声明的法律结果由本人承担。 论文作者签名:日期:年月日 徐州工程学院学位论文版权协议书 本人完全了解徐州工程学院关于收集、保存、使用学位论文的规定,即:本校学生在学习期间所完成的学位论文的知识产权归徐州工程学院所拥有。徐州工程学院有权保留并向国家有关部门或机构送交学位论文的纸本复印件和电子文档拷贝,允许论文被查阅和借阅。徐州工程学院可以公布学位论文的全部或部分内容,可以将本学位论文的全部或部分内容提交至各类数据库进行发布和检索,可以采用影印、缩印或扫描等复制手段保存和汇编本学位论文。 论文作者签名:导师签名: 日期:年月日日期:年月日

摘要 随着信息领域各种技术的发展,在数据采集方面的技术也取得了长足的进步,采集数据的信息化是目前社会的发展主流方向。各种领域都用到了数据采集,在石油勘探、地震数据采集领域已经得到应用。 本课题提出一种基于单片机的无线温度采集系统方案,该方案是利用单片机控制DS18B20温度传感器采集温度、控制LED数码管实时显示温度值、控制NFR240L1进行数据的无线传输,并由单片机去把温度数据传至计算机进行存储。本系统中所用到的器件是STC 公司的STC89C52 单片机、数字温度传感器DS18B20和无线芯片NFR24L01,测量结果用七段段LED数码管显示采集的数字信息,并利用单片机串行口,通过RS-232 总线及通信协议将采集的数据传送到PC 机,进行进一步的存档、处理,并对测量结果进行显示和存储。 关键词单片机;温度采集;NFR24L01;数据传输;串口通信;

多路温度采集系统

小型多路温控采集系统设计一.系统说明

本系统采用51单片机作为控制器,控制温度采集及显示。 温度传感器选用DS18B20,其单总线的通信方式可以减少系统的线路连接。DS18B20支持多点组网功能,多个DS18B20可以并联在唯一的三线上,实现组网多点测温。DS18B20在使用中不需要任何外围元件,全部传感元件及转换电路集成在形如一只三极管的集成电路。内温范围-55℃~+125℃,在-10~+85℃时精度为±℃可编程的分辨率为9~12位,对应的可分辨温度分别为℃、℃、℃和℃,可实现高精度测温。 同时本系统选用LCD1602作为显示器件,能够同时显示16x02即32个字符(16列2行)。其显示清晰,并可以显示阿拉伯数字、英文字母的大小写、常用的符号、和日文假名等,满足了系统要求。 二.系统电路图 三、程序流程图 四、程序解读 注:程序分两部分。可以先用程序二读出各个器件的序列号,再将序列号填入程序一的SN[4][8]数组中,若要加入更多的器件可以扩大数组,并在程序中增加读显的循环次数。 1.程序一:已知各个器件序列号读取温度 #include<> #define uchar unsigned char #define uint unsigned int uchar TMP[4]; 0”1”0c1”2”3”4”序二:读取DS18B20序列号程序 注:读ROM时,只能有一个器件与单片机通信。可以逐个相连来读出其ROM #include<> #define uchar unsigned char #define uint unsigned int uint sn[8]={0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x10}; sbit DQ=P3^7;//ds18b20与单片机连接口 sbit RS=P3^0; sbit RW=P3^1; sbit EN=P3^2; void delay1ms(unsigned int ms)//延时1毫秒(不够精确的)

温度采集报警系统的设计。

温度采集报警系统的设计院系电子信息工程学院专业电子信息工程班级 1 姓名孙黄超

摘要 温度采集广泛应用于人民的生产和生活中,使用温度计来采集温度,这样不仅采集精度低、实时性差,而且操作人员的劳动强度大。为了解决这一问题,本文介绍了一种采用集成温度传感器DS18B20作为检测元件,AT89C51作为CPU的温度监控系统。利用数字温度传感器DS18B20与AT89C51单片机结合来测量温度,利用相应的显示器显示温度值。利用仿真工具Proteus进行单片机应用系统的虚拟设计与仿真调试。在Keil μVision3开发环境下进行C51语言程序开发。本课题主要有键盘输入模块、传感器采集模块、显示模块、报警模块、CPU处理模块、电源供电及复位模块组成。本文介绍了该温度采集报警系统的硬件和软件设计。 关键字:数据采集、传感器、AT89S51单片机、仿真调试

目录 摘要 ............................................................................................................... I 目录 ............................................................................................................. II 1 引言 .. (1) 1.1 研究背景及意义 (1) 1.2 国内外研究现状 (1) 2 温度采集报警系统原理说明 (1) 3 硬件设计 (3) 3.1 总体方案设计 (3) 3.2 主要模块设计 (3) 3.2.1 晶振电路 (3) 3.2.2 复位电路 (4) 3.2.3 按键操作电路 (4) 3.2.4 显示电路 (5) 3.2.5 报警电路 (5) 3.2.6 温度传感器选择........................................... (5) 3.2.7 实现温度采集报警系统的整体流程图 (6) 4 软件设计 (7) 4.1 温度采集传感系统的任务 (7) 4.2 Proteus的界面实现 (7) 4.3 在KeilμVision4平台下进行编程 (8) 5 系统调试与实验 (9) 6 总结 (11) 7 参考文献 (12) 8 附录 (13)

单片机课程设计之温度控制及报警系统的设计

单片机课程设计之温度控制及报警系 统的设计

题目单片机温度控制及报警系统的设计 一、设计目的 学习温度的显示、控制及报警,实现了温度的实时显示及控制。温度控制部分,提出了用DS18B20、89C52单片机及LED的硬件电路完成对温度的实时检测及显示,利用DS18B20与单片机连接由软件与硬件电路配合来实现实时控制及超出设定的上下限温度的报警系统。 课题设计的目的: 1.掌握用51单片机控制LCD显示字符的方法。 2.掌握用单片机进行显示系统开发的方法。 3.掌握单片机软件、硬件调试技术。 4.了解单线器件DS18B20的驱动方法。 5.了解LCD显示器的一般驱动原理 二、使用主要电子元件 1.单片机89C52 2. 温度传感器DS18B20 3. 显示器LCD1602 4. 排插 5.发光二极管 6.电容若干 7.电阻若干

8.按钮开关若干。 9.导线若干 10. 12MHZ晶振1个 三.系统设计思想及主要应用器件 3.1 系统设计的总体思想 根据单片机温度控制要实现的功能,设计了基于ATMEL公司的AT89C52芯片的温度测量系统。这是一种低成本的利用单片机多余I/O口实现的温度检测电路。整个系统硬件部分包括温度检测系统、信号放大系统、A/D转换、单片机、I/O设备、控制执行系统等.。温度控制部分用DS18B20、89C52单片机及LED的硬件电路完成对温度的实时检测及显示。 3.2系统硬件简介 硬件大致构成:核心控制器件AT89C52 ,温度传感器DS18B20,显示器1602A 报警控制LED。 3.2.1 硬件设计思想 本设计是以AT89C52为单片机作为控制核心,提出了一种基于DS18B20的单总线多点温度测控系统,多个温度传感节点经过单

多路温度采集系统设计与实现

学校代码:11517 学号:201150712117 HENAN INSTITUTE OF ENGINEERING 毕业设计(论文) 题目多路温度采集系统设计与实现 学生姓名高宇照 专业班级电气工程及其自动化1121 学号201150712117 系(部)电气信息工程学院 指导教师(职称) 张秋慧(讲师) 完成时间2012 年 5 月13日

目录 摘要................................................................................................... I ABSTRACT ........................................................................................... II 1 前言 . (1) 1.1 背景介绍 (1) 1.2 研究设计意义及目的 (1) 1.3 发展情况 (2) 1.4 本设计主要内容 (3) 2 设计任务及方案论证 (4) 2.1 设计任务 (4) 2.2 设计方案的论证 (4) 2.3系统框图设计 (6) 3 多路温度采集系统硬件电路设计 (7) 3.1系统模块及模块介绍 (7) 3.1.1 系统整体模块控制 (7) 3.1.2 模块介绍及原理 (7) 3.2 系统基本硬件组成设计 (14) 3.2.1微机芯片工作电路设计 (14) 3.2.2 温度采集电路设计 (15) 3.2.3LCD1602的显示设计 (17) 3.2.4 报警电路的设计 (18) 3.2.5 电源部分的设计 (19) 3.3 系统设计的电路结构图 (21) 4 系统的软件设计 (22) 4.1 主程序设计 (22) 4.2 子程序设计 (23) 5 系统调试与性能分析 (27) 5.1 系统调试 (27) 5.2 性能分析 (29) 结论 (31) 致谢 (32)

温度监测报警系统设计报告

目录 一、设计任务与设计要求 (1) 二、设计原理 (1) 2.1 主要硬件介绍 (1) 2.1.1 DS18B20数字温度传感器 (1) 2.1.2 AT89C51单片机芯片 (3) 2.2 系统原理结构 (3) 三、设计方案 (4) 3.1 硬件部分 (4) 3.1.1 温度测量模块 (4) 3.1.2 LED数码管显示模块 (4) 3.1.3 按键模块 (5) 3.1.4 系统整体结构仿真图 (5) 3.2 软件部分 (5) 3.2.1DS18B20传感器程序 (5) 3.2.2键盘读取及确认程序 (7) 3.2.3DS18B20操作流程图 (8) 四、调试与性能分析 (9) 4.1 proteus仿真结果 (9) 4.2实物测试 (9) 4.2.1正常情况 (9) 4.2.2报警状态 (10) 五、心得体会 (10) 六、成品展示 (11) 七、附录部分 (12) 附件一、电路设计原理图 (12) 附件二、系统设计原始代码程序 (13)

一、设计任务与设计要求 本设计主要利用单片机AT89C51 芯片和以美国MAXIM/DALLAS半导体公司的单总线温度传感器DS18B20相结合来实现装置周围温度的采集,其中以单片机AT89C51 芯片为核心,辅以温度传感器DS18B20和LED数码管及必要的外围电路,构成一个结构简单、测温准确、具有一定控制功能的温度监视警报装系统。 功能要求: 添加温度报警功能,通过4个按键来设置温度的上下限值,当用DS18B20 测得的温度不在所设置的温度范围内,蜂鸣器开始鸣报。 二、设计原理 2.1 主要硬件介绍 2.1.1 DS18B20数字温度传感器 DS18B20 数字温度传感器提供9~12 位摄氏温度的测量,拥有非易失性用户可编程最高与最低触发点告警功能。DS18B20 通过单总线实现通信,单总线通常是DS18B20连接到中央微控制器的一条数据线(和地)。它能够感应温度的范围为-55℃~+125℃,在-10℃~+85℃的测量的精度是±0.5℃,而且DS18B20 可以直接从数据线上获取供电(寄生电源)而不需要一个额外的外部电源。 DS18B20 使用DALLAS 独有的单总线(1—wire)协议使得总线通信只需要一根控制线,控制线需要一个较小的上拉电阻,因为所有的期间都是通过三态或开路端口连接在总线上的(DS18B20 是这种情况)。在这种总线系统中,微控制器(主器件)识别和寻址挂接在总线上具有独特64 位序列号的器件。因为每个器件拥有独特的序列号,因此挂接到总线上的器件在理论上是不受限制的,单总线(1-wire)协议包括指令的详细解释和“时隙”。这个数据表包含在单总线系统(1-WIRE BUS SYSTEM)部分。DS18B20 的另外一个特征是能够在没有外部供电的情况下工作。当总线为高的时候,电源有上拉电阻通过DQ 引脚提供,高总线信号给内部电容(Cpp)充电,这就使得总线为的时候给器件提供电源,这种从单总线上移除电源的方法跟寄生电源有关,作为一种选择,DS8B20 也可以采用引脚VDD 通过外部电源给器件供电。 DS18B20 引脚定义: (1) GND为电源地; (2) DQ为数字信号输入/输出端; (3)VDD 为外接供电电源输入端(在寄生电源接线方式时接地) 图2.1.1 DS18B20 引脚排列图

基于DS18B20的温度采集显示系统的设计

《单片机技术》课程设计任务书(三) 题目:基于DS18B20的温度采集显示系统的设计 一、课程设计任务 传统的温度传感器,如热电偶温度传感器,具有精度高,测量范围大,响应快等优点。但由于其输出的是模拟量,而现在的智能仪表需要使用数字量,有些时候还要将测量结果以数字量输入计算机,由于要将模拟量转换为数字量,其实现环节就变得非常复杂。硬件上需要模拟开关、恒流源、D/A转换器,放大器等,结构庞大,安装困难,造价昂贵。新兴的IC温度传感器如DS18B20,由于可以直接输出温度转换后的数字量,可以在保证测量精度的情况下,大大简化系统软硬件设计。这种传感器的测温范围有一定限制(大多在-50℃~120℃),多适用于环境温度的测量。DS18B20可以在一根数据线上挂接多个传感器,只需要三根线就可以实现远距离多点温度测量。 本课题要求设计一基于DS18B20的温度采集显示系统,该系统要求包含温度采集模块、温度显示模块(可用数码管或液晶显示)和键盘输入模块及报警模块。所设计的系统可以从键盘输入设定温度值,当所采集的温度高于设定温度时,进行报警,同时能实时显示温度值。 二、课程设计目的 通过本次课程设计使学生掌握:1)单总线温度传感器DS18B20与单片机的接口及DS18B20的编程;2)矩阵式键盘的设计与编程;3)经单片机为核心的系统的实际调试技巧。从而提高学生对微机实时控制系统的设计和调试能力。 三、课程设计要求 1、要求可以从键盘上接收温度设定值,当所采集的温度高于设定值时,进行报警(可以是声音报警,也可是光报警) 2、能实时显示温度值,若用Proteus做要求保留一位小数; 四、课程设计内容 1、人机“界面”设计; 2、单片机端口及外设的设计; 3、硬件电路原理图、软件清单。 五、课程设计报告要求 报告中提供如下内容:

(完整word版)基于MSP430的温度控制报警系统

微控制器应用及系统设计课程设计报告 南京理工大学

2010 年 5 月 目次 1 引言 (3) 2 系统总体设计 (3) 2.1 系统组成结构及工作原理 (3) 2.2 系统工作流程 (3) 2.3 系统核心器件选型 (4) 3 系统硬件设计 (4) 3.1 电源模块设计 (4) 3.2 LED显示模块设计 (4) 3.3 键盘输入模块设计 (5) 3.4 温度采集模块设计 (5) 3.5 报警模块设计 (6) 4 系统软件设计 (6) 4.1 系统软件总体结构及总流程图 (7) 4.2 LED显示模块程序设计 (9) 4.3 键盘输入模块程序设计 (9) 4.4 温度采集模块程序设计 (10) 4.5 报警模块程序设计 (10) 4.6 主模块程序设计 (10) 5 系统调试与结果分析 (10) 5.1 系统调试步骤 (10) 5.2 遇到的问题及解决方案 (12) 5.3 实验结果 (13) 6 结论与心得体会 (13) 参考文献 (13) 附录 (14)

1 引言 温度是一个非常重要的物理量,因为它直接影响燃烧、化学反应、发酵、烘烤、煅烧、蒸馏、浓度、挤压成形、结晶以及空气流动等物理和化学过程。温度控制失误就可能引起生产安全、产品质量、产品产量等一系列问题。因此对温度的检测的意义就越来越大。温度采集控制系统在工业生产、科学研究和人们的生活领域中,得到了广泛应用。在工业生产过程中,很多时候都需要对温度进行严格的监控,以使得生产能够顺利的进行,产品的质量才能够得到充分的保证。使用自动温度控制系统可以对生产环境的温度进行自动控制,保证生产的自动化、智能化能够顺利、安全进行,从而提高企业的生产效率。 温度的检测与控制是工业生产过程中比较典型的应用之一,随着传感器在生产和生活中的更加广泛的应用,利用新型单总线式数字温度传感器实现对温度的测试与控制得到更快的开发。 现在的生活中,所用到的电器,家具设备,包括工业产品等对温度的要求日益增高,灵敏的温度控制报警系统已成为日常生活中必不可少的产品。例如冰箱的温控系统,锅炉等等,无不都用到了这一功能部件。对于此,我们设计了基于MSP430F149单片机的温度控制报警系统,来模拟实现现实中的温度控制系统。此系统具有设计和布线简单,结构紧凑,体积小,重量轻,抗干扰能力强,性价比高,扩展方便,在大型仓库,工厂,智能化建筑等领域的多点温度检测中有广阔的应用前景。 2 系统总体设计 2.1系统组成结构及工作原理 该系统主要由5大模块组成,其中包括DS18B20温度传感器,MSP430F149微控制器,LED显示模块,4X4矩阵键盘输入模块,报警模块5大部分组成。由温度传感器负责数据采集,经微处理器转换后由LED显示模块输出,同时由键盘模块负责输入温度报警的上下限。当到达设定的温度限定值时就报警。 其组成框图如下所示: 2.2 系统工作流程 首先设定温度报警的上下限值,然后由温度传感器进行温度数据的采集,当微处理器检测到温度超过设定的范围值时就实行报警,提醒用户做相关操作。

基于ZigBee的多点温度采集系统设计与实现

摘要:针对广阔空间环境温度采集系统对功耗及成本的要求,设计了基于无线传感网络技术的多点温度采集系统.以CC2430 为主控芯片,选用DS18B20 作为温度采集节点的传感器,基于ZigBee 协议栈构建无线网络实现主从节点之间数据的采集与传输,利用串口通信技术与PC 机通信,并编程实现数据处理、存储与显示。 1 引言 随着生产技术的提高, 环境温度指标越来越多的影响到生产效率、能源消耗和生活水平。不管是工业、农业、军事及气象领域, 还是日常生活环境, 都需要对温度进行监测。因而,设计可靠且实用的温度采集系统显得非常重要。 在传统的温度采集系统中, 节点一般采用有线连接方式, 布线繁琐, 扩展性和可移植性较差。尤其对于广阔空间环境中的温度采集,如果采用有线方式其成本和功耗都比较高。而ZigBee 作为一种新兴的短距离、低功耗、低成本的无线通信技术, 能广泛应用于工业控制、消费电子、家庭自动化、医疗监控各种领域。 本文设计了一种基于ZigBee 无线技术的多点温度采集系统, 实现了主从节点间数据的无线传输, 同时上位PC 机采用串口与主节点通信,并建立温度数据库,实现了数据的统一管理。该系统具有扩展性好、稳定可靠、维护方便等特点。 2 系统整体概述 本文设计的温度采集系统结构如图1 所示。系统采用ZigBee 星型网络拓扑结构,建立了一个主节点,四个从节点的无线传感网络,实现数据的无线传输。各个从节点连接数字温度传感器DS18B20 定时采集环境温度,并通过无线传感网

络将数据依次向主节点发送,主节点收到数据后通过串口传给上位PC 机,上位机将采集的数据存入数据库, 对数据进行分析处理, 并在监控界面显示温度实时变化曲线。 图1 温度采集系统结构图 3 系统硬件设计 3.1 主节点硬件设计 选择CC2430 作为主节点的处理器,该芯片是全球首款支持ZigBee 协议的

基于单片机的多路温度采集系统毕业设计(论文)外文翻译

华南理工大学学院 本科毕业设计(论文)外文翻译 外文原文名Structure and function of the MCS-51 series 中文译名MCS-51系列的功能和结构 学院电子信息工程学院 专业班级自动化一班 学生黎杰明 学生学号 3 指导教师吴实 填写日期2016年3月10日 页脚.

外文原文版出处:《association for computing machinery journal》1990, V ol.33 (12), pp.16-ff 译文成绩:指导教师(导师组长)签名: 译文: MCS-51系列的功能和结构 MSC-51系列单片机具有一个单芯片电脑的结构和功能,它是英特尔公司的系列产品的名称。这家公司在1976年推出后,引进8位单芯片的MCS-48系列计算机后于1980年推出的8位的MCS-51系列单芯片计算机。诸如此类的单芯片电脑有很多种,如8051,8031,8751,80C51BH,80C31BH等,其基本组成、基本性能和指令系统都是相同的。8051是51系列单芯片电脑的代表。 一个单芯片的计算机是由以下几个部分组成:(1)一个8位的微处理器(CPU)。(2)片数据存储器RAM(128B/256B),它只读/写数据,如结果不在操作过程中,最终结果要显示数据(3)程序存储器ROM/EPROM(4KB/8KB).是用来保存程序一些初步的数据和切片的形式。但一些单芯片电脑没有考虑ROM/EPROM,如8031,8032,80C51等等。(4)4个8路运行的I/O接口,P0,P1,P2,P3,每个接口可以用作入口,也可以用作出口。(5)两个定时/计数器,每个定时方式也可以根据计算结果或定时控制实现计算机。(6)5个中断(7)一个全双工串行的I/UART(通用异步接收器I口/发送器(UART)),它是实现单芯片电脑或单芯片计算机和计算机的串行通信使用。(8)振荡器和时钟产生电路,需要考虑石英晶体微调能力。允许振荡频率为12MHz,每个上述的部分都是通过部数据总线连接。其中CPU是一个芯片计算机的核心,它是计算机的指挥中心,是由算术单元和控制器等部分组成。算术单元可以进行8位算术运算和逻辑运算,ALU单元是其中一种运算器,18个存储设备,暂存设备的积累设备进行协调,程序状态寄存器PSW积累了2个输入端的计数等检查暂时作为一个操作往往由人来操作,谁储存1输入的是它使操作去上暂时计数,另有一个操作的结果,回环协调。此外,协调往往是作为对8051的数据传输转运站考虑。作为一般的微处理器,解码的顺序。振荡器和定时电路等的程序计数器是一个由8个计数器为2,总计16位。这是一个字节的地址,其实程序计数器,是将在个人电脑进行。从而改变它的容可以改变它的程序进行。在8051的单芯片电脑的电路,

温度测量与报警系统设计.

课程设计说明书 题目:温度测量与报警系统设计 姓名: 学号: 指导教师: 专业年级: 所在学院和系: 完成日期: 课程名称:机电一体系统设计

目录 1绪论 (1) 1.1 背景 (1) 1.1 设计要求 (1) 1.3 设计任务 (1) 2系统总体方案设计 (2) 2.1 设计思想 (2) 2.2 方案论证 (2) 2.2.1 电源模块 (2) 2.2.2 温度检测模块 (3) 2.2.3 控制模块 (3) 2.2.4 显示模块 (3) 2.2.5 报警模块 (4) 2.2.6 按键模块 (4) 2.3 芯片选择 (4) 2.3.1电源模块 (4) 2.3.2 温度检测模块 (4) 2.3.3 控制模块 (5) 2.3.4 显示模块 (5) 3系统硬件设计 (6) 3.1 单片机最小系统 (6) 3.2 传感检测电路 (6) 3.3 显示模块 (7) 3.4 报警模块 (8) 3.5 按键模块 (8) 3.6 总电路 (8) 3.6.1 绘图软件简介 (8)

3.6.2 电路原理图 (9) 3.6.3 电路PCB图 (10) 4系统软件设计 (12) 4.1 程序设计思路 (12) 4.2 主程序流程图 (12) 4.3 获取温度程序流程图 (13) 4.4 报警程序流程图 (14) 4.5 显示程序流程图 (15) 4.6 数据处理程序流程图 (15) 4.7 编程软件简介 (16) 5总结 (17) 参考文献 (18) 附录A (19) 附录B (20) 附录C (21)

1绪论 1.1 背景 温度温度是工业生产中主要的被控参数之一,与之相关的各种温度控制系统广泛应用于冶金、化工、机械、食品等领域。温度控制是工业生产过程中经常遇到的过程控制,有些工艺过程对其温度的控制效果直接影响着产品的质量;同时,温度超过了系统工作正常范围将直接影响系统的寿命,甚至损坏系统;甚至可以说任何一个系统都必须工作在一定的温度范围内,因而设计一种较为理想的温度控制系统是非常有价值的。 自18世纪工业革命以来,工业的飞速发展离不开温度参量在控制系统中的应用。在冶金、钢铁、石化、水泥、玻璃、医药等等行业,可以说几乎80%的工业部门都不得不考虑着温度的因素。在工业生产中人们都需要对各类加热炉、热处理炉、反应炉和锅炉中的温度进行检测和控制,常用的控制电路根据应用场合和所要求的性能指标有所不同, 在工业企业中,如何提高温度控制对象的运行性能一直以来都是控制人员和现场技术人员努力解决的问题。这类控制对象惯性大,滞后现象严重,存在很多不确定的因素,难以建立精确的数学模型,从而导致控制系统性能不佳,甚至出现控制不稳定、失控现象。 1.1 设计要求 设计要求:实现温度的测量与控制。 测温范围:0~1000C;测量精度:0.10C; 设有上、下限报警温度;数码显示; 1.3 设计任务 设计任务:硬件设计(元器件选择、电路原理图与电路板图绘制等)、软件设计。

虚拟仪器温度采集系统

内蒙古科技大学虚拟仪器期末大作业 题目:虚拟仪器温度采集系统 姓名:王伍波 专业:测控技术与仪器 学号:1067112240 班级:测控10-2班 教师:肖俊生 时间:2013年6月18日

一、设计题目:虚拟仪器温度采集系统 二、设计要求: 1.连续采集温度信号,并存储 2.温度上下限报警功能,上下限可调 3.华氏、摄氏可转换显示 三、设计思路: 该设计是以计算机和单片机数据采集系统为核心,单片机数据采集系统主要完成对温度信号进行数据采集,计算机主要完成温度信号的分析、显示和控制等功能。设计中采用Intel 公司的89C51 单片机完成数据采集,采用A D 5 7 4 完成数据的A/D 转换。图2 为AD574 与89C51 单片机的接口电路。 1.设计虚拟前面板 温度监测软件设计本系统以labview8.5 作为开发工具。现以仿真数据为例来讲述系统软件对温度的监测、报警及显示功能。利用labview8.5编程使温度可以在华氏和摄氏之间随时进行切换,同时对温度实时监测。当温度超过上限要求时会及时点亮报警灯进行报警并显示每次采集过程中累加的报警次数,报警的上限值可以通过前面板的输入控件改变其值。采集进度定义为每次采集100 点。为了防止程序陷入死循环每次采集之间的时间间隔为1000ms。开始采集后在整个采集过程中可以暂停采集以便随时对温度进行观察。 2、编辑流程图 每一个程序前面板都对应着一段框图程序框图程序用

LabVIEW 图形编程语言编写.可以把它理解成传统程序的源代码。框 图程序由端口、节点、.图框和连线构成。其中端口被用来同程序前 面板的控制和显示传递数据.节点被用来实现函数和功能调用.图框 被用来实现结构化程序控制命令.而连线代表程序执行过程中的数据流.定义了框图内的数据流动方向 3、运行检验 检验是否能够完成系统的功能.改变相应参数进行进一步验证.以方便根据实际情况修改设计.从而方便实际器件的设计、调试。4、功能描述 创建一个VI程序模拟温度测量:把创建的温度计程、序 T(hermometerVI1作为一个子程序用在当前新建程序里.先前的温 度计子程序用于采集数据.而当前的程序用于显示温度曲线.并在前 面板上设定测量次数和每次测量间隔的延时;再创建一个新VI程序,进行温度测量,并把结果在波形图表上显示:利用新创建的VI程序.再输入新的字符串;据采集过程中。实时地显示数据;当采集 过程结束后,在图表上画出数据波形.并算出最大值、最小值和平 均值(此处只使用摄氏温度单位):修改TemperatureAnalysis.VI DemoReadVohageVI程序以检测温度是否超出范围.当温度超出上限(High Limit)时,前面板上的LED点亮,并且有一个蜂鸣器发声。5、设计过程 创建一个VI程序模拟温度测量假设传感器输出电压与温度成 正比。例如.当温度为70时,传感器输出电压为0.7V。本程序也

温度控制报警器设计

温度控制报警器第一章:序论 1.1温控警报器的原理 1.2温控警报器的广泛运用 1.3温控警报器的主要功能介绍 第二章:主要元器件的介绍 2.1温度传感器的原理 2.2温度传感器的发展及运用 2.3单片机的选用及其功能介绍 2.3.1单片机引脚介绍 2.3.2单片机工作原理 2.4 DS18B20温度传感器的介绍 2.4.1引脚介绍 2.4.2DS19B20的内部结构 2.4.3DS18B20的工作原理 2.4.4DS18B20的测温原理 2.4.5DS18B20的ROM命令 2.5四位数码管工作原理 第三章:温控警报器系统硬件主要模块 3.1单片机的最小系统 3.2温度采集模块 3.3温度显示模块 3.4键盘输入控制模块 3.5输出报警模块 第四章:单片机程序设计 4.1温度采集程序 4.2温度显示程序 4.3键盘输入程序 4.4输出报警程序 总结 致谢 参考文献 附录A 总电路图 附录B 元器件清单 附录C 温控报警器总程序

第一章 1.1温控报警器的工作原理 本温控报警器由一个DS18B20温度传感器采集外部温度,然后将采集到的温度信息传送到单片机内,单片机通过处理,将信息输出到数码管上,使数码管显示当前温度传感器采集到的温度,我们通过外设键盘,可设置报警的温度范围,如果传感器采集到的温度高于设置的温度,或者低于设置的温度,单片机自动处理,输出一个警报信号,发出叫声并且红灯闪烁! 1.2温控警报器的运用 温控警报器用于防火 在炎热的夏天或者是干燥的冬天,火灾都都是人们不可小视的灾难,因此预防火患可以提高人们生活的安全性,我们将温控报警器安置在恰当的位置,如果温度过高,温控报警器就自动报警,让人们知道哪里哪里可能即将发生火灾,人们好尽快的将火灾灭杀在襁褓之中,极大的减小了火灾的可能! 温控警报器在电子产品上得运用 电子产品由于过于精密,很多电子产品只能工作于一定的温度条件下,如果环境温度高于或者是低于某个温度值,产品的性能就达不到最好,对于一些精密的测量,就会有很大的影响,反之,如果用温控警报器加以监控,就可以知道这些电子产品的工作是否正常,测量的值是否该加以修正,或者该去改变这些电子产品的工作环境!比如:温度通过影响电源中的电容和半导体元器件,进而影响到电源的性能:温度变化会引起输出电压变化,即通常讲的温飘。温度对AC/DC电源影响大是因为大部分AC/DC 电源都大量使用铝电解电容(如滤波电容、储能电容、启动电容),铝电解电容除了容量大、耐高压外无任何优点,若电脑电源使用质量差的铝电解电容,可能发生低温不启动、高温容易坏(铝电解电容中电解液干枯所致)。温度对DC/DC电源影响不大也是因为电容,DC/DC电源中不是使用铝电解而大多使用钽电容、瓷片电容等,当然他们的价格也不会是同一个档次。温度对电容的影响如下:一般情况下,电容的寿命随温度的升高而缩短,最明显的是电解电容器。一个极限工作温度为85℃的电解电容器,在温度为20℃的条件下工作时,一般可以保证180000小时的正常工作时间,而在极限温度

多路温度采集器设计

J I A N G S U U N I V E R S I T Y 《嵌入式项目应用实践》 恭喜你 学院名称:计算机科学与通信工程学院 班级:计院的孩子 小组成员:雷锋 教师姓名:你猜猜 2016年 5 月 10日

一.实验题目 多路温度采集系统的设计。 二.实验要求 a)使用PROTEUS 8和ARDUINO IDE 进行硬件电路设计和MCU程序设 计 b)使用ALTIUM DXP 进行PCB版图设计 c)三个人一组,完成项目。每组交一份报告,一份PPT并答辩。 1.使用PROTEUS 8和ARDUINO IDE 进行硬件电路设计和MCU程序设计: 将三种温度采集的温度值显示在屏幕上,同时利用串口输出温度值。 d)分别使用LM35、DS18B20、MAX6657器件进行温度采集,使用ARDUINO 设计MCU程序。 e)时用拨动开关进行温度来源选择,开关导通时,对应LED点亮,采到的 温度要输出到液晶屏和串口。即最多可以同时显示3个器件采集的温度,最少1个。当一个都没选时,用蜂鸣器提示。 f)设计时可能数字引脚不够,此时,A0可以做为14脚处理,A1做为15 脚,以此类推。 2.使用ALTIUM DXP进行PCB版图设计 a)在DXP中绘制原理图。 b)注意:DXP中没有MAX6675芯片,需自己创建原理图元件和PCB封装。 c)液晶屏用合适的接线座替代或自行设计。 d)增加电源变压器插座(假设输入为8V)和LM7805稳压芯片将电压稳定在 5V,并做为系统供电。 e)进行PCB版图设计,即进行PCB层数设置、元件布局和布线。设计时要 考虑线宽、布线规定、防噪声设计等。 f)注意:元件位置要合理,便于用户使用。

基于51的温度报警器设计..

目录 1 概述 (2) 1.1 研究背景 (2) 1.2 设计思想及基本功能 (2) 2 总体方案设计 (3) 2.1 方案选取 (3) 2.2 系统框图 (5) 2.3 总体方案设计 (6) 3 硬件电路设计 (6) 3.1 电源电路设计 (6) 3.2 晶振电路 (7) 3.3 复位电路 (7) 3.4 矩阵键盘电路 (8) 3.5 温度检测电路 (9) 3.6 液晶显示电路 (10) 3.7 蜂鸣器报警电路 (11) 4 系统软件设计 (12) 4.1 主程序软件设计 (12) 4.2 键盘扫描程序设计 (14) 4.3 温度上下限设定程序设计 (15) 4.4 延时程序设计 (16) 5系统调试 (16) 6总结 (18) 参考文献 (18) 附录1 系统原理图 (19) 附录2 程序清单 (20)

1 概述 1.1 研究背景 温度作为一种最基本的环境参数,和人们的安全、生活,工农业生产有着紧密的联系,因此在某些场合对温度进行检测,并且在温度超过期待范围后进行报警便显得尤为重要,对能实现温度检测并报警的装置的设计和研发也就有了特别的意义。 单片机作为一种微控制器,由于具有体积小,质量轻,功耗低,价格便宜,可靠性高,功能强大等特点,已经进入人们生活,工业生产的各个领域,现在很难在某个领域看不到单片机的痕迹。在智能仪表领域,由于单片机的上述优点,用单片机作为控制平台,结合不同类型的传感器,可以很容易地对温度,湿度,流量等物理量进行检测。 针对在日常生活和工业生产中对温度进行检测和监控的需求,本课题以AT89C51单片机为核心设计了一种温度报警器,它可以通过键盘对温度进行上下限设置,用液晶进行温度显示,并且在超出温度设定范围后发声报警。本设计也具有一定的扩展性,例如可以再加一个烟尘传感器和光电传感器,扩展为火灾报警器。 1.2 设计思想及基本功能 本课题对温度报警器进行设计时,在满足温度检测和报警功能的基础上,为了增加其应用的灵活性,采用了矩阵键盘电路,从而可以对温度报警范围进行设定,以适应对温度有检测需求的不同应用场合。为了增加人机交互性,采用了功耗低的字符型液晶显示汉字和温度。 该温度报警器具有以下基本功能: (1)手动设定温度范围:该功能使用户可以根据不同场合设定温度报警范围,增强了该设计的应用性。 (2)温度采集:采用了数字温度传感器对现场温度在-55℃到+125℃范围内的应用场合进行温度采集。 (3)液晶显示:通过常用的液晶模块对当前温度传感器采集的温度进行显示。 (4)蜂鸣器报警:当温度传感器采集的温度不在设定范围内时,使蜂鸣器发

无线室温采集系统

MHT室内温度采集系统简介及数据表

公司简介 沈阳中科博微科技股份有限公司是由中国科学院沈阳自动化研究所发起创建的一家高新技术企业,主要从事网络化控制系统、工业通信及仪表、开发、生产和应用。中科博微承担了多个国家科技重大专项、国家高技术研究发展计划(863计划)、智能制造装备发展专项等国家科技计划项目,是国家网络化控制系统工程研究中心建设依托单位。 中科博微成功地开发了国内第一个通过国际认证的现场总线协议主栈、第一个通过国家认证的现场总线仪表、国内第一个通过德国TüV认证的安全仪表,与其它单位共同主持了制定国内第一个工业以太网协议标准EPA、第一个工业无线通信协议标准WIA-PA,并成为IEC国际标准。 中科博微的产品和技术曾荣获国家科技进步二等奖两项、国家科技发明奖一项、中国科学院科技进步一等奖一项、辽宁省科技进步一等奖一项,产品出口欧美等发达国家,美国Emerson、英国Rotork、英国Bifold等业内顶尖企业都在其产品中采用了博微的关键技术或关键部件,成功完成了200多项大型自动化工程项目。 中科博微是FCG组织成员;是Profibus用户组织(PNO)成员。 中科博微成功通过了ISO9001:2008质量管理体系认证和汽车行业的ISO/TS16949质量体系认证。优秀的研发团队,丰富的自动化工程设计与实施经验,业界领先的产品,庞大的市场网络,优秀的企业文化,都为公司的创业和持续发展奠定了坚实基础。承载员工理想,创造客户价值,促进企业发展。 承载员工理想,创造客户价值,促进企业发展。

第1章概述 为了实现供暖单位对用户室内温度的采集与记录、管理者随时查看用户室温的变化趋势,辅助管理者分析与决策,对室温超标的用户及时采取措施,减少供热用户投诉,实现最少热能为最大供暖面积提供合格的供暖效果。我公司自主研制开发出MHT室内温度采集系统,实现了对用户室内温度的不间断监测,让供暖单位通过监控中心可以直观看到温度实时变化,代替过去由人工来完成的温度数据采集任务;同时监控中心对无线温度采集器传输来的温度数据进行存储和查询统计。采集到的实时数据通过GPRS的方式发送到监控中心,从而能有效的监控监测点的温度。 系统组成拓扑图: PC客户端移动PC客户端PDA客户端手机客户端 系统由热耗用户室温采集系统软件、MHT100 LoRa /GPRS室温接收和发送器、MHT010 GPRS室温采集器、LoRa室温采集器组成。根据采集点疏密程度不同、网络资费不同,供暖单位可选配出三种系统结构。 1.1直接链接结构

基于单片机的多路温湿度检测系统设计

基于单片机的多路温湿度检测系统设计 潘磊 (天津冶金职业技术学院电气工程系,天津300400) 摘要:介绍了以C8051F120单片机和PC 机为核心的温湿度检测系统,论述了系统的组成,各模块硬件电路设计以及系统上位机、下位机的软件设计。系统下位机实时收集多路SHT71传感器采集的数据并显示上传,上位机利用VB 中MSComm 控件完成数据接收和处理,实现了对环境温湿度的现场显示和远距离控制。 关键词:温湿度检测;C8051F120;SHT71;VB 中图分类号:TP274文献标识码:A 文章编号:1673-1131(2013)01-0065-02 随着社会生产的不断发展进步,许多工农业生产过程以 及民用场合都需要对环境的温度和湿度进行检测并控制,比 如:粮仓、温室蔬菜大棚、通信基站、电力变电房、药厂、图书馆、 博物馆等。为此本文设计了一个系统实现对环境温度湿度的 检测控制。 1系统结构 本系统主要由电源模块、单片机系统、键盘及LCD 显示 模块、温度湿度传感器采集模块、时钟芯片模块、语音报警模 块、通信模块以及上位机系统组成。系统能够实时采集四处 检测环境的温度和湿度,并把采集数据显示在LCD 屏上,通 过键盘预先设置温湿度上下限数值,当所检测的温度或湿度 超过所设定的数值语音报警模块报警。同时,下位机上传温 度湿度数据,上位机对数据进行存储、显示以及数据分析。系 统框图如图1 所示。 图1系统框图 2系统硬件设计 2.1单片机系统 本系统选用Cygnal 公司的C8051F120单片机作为核心 处理器,此款单片机有64位I/O 口,满足本系统外设较多的需 求,减少系统I/O 扩展,也为增加检测通路和系统扩展预留接 口。单片机峰值处理速度达到100Mips ,大大提高了系统的实 时性,内部带有128KB FLASHROM 能够满足多路实时数据 的大容量存储,集成2个UART ,1个I 2C ,1个SPI 接口便于与 外围设备及上位机传输数据。 2.2温度湿度传感器采集模块 传统模拟式温湿传感器的测量精度和分辨率很低,只有 1%左右,同时要获得高精度还需要更高精度的基准电压。另 外,所测得的模拟量还要进过A/D 转换才能送入微处理器 进行处理。为避免上述问题本系统采用全校准数字输出相 对湿度和温度传感器SHT71,与单片机接口电路图如图2所 示。图2 温度湿度传感器采集模块图3LCD 显示模块为了实现多点同时测量减少采集等待时间,同时尽量少的占用I/O 口资源,本系统将SHT71的时钟线SCK 都连接到P1.0口,数据线DATA 分别连接到P1口其他4个I/O 口上,并在数据线DATA 端加入上拉电阻。通过软件程序写入命令 即可完成温湿度数据采集,但传感器输出的测量量并不是实 际值,还需进行数据转换。2013年第1期 (总第123期)2013(Sum.No123) 信息通信INFORMATION &COMMUNICATIONS

相关文档
最新文档